1
|
Cheng Y, Zhao E, Yang X, Luo C, Zi G, Wang R, Xu Y, Peng B. Entrapment of lipid nanoparticles in peripheral endosomes but not lysosomes impairs intracellular trafficking and endosomal escape. Int J Pharm 2025; 669:125024. [PMID: 39631713 DOI: 10.1016/j.ijpharm.2024.125024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The uptake and intracellular trafficking of lipid nanoparticles (LNPs) along the endolysosomal pathway leading to releasing compartments is critical for delivery efficiency. How the players of the processes interact with each other to affect LNP delivery remains unclear. Here, we employed a recently developed, highly sensitive LNP labeling platform in combination with defined-state of endolysosomal activity of cells to address this outstanding question with spatiotemporal analysis. We found the endolysosomal activity (endolyosomal pH, endolysosomal protease activation), which was regulated by nutrients, determines the active endocytosis activity of cells. Elevated internalization of DNA and LNP alike by cells correlated with increased endolysosomal activity. Similar to naked DNA, elevated internalization of LNP resulted in entrapment of LNPs in peripheral endosomes, which significantly impaired the intracellular trafficking of LNP to the perinuclear lysosome region and cytosolic release of LNP cargo. On the other hand, we found the extent of perinuclear lysosomal LNP accumulation positively correlated with the level of transgene expression. Moreover, we found continuous internalization of LNP was necessary not only to saturate the degradation compartments to overcome rapid degradation of LNP but also to maintain a necessary pool of releasing compartments, shuttling between peripheral endosomes and lysosomes via anterograde transport and retrograde transport along microtubules respectively, for meaningful endosomal release. Our results suggest the balance between endocytosis and intracellular trafficking needs to be fine-tuned according to endolysosomal activity of target cell to achieve optimal cytosol release.
Collapse
Affiliation(s)
- Yiqin Cheng
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - E Zhao
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Xiaojuan Yang
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Chengzhi Luo
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Guanghui Zi
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Rui Wang
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Yuhong Xu
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali 671003, Yunnan, PR China.
| | - Baowei Peng
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali 671003, Yunnan, PR China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China.
| |
Collapse
|
2
|
Harvey LD, Alotaibi M, Tai YY, Tang Y, Kim HJJ, Kelly NJ, Sun W, Woodcock CSC, Arshad S, Culley MK, El Khoury W, Xie R, Al Aaraj Y, Zhao J, Hafeez N, Rao RJ, Jiang S, Negi V, Kirillova A, Perk D, Watson AM, St. Croix CM, Stolz DB, Lee JY, Cheng MH, Zhang M, Detmer S, Guzman E, Manan RS, Saggar R, Haley KJ, Waxman AB, Okawa S, Schwantes-An TH, Pauciulo MW, Wang B, Webb A, Chauvet C, Anderson DG, Nichols WC, Desai AA, Lafyatis R, Nouraie SM, Wu H, McDonald JG, Cheng S, Bahar I, Bertero T, Benza RL, Jain M, Chan SY. Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension. Science 2025; 387:eadn7277. [PMID: 39847635 PMCID: PMC12087357 DOI: 10.1126/science.adn7277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025]
Abstract
Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 (NCOA7) deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes. This oxysterol signature overlapped with a plasma metabolite signature associated with human PAH mortality. Mice deficient for endothelial Ncoa7 or exposed to an inflammatory bile acid developed worsened PAH. Genetic predisposition to NCOA7 deficiency was driven by single-nucleotide polymorphism rs11154337, which alters endothelial immunoactivation and is associated with human PAH mortality. An NCOA7-activating agent reversed endothelial immunoactivation and rodent PAH. Thus, we established a genetic and metabolic paradigm that links lysosomal biology and oxysterol processes to endothelial inflammation and PAH.
Collapse
Affiliation(s)
- Lloyd D. Harvey
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mona Alotaibi
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hee-Jung J. Kim
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neil J. Kelly
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chen-Shan C. Woodcock
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sanya Arshad
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Miranda K. Culley
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rong Xie
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rashmi J. Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siyi Jiang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anna Kirillova
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dror Perk
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Annie M. Watson
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Donna B. Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Mary Hongying Cheng
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Manling Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Samuel Detmer
- Department of Chemistry, Massachusetts Institute of Technology, Boston, MA, USA
| | - Edward Guzman
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Rajith S. Manan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Rajan Saggar
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kathleen J. Haley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron B. Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Okawa
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bing Wang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy Webb
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Caroline Chauvet
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia-Antipolis, Valbonne, France
| | - Daniel G. Anderson
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ankit A. Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - S. Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haodi Wu
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Thomas Bertero
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia-Antipolis, Valbonne, France
| | - Raymond L. Benza
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Yao L, Zi G, He M, Xu Y, Wang L, Peng B. Asparagine endopeptidase regulates lysosome homeostasis via modulating endomembrane phosphoinositide composition. Cell Death Dis 2025; 15:883. [PMID: 39743643 DOI: 10.1038/s41419-024-07187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025]
Abstract
Asparagine endopeptidase (AEP) is ubiquitously expressed in both physiological and pathological contexts, yet its precise role and functional mechanism in breast cancer remain elusive. Here, we identified increased AEP expression in breast cancer tissues, which correlated with poorer survival rates and a propensity for lung metastasis among breast cancer patients. Loss of AEP impaired colony formation by breast cancer cells in vitro and suppressed lung metastasis in mice. By Gene Set Enrichment Analysis (GSEA) analysis, we uncovered a positive association between aberrant AEP expression and autophagy as well as lysosomal function. Loss of AEP in breast cancer cells led to reduced autophagosome clearance and impaired lysosomal degradation. Mechanically, by co-immunoprecipitation and in vitro enzymatic cleavage assays, we identified the regulatory subunit p85 of class IA PI3K phosphatidylinositol 3-kinase (PI3K), as a substrate of AEP. Loss of AEP led to elevated endo/lysosomal PI3K activity and subsequent conversion of PtdIns(4,5)P2 (PIP2) to PtdIns(3,4,5)P3 (PIP3) on endo/lysosome membranes. Notably, the novel function of endo/lysosomal PI3K which was differently with its role in cytomembrane, was revealed by pharmacological inhibition with a potent endo/lysosomal PI3K inhibitor PIK75. PIK75 treatment showed increased vacuolar-ATPase assembly endo/lysosome membranes, prevented over lysosome perinuclear clustering/fusion and enhanced autophagosome clearance. Our findings demonstrate that AEP regulates cellular autophagy by modulating lysosomal function through its control over endo/lysosomal PI3K activity. These results suggest that AEP may serve as a potential target for suppressing metabolic adaptations in cancer.
Collapse
Affiliation(s)
- Linli Yao
- College of Pharmacy, Dali University, Dali 671003, Yunnan, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - GuangHui Zi
- College of Pharmacy, Dali University, Dali 671003, Yunnan, PR China
| | - Miao He
- College of Pharmacy, Dali University, Dali 671003, Yunnan, PR China
| | - Yuhong Xu
- College of Pharmacy, Dali University, Dali 671003, Yunnan, PR China
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671003, Yunnan, PR China
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Baowei Peng
- College of Pharmacy, Dali University, Dali 671003, Yunnan, PR China.
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671003, Yunnan, PR China.
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671003, Yunnan, PR China.
| |
Collapse
|
4
|
Miyada MG, Choi Y, Rich K, La Clair JJ, Burkart MD. Differentiating carrier protein interactions in biosynthetic pathways using dapoxyl solvatochromism. Chem Sci 2024; 15:19913-19919. [PMID: 39568935 PMCID: PMC11575542 DOI: 10.1039/d4sc05499g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Carrier protein-dependent synthases are ubiquitous enzymes involved both in primary and secondary metabolism. Biocatalysis within these synthases is governed by key interactions between the carrier protein, substrate, and partner enzymes. The weak and transient nature of these interactions has rendered them difficult to study. Here we develop a useful fluorescent solvatochromic probe, dapoxyl-pantetheinamide, to monitor and quantify carrier protein interactions in vitro. Upon loading with target carrier proteins, we observe dramatic shifts in fluorescence emission wavelength and intensity and further demonstrate that this tool has the potential to be applied across numerous biosynthetic pathways. The environmental sensitivity of this probe allows rapid characterization of carrier protein interactions, with the ability to quantitatively determine inhibition of protein-protein interactions. We anticipate future application of these probes for inhibitor screening and in vivo characterization.
Collapse
Affiliation(s)
- Matthew G Miyada
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Yuran Choi
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Kyle Rich
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| |
Collapse
|
5
|
Kumar Das S, Kahali S, Kar S, Madhavan N, Datta A. Naphthalimide-Based, Single-Chromophore, Emission Ratiometric Fluorescent Sensor for Tracking Intracellular pH. Chembiochem 2024; 25:e202400538. [PMID: 39073268 DOI: 10.1002/cbic.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
We report a novel, reversible, cell-permeable, pH-sensor, TRapH. TRapH afforded a pH-sensitive ratiometric emission response in the pH range ~3-6, enabling imaging and quantification of pH in living cells. The biological-applicability of TRapH was illustrated via live-tracking of intracellular pH dynamics in living mammalian cells induced by a synthetic H+-transporter.
Collapse
Affiliation(s)
- Sujit Kumar Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Smitaroopa Kahali
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Sabnam Kar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Nandita Madhavan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| |
Collapse
|
6
|
Zhou S, Li A, Zhao L, Li Y, Xu X, Jin Y. Single-Cell Sensitive Colorimetric pH Detection Based on Microscope Ratiometric Grayscale. ACS OMEGA 2024; 9:22240-22247. [PMID: 38799348 PMCID: PMC11112558 DOI: 10.1021/acsomega.4c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Rapid and accurate identification of the intracellular pH is critical in the field of biomedicine. In this work, we effectively identified and quantified the intracellular pH and its distribution at the single-cell level using an image sensor based on an ordinary bright-field optical microscope that divided the cell staining images into their red (R) and blue (B) channels. The grayscale of the R and B channels was subjected to a ratiometric operation to generate ratiometric grayscale cell images of the microscope. A standard curve of pH against ratiometric grayscale curve was then obtained by incubating HeLa cells at pH 6.00-7.60 in a high concentration K+ ion buffer solution containing nigericin for obtaining certain intracellular pH values. A good correlation was evidenced between pH and the ratiometric grayscale of the R and B channels in the pH range of 6.00-7.60. Subsequently, the intracellular pH value of the A549 cells under the experimental conditions was measured to be 7.22 ± 0.01 by the method. Furthermore, the changes in the intracellular pH of HeLa cells stimulated with hydrogen peroxide were sensitively monitored, which demonstrated the applicability of the method. Due to its ease of use, the developed colorimetric microscopy pH detection and monitoring method provide prospects for pH-related single-cell studies.
Collapse
Affiliation(s)
- Shuo Zhou
- School
of Environmental and Chemical Engineering, Institute of Carbon Peaking
and Carbon Neutralization, Wuyi University, Jiangmen 529020, PR China
| | - Anqi Li
- School
of Environmental and Chemical Engineering, Institute of Carbon Peaking
and Carbon Neutralization, Wuyi University, Jiangmen 529020, PR China
| | - Linying Zhao
- School
of Environmental and Chemical Engineering, Institute of Carbon Peaking
and Carbon Neutralization, Wuyi University, Jiangmen 529020, PR China
| | - Yanwen Li
- School
of Environmental and Chemical Engineering, Institute of Carbon Peaking
and Carbon Neutralization, Wuyi University, Jiangmen 529020, PR China
| | - Xiaolong Xu
- School
of Environmental and Chemical Engineering, Institute of Carbon Peaking
and Carbon Neutralization, Wuyi University, Jiangmen 529020, PR China
| | - Yongdong Jin
- Guangdong
Key Laboratory of Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
7
|
Yin Q, Yang C. Exploring lysosomal biology: current approaches and methods. BIOPHYSICS REPORTS 2024; 10:111-120. [PMID: 38774350 PMCID: PMC11103719 DOI: 10.52601/bpr.2023.230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/04/2024] [Indexed: 05/24/2024] Open
Abstract
Lysosomes are the degradation centers and signaling hubs in the cell. Lysosomes undergo adaptation to maintain cell homeostasis in response to a wide variety of cues. Dysfunction of lysosomes leads to aging and severe diseases including lysosomal storage diseases (LSDs), neurodegenerative disorders, and cancer. To understand the complexity of lysosome biology, many research approaches and tools have been developed to investigate lysosomal functions and regulatory mechanisms in diverse experimental systems. This review summarizes the current approaches and tools adopted for studying lysosomes, and aims to provide a methodological overview of lysosomal research and related fields.
Collapse
Affiliation(s)
- Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
8
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
9
|
Terada K, Endo M, Kiyonari H, Takeda N, Oike Y. Loss of Dja2 accompanies pH deviation in lysosomes and lysosome-related organelles. J Cell Physiol 2024; 239:e31174. [PMID: 38108578 DOI: 10.1002/jcp.31174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The Dja2 knockout (Dja2-/- ) mice had respiratory distress, and >60% died within 2 days after birth. The surviving adult Dja2-/- mice were infertile and the lungs of Dja2-/- mice showed several abnormalities, including the processing defect of prosurfactant protein C in the alveolar epithelial type II cells and the accumulation of glycolipids in enlarged alveolar macrophages. The luminal pH of acidic organelles in Dja2-/- cells was shifted to pH 5.37-5.45. This deviated pH was immediately restored to control levels (pH 4.56-4.65) by the addition of a diuretic, ethyl isopropyl amiloride (EIPA). Although the role of DJA2 in maintaining the pH homeostasis of lysosome-related organelles is currently obscure, this rapid and remarkable pH resilience is best explained by an EIPA-sensitive proton efflux machinery that is disorganized and overactivated due to the loss of Dja2.
Collapse
Affiliation(s)
- Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamic Research, Kobe, Japan
| | - Naoki Takeda
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Im E, Jiang Y, Stavrides PH, Darji S, Erdjument-Bromage H, Neubert TA, Choi JY, Wegiel J, Lee JH, Nixon RA. Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by v-ATPase inhibition by Tyr 682-phosphorylated APP βCTF. SCIENCE ADVANCES 2023; 9:eadg1925. [PMID: 37494443 PMCID: PMC10371027 DOI: 10.1126/sciadv.adg1925] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Lysosome dysfunction arises early and propels Alzheimer's disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down syndrome (DS), acts directly via its β-C-terminal fragment (βCTF) to disrupt lysosomal vacuolar (H+)-adenosine triphosphatase (v-ATPase) and acidification. In human DS fibroblasts, the phosphorylated 682YENPTY internalization motif of APP-βCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits association of the V1 subcomplex of v-ATPase, thereby reducing its activity. Lowering APP-βCTF Tyr682 phosphorylation restores v-ATPase and lysosome function in DS fibroblasts and in vivo in brains of DS model mice. Notably, lowering APP-βCTF Tyr682 phosphorylation below normal constitutive levels boosts v-ATPase assembly and activity, suggesting that v-ATPase may also be modulated tonically by phospho-APP-βCTF. Elevated APP-βCTF Tyr682 phosphorylation in two mouse AD models similarly disrupts v-ATPase function. These findings offer previously unknown insight into the pathogenic mechanism underlying faulty lysosomes in all forms of AD.
Collapse
Affiliation(s)
- Eunju Im
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Philip H. Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A. Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, Queens, NY 11367, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
11
|
McKee CA, Polino AJ, King MW, Musiek ES. Circadian clock protein BMAL1 broadly influences autophagy and endolysosomal function in astrocytes. Proc Natl Acad Sci U S A 2023; 120:e2220551120. [PMID: 37155839 PMCID: PMC10194014 DOI: 10.1073/pnas.2220551120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
An emerging role for the circadian clock in autophagy and lysosome function has opened new avenues for exploration in the field of neurodegeneration. The daily rhythms of circadian clock proteins may coordinate gene expression programs involved not only in daily rhythms but in many cellular processes. In the brain, astrocytes are critical for sensing and responding to extracellular cues to support neurons. The core clock protein BMAL1 serves as the primary positive circadian transcriptional regulator and its depletion in astrocytes not only disrupts circadian function but also leads to a unique cell-autonomous activation phenotype. We report here that astrocyte-specific deletion of Bmal1 influences endolysosome function, autophagy, and protein degradation dynamics. In vitro, Bmal1-deficient astrocytes exhibit increased endocytosis, lysosome-dependent protein cleavage, and accumulation of LAMP1- and RAB7-positive organelles. In vivo, astrocyte-specific Bmal1 knockout (aKO) brains show accumulation of autophagosome-like structures within astrocytes by electron microscopy. Transcriptional analysis of isolated astrocytes from young and aged Bmal1 aKO mice indicates broad dysregulation of pathways involved in lysosome function which occur independently of TFEB activation. Since a clear link has been established between neurodegeneration and endolysosome dysfunction over the course of aging, this work implicates BMAL1 as a key regulator of these crucial astrocyte functions in health and disease.
Collapse
Affiliation(s)
- Celia A. McKee
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Alexander J. Polino
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Melvin W. King
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Erik S. Musiek
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| |
Collapse
|
12
|
Shen S, Zhang Y, Yin Z, Zhu Q, Zhang J, Wang T, Fang Y, Wu X, Bai Y, Dai S, Liu X, Jin J, Tang S, Liu J, Wang M, Guo Y, Deng F. Antiviral activity and mechanism of the antifungal drug, anidulafungin, suggesting its potential to promote treatment of viral diseases. BMC Med 2022; 20:359. [PMID: 36266654 PMCID: PMC9585728 DOI: 10.1186/s12916-022-02558-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The severe fever with thrombocytopenia syndrome disease (SFTS), caused by the novel tick-borne SFTS virus (SFTSV), was listed among the top 10 priority infectious disease by World Health Organization due to the high fatality rate of 5-30% and the lack of effective antiviral drugs and vaccines and therefore raised the urgent need to develop effective anti-SFTSV drugs to improve disease treatment. METHODS The antiviral drugs to inhibit SFTSV infection were identified by screening the library containing 1340 FDA-approved drugs using the SFTSV infection assays in vitro. The inhibitory effect on virus entry and the process of clathrin-mediated endocytosis under different drug doses was evaluated based on infection assays by qRT-PCR to determine intracellular viral copies, by Western blot to characterize viral protein expression in cells, and by immunofluorescence assays (IFAs) to determine virus infection efficiencies. The therapeutic effect was investigated in type I interferon receptor defective A129 mice in vivo with SFTSV infection, from which lesions and infection in tissues caused by SFTSV infection were assessed by H&E staining and immunohistochemical analysis. RESULTS Six drugs were identified as exerting inhibitory effects against SFTSV infection, of which anidulafungin, an antifungal drug of the echinocandin family, has a strong inhibitory effect on SFTSV entry. It suppresses SFTSV internalization by impairing the late endosome maturation and decreasing virus fusion with the membrane. SFTSV-infected A129 mice had relieving symptoms, reduced tissue lesions, and improved disease outcomes following anidulafungin treatment. Moreover, anidulafungin exerts an antiviral effect in inhibiting the entry of other viruses including SARS-CoV-2, SFTSV-related Guertu virus and Heartland virus, Crimean-Congo hemorrhagic fever virus, Zika virus, and Herpes simplex virus 1. CONCLUSIONS The results demonstrated that the antifungal drug, anidulafungin, could effectively inhibit virus infection by interfering with virus entry, suggesting it may be utilized for the clinical treatment of infectious viral diseases, in addition to its FDA-approved use as an antifungal. The findings also suggested to further evaluate the anti-viral effects of echinocandins and their clinical importance for patients with infection of viruses, which may promote therapeutic strategies as well as treatments and improve outcomes pertaining to various viral and fungal diseases.
Collapse
Affiliation(s)
- Shu Shen
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yaxian Zhang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Zhiyun Yin
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Qiong Zhu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Jingyuan Zhang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Tiantian Wang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yaohui Fang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Xiaoli Wu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yuan Bai
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Shiyu Dai
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Xijia Liu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Jiayin Jin
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Shuang Tang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Jia Liu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Manli Wang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.,College of Life Science, Nankai University, Tianjin, 300350, China
| | - Fei Deng
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China.
| |
Collapse
|
13
|
Barral DC, Staiano L, Guimas Almeida C, Cutler DF, Eden ER, Futter CE, Galione A, Marques ARA, Medina DL, Napolitano G, Settembre C, Vieira OV, Aerts JMFG, Atakpa‐Adaji P, Bruno G, Capuozzo A, De Leonibus E, Di Malta C, Escrevente C, Esposito A, Grumati P, Hall MJ, Teodoro RO, Lopes SS, Luzio JP, Monfregola J, Montefusco S, Platt FM, Polishchuck R, De Risi M, Sambri I, Soldati C, Seabra MC. Current methods to analyze lysosome morphology, positioning, motility and function. Traffic 2022; 23:238-269. [PMID: 35343629 PMCID: PMC9323414 DOI: 10.1111/tra.12839] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.
Collapse
Affiliation(s)
- Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute for Genetic and Biomedical ResearchNational Research Council (CNR)MilanItaly
| | | | - Dan F. Cutler
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Emily R. Eden
- University College London (UCL) Institute of OphthalmologyLondonUK
| | - Clare E. Futter
- University College London (UCL) Institute of OphthalmologyLondonUK
| | | | | | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Clinical Medicine and Surgery DepartmentFederico II UniversityNaplesItaly
| | - Otília V. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | | | | | - Gemma Bruno
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute of Biochemistry and Cell Biology, CNRRomeItaly
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | | | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Michael J. Hall
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Rita O. Teodoro
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - J. Paul Luzio
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | | | | | | | | - Maria De Risi
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Miguel C. Seabra
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| |
Collapse
|
14
|
Rimann I, Gonzalez-Quintial R, Baccala R, Kiosses WB, Teijaro JR, Parker CG, Li X, Beutler B, Kono DH, Theofilopoulos AN. The solute carrier SLC15A4 is required for optimal trafficking of nucleic acid-sensing TLRs and ligands to endolysosomes. Proc Natl Acad Sci U S A 2022; 119:e2200544119. [PMID: 35349343 PMCID: PMC9169117 DOI: 10.1073/pnas.2200544119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
A function-impairing mutation (feeble) or genomic deletion of SLC15A4 abolishes responses of nucleic acid–sensing endosomal toll-like receptors (TLRs) and significantly reduces disease in mouse models of lupus. Here, we demonstrate disease reduction in homozygous and even heterozygous Slc15a4 feeble mutant BXSB male mice with a Tlr7 gene duplication. In contrast to SLC15A4, a function-impairing mutation of SLC15A3 did not diminish type I interferon (IFN-I) production by TLR-activated plasmacytoid dendritic cells (pDCs), indicating divergence of function between these homologous SLC15 family members. Trafficking to endolysosomes and function of SLC15A4 were dependent on the Adaptor protein 3 (AP-3) complex. Importantly, SLC15A4 was required for trafficking and colocalization of nucleic acid–sensing TLRs and their ligands to endolysosomes and the formation of the LAMP2+VAMP3+ hybrid compartment in which IFN-I production is initiated. Collectively, these findings define mechanistic processes by which SLC15A4 controls endosomal TLR function and suggest that pharmacologic intervention to curtail the function of this transporter may be a means to treat lupus and other endosomal TLR-dependent diseases.
Collapse
Affiliation(s)
- Ivo Rimann
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Roberto Baccala
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | | | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Dwight H. Kono
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
15
|
Kumar G, Chawla P, Dhiman N, Chadha S, Sharma S, Sethi K, Sharma M, Tuli A. RUFY3 links Arl8b and JIP4-Dynein complex to regulate lysosome size and positioning. Nat Commun 2022; 13:1540. [PMID: 35314681 PMCID: PMC8938454 DOI: 10.1038/s41467-022-29077-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
The bidirectional movement of lysosomes on microtubule tracks regulates their whole-cell spatial arrangement. Arl8b, a small GTP-binding (G) protein, promotes lysosome anterograde trafficking mediated by kinesin-1. Herein, we report an Arl8b effector, RUFY3, which regulates the retrograde transport of lysosomes. We show that RUFY3 interacts with the JIP4-dynein-dynactin complex and facilitates Arl8b association with the retrograde motor complex. Accordingly, RUFY3 knockdown disrupts the positioning of Arl8b-positive endosomes and reduces Arl8b colocalization with Rab7-marked late endosomal compartments. Moreover, we find that RUFY3 regulates nutrient-dependent lysosome distribution, although autophagosome-lysosome fusion and autophagic cargo degradation are not impaired upon RUFY3 depletion. Interestingly, lysosome size is significantly reduced in RUFY3 depleted cells, which could be rescued by inhibition of the lysosome reformation regulatory factor PIKFYVE. These findings suggest a model in which the perinuclear cloud arrangement of lysosomes regulates both the positioning and size of these proteolytic compartments.
Collapse
Affiliation(s)
- Gaurav Kumar
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Prateek Chawla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Neha Dhiman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Sanya Chadha
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sheetal Sharma
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Kanupriya Sethi
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Amit Tuli
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India.
| |
Collapse
|
16
|
Yang J, Lu Y, Jin L, Zhao C, Chen Y, Xu Y, Chen F, Feng J. Dynamic Optical Visualization of Proton Transport Pathways at Water–Solid Interfaces. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinmei Yang
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yuxian Lu
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lei Jin
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Chunxiao Zhao
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yang Xu
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Fanfan Chen
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
17
|
Yang J, Lu Y, Jin L, Zhao C, Chen Y, Xu Y, Chen F, Feng J. Dynamic Optical Visualization of Proton Transport Pathways at Water-Solid Interfaces. Angew Chem Int Ed Engl 2022; 61:e202112150. [PMID: 34751999 DOI: 10.1002/anie.202112150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 11/07/2022]
Abstract
Probing proton transport is of vital importance for understanding cellular transport, surface catalysis and fuel cells. Conventional proton transport measurements rely on the use of electrochemical conductivity and do not allow for the direct visualization of proton transport pathways. The development of novel experimental techniques to spatiotemporally resolve proton transport is in high demand. Here, building upon the general conversion of aqueous proton flux into spatially resolved fluorescence signals, we optically visualize proton transport through nanopores and along hydrophilic interfaces. We observed that the fluorescence intensity increased at negative voltage due to lateral transport. Thanks to the temporal resolution of optical imaging, our technique further empowers the analysis of proton transport dynamics.
Collapse
Affiliation(s)
- Jinmei Yang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuxian Lu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Lei Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunxiao Zhao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yang Xu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fanfan Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
18
|
Yadav V, Arif N, Singh VP, Guerriero G, Berni R, Shinde S, Raturi G, Deshmukh R, Sandalio LM, Chauhan DK, Tripathi DK. Histochemical Techniques in Plant Science: More Than Meets the Eye. PLANT & CELL PHYSIOLOGY 2021; 62:1509-1527. [PMID: 33594421 DOI: 10.1093/pcp/pcab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/31/2021] [Indexed: 05/12/2023]
Abstract
Histochemistry is an essential analytical tool interfacing extensively with plant science. The literature is indeed constellated with examples showing its use to decipher specific physiological and developmental processes, as well as to study plant cell structures. Plant cell structures are translucent unless they are stained. Histochemistry allows the identification and localization, at the cellular level, of biomolecules and organelles in different types of cells and tissues, based on the use of specific staining reactions and imaging. Histochemical techniques are also widely used for the in vivo localization of promoters in specific tissues, as well as to identify specific cell wall components such as lignin and polysaccharides. Histochemistry also enables the study of plant reactions to environmental constraints, e.g. the production of reactive oxygen species (ROS) can be traced by applying histochemical staining techniques. The possibility of detecting ROS and localizing them at the cellular level is vital in establishing the mechanisms involved in the sensitivity and tolerance to different stress conditions in plants. This review comprehensively highlights the additional value of histochemistry as a complementary technique to high-throughput approaches for the study of the plant response to environmental constraints. Moreover, here we have provided an extensive survey of the available plant histochemical staining methods used for the localization of metals, minerals, secondary metabolites, cell wall components, and the detection of ROS production in plant cells. The use of recent technological advances like CRISPR/Cas9-based genome-editing for histological application is also addressed. This review also surveys the available literature data on histochemical techniques used to study the response of plants to abiotic stresses and to identify the effects at the tissue and cell levels.
Collapse
Affiliation(s)
- Vaishali Yadav
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Namira Arif
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Hautcharage, Luxembourg
| | - Roberto Berni
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Suhas Shinde
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Gaurav Raturi
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rupesh Deshmukh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Luisa M Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada 18008, Spain
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida 201313, India
| |
Collapse
|
19
|
Jiang Y, Liang J, Li R, Peng Y, Huang J, Huang L. Basic fibroblast growth factor accelerates myelin debris clearance through activating autophagy to facilitate early peripheral nerve regeneration. J Cell Mol Med 2021; 25:2596-2608. [PMID: 33512767 PMCID: PMC7933946 DOI: 10.1111/jcmm.16274] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/01/2020] [Accepted: 12/31/2020] [Indexed: 01/17/2023] Open
Abstract
The successful removal of damaged myelin sheaths during Wallerian degeneration (WD) is essential for ensuring structural remodelling and functional recovery following traumatic peripheral nerve injury (PNI). Recent studies have established that autophagy involves myelin phagocytosis and cellular homoeostasis, and its disorder impairs myelin clearance. Based on the role of basic fibroblast growth factor (bFGF) on exerting neuroprotection and angiogenesis during nerve tissue regeneration, we now explicitly focus on the issue about whether the therapeutic effect of bFGF on supporting nerve regeneration is closely related to accelerate the autophagic clearance of myelin debris during WD. Using sciatic nerve crushed model, we found that bFGF remarkedly improved axonal outgrowth and nerve reconstruction at the early phase of PNI (14 days after PNI). More importantly, we further observed that bFGF could enhance phagocytic capacity of Schwann cells (SCs) to engulf myelin debris. Additionally, this enhancing effect is accomplished by autophagy activation and the increase of autophagy flux by immunoblotting and immune‐histochemical analyses. Taken together, our data suggest that the action of bFGF on modulating early peripheral nerve regeneration is closely associated with myelin debris removal by SCs, which might result in SC‐mediated autophagy activation, highlighting its insight molecular mechanism as a neuroprotective agent for repairing PNI.
Collapse
Affiliation(s)
- Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
| | - Jiahong Liang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
- HangZhou Zhuyangxin Pharmaceutical Co.,LTD Hangzhou Zhejiang China
| | - Rui Li
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
- PCFM Lab, GD HPPC Lab School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yan Peng
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
- Hangzhou Institute for Food and Drug control Hangzhou Zhejiang China
| | - JiangLi Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
| | - Lijiang Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
| |
Collapse
|
20
|
Albrecht LV, Tejeda-Muñoz N, De Robertis EM. Protocol for Probing Regulated Lysosomal Activity and Function in Living Cells. STAR Protoc 2020; 1:100132. [PMID: 33377026 PMCID: PMC7757114 DOI: 10.1016/j.xpro.2020.100132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lysosomes are the catabolic center of the cell. Limitations of many lysosomal tracers include low specificity and lack of reliable physiological readouts for changes in growth factor-regulated lysosomal activity. The imaging-based protocols described here provide insights at the cellular level to quantify functions essential to lysosomal biology, including β-glucosidase enzymatic cleavage, active Cathepsin D, and pH regulation in real time. These optimized protocols, applied in different cell types and pathophysiologic contexts, provide useful tools to study lysosome function in cultured living cells. For complete details on the use and execution of this protocol, please refer to Albrecht et al. (2020).
Collapse
Affiliation(s)
- L V Albrecht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - N Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - E M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| |
Collapse
|
21
|
Peintner L, Venkatraman A, Waeldin A, Hofherr A, Busch T, Voronov A, Viau A, Kuehn EW, Köttgen M, Borner C. Loss of PKD1/polycystin-1 impairs lysosomal activity in a CAPN (calpain)-dependent manner. Autophagy 2020; 17:2384-2400. [PMID: 32967521 DOI: 10.1080/15548627.2020.1826716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the PKD1 gene result in autosomal dominant polycystic kidney disease (ADPKD), the most common monogenetic cause of end-stage renal disease (ESRD) in humans. Previous reports suggested that PKD1, together with PKD2/polycystin-2, may function as a receptor-cation channel complex at cilia and on intracellular membranes and participate in various signaling pathways to regulate cell survival, proliferation and macroautophagy/autophagy. However, the exact molecular function of PKD1 and PKD2 has remained enigmatic. Here we used Pkd1-deficient mouse inner medullary collecting duct cells (mIMCD3) genetically deleted for Pkd1, and tubular epithelial cells isolated from nephrons of doxycycline-inducible conditional pkd1fl/fl;Pax8rtTA;TetOCre+ knockout mice to show that the lack of Pkd1 caused diminished lysosomal acidification, LAMP degradation and reduced CTSB/cathepsin B processing and activity. This led to an impairment of autophagosomal-lysosomal fusion, a lower delivery of ubiquitinated cargo from multivesicular bodies (MVB)/exosomes to lysosomes and an enhanced secretion of unprocessed CTSB into the extracellular space. The TFEB-dependent lysosomal biogenesis pathway was however unaffected. Pkd1-deficient cells exhibited increased activity of the calcium-dependent CAPN (calpain) proteases, probably due to a higher calcium influx. Consistent with this notion CAPN inhibitors restored lysosomal function, CTSB processing/activity and autophagosomal-lysosomal fusion, and blocked CTSB secretion and LAMP degradation in pkd1 knockout cells. Our data reveal for the first time a lysosomal function of PKD1 which keeps CAPN activity in check and ensures lysosomal integrity and a correct autophagic flux.Abbreviations: acCal: acetyl-calpastatin peptide; ADPKD: autosomal dominant polycystic kidney disease; CI-1: calpain inhibitor-1; CQ: chloroquine; Dox: doxycycline; EV: extracellular vesicles; EXO: exosomes; LAMP1/2: lysosomal-associated membrane protein 1/2; LGALS1/GAL1/galectin-1: lectin, galactose binding, soluble 1; LMP: lysosomal membrane permeabilization; mIMCD3: mouse inner medullary collecting duct cells; MV: microvesicles; MVB: multivesicular bodies; PAX8: paired box 8; PKD1/polycystin-1: polycystin 1, transient receptor potential channel interacting; PKD2/polycystin-2: polycystin 2, transient receptor potential cation channel; Tet: tetracycline; TFEB: transcription factor EB; VFM: vesicle-free medium; WT: wild-type.
Collapse
Affiliation(s)
- Lukas Peintner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Anusha Venkatraman
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Albert Ludwigs University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Astrid Waeldin
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tilman Busch
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Voronov
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Amandine Viau
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E Wolfgang Kuehn
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Integrative Biological Signalling Studies (CIBSS), Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Michael Köttgen
- Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Integrative Biological Signalling Studies (CIBSS), Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Center for Biological Signalling Studies (BIOSS), Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Merdy P, Neytard C, Meunier JD, Lucas Y. PDMPO: a specific silicon or silica, pH sensitive fluorescent probe? RSC Adv 2020; 10:31003-31011. [PMID: 35516007 PMCID: PMC9056363 DOI: 10.1039/d0ra05108j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 11/21/2022] Open
Abstract
In order to understand Si behavior and biodisponibility in soils and plants, we evaluated the use of PDMPO (2-(4-pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl)methoxy)phenyl)oxazole) that was supposed to be a Si-specific fluorescence marker and to have a pH-dependent fluorescence. We studied the interactions between PDMPO and water-dissolved Si, Al and natural organic matter (humic acids, HA). Six systems with different HA, Si and Al concentrations were studied by fluorescence spectroscopy at pH 4, 7 and 9. The Al–PDMPO complex was characterized by infrared spectroscopy and the particle size distribution in solution was characterized by nano tracking analysis. We found that when usual pH buffers are not present, the PDMPO fluorescence was not pH dependent and was not Si-specific. In the PDMPO–Si–HA system, the PDMPO fluorescence signals were greatly enhanced, suggesting the formation of highly fluorescent ternary HA–PDMPO–Si groups. When Al was added to the system, the fluorescence was strongly quenched, suggesting the formation of low-fluorescence quaternary HA–PDMPO–Si–Al groups. The PDMPO fluorescence is therefore greatly sensitive to complexable metals and to natural organic matter and is therefore difficult to be applied for the quantification of Si or pH in a complex medium. To understand Si behavior in soils and plants, we evaluated the use of PDMPO that was supposed to be a Si-specific, pH-dependent fluorescence marker. We found that the PDMPO fluorescence is neither Si-specific nor pH dependent.![]()
Collapse
Affiliation(s)
- Patricia Merdy
- Université de Toulon, Aix Marseille Univ., CNRS, IM2NP 83041 Toulon Cedex 9 France
| | - Cyril Neytard
- Université de Toulon, Aix Marseille Univ., CNRS, IM2NP 83041 Toulon Cedex 9 France
| | | | - Yves Lucas
- Université de Toulon, Aix Marseille Univ., CNRS, IM2NP 83041 Toulon Cedex 9 France
| |
Collapse
|
23
|
Tanaka H, Sakurai Y, Anindita J, Akita H. Development of lipid-like materials for RNA delivery based on intracellular environment-responsive membrane destabilization and spontaneous collapse. Adv Drug Deliv Rev 2020; 154-155:210-226. [PMID: 32650040 DOI: 10.1016/j.addr.2020.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
Messenger RNA and small interfering RNA are attractive modalities for curing diseases by complementation or knock-down of proteins. For success of these RNAs, a drug delivery system (DDS) is required to control a pharmacokinetics, to enhance cellular uptake, to overcome biological membranes, and to release the cargo into the cytoplasm. Based on past research, developing nanoparticles that are neutrally charged have been the mainstream of their development. Also, the materials are further mounted with pH- and/or reducing environment-responsive units. In this review, we summarize progress made in the molecular design of these materials. We also focus on the importance of the hydrophobic scaffold for tissue/cell targeting, intracellular trafficking, and immune responses. As a practical example, the design concept of the SS-cleavable and pH-activated lipid-like material (ssPalm) and subsequent molecular modification tailored to the RNA-based medical application is discussed.
Collapse
|
24
|
Guerriero G, Stokes I, Valle N, Hausman JF, Exley C. Visualising Silicon in Plants: Histochemistry, Silica Sculptures and Elemental Imaging. Cells 2020; 9:cells9041066. [PMID: 32344677 PMCID: PMC7225990 DOI: 10.3390/cells9041066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
Silicon is a non-essential element for plants and is available in biota as silicic acid. Its presence has been associated with a general improvement of plant vigour and response to exogenous stresses. Plants accumulate silicon in their tissues as amorphous silica and cell walls are preferential sites. While several papers have been published on the mitigatory effects that silicon has on plants under stress, there has been less research on imaging silicon in plant tissues. Imaging offers important complementary results to molecular data, since it provides spatial information. Herein, the focus is on histochemistry coupled to optical microscopy, fluorescence and scanning electron microscopy of microwave acid extracted plant silica, techniques based on particle-induced X-ray emission, X-ray fluorescence spectrometry and mass spectrometry imaging (NanoSIMS). Sample preparation procedures will not be discussed in detail, as several reviews have already treated this subject extensively. We focus instead on the information that each technique provides by offering, for each imaging approach, examples from both silicifiers (giant horsetail and rice) and non-accumulators (Cannabis sativa L.).
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
- Correspondence: (G.G.); (C.E.); Tel.: +352-2758885096 (G.G.); +44-1782-734080 (C.E.)
| | - Ian Stokes
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, Staffordshire, UK;
| | - Nathalie Valle
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg;
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, Staffordshire, UK;
- Correspondence: (G.G.); (C.E.); Tel.: +352-2758885096 (G.G.); +44-1782-734080 (C.E.)
| |
Collapse
|
25
|
Thomas HE, Zhang Y, Stefely JA, Veiga SR, Thomas G, Kozma SC, Mercer CA. Mitochondrial Complex I Activity Is Required for Maximal Autophagy. Cell Rep 2020; 24:2404-2417.e8. [PMID: 30157433 PMCID: PMC6298213 DOI: 10.1016/j.celrep.2018.07.101] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/17/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
Cells adapt to nutrient and energy deprivation by inducing autophagy, which is regulated by the mammalian target of rapamycin (mTOR) and AMP-activated protein kinases (AMPKs). We found that cell metabolism significantly influences the ability to induce autophagy, with mitochondrial complex I function being an important factor in the initiation, amplitude, and duration of the response. We show that phenformin or genetic defects in complex I suppressed autophagy induced by mTOR inhibitors, whereas autophagy was enhanced by strategies that increased mitochondrial metabolism. We report that mTOR inhibitors significantly increased select phospholipids and mitochondrial-associated membranes (MAMs) in a complex I-dependent manner. We attribute the complex I autophagy defect to the inability to increase MAMs, limiting phosphatidylserine decarboxylase (PISD) activity and mitochondrial phosphatidylethanolamine (mtPE), which support autophagy. Our data reveal the dynamic and metabolic regulation of autophagy.
Collapse
Affiliation(s)
- Hala Elnakat Thomas
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Zhang
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan A Stefely
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA; Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sonia R Veiga
- Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - George Thomas
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA; Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain; Unit de Biochemistry, Department of Physiological Sciences II, Faculty of Medicine, Campus Universitari de Bellvitge-IDIBELL, University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Sara C Kozma
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA; Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - Carol A Mercer
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
26
|
Chang FS, Wang Y, Dmitriev P, Gross J, Galione A, Pears C. A two-pore channel protein required for regulating mTORC1 activity on starvation. BMC Biol 2020; 18:8. [PMID: 31969153 PMCID: PMC6977259 DOI: 10.1186/s12915-019-0735-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Two-pore channels (TPCs) release Ca2+ from acidic intracellular stores and are implicated in a number of diseases, but their role in development is unclear. The social amoeba Dictyostelium discoideum proliferates as single cells that aggregate to form a multicellular organism on starvation. Starvation is sensed by the mTORC1 complex which, like TPC proteins, is found on acidic vesicles. Here, we address the role of TPCs in development and under starvation. RESULTS We report that disruption of the gene encoding the single Dictyostelium TPC protein, TPC2, leads to a delay in early development and prolonged growth in culture with delayed expression of early developmental genes, although a rapid starvation-induced increase in autophagy is still apparent. Ca2+ signals induced by extracellular cAMP are delayed in developing tpc2- cells, and aggregation shows increased sensitivity to weak bases, consistent with reduced acidity of the vesicles. In mammalian cells, the mTORC1 protein kinase has been proposed to suppress TPC channel opening. Here, we show a reciprocal effect as tpc2- cells show an increased level of phosphorylation of an mTORC1 substrate, 4E-BP1. mTORC1 inhibition reverses the prolonged growth and increases the efficiency of aggregation of tpc2- cells. CONCLUSION TPC2 is required for efficient growth development transition in Dictyostelium and acts through modulation of mTORC1 activity revealing a novel mode of regulation.
Collapse
Affiliation(s)
- Fu-Sheng Chang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Yuntao Wang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Phillip Dmitriev
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Julian Gross
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Catherine Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
27
|
Abstract
Lysosomes are membrane-bound organelles with roles in processes involved in degrading and recycling cellular waste, cellular signalling and energy metabolism. Defects in genes encoding lysosomal proteins cause lysosomal storage disorders, in which enzyme replacement therapy has proved successful. Growing evidence also implicates roles for lysosomal dysfunction in more common diseases including inflammatory and autoimmune disorders, neurodegenerative diseases, cancer and metabolic disorders. With a focus on lysosomal dysfunction in autoimmune disorders and neurodegenerative diseases - including lupus, rheumatoid arthritis, multiple sclerosis, Alzheimer disease and Parkinson disease - this Review critically analyses progress and opportunities for therapeutically targeting lysosomal proteins and processes, particularly with small molecules and peptide drugs.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France.
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France.
- University of Strasbourg Institute for Advanced Study, Strasbourg, France.
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
28
|
Michaelis M, Fayyaz A, Parambath M, Koeppen S, Ciacchi LC, Hanley QS, Perry CC. Platform for Screening Abiotic/Biotic Interactions Using Indicator Displacement Assays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14230-14237. [PMID: 31609123 DOI: 10.1021/acs.langmuir.9b03085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper describes novel adaptations of optically sectioned planar format assays to screen compounds for their affinities to materials surfaces. The novel platform, which we name optically sectioned indicator displacement assays (O-IDA), makes use of displaceable dyes in a format adaptable to high-throughput multiwell plate technologies. We describe two approaches: the first being where the dye exhibits fluorescence in both the surface bound and unbound state and the second, where fluorescence is lost upon displacement of the dye from the surface. Half maximal inhibitory concentration (IC50), binding affinity (Ki), and binding free energy (ΔGads) values can be extracted from the raw data. Representative biomolecules were tested for interactions with silica in an aqueous environment and ZnO(0001)-Zn and (10-10) facets in a nonaqueous environment. We provide the first experimental values for both the binding of small molecules to silica and the facet-dependent ZnO binding affinity of key amino acids associated with ZnO-specific oligopeptides. The specific data will be invaluable to those studying interactions at interfaces both experimentally and computationally. O-IDA provides a general framework for the high-throughput screening of molecule binding to materials surfaces, which has important applications in drug delivery, (bio-) catalysis, biosensing, and biomaterial engineering.
Collapse
Affiliation(s)
- Monika Michaelis
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Material Science (BCCMS), Center for Environmental Research and Sustainable Technology (UFT) and MAPEX Centre for Materials and Processes , University of Bremen , D-28359 Bremen , Germany
| | | | | | - Susan Koeppen
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Material Science (BCCMS), Center for Environmental Research and Sustainable Technology (UFT) and MAPEX Centre for Materials and Processes , University of Bremen , D-28359 Bremen , Germany
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Material Science (BCCMS), Center for Environmental Research and Sustainable Technology (UFT) and MAPEX Centre for Materials and Processes , University of Bremen , D-28359 Bremen , Germany
| | | | | |
Collapse
|
29
|
Reshetniak S, Rizzoli SO. Interrogating Synaptic Architecture: Approaches for Labeling Organelles and Cytoskeleton Components. Front Synaptic Neurosci 2019; 11:23. [PMID: 31507402 PMCID: PMC6716447 DOI: 10.3389/fnsyn.2019.00023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
Synaptic transmission has been studied for decades, as a fundamental step in brain function. The structure of the synapse, and its changes during activity, turned out to be key aspects not only in the transfer of information between neurons, but also in cognitive processes such as learning and memory. The overall synaptic morphology has traditionally been studied by electron microscopy, which enables the visualization of synaptic structure in great detail. The changes in the organization of easily identified structures, such as the presynaptic active zone, or the postsynaptic density, are optimally studied via electron microscopy. However, few reliable methods are available for labeling individual organelles or protein complexes in electron microscopy. For such targets one typically relies either on combination of electron and fluorescence microscopy, or on super-resolution fluorescence microscopy. This review focuses on approaches and techniques used to specifically reveal synaptic organelles and protein complexes, such as cytoskeletal assemblies. We place the strongest emphasis on methods detecting the targets of interest by affinity binding, and we discuss the advantages and limitations of each method.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research School for Molecular Biology, Göttingen, Germany
| | - Silvio O. Rizzoli
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Jiang XD, Jia L, Su Y, Li C, Sun C, Xiao L. Synthesis and application of near-infrared absorbing morpholino-containing aza-BODIPYs. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
The Major Hurdle for Effective Baculovirus Transduction into Mammalian Cells Is Passing Early Endosomes. J Virol 2019; 93:JVI.00709-19. [PMID: 31092570 DOI: 10.1128/jvi.00709-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Baculoviruses, although they infect insects in nature, can transduce a wide variety of mammalian cells and are therefore promising gene therapy vectors. However, baculovirus transduction into many mammalian cells is very inefficient, and the limiting stages and factors remain unknown. An important finding is that a short-duration trigger with low pH can significantly enhance virus transduction efficiency, but the mechanism is poorly understood. Herein, we performed a detailed comparative study on entry mechanisms of the prototypical baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) into insect and mammalian cells. The results showed that AcMNPV could be internalized into mammalian cells efficiently, but fusion in early endosomes (EEs) appeared to be the major obstacle. Measurement of endosomal pH suggested that virus fusion might be restricted under relatively high-pH conditions in mammalian cells. Interestingly, mutations of the major viral fusion protein GP64 that conferred decreased fusogenicity did not affect virus infection of insect cells, whereas virus transduction into mammalian cells was severely impaired, suggesting a more stringent dependence on GP64 fusogenicity for AcMNPV entry into mammalian cells than into insect cells. An increase in the fusogenicity of GP64 mutants resulting from low pH triggered the rescue of fusion-deficient recombinant virus transduction efficiency. Based on the above-described findings, the pH of EEs was specifically reduced with a Na+/K+-ATPase inhibitor, and the AcMNPV transduction of many mammalian cells indeed became highly efficient. This study not only revealed the roadblocks to mammalian cell entry of baculovirus but also provides a new strategy for improving baculovirus-based gene delivery and therapy.IMPORTANCE Baculoviruses can transduce a wide variety of mammalian cells but do so with low efficiency, which greatly limits their practical application as potential gene delivery vectors. So far, the understanding of baculovirus entry into mammalian cells is obscure, and the limiting stages and factors are unclear. In this study, by comparatively analyzing the mechanisms of baculovirus entry into mammalian and insect cells, virus fusion during the early stage of endocytosis was revealed as the major obstacle for efficient baculovirus transduction into mammalian cells. A higher fusogenicity of the major viral fusion protein GP64 was found to be required for virus entry into mammalian cells than for entry into insect cells. Interestingly, by decreasing the pH of early endosomes with a specific agent, virus transduction of a wide range of mammalian cells was greatly enhanced. This study uncovers the roadblocks to mammalian cell entry of baculoviruses and presents mechanisms to overcome the roadblocks.
Collapse
|
32
|
Wheeler S, Haberkant P, Bhardwaj M, Tongue P, Ferraz MJ, Halter D, Sprong H, Schmid R, Aerts JM, Sullo N, Sillence DJ. Cytosolic glucosylceramide regulates endolysosomal function in Niemann-Pick type C disease. Neurobiol Dis 2019; 127:242-252. [DOI: 10.1016/j.nbd.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
|
33
|
Zhang C, Li M, Liang W, Zhang G, Fan L, Yao Q, Shuang S, Dong C. Substituent Effect on the Properties of pH Fluorescence Probes Containing Pyridine Group. ChemistrySelect 2019. [DOI: 10.1002/slct.201901003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Caihong Zhang
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
| | - Miao Li
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
| | - Wenting Liang
- Institution Institute of Environmental ScienceShanxi University Taiyuan 030006 China
| | - Guomei Zhang
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
| | - Li Fan
- Institution Institute of Environmental ScienceShanxi University Taiyuan 030006 China
| | - Qingjia Yao
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
| | - Shaomin Shuang
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
| | - Chuan Dong
- Institution Institute of Environmental ScienceShanxi University Taiyuan 030006 China
| |
Collapse
|
34
|
Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-βCTF (C99). J Neurosci 2019; 39:5255-5268. [PMID: 31043483 DOI: 10.1523/jneurosci.0578-19.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Lysosomal failure underlies pathogenesis of numerous congenital neurodegenerative disorders and is an early and progressive feature of Alzheimer's disease (AD) pathogenesis. Here, we report that lysosomal dysfunction in Down ayndrome (trisomy 21), a neurodevelopmental disorder and form of early onset AD, requires the extra gene copy of amyloid precursor protein (APP) and is specifically mediated by the β cleaved carboxy terminal fragment of APP (APP-βCTF, C99). In primary fibroblasts from individuals with DS, lysosomal degradation of autophagic and endocytic substrates is selectively impaired, causing them to accumulate in enlarged autolysosomes/lysosomes. Direct measurements of lysosomal pH uncovered a significant elevation (0.6 units) as a basis for slowed LC3 turnover and the inactivation of cathepsin D and other lysosomal hydrolases known to be unstable or less active when lysosomal pH is persistently elevated. Normalizing lysosome pH by delivering acidic nanoparticles to lysosomes ameliorated lysosomal deficits, whereas RNA sequencing analysis excluded a transcriptional contribution to hydrolase declines. Cortical neurons cultured from the Ts2 mouse model of DS exhibited lysosomal deficits similar to those in DS cells. Lowering APP expression with siRNA or BACE1 inhibition reversed cathepsin deficits in both fibroblasts and neurons. Deleting one Bace1 allele from adult Ts2 mice had similar rescue effects in vivo The modest elevation of endogenous APP-βCTF needed to disrupt lysosomal function in DS is relevant to sporadic AD where APP-βCTF, but not APP, is also elevated. Our results extend evidence that impaired lysosomal acidification drives progressive lysosomal failure in multiple forms of AD.SIGNIFICANCE STATEMENT Down syndrome (trisomy 21) (DS) is a neurodevelopmental disorder invariably leading to early-onset Alzheimer's disease (AD). We showed in cells from DS individuals and neurons of DS models that one extra copy of a normal amyloid precursor protein (APP) gene impairs lysosomal acidification, thereby depressing lysosomal hydrolytic activities and turnover of autophagic and endocytic substrates, processes vital to neuronal survival. These deficits, which were reversible by correcting lysosomal pH, are mediated by elevated levels of endogenous β-cleaved carboxy-terminal fragment of APP (APP-βCTF). Notably, similar endosomal-lysosomal pathobiology emerges early in sporadic AD, where neuronal APP-βCTF is also elevated, underscoring its importance as a therapeutic target and underscoring the functional and pathogenic interrelationships between the endosomal-lysosomal pathway and genes causing AD.
Collapse
|
35
|
Latifkar A, Ling L, Hingorani A, Johansen E, Clement A, Zhang X, Hartman J, Fischbach C, Lin H, Cerione RA, Antonyak MA. Loss of Sirtuin 1 Alters the Secretome of Breast Cancer Cells by Impairing Lysosomal Integrity. Dev Cell 2019; 49:393-408.e7. [PMID: 30982660 DOI: 10.1016/j.devcel.2019.03.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/09/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
The NAD+-dependent deacetylase Sirtuin 1 (SIRT1) is down-regulated in triple-negative breast cancer. To determine the mechanistic basis by which reduced SIRT1 expression influences processes related to certain aggressive cancers, we examined the consequences of depleting breast cancer cells of SIRT1. We discovered that reducing SIRT1 levels decreased the expression of one particular subunit of the vacuolar-type H+ ATPase (V-ATPase), which is responsible for proper lysosomal acidification and protein degradation. This impairment in lysosomal function caused a reduction in the number of multi-vesicular bodies (MVBs) targeted for lysosomal degradation and resulted in larger MVBs prior to their fusing with the plasma membrane to release their contents. Collectively, these findings help explain how reduced SIRT1 expression, by disrupting lysosomal function and generating a secretome comprising exosomes with unique cargo and soluble hydrolases that degrade the extracellular matrix, can promote processes that increase breast-cancer-cell survival and invasion.
Collapse
Affiliation(s)
- Arash Latifkar
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science Cornell University, Ithaca, NY 14853, USA
| | - Amrit Hingorani
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Eric Johansen
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Amdiel Clement
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - John Hartman
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
36
|
Liu J, Xu M, Tang B, Hu L, Deng F, Wang H, Pang DW, Hu Z, Wang M, Zhou Y. Single-Particle Tracking Reveals the Sequential Entry Process of the Bunyavirus Severe Fever with Thrombocytopenia Syndrome Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803788. [PMID: 30589216 DOI: 10.1002/smll.201803788] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/24/2018] [Indexed: 06/09/2023]
Abstract
The Bunyavirales is one of the largest groups of RNA viruses, which encompasses many strains that are highly pathogenic to animals and humans. Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes severe disease in humans, with a high fatality rate of up to 30%. To date, the entry process of bunyavirus infection remains obscure. Here, using quantum dot (QD)-based single-particle tracking and multicolor imaging, the dynamic molecular process of SFTSV entry and penetration is systematically dissected. The results show that internalization of SFTSV into host cells is initiated by recruiting clathrin onto the cell membrane for the formation of clathrin-coated pits and further pinching off from the plasma membrane to form discrete vesicles. These vesicular carriers further deliver virions to Rab5+ early endosomes, and then to Rab7+ late endosomes. The intracellular transport of virion-carrying endocytic vesicles is dependent first on actin filaments at the cell periphery, and then on microtubules toward the cell interior. The final fusion events occur at ≈15-60 min post-entry, and are triggered by the acidic environment at ≈pH5.6 within the late endosomes. These results reveal the multistep SFTSV entry process and the dynamic virus-host interactions involved.
Collapse
Affiliation(s)
- Jia Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingyue Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute of Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Liangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute of Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
37
|
Ahmad F, Leake DS. Lysosomal oxidation of LDL alters lysosomal pH, induces senescence, and increases secretion of pro-inflammatory cytokines in human macrophages. J Lipid Res 2018; 60:98-110. [PMID: 30397186 PMCID: PMC6314264 DOI: 10.1194/jlr.m088245] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
We have shown that aggregated LDL is internalized by macrophages and oxidized in lysosomes by redox-active iron. We have now investigated to determine whether the lysosomal oxidation of LDL impairs lysosomal function and whether a lysosomotropic antioxidant can prevent these alterations. LDL aggregated by SMase (SMase-LDL) caused increased lysosomal lipid peroxidation in human monocyte-derived macrophages or THP-1 macrophage-like cells, as shown by a fluorescent probe, Foam-LPO. The pH of the lysosomes was increased considerably by lysosomal LDL oxidation as shown by LysoSensor Yellow/Blue and LysoTracker Red. SMase-LDL induced senescence-like properties in the cells as shown by β-galactosidase staining and levels of p53 and p21. Inflammation plays a key role in atherosclerosis. SMase-LDL treatment increased the lipopolysaccharide-induced secretion of TNF-α, IL-6, and MCP-1. The lysosomotropic antioxidant, cysteamine, inhibited all of the above changes. Targeting lysosomes with antioxidants, such as cysteamine, to prevent the intralysosomal oxidation of LDL might be a novel therapy for atherosclerosis.
Collapse
Affiliation(s)
- Feroz Ahmad
- Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - David S Leake
- Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| |
Collapse
|
38
|
Ward MG, Li G, Hao M. Apoptotic β-cells induce macrophage reprogramming under diabetic conditions. J Biol Chem 2018; 293:16160-16173. [PMID: 30213857 DOI: 10.1074/jbc.ra118.004565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) occurs when insulin-producing pancreatic β-cells fail to secrete sufficient insulin to compensate for insulin resistance. As T2DM progresses, apoptotic β-cells need to be removed by macrophages through efferocytosis that is anti-inflammatory by nature. Paradoxically, infiltrating macrophages are a main source of inflammatory cytokines that leads to T2DM. It is unclear how apoptotic β-cells impact macrophage function. We show under diabetic conditions, phagocytosis of apoptotic β-cells causes lysosomal permeabilization and generates reactive oxygen species that lead to inflammasome activation and cytokine secretion in macrophages. Efferocytosis-induced lipid accumulation transforms islet macrophages into foam cell-like outside the context of atherosclerosis. Our study suggests that whereas macrophages normally play a protective anti-inflammatory role, the increasing demand of clearing apoptotic cells may trigger them to undergo proinflammatory reprogramming as T2DM progresses. This shift in the balance between opposing macrophage inflammatory responses could contribute to chronic inflammation involved in metabolic diseases. Our study highlights the importance of preserving macrophage lysosomal function as a therapeutic intervention for diabetes progression.
Collapse
Affiliation(s)
- Meliza G Ward
- From the Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - Ge Li
- From the Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - Mingming Hao
- From the Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
39
|
Xia S, Wang J, Bi J, Wang X, Fang M, Phillips T, May A, Conner N, Tanasova M, Luo FT, Liu H. Fluorescent Probes Based on π-Conjugation Modulation between Hemicyanine and Coumarin Moieties for Ratiometric Detection of pH Changes in Live Cells with Visible and Near-infrared Channels. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 265:699-708. [PMID: 30319177 PMCID: PMC6178979 DOI: 10.1016/j.snb.2018.02.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report two ratiometric fluorescent probes based on π-conjugation modulation between coumarin and hemicyanine moieties for sensitive ratiometric detection of pH alterations in live cells by monitoring visible and near-infrared fluorescence changes. In a π-conjugation modulation strategy, a coumarin dye was conjugated to a near-infrared hemicyanine dye via a vinyl connection while lysosome-targeting morpholine ligand and o-phenylenediamine residue were introduced to the hemicyanine dye to form closed spirolactam ring structures in probes A and B, respectively. The probes show only visible fluorescence of the coumarin moiety under physiological and basic conditions because the hemicyanine moieties retain their closed spirolactam ring structures. However, decrease of pH to acidic condition causes spirolactam ring opening, and significantly enhances π-conjugation within the probes, thus generating new near-infrared fluorescence peaks of the hemicyanine at 755 nm and 740 nm for probes A and B, respectively. Moreover, the probes display ratiometric fluorescence response to pH with decreases of the coumarin fluorescence and increases of the hemicyanine fluorescence when pH changes from 7.4 to 2.5. The probes are fully capable of imaging pH changes in live cells with good ratiometric responses in visible and near-infrared channels, and effectively avoid fluorescence blind spots under neutral and basic pH conditions - an issue that typical intensity-based pH fluorescent probes run into. The probe design platform reported herein can be easily applied to prepare a variety of ratiometric fluorescent probes for detection of biological thiols, metal ions, reactive oxygen and nitrogen species by introducing appropriate functional groups to hemicyanine moiety.
Collapse
Affiliation(s)
- Shuai Xia
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Jianbo Wang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Xiao Wang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Tyler Phillips
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Aslan May
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Nathan Conner
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Fen-Tair Luo
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
40
|
Tol MJ, van der Lienden MJC, Gabriel TL, Hagen JJ, Scheij S, Veenendaal T, Klumperman J, Donker-Koopman WE, Verhoeven AJ, Overkleeft H, Aerts JM, Argmann CA, van Eijk M. HEPES activates a MiT/TFE-dependent lysosomal-autophagic gene network in cultured cells: A call for caution. Autophagy 2018; 14:437-449. [PMID: 29455584 PMCID: PMC5915011 DOI: 10.1080/15548627.2017.1419118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of “master lysosomal regulators”. Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members–TFEB, TFE3 and MITF–from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results.
Collapse
Affiliation(s)
- Marc J Tol
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands.,b Department of Pathology and Laboratory Medicine , UCLA , Los Angeles , CA , USA
| | | | - Tanit L Gabriel
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands
| | - Jacob J Hagen
- d Department of Genetics and Genomic Sciences , Icahn Institute for Genomics and Multiscale Biology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Saskia Scheij
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands
| | - Tineke Veenendaal
- e Department of Cell Biology , University Medical Centre Utrecht , The Netherlands
| | - Judith Klumperman
- e Department of Cell Biology , University Medical Centre Utrecht , The Netherlands
| | - Wilma E Donker-Koopman
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands
| | - Arthur J Verhoeven
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands
| | - Hermen Overkleeft
- c Leiden Institute of Chemistry , Leiden University , The Netherlands
| | - Johannes M Aerts
- c Leiden Institute of Chemistry , Leiden University , The Netherlands
| | - Carmen A Argmann
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands.,d Department of Genetics and Genomic Sciences , Icahn Institute for Genomics and Multiscale Biology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Marco van Eijk
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands.,c Leiden Institute of Chemistry , Leiden University , The Netherlands
| |
Collapse
|
41
|
Shimizu K, Morse DE. Silicatein: A Unique Silica-Synthesizing Catalytic Triad Hydrolase From Marine Sponge Skeletons and Its Multiple Applications. Methods Enzymol 2018; 605:429-455. [DOI: 10.1016/bs.mie.2018.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Fang M, Adhikari R, Bi J, Mazi W, Dorh N, Wang J, Conner N, Ainsley J, Karabencheva-Christova TG, Luo FT, Tiwari A, Liu H. Fluorescent Probes for Sensitive and Selective Detection of pH Changes in Live Cells in Visible and Near-infrared Channels. J Mater Chem B 2017; 5:9579-9590. [PMID: 29607047 PMCID: PMC5875989 DOI: 10.1039/c7tb02583a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report five fluorescent probes based on coumarin-hybridized fluorescent dyes with spirolactam ring structures (A-E) to detect pH changes in live cell by monitoring visible and near-infrared fluorescence changes. Under physiological or basic conditions, the fluorescent probes A, B, C, D and E preserve their spirolactam ring-closed forms and only display fluorescent peaks in the visible region corresponding to coumarin moieties at 497, 483, 498, 497 and 482 nm, respectively. However, at acidic pH, the rings of the spirolactam forms of the fluorescent probes A, B, C, D and E open up, generating new near-infrared fluorescence peaks at 711, 696, 707, 715, and 697 nm, respectively, through significantly extended π-conjugation to coumarin moieties of the fluorophores. The fluorescent probes B and E can be applied to visualize pH changes by monitoring visible as well as near-infrared fluorescence changes. This helps avoid fluorescence imaging blind spots at neutral or basic pH, which typical pH fluorescent probes encounter. The probes exhibit high sensitivity to pH changes, excellent photostability, low auto-fluorescence background and good cell membrane permeability.
Collapse
Affiliation(s)
- Mingxi Fang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Rashmi Adhikari
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Wafa Mazi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Nethaniah Dorh
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Jianbo Wang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Nathan Conner
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Jon Ainsley
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | | | - Fen-Tair Luo
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
43
|
Zhang S, Chen TH, Lee HM, Bi J, Ghosh A, Fang M, Qian Z, Xie F, Ainsley J, Christov C, Luo FT, Zhao F, Liu H. Luminescent Probes for Sensitive Detection of pH Changes in Live Cells through Two Near-Infrared Luminescence Channels. ACS Sens 2017; 2:924-931. [PMID: 28750522 PMCID: PMC5897126 DOI: 10.1021/acssensors.7b00137] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two water-soluble near-infrared luminescent probes, which possess both conventional intense Stokes fluorescence and unique single-photon frequency upconversion luminescence (FUCL), were developed for sensitive and selective detection of pH changes in live cells. The water solubility and biocompatibility of these probes were achieved by introducing mannose residues through 2,2'-(ethylenedioxy)diethylamine tethered spacers to a near-infrared conventional fluorescence (CF) and FUCL organic fluorophore. At a pH higher than 7.4, the probes have ring-closed spirocyclic lactam structures, thus are colorless and nonfluorescent. Nevertheless, they sensitively respond to acidic pH values, with a drastic structural change to ring-opened spirocyclic lactam forms, which cause significant absorbance increases at 714 nm. Correspondingly, their near-infrared CF and FUCL intensities at 740 nm are also significantly enhanced when excited by 690 and 808 nm, respectively. The probes hold a variety of advantages such as high sensitivity, excellent reversibility and selectivity to pH over metal ions, low cellular autofluorescence background interference, good cell membrane permeability and photostability, as well as low cytotoxicity. Our results have successfully proven that these probes can visualize intracellular lysosomal pH changes in live cells by monitoring both near-infrared CF and FUCL changes.
Collapse
Affiliation(s)
- Shuwei Zhang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Tzu-Ho Chen
- Institute of Chemistry, and Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Taipei 11529, Taiwan, Republic of China
- Department of Chemistry, National Taiwan University, No. 1 Roosevelt Road Section 4, Taipei 10617, Taiwan, Republic of China
| | - Hsien-Ming Lee
- Institute of Chemistry, and Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Taipei 11529, Taiwan, Republic of China
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Avik Ghosh
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Zichen Qian
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Fei Xie
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Jon Ainsley
- Department of Applied Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| | - Christo Christov
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Fen-Tair Luo
- Institute of Chemistry, and Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Taipei 11529, Taiwan, Republic of China
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
44
|
Wang J, Bhattacharyya J, Mastria E, Chilkoti A. A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles. J Control Release 2017; 260:100-110. [PMID: 28576641 DOI: 10.1016/j.jconrel.2017.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 05/26/2017] [Indexed: 11/27/2022]
Abstract
Nanoscale carriers with an acid-labile linker between the carrier and drug are commonly used for drug delivery. However, their efficacy is potentially limited by inefficient linker cleavage, and lysosomal entrapment of drugs. To address these critical issues, we developed a new imaging method that spatially overlays the location of a nanoparticle and the released drug from the nanoparticle, on a map of the local intracellular pH that delineates individual endosomes and lysosomes, and the therapeutic intracellular target of the drug-the nucleus. We used this method to quantitatively map the intracellular fate of micelles of a recombinant polypeptide conjugated with doxorubicin via an acid-labile hydrazone linker as a function of local pH and time within live cells. We found that hydrolysis of the acid-labile linker is incomplete because the pH range of 4-7 in the endosomes and lysosomes does not provide complete cleavage of the drug from the nanoparticle, but that once cleaved, the drug escapes the acidic endo-lysosomal compartment into the cytosol and traffics to its therapeutic destination-the nucleus. This study also demonstrated that unlike free drug, which enters the cytosol directly through the cell membrane and then traffics into the nucleus, the nanoparticle-loaded drug almost exclusively traffics into endosomes and lysosomes upon intracellular uptake, and only reaches the nucleus after acid-triggered drug release in the endo-lysosomes. This methodology provides a better and more quantitative understanding of the intracellular behavior of drug-loaded nanoparticles, and provides insights for the design of the next-generation of nanoscale drug delivery systems.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jayanta Bhattacharyya
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Eric Mastria
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States.
| |
Collapse
|
45
|
Pierantoni M, Tenne R, Brumfeld V, Kiss V, Oron D, Addadi L, Weiner S. Plants and Light Manipulation: The Integrated Mineral System in Okra Leaves. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600416. [PMID: 28546910 PMCID: PMC5441490 DOI: 10.1002/advs.201600416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/22/2016] [Indexed: 05/05/2023]
Abstract
Calcium oxalate and silica minerals are common components of a variety of plant leaves. These minerals are found at different locations within the leaf, and there is little conclusive evidence about the functions they perform. Here tools are used from the fields of biology, optics, and imaging to investigate the distributions of calcium oxalate, silica minerals, and chloroplasts in okra leaves, in relation to their functions. A correlative approach is developed to simultaneously visualize calcium oxalates, silica minerals, chloroplasts, and leaf soft tissue in 3D without affecting the minerals or the organic components. This method shows that in okra leaves silica and calcium oxalates, together with chloroplasts, form a complex system with a highly regulated relative distribution. This distribution points to a significant role of oxalate and silica minerals to synergistically optimize the light regime in the leaf. The authors also show directly that the light scattered by the calcium oxalate crystals is utilized for photosynthesis, and that the ultraviolet component of light passing through silica bodies, is absorbed. This study thus demonstrates that calcium oxalates increase the illumination level into the underlying tissue by scattering the incoming light, and silica reduces the amount of UV radiation entering the tissue.
Collapse
Affiliation(s)
- Maria Pierantoni
- Department of Structural BiologyWeizmann Institute of ScienceRehovot76100Israel
| | - Ron Tenne
- Department of Physics and Complex SystemsWeizmann Institute of ScienceRehovot76100Israel
| | - Vlad Brumfeld
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovot76100Israel
| | - Vladimir Kiss
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovot76100Israel
| | - Dan Oron
- Department of Physics and Complex SystemsWeizmann Institute of ScienceRehovot76100Israel
| | - Lia Addadi
- Department of Structural BiologyWeizmann Institute of ScienceRehovot76100Israel
| | - Steve Weiner
- Department of Structural BiologyWeizmann Institute of ScienceRehovot76100Israel
| |
Collapse
|
46
|
Wang J, MacEwan SR, Chilkoti A. Quantitative Mapping of the Spatial Distribution of Nanoparticles in Endo-Lysosomes by Local pH. NANO LETTERS 2017; 17:1226-1232. [PMID: 28033711 PMCID: PMC6428044 DOI: 10.1021/acs.nanolett.6b05041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding the intracellular distribution and trafficking of nanoparticle drug carriers is necessary to elucidate their mechanisms of drug delivery and is helpful in the rational design of novel nanoparticle drug delivery systems. The traditional immunofluorescence method to study intracellular distribution of nanoparticles using organelle-specific antibodies is laborious and subject to artifacts. As an alternative, we developed a new method that exploits ratiometric fluorescence imaging of a pH-sensitive Lysosensor dye to visualize and quantify the spatial distribution of nanoparticles in the endosomes and lysosomes of live cells. Using this method, we compared the endolysosomal distribution of cell-penetrating peptide (CPP)-functionalized micelles to unfunctionalized micelles and found that CPP-functionalized micelles exhibited faster endosome-to-lysosome trafficking than unfunctionalized micelles. Ratiometric fluorescence imaging of pH-sensitive Lysosensor dye allows rapid quantitative mapping of nanoparticle distribution in endolysosomes in live cells while minimizing artifacts caused by extensive sample manipulation typical of alternative approaches. This new method can thus serve as an alternative to traditional immunofluorescence approaches to study the intracellular distribution and trafficking of nanoparticles within endosomes and lysosomes.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Corresponding Author. Phone: +1 (919) 660-5373. Fax: +1 (919) 660-5409
| |
Collapse
|
47
|
Shekhar S, Subramaniam V, Kanger JS. Intracellular Manipulation of Phagosomal Transport and Maturation Using Magnetic Tweezers. Methods Mol Biol 2017; 1519:93-112. [PMID: 27815875 DOI: 10.1007/978-1-4939-6581-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phagocytosis is an important process of the immune system by which pathogens are internalized and eliminated by phagocytic cells. Upon internalization, the phagosome matures and acidifies while being transported in a centripetal fashion. In this chapter, we describe protocols for simultaneous imaging of phagosomal acidification as well as their spatial manipulation by magnetic tweezers. First, we describe the protocols for functionalization of magnetic microbeads with pH-sensitive dyes and pH calibration of these particles. We also describe the preparation of magnetic tweezers and the calibration of forces that can be generated by these tweezers. We provide details of the design of the custom electrical and optical setup used for simultaneous imaging of phagosomal pH and phagosome's location. Finally, we provide a detailed description of the data analysis methodology.
Collapse
Affiliation(s)
- Shashank Shekhar
- Cytoskeleton Dynamics Group, I2BC, CNRS, Gif-sur-Yvette, France.
| | - Vinod Subramaniam
- Nanobiophysics Group, University of Twente, Enschede, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes S Kanger
- Nanobiophysics Group, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
48
|
An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells. Talanta 2017; 162:180-186. [DOI: 10.1016/j.talanta.2016.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/26/2016] [Accepted: 10/02/2016] [Indexed: 11/20/2022]
|
49
|
Klötzner DP, Klehs K, Heilemann M, Heckel A. A new photoactivatable near-infrared-emitting QCy7 fluorophore for single-molecule super-resolution microscopy. Chem Commun (Camb) 2017; 53:9874-9877. [DOI: 10.1039/c7cc04996j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work we present a new photoactivatable QCy7-based fluorophore and demonstrate its application in single-molecule super-resolution microscopy.
Collapse
Affiliation(s)
- Dean-Paulos Klötzner
- Goethe University Frankfurt
- Institute of Organic Chemistry and Chemical Biology
- 60438 Frankfurt
- Germany
| | - Kathrin Klehs
- Goethe University Frankfurt
- Institute of Physical and Theoretical Chemistry
- 60438 Frankfurt
- Germany
| | - Mike Heilemann
- Goethe University Frankfurt
- Institute of Physical and Theoretical Chemistry
- 60438 Frankfurt
- Germany
| | - Alexander Heckel
- Goethe University Frankfurt
- Institute of Organic Chemistry and Chemical Biology
- 60438 Frankfurt
- Germany
| |
Collapse
|
50
|
Qi Z, Chen Y. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity. Biosens Bioelectron 2017; 87:236-241. [DOI: 10.1016/j.bios.2016.08.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
|