1
|
Ohigashi I, Matsuda-Lennikov M, Takahama Y. Peptides for T cell selection in the thymus. Peptides 2021; 146:170671. [PMID: 34624431 DOI: 10.1016/j.peptides.2021.170671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Major histocompatibility complex (MHC)-associated peptides generated and displayed by antigen-presenting cells in the thymus are essential for the generation of functional and self-tolerant T cells that protect our body from various pathogens. The peptides displayed by cortical thymic epithelial cells (cTECs) are generated by unique enzymatic machineries including the thymoproteasomes, and are involved in the positive selection of self-protective T cells. On the other hand, the peptides displayed by medullary thymic epithelial cells (mTECs) and thymic dendritic cells (DCs) are involved in further selection to establish self-tolerance in T cells. Although the biochemical nature of the peptide repertoire displayed in the thymus remains unclear, many studies have suggested a thymus-specific mechanism for the generation of MHC-associated peptides in the thymus. In this review, we summarize basic knowledge and recent advances in MHC-associated thymic peptides, focusing on the generation and function of thymoproteasome-dependent peptides specifically displayed by cTECs.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan.
| | - Mami Matsuda-Lennikov
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
2
|
Riley TP, Baker BM. The intersection of affinity and specificity in the development and optimization of T cell receptor based therapeutics. Semin Cell Dev Biol 2018; 84:30-41. [DOI: 10.1016/j.semcdb.2017.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
|
3
|
Barton JC, Edwards CQ, Acton RT. HFE gene: Structure, function, mutations, and associated iron abnormalities. Gene 2015; 574:179-92. [PMID: 26456104 PMCID: PMC6660136 DOI: 10.1016/j.gene.2015.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023]
Abstract
The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload.
Collapse
Affiliation(s)
- James C Barton
- Southern Iron Disorders Center, Birmingham, AL, USA and Department of Medicine; University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Corwin Q Edwards
- Department of Medicine, Intermountain Medical Center and University of Utah, Salt Lake City, UT, USA.
| | - Ronald T Acton
- Southern Iron Disorders Center, Birmingham, AL, USA and Department of Medicine; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Ren C, Yin G, Qin M, Suo J, Lv Q, Xie L, Wang Y, Huang X, Chen Y, Liu X, Suo X. CDR3 analysis of TCR Vβ repertoire of CD8⁺ T cells from chickens infected with Eimeria maxima. Exp Parasitol 2014; 143:1-4. [PMID: 24801021 DOI: 10.1016/j.exppara.2014.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/25/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023]
Abstract
CD8(+) T cells play a major role in the immune protection of host against the reinfection of Eimeria maxima, the most immunogenic species of eimerian parasites in chickens. To explore the dominant complementarity-determining regions 3 (CDR3) of CD8(+) T cell populations induced by the infection of this parasite, sequence analysis was performed in this study for CDR3 of CD8(+) T cells from E. maxima infected chickens. After 5 days post the third or forth infection, intraepithelial lymphocytes were isolated from the jejunum of bird. CD3(+)CD8(+) T cells were sorted and subjected to total RNA isolation and cDNA preparation. PCR amplification and cloning of the loci between Vβ1 and Cβ was conducted for the subsequent sequencing of CDR3 of T cell receptor (TCR). After the forth infection, 2 birds exhibited two same frequent TCR CDR3 sequences, i.e., AKQDWGTGGYSNMI and AGRVLNIQY; while the third bird showed two different frequent TCR CDR3 sequences, AKQGARGHTPLN and AKQDIEVRGPNTPLN. No frequent CDR3 sequence was detected from uninfected birds, though AGRVLNIQY was also found in two uninfected birds. Our result preliminarily demonstrates that frequent CDR3 sequences may exist in E. maxima immunized chickens, encouraging the mining of the immunodominant CD8(+) T cells against E. maxima infection.
Collapse
Affiliation(s)
- Chao Ren
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guangwen Yin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mei Qin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingxia Suo
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiyao Lv
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Xie
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yunzhou Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxi Huang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuchen Chen
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xun Suo
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Valkenburg SA, Day EB, Swan NG, Croom HA, Carbone FR, Doherty PC, Turner SJ, Kedzierska K. Fixing an irrelevant TCR alpha chain reveals the importance of TCR beta diversity for optimal TCR alpha beta pairing and function of virus-specific CD8+ T cells. Eur J Immunol 2010; 40:2470-81. [PMID: 20690181 DOI: 10.1002/eji.201040473] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TCR repertoire diversity can influence the efficacy of CD8(+) T-cell populations, with greater breadth eliciting better protection. We analyzed TCR beta diversity and functional capacity for influenza-specific CD8(+) T cells expressing a single TCR alpha chain. Mice (A7) transgenic for the H2K(b)OVA(257-264)-specific V alpha 2.7 TCR were challenged with influenza to determine how fixing this "irrelevant" TCR alpha affects the "public" and restricted D(b)NP(366) (+)CD8(+) versus the "private" and diverse D(b)PA(224) (+)CD8(+) responses. Though both D(b)NP(366) (+)CD8(+) and D(b)PA(224) (+)CD8(+) sets are generated in virus-primed A7 mice, the constrained D(b)NP(366) (+)CD8(+) population lacked the characteristic, public TCRV beta 8.3, and consequently was reduced in magnitude and pMHC-I avidity. For the more diverse D(b)PA(224) (+)CD8(+) T cells, this particular forcing led to a narrowing and higher TCR beta conservation of the dominant V beta 7, though the responses were of comparable magnitude to C57BL/6J controls. Interestingly, although both the TCR beta diversity and the cytokine profiles were reduced for the D(b)NP(366) (+)CD8(+) and D(b)PA(224) (+)CD8(+) sets in spleen, the latter measure of polyfunctionality was comparable for T cells recovered from the infected lungs of A7 and control mice. Even "sub-optimal" TCR alpha beta pairs can operate effectively when exposed in a milieu of high virus load. Thus, TCR beta diversity is important for optimal TCR alpha beta pairing and function when TCR alpha is limiting.
Collapse
Affiliation(s)
- Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, Vic 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Macdonald WA, Chen Z, Gras S, Archbold JK, Tynan FE, Clements CS, Bharadwaj M, Kjer-Nielsen L, Saunders PM, Wilce MCJ, Crawford F, Stadinsky B, Jackson D, Brooks AG, Purcell AW, Kappler JW, Burrows SR, Rossjohn J, McCluskey J. T cell allorecognition via molecular mimicry. Immunity 2010; 31:897-908. [PMID: 20064448 DOI: 10.1016/j.immuni.2009.09.025] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/10/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
T cells often alloreact with foreign human leukocyte antigens (HLA). Here we showed the LC13 T cell receptor (TCR), selected for recognition on self-HLA-B( *)0801 bound to a viral peptide, alloreacts with B44 allotypes (HLA-B( *)4402 and HLA-B( *)4405) bound to two different allopeptides. Despite extensive polymorphism between HLA-B( *)0801, HLA-B( *)4402, and HLA-B( *)4405 and the disparate sequences of the viral and allopeptides, the LC13 TCR engaged these peptide-HLA (pHLA) complexes identically, accommodating mimicry of the viral peptide by the allopeptide. The viral and allopeptides adopted similar conformations only after TCR ligation, revealing an induced-fit mechanism of molecular mimicry. The LC13 T cells did not alloreact against HLA-B( *)4403, and the single residue polymorphism between HLA-B( *)4402 and HLA-B( *)4403 affected the plasticity of the allopeptide, revealing that molecular mimicry was associated with TCR specificity. Accordingly, molecular mimicry that is HLA and peptide dependent is a mechanism for human T cell alloreactivity between disparate cognate and allogeneic pHLA complexes.
Collapse
Affiliation(s)
- Whitney A Macdonald
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Insaidoo FK, Zajicek J, Baker BM. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves. Biochemistry 2009; 48:9708-10. [PMID: 19772349 PMCID: PMC2762276 DOI: 10.1021/bi9008787] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
T-Cell receptor recognition of peptides bound by major histocompatibility complex (MHC) proteins initiates a cellular immune response. Dynamics of peptides within MHC binding grooves can influence TCR recognition, yet NMR studies which could address this rigorously have been hindered by the expense of isotopically labeled peptides and the large size of peptide-MHC complexes. Here we describe a methodology for characterizing peptide dynamics within MHC binding grooves via NMR, using a biosynthetic approach for producing labeled peptide. With the Tax(11-19) peptide bound to the human class I MHC HLA-A*0201, we demonstrate that peptide generated in this manner can be well characterized in MHC binding grooves by NMR, providing opportunities to more precisely study the role of peptide dynamics in TCR recognition. Demonstrating the utility of such studies, the data with the Tax(11-19) peptide indicate the presence of slow conformational exchange in the peptide, supporting an "induced-fit" style TCR binding mechanism.
Collapse
Affiliation(s)
- Francis K. Insaidoo
- Department of Chemistry and Biochemistry and Walther Cancer Research Center, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556
| | - Jaroslav Zajicek
- Department of Chemistry and Biochemistry and Walther Cancer Research Center, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and Walther Cancer Research Center, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
8
|
Wolfl M, Rutebemberwa A, Mosbruger T, Mao Q, Li H, Netski D, Ray SC, Pardoll D, Sidney J, Sette A, Allen T, Kuntzen T, Kavanagh DG, Kuball J, Greenberg PD, Cox AL. Hepatitis C virus immune escape via exploitation of a hole in the T cell repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6435-46. [PMID: 18941234 PMCID: PMC2742502 DOI: 10.4049/jimmunol.181.9.6435] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) infection frequently persists despite eliciting substantial virus-specific immune responses. Thus, HCV infection provides a setting in which to investigate mechanisms of immune escape that allow for viral persistence. Viral amino acid substitutions resulting in decreased MHC binding or impaired Ag processing of T cell epitopes reduce Ag density on the cell surface, permitting evasion of T cell responses in chronic viral infection. Substitutions in viral epitopes that alter TCR contact residues frequently result in escape, but via unclear mechanisms because such substitutions do not reduce surface presentation of peptide-MHC complexes and would be expected to prime T cells with new specificities. We demonstrate that a known in vivo HCV mutation involving a TCR contact residue significantly diminishes T cell recognition and, in contrast to the original sequence, fails to effectively prime naive T cells. This mutant epitope thus escapes de novo immune recognition because there are few highly specific cognate TCR among the primary human T cell repertoire. This example is the first on viral immune escape via exploitation of a "hole" in the T cell repertoire, and may represent an important general mechanism of viral persistence.
Collapse
Affiliation(s)
- Matthias Wolfl
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Alleluiah Rutebemberwa
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Timothy Mosbruger
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Qing Mao
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China 400038
| | - Hongmei Li
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Dale Netski
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Drew Pardoll
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - John Sidney
- Department of La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive San Diego, California 92121
| | - Alessandro Sette
- Department of La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive San Diego, California 92121
| | - Todd Allen
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Thomas Kuntzen
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Daniel G. Kavanagh
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Jurgen Kuball
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Philip D. Greenberg
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| |
Collapse
|
9
|
Archbold JK, Macdonald WA, Burrows SR, Rossjohn J, McCluskey J. T-cell allorecognition: a case of mistaken identity or déjà vu? Trends Immunol 2008; 29:220-6. [PMID: 18378495 DOI: 10.1016/j.it.2008.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 02/07/2008] [Accepted: 02/07/2008] [Indexed: 02/08/2023]
Abstract
T cells bearing alphabeta T-cell receptors (TCRs) are selected by a subset of peptide-laden major histocompatibility (pMHC) molecules in the thymus and in the periphery and therefore are restricted to recognising host or 'self' MHC molecules. Nevertheless, T cells are inherently cross-reactive and often react with 'foreign' allogeneic MHC molecules (direct T-cell alloreactivity), manifested clinically as organ transplant rejection. Although the basis of T-cell alloreactivity has remained a puzzle to immunologists for decades, studies on alloreactive TCRs have begun to shed light on the basic mechanisms underpinning this 'mistaken identity'. Here we review recent advances in the field, focusing on structural and cellular studies, showing that alloreactivity may sometimes result from cross-reactivity without molecular mimicry and at other times may result directly from TCR interactions with allogeneic pMHC surfaces that mimic the cognate ligand.
Collapse
Affiliation(s)
- Julia K Archbold
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
10
|
Marrack P, Rubtsova K, Scott-Browne J, Kappler JW. T cell receptor specificity for major histocompatibility complex proteins. Curr Opin Immunol 2008; 20:203-7. [PMID: 18456484 PMCID: PMC3151152 DOI: 10.1016/j.coi.2008.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
The ligands for alpha beta T cell receptors (alphabetaTCRs) are usually major histocompatibility complex (MHC) proteins bound to peptides. Although there is evidence that T cell receptor variable regions have been selected evolutionarily to bind MHC, the rules governing this interaction have not previously been apparent. However, recent solved structures of T cell receptors with related variable regions bound to MHC plus peptides suggest that some amino acids in variable region CDR1 and CDR2s almost always react in a consistent way with MHC. These amino acids may therefore have been selected evolutionarily to predispose T cell receptors toward recognition of MHC ligands.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Evolution, Molecular
- Histocompatibility Antigens/chemistry
- Histocompatibility Antigens/metabolism
- Humans
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Mice
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Kira Rubtsova
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | - James Scott-Browne
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | - John W. Kappler
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Program in Biomolecular Structure, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045 USA
| |
Collapse
|
11
|
Dai S, Huseby ES, Rubtsova K, Scott-Browne J, Crawford F, Macdonald WA, Kappler JW, Marrack P. Crossreactive T Cells spotlight the germline rules for alphabeta T cell-receptor interactions with MHC molecules. Immunity 2008; 28:324-34. [PMID: 18308592 PMCID: PMC2287197 DOI: 10.1016/j.immuni.2008.01.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 01/15/2008] [Indexed: 01/11/2023]
Abstract
To test whether highly crossreactive alphabeta T cell receptors (TCRs) produced during limited negative selection best illustrate evolutionarily conserved interactions between TCR and major histocompatibility complex (MHC) molecules, we solved the structures of three TCRs bound to the same MHC II peptide (IAb-3K). The TCRs had similar affinities for IAb-3K but varied from noncrossreactive to extremely crossreactive with other peptides and MHCs. Crossreactivity correlated with a shrinking, increasingly hydrophobic TCR-ligand interface, involving fewer TCR amino acids. A few CDR1 and CDR2 amino acids dominated the most crossreactive TCR interface with MHC, including Vbeta8 48Y and 54E and Valpha4 29Y, arranged to impose the familiar diagonal orientation of TCR on MHC. These interactions contribute to MHC binding by other TCRs using related V regions, but not usually so dominantly. These data show that crossreactive TCRs can spotlight the evolutionarily conserved features of TCR-MHC interactions and that these interactions impose the diagonal docking of TCRs on MHC.
Collapse
Affiliation(s)
- Shaodong Dai
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | - Eric S. Huseby
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | - Kira Rubtsova
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | - James Scott-Browne
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | - Frances Crawford
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | | | - John W. Kappler
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Program in Biomolecular Structure, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045 USA
| | - Philippa Marrack
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
12
|
Kedzierska K, La Gruta NL, Stambas J, Turner SJ, Doherty PC. Tracking phenotypically and functionally distinct T cell subsets via T cell repertoire diversity. Mol Immunol 2008; 45:607-18. [PMID: 17719639 PMCID: PMC2237887 DOI: 10.1016/j.molimm.2006.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/15/2006] [Indexed: 02/03/2023]
Abstract
Antigen-specific T cell receptors (TCRs) recognise complexes of immunogenic peptides (p) and major histocompatibility complex (MHC) glycoproteins. Responding T cell populations show profiles of preferred usage (or bias) toward one or few TCRbeta chains. Such skewing is also observed, though less commonly, in TCRalpha chain usage. The extent and character of clonal diversity within individual, antigen-specific T cell sets can be established by sequence analysis of the TCRVbeta and/or TCRValpha CDR3 loops. The present review provides examples of such TCR repertoires in prominent responses to acute and persistent viruses. The determining role of structural constraints and antigen dose is discussed, as is the way that functionally and phenotypically distinct populations can be defined at the clonal level. In addition, clonal dissection of "high" versus "low" avidity, or "central" versus "effector" memory sets provides insights into how these antigen specific T cell responses are generated and maintained. As TCR diversity potentially influences both the protective capacity of CD8+ T cells and the subversion of immune control that leads to viral escape, analysing the spectrum of TCR selection and maintenance has implications for improving the functional efficacy of T cell responsiveness and effector function.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
13
|
Nakagawa Y, Kikuchi H, Takahashi H. Molecular analysis of TCR and peptide/MHC interaction using P18-I10-derived peptides with a single D-amino acid substitution. Biophys J 2007; 92:2570-82. [PMID: 17208967 PMCID: PMC1864817 DOI: 10.1529/biophysj.106.095208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the structural analysis of T-cell receptor (TCR) and peptide/MHC interaction, a series of peptides with a single amino acid substitution by a corresponding D-amino acid, having the same weight, size, and charge, within P18-I10 (aa318-327: RGPGRAFVTI), an immunodominant epitope of HIV-1 IIIB envelope glycoprotein, restricted by the H-2Dd class I MHC molecule, has been synthesized. Using those peptides, we have observed that the replacement at positions 324F, 325V, 326T, and 327I with each corresponding D-amino acid induced marked reduction of the potency to sensitize targets for P18-I10-specific murine CD8+ cytotoxic T lymphocytes (CTLs), LINE-IIIB, recognition. To analyze further the role of amino acid at position 325, the most critical site for determining epitope specificity, we have developed a CTL line [LINE-IIIB(325D)] and its offspring clones specific for the epitope I-10(325v) having a D-valine (v) at position 325. Taking advantage of two distinct sets of CD8+ CTLs restricted by the same Dd, three-dimensional structural analysis on TCR and peptide/MHC complexes by molecular modeling was performed, which indicates that the critical amino acids within the TCRs for interacting with 325V or 325v appear to belong to the complementarity-determining region 1 but not to the complementarity-determining region 3 of Vbeta chain.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Binding Sites
- Computer Simulation
- Female
- Fibroblasts/chemistry
- Fibroblasts/metabolism
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/metabolism
- HIV Envelope Protein gp120/ultrastructure
- HLA Antigens/chemistry
- HLA Antigens/metabolism
- HLA Antigens/ultrastructure
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Models, Chemical
- Models, Molecular
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Peptide Fragments/ultrastructure
- Protein Binding
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/ultrastructure
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Yohko Nakagawa
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | | | | |
Collapse
|
14
|
Abstract
Human Vgamma2Vdelta2 T cells recognize nonpeptide antigens derived from pathogenic microbes in a TCR-dependent manner, such as pyrophosphomonoester compounds from mycobacteria and malaria parasite and alkyl amines from Proteus, suggesting that this subset of gamma delta T cells is involved in infectious immunity. The precise recognition mechanism has been delineated using a site-directed mutagenesis strategy based on crystal structure of gamma delta TCR. On the other hand, several lines of evidence indicate that human gamma delta T cells are involved in tumor immunity. Although activated gamma delta T cells exhibit a cytolytic activity against most of tumor cells, only a small fraction of tumor cells, like Burkitt lymphoma cells and multiple myeloid cells, is recognized by human gamma delta T cells in a TCR-dependent manner. This implicates that human gamma delta T cells have two distinct pathways for anti-tumor immunity. One is a natural killer-like pathway and the other is a TCR-dependent pathway. Recently, it was shown that treatment of human tumor cells with nitrogen-containing bisphosphonates, therapeutic drugs for hypercalcemia in malignancy, generated antigenic structure on the surface of tumor cells, which could be recognized by human gamma delta T cells in a TCR-dependent manner. This tumor labeling system may lead to a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Yoshimasa Tanaka
- Laboratory of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Huseby ES, Crawford F, White J, Marrack P, Kappler JW. Interface-disrupting amino acids establish specificity between T cell receptors and complexes of major histocompatibility complex and peptide. Nat Immunol 2006; 7:1191-9. [PMID: 17041605 DOI: 10.1038/ni1401] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/20/2006] [Indexed: 12/21/2022]
Abstract
T cell receptors (TCRs) bind complexes of cognate major histocompatibility complex (MHC) and peptide at relatively low affinities (1-200 microM). Nevertheless, TCR-MHC-peptide interactions are usually specific for the peptide and the allele encoding the MHC. Here we show that to escape thymocyte negative selection, TCRs must interact with many of the side chains of MHC-peptide complexes as 'hot spots' for TCR binding. Moreover, even when the 'parental' side chain did not contribute binding affinity, some MHC-peptide residues contributed to TCR specificity, as amino acid substitutions substantially reduced binding affinity. The presence of such 'interface-disruptive' side chains helps to explain how TCRs generate specificity at low-affinity interfaces and why TCRs often 'accommodate' a subset of amino acids at a given MHC-peptide position.
Collapse
Affiliation(s)
- Eric S Huseby
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
16
|
Kedzierska K, La Gruta NL, Turner SJ, Doherty PC. Establishment and recall of CD8
+
T‐cell memory in a model of localized transient infection. Immunol Rev 2006; 211:133-45. [PMID: 16824123 DOI: 10.1111/j.0105-2896.2006.00386.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The influenza A virus model of localized, transient respiratory infection provides a well-defined experimental system for dissecting the induction and maintenance of CD8+ T-cell memory. This review focuses on quantitative and qualitative aspects of the prominent D(b)NP366- and D(b)PA224-specific CD8+ T-cell responses in virus-infected B6 mice. The different virus-specific effector and memory sets are compared by phenotypic [CD62L, interleukin-7 receptor-alpha (IL-7Ralpha), and IL-15Rbeta expression] and functional [interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and IL-2 production] analyses. Most clonotypes [defined by T-cell receptor (TCR) CDR3beta sequence] generated during the acute phase of infection survive into memory, with those expressing the more consensus 'canonical' TCRs being the major contributors to the recall response. The extent of clonal expansion and the size of memory CD8+ T-cell populations has been characterized for mice challenged with either wildtype or mutant viruses, where broadly equivalent D(b)NP366 and D(b)PA224 expression was achieved by disabling the peptides in their native configuration, then expressing them in the viral neuraminidase protein. Combining the clonotypic and antigen dose analyses led to a somewhat mechanistic conclusion that the magnitude of any virus-specific CD8+ T-cell response will be a direct function of antigen dose and the size of the naïve or memory CD8+ T-cell precursor pool.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, Australia
| | | | | | | |
Collapse
|
17
|
Ely LK, Beddoe T, Clements CS, Matthews JM, Purcell AW, Kjer-Nielsen L, McCluskey J, Rossjohn J. Disparate thermodynamics governing T cell receptor-MHC-I interactions implicate extrinsic factors in guiding MHC restriction. Proc Natl Acad Sci U S A 2006; 103:6641-6. [PMID: 16617112 PMCID: PMC1564203 DOI: 10.1073/pnas.0600743103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Indexed: 11/18/2022] Open
Abstract
The underlying basis of major histocompatibility complex (MHC) restriction is unclear. Nevertheless, current data suggest that a common thermodynamic signature dictates alphabeta T cell receptor (TcR) ligation. To evaluate whether this thermodynamic signature defines MHC restriction, we have examined the thermodynamic basis of a highly characterized immunodominant TcR interacting with its cognate peptide-MHC-I ligand. Surprisingly, we observed this interaction to be governed by favorable enthalpic and entropic forces, which is in contrast to the prevailing generality, namely, enthalpically driven interactions combined with markedly unfavorable entropic forces. We conclude that extrinsic molecular factors, such as coreceptor ligation, conformational adjustments involved in TcR signaling, or constraints dictated by higher-order arrangement of ligated TcRs, might play a greater role in guiding MHC restriction than appreciated previously.
Collapse
Affiliation(s)
- Lauren K. Ely
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Travis Beddoe
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Craig S. Clements
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jacqueline M. Matthews
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia; and
| | | | - Lars Kjer-Nielsen
- Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James McCluskey
- Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
18
|
Tynan FE, Burrows SR, Buckle AM, Clements CS, Borg NA, Miles JJ, Beddoe T, Whisstock JC, Wilce MC, Silins SL, Burrows JM, Kjer-Nielsen L, Kostenko L, Purcell AW, McCluskey J, Rossjohn J. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide. Nat Immunol 2005; 6:1114-22. [PMID: 16186824 DOI: 10.1038/ni1257] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Accepted: 08/23/2005] [Indexed: 11/08/2022]
Abstract
Unusually long major histocompatibility complex (MHC) class I-restricted epitopes are important in immunity, but their 'bulged' conformation represents a potential obstacle to alphabeta T cell receptor (TCR)-MHC class I docking. To elucidate how such recognition is achieved while still preserving MHC restriction, we have determined here the structure of a TCR in complex with HLA-B(*)3508 presenting a peptide 13 amino acids in length. This complex was atypical of TCR-peptide-MHC class I interactions, being dominated at the interface by peptide-mediated interactions. The TCR assumed two distinct orientations, swiveling on top of the centrally bulged, rigid peptide such that only limited contacts were made with MHC class I. Although the TCR-peptide recognition resembled an antibody-antigen interaction, the TCR-MHC class I contacts defined a minimal 'generic footprint' of MHC-restriction. Thus our findings simultaneously demonstrate the considerable adaptability of the TCR and the 'shape' of MHC restriction.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigen Presentation
- Cell Line
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- HLA-B Antigens/chemistry
- HLA-B Antigens/immunology
- Humans
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/immunology
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Fleur E Tynan
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang S, Gilfillan S, Cella M, Miley MJ, Lantz O, Lybarger L, Fremont DH, Hansen TH. Evidence for MR1 antigen presentation to mucosal-associated invariant T cells. J Biol Chem 2005; 280:21183-93. [PMID: 15802267 DOI: 10.1074/jbc.m501087200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The novel class Ib molecule MR1 is highly conserved in mammals, particularly in its alpha1/alpha2 domains. Recent studies demonstrated that MR1 expression is required for development and expansion of a small population of T cells expressing an invariant T cell receptor (TCR) alpha chain called mucosal-associated invariant T (MAIT) cells. Despite these intriguing properties it has been difficult to determine whether MR1 expression and MAIT cell recognition is ligand-dependent. To address these outstanding questions, monoclonal antibodies were produced in MR1 knock-out mice immunized with recombinant MR1 protein, and a series of MR1 mutations were generated at sites previously shown to disrupt the ability of class Ia molecules to bind peptide or TCR. Here we show that 1) MR1 molecules are detected by monoclonal antibodies in either an open or folded conformation that correlates precisely with peptide-induced conformational changes in class Ia molecules, 2) only the folded MR1 conformer activated 2/2 MAIT hybridoma cells tested, 3) the pattern of MAIT cell activation by the MR1 mutants implies the MR1/TCR orientation is strikingly similar to published major histocompatibility complex/alphabetaTCR engagements, 4) all the MR1 mutations tested and found to severely reduce surface expression of folded molecules were located in the putative ligand binding groove, and 5) certain groove mutants of MR1 that are highly expressed on the cell surface disrupt MAIT cell activation. These combined data strongly support the conclusion that MR1 has an antigen presentation function.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Borg NA, Ely LK, Beddoe T, Macdonald WA, Reid HH, Clements CS, Purcell AW, Kjer-Nielsen L, Miles JJ, Burrows SR, McCluskey J, Rossjohn J. The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition. Nat Immunol 2005; 6:171-80. [PMID: 15640805 DOI: 10.1038/ni1155] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 12/08/2004] [Indexed: 11/09/2022]
Abstract
The energetic bases of T cell recognition are unclear. Here, we studied the 'energetic landscape' of peptide-major histocompatibility complex (pMHC) recognition by an immunodominant alphabeta T cell receptor (TCR). We quantified and evaluated the effect of natural and systematic substitutions in the complementarity-determining region (CDR) loops on ligand binding in the context of the structural detail of each component of the immunodominant TCR-pMHC complex. The CDR1 and CDR2 loops contributed minimal energy through direct recognition of the antigen and instead had a chief function in stabilizing the ligated CDR3 loops. The underlying energetic basis for recognition lay in the CDR3 loops. Therefore the energetic burden of the CDR loops in the TCR-pMHC interaction is variable among TCRs, reflecting the inherent adaptability of the TCR in ligating different ligands.
Collapse
MESH Headings
- Base Sequence
- Cells, Cultured
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Complementarity Determining Regions/metabolism
- Histocompatibility Antigens/chemistry
- Histocompatibility Antigens/immunology
- Humans
- Kinetics
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Mutation/genetics
- Peptides/chemistry
- Peptides/immunology
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Surface Plasmon Resonance
- Thermodynamics
Collapse
Affiliation(s)
- Natalie A Borg
- The Protein Crystallography Unit, Monash Centre for Synchrotron Science, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Probst-Kepper M, Hecht HJ, Herrmann H, Janke V, Ocklenburg F, Klempnauer J, van den Eynde BJ, Weiss S. Conformational Restraints and Flexibility of 14-Meric Peptides in Complex with HLA-B*3501. THE JOURNAL OF IMMUNOLOGY 2004; 173:5610-6. [PMID: 15494511 DOI: 10.4049/jimmunol.173.9.5610] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human HLA-B*3501 binds an antigenic peptide of 14-aa length derived from an alternative reading frame of M-CSF with high affinity. Due to its extraordinary length, the exact HLA binding mode was unpredictable. The crystal structure of HLA-B*3501 at 1.5 A shows that the N and C termini of the peptide are embedded in the A and F pockets, respectively, similar to a peptide of normal length. The central part of the 14-meric peptide bulges flexibly out of the groove. Two variants of the alternative reading frame of M-CSF peptide substituted at P2 or P2 and P9 with Ala display weak or no T cell activation. Their structure differs mainly in flexibility and conformation from the agonistic peptide. Moreover, the variants induce subtle changes of MHC alpha-helical regions implicated as critical for TCR contact. The TCR specifically recognizing this peptide/MHC complex exhibits CDR3 length within the normal range, suggesting major conformational adaptations of this receptor upon peptide/MHC binding. Thus, the potential antigenic repertoire recognizable by CTLs is larger than currently thought.
Collapse
MESH Headings
- Alanine/chemistry
- Amino Acid Sequence
- Amino Acid Substitution/immunology
- Antigen Presentation
- Clone Cells
- Crystallography, X-Ray
- HLA-B35 Antigen/chemistry
- HLA-B35 Antigen/immunology
- HLA-B35 Antigen/metabolism
- Humans
- Macromolecular Substances
- Macrophage Colony-Stimulating Factor/chemistry
- Macrophage Colony-Stimulating Factor/immunology
- Macrophage Colony-Stimulating Factor/metabolism
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
- Protein Conformation
- Protein Structure, Secondary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Michael Probst-Kepper
- Department of Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Haigwood NL, Montefiori DC, Sutton WF, McClure J, Watson AJ, Voss G, Hirsch VM, Richardson BA, Letvin NL, Hu SL, Johnson PR. Passive immunotherapy in simian immunodeficiency virus-infected macaques accelerates the development of neutralizing antibodies. J Virol 2004; 78:5983-95. [PMID: 15140996 PMCID: PMC415787 DOI: 10.1128/jvi.78.11.5983-5995.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Passively transferred neutralizing antibodies can block lentivirus infection, but their role in postexposure prophylaxis is poorly understood. In this nonhuman-primate study, the effects of short-term antibody therapy on 5-year disease progression, virus load, and host immunity were explored. We reported previously that postinfection passive treatment with polyclonal immune globulin with high neutralizing titers against SIVsmE660 (SIVIG) significantly improved the 67-week health of SIVsmE660-infected Macaca mulatta macaques. Four of six treated macaques maintained low or undetectable levels of virus in plasma, compared with one of ten controls, while two rapid progressors controlled viremia only as long as the SIVIG was present. SIVIG treatment delayed the de novo production of envelope (Env)-specific antibodies by 8 weeks (13). We show here that differences in disease progression were also significant at 5 years postinfection, excluding rapid progressors (P = 0.05). Macaques that maintained </=10(3) virus particles per ml of plasma and </=30 infectious virus particles per 10(6) mononuclear cells from peripheral blood and lymph nodes had delayed disease onset. All macaques that survived beyond 18 months had measurable Gag-specific CD8(+) cytotoxic T cells, regardless of treatment. Humoral immunity in survivors beyond 20 weeks was strikingly different in the SIVIG and control groups. Despite a delay in Env-specific binding antibodies, de novo production of neutralizing antibodies was significantly accelerated in SIVIG-treated macaques. Titers of de novo neutralizing antibodies at week 12 were comparable to levels achieved in controls only by week 32 or later. Acceleration of de novo simian immunodeficiency virus immunity in the presence of passively transferred neutralizing antibodies is a novel finding with implications for postexposure prophylaxis and vaccines.
Collapse
Affiliation(s)
- Nancy L Haigwood
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Suite 500, Seattle, WA 98109-5219, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kedzierska K, Turner SJ, Doherty PC. Conserved T cell receptor usage in primary and recall responses to an immunodominant influenza virus nucleoprotein epitope. Proc Natl Acad Sci U S A 2004; 101:4942-7. [PMID: 15037737 PMCID: PMC387353 DOI: 10.1073/pnas.0401279101] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CD8+ T cell response to the immunodominant DbNP366 epitope has been analyzed sequentially to determine the prevalence and persistence of different T cell antigen receptor (TCR)Vbeta8.3 clonotypes after primary and secondary influenza virus challenge. Based on the length and amino acid sequences of the complementarity-determining region 3 of TCRbeta (CDR3beta) loop and associated Jbeta usage, the same dominant TCRbeta signatures were found in the blood, the spleen, and the site of virus-induced pathology in the infected respiratory tract. Longitudinal analysis demonstrated that TCRbeta prominent in the antigen-driven phase of response persisted into memory and were again expanded after secondary challenge. A proportion of these high-frequency TCRbeta expressed "public" CDR3beta sequences that were detected in every mouse sampled, whereas others were found more than once but were not invariably present. Analysis of N-region nucleotide diversity established that as many as 10 different nucleic acid sequences (maximum of four "nucleotypes" in any one mouse) could encode a single public TCRbeta amino acid sequence. Conversely, whereas some of the unique, "private" TCRbeta achieved a substantial clone size, they were always specified by a single nucleotype. Although there is a strong stochastic element in this response, the public TCRbeta seem to represent a "best fit" for this immunodominant epitope, are selected preferentially from the naive TCR repertoire, and assume even greater prominence after secondary challenge.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Australia
| | | | | |
Collapse
|
24
|
Buslepp J, Wang H, Biddison WE, Appella E, Collins EJ. A Correlation between TCR Vα Docking on MHC and CD8 Dependence. Immunity 2003; 19:595-606. [PMID: 14563323 DOI: 10.1016/s1074-7613(03)00269-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
T cell receptors (TCR) adopt a similar orientation when binding with major histocompatibility complex (MHC) molecules, yet the biological mechanism that generates this similar TCR orientation remains obscure. We show here the cocrystallographic structure of a mouse TCR bound to a human MHC molecule not seen by the TCR during thymic development. The orientation of this xenoreactive murine TCR atop human MHC deviates from the typical orientation more than any previously determined TCR/MHC structure. This unique orientation is solely due to the placement of the TCR Valpha domain on the MHC. In light of new information provided by this structure, we have reanalyzed the existing TCR/MHC cocrystal structures and discovered unique features of TCR Valpha domain position on class I MHC that correlate with CD8 dependence. Finally, we propose that the orientation seen in TCR recognition of MHC is a consequence of selection during T cell development.
Collapse
Affiliation(s)
- Jennifer Buslepp
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
25
|
Buzás EI, Hanyecz A, Murad Y, Hudecz F, Rajnavölgyi E, Mikecz K, Glant TT. Differential recognition of altered peptide ligands distinguishes two functionally discordant (arthritogenic and nonarthritogenic) autoreactive T cell hybridoma clones. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:3025-33. [PMID: 12960328 DOI: 10.4049/jimmunol.171.6.3025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intravenous injection of a cartilage proteoglycan (aggrecan)-specific Th1 hybridoma clone 5/4E8 induced joint lesions similar to those seen in either primary or adoptively transferred arthritis in BALB/c mice. A sister clone, TA20, recognizing the same peptide epitope of human aggrecan and using the same Vbeta4 and Valpha1 segments, failed to induce joint inflammation. This study examines the fine epitope specificities of these two clones. Both 5/4E8 and TA20 hybridomas were generated using T cells from the same arthritic animal that has been immunized with human aggrecan, and both clones recognized peptides containing a consensus GRVRVNSAY sequence. However, flanking regions outside this nonapeptide sequence region had differential impact on peptide recognition by the two clones. Similarly, when single amino acid substitutions were introduced to the consensus sequence, significant differences were detected in the epitope recognition patterns of the T cell hybridomas. The 5/4E8 hybridoma showed greater flexibility in recognition, including a higher responsiveness to the corresponding self (mouse) aggrecan peptide, and produced more inflammatory cytokines (IFN-gamma and TNF-alpha), whereas hybridoma TA20 produced IL-5 in response to either human or mouse self peptide stimulation. These results demonstrate that, within the pool of immunodominant (foreign) peptide-activated lymphocytes, marked individual differences of degeneracy exist in T cell recognition, with possible implications to autopathogenic T cell functions.
Collapse
MESH Headings
- Aggrecans
- Amino Acid Sequence
- Animals
- Arthritis, Experimental/immunology
- Autoantigens/immunology
- Autoantigens/metabolism
- Autoimmune Diseases/immunology
- Cell Line, Tumor
- Clone Cells
- Complementarity Determining Regions/biosynthesis
- Complementarity Determining Regions/metabolism
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Epitopes, T-Lymphocyte/physiology
- Extracellular Matrix Proteins
- Humans
- Hybridomas/immunology
- Hybridomas/metabolism
- Lectins, C-Type
- Ligands
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Peptide Fragments/physiology
- Protein Binding/immunology
- Proteoglycans/immunology
- Proteoglycans/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Edit I Buzás
- Section of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Rush University, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Okazaki T, Pendleton CD, Lemonnier F, Berzofsky JA. Epitope-enhanced conserved HIV-1 peptide protects HLA-A2-transgenic mice against virus expressing HIV-1 antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2548-55. [PMID: 12928405 DOI: 10.4049/jimmunol.171.5.2548] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV epitopes may have developed to be poor immunogens. As a counterapproach HIV vaccine strategy, we used epitope enhancement of a conserved HIV reverse transcriptase (RT) epitope for induction of antiviral protection in HLA-A2-transgenic mice mediated by human HLA-A2-restricted CTLs. We designed two epitope-enhanced peptides based on affinity for HLA-A2, one substituted in anchor residues (RT-2L9V) and the other also with tyrosine at position 1 (RT-1Y2L9V), and examined the balance between HLA binding and T cell recognition. CTL lines and bulk cultures in two HLA-A2-transgenic mouse strains showed that RT-2L9V was more effective in inducing CTL reactive with wild-type Ag than RT-1Y2L9V, despite the higher affinity of the latter, because the 1Y substitution unexpectedly altered T cell recognition. Accordingly, RT-2L9V afforded the greatest protection in vivo against a surrogate virus expressing HIV-1 RT mediated by HLA-A2-restricted CTL in a mouse in which all CTL are restricted to only the human HLA molecule. Such antiviral protection has not been previously achieved with an HLA epitope-enhanced vaccine. These findings define a critical balance between MHC affinity and receptor cross-reactivity required for effective epitope enhancement and also demonstrate construction and efficacy of such a component of a new generation vaccine.
Collapse
Affiliation(s)
- Takahiro Okazaki
- Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 6B-12, Bethesda, MD 20892
| | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Cross-reactivity with drugs is an important clinical problem in drug hypersensitivity. Once a patient is labeled 'drug-allergic' all drugs of the same class are withheld and future therapeutic interventions are limited. Here we review cross-reactivity with drugs at the T cell level. RECENT FINDINGS Analysis of T cell recognition of various classes of drugs (beta-lactam antibiotics, sulfonamides, local anesthetics) using T cell clones suggests that at the T cell level the whole structure, in particular the core and to a lesser degree side chains, are recognized. SUMMARY It is necessary to differentiate cross-reactivity mediated by T cells and antibodies as only the latter seem to recognize side chains exclusively.
Collapse
Affiliation(s)
- Jan P H Depta
- Division of Allergology, Clinic of Rheumatology and Clinical Immunology / Allergology, Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
28
|
Fonseca AM, Pereira CF, Porto G, Arosa FA. Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently of CD58/LFA-3 and heme compounds. Cell Immunol 2003; 224:17-28. [PMID: 14572797 DOI: 10.1016/s0008-8749(03)00170-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Red blood cells (RBC) are known to modulate T cell proliferation and function possibly through downregulation of oxidative stress. By examining parameters of activation, division, and cell death in vitro, we show evidence that the increase in survival afforded by RBC is due to the maintenance of the proliferative capacity of the activated T cells. We also show that the CD3+CD8+ T cell subset was preferentially expanded and rescued from apoptosis both in bulk peripheral blood lymphocyte cultures and with highly purified CD8+ T cells. The ability of RBC to induce survival of dividing T cells was not affected by blocking the CD58/CD2 interaction. Moreover, addition of hemoglobin, heme or protoporphyrin IX to cultures of activated T cells did not reproduce the effect of intact RBC. Considering that RBC circulate throughout the body, they could play a biological role in the modulation of T cell differentiation and survival in places of active cell division. Neither CD58 nor the heme compounds studied seem to play a direct relevant role in the modulation of T cell survival.
Collapse
Affiliation(s)
- Ana Mafalda Fonseca
- Laboratory of Molecular Immunology, Institute for Molecular and Cell Biology, Rua do Campo Alegre, 823, Portugal
| | | | | | | |
Collapse
|
29
|
Anzai T, Shiina T, Kimura N, Yanagiya K, Kohara S, Shigenari A, Yamagata T, Kulski JK, Naruse TK, Fujimori Y, Fukuzumi Y, Yamazaki M, Tashiro H, Iwamoto C, Umehara Y, Imanishi T, Meyer A, Ikeo K, Gojobori T, Bahram S, Inoko H. Comparative sequencing of human and chimpanzee MHC class I regions unveils insertions/deletions as the major path to genomic divergence. Proc Natl Acad Sci U S A 2003; 100:7708-13. [PMID: 12799463 PMCID: PMC164652 DOI: 10.1073/pnas.1230533100] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite their high degree of genomic similarity, reminiscent of their relatively recent separation from each other ( approximately 6 million years ago), the molecular basis of traits unique to humans vs. their closest relative, the chimpanzee, is largely unknown. This report describes a large-scale single-contig comparison between human and chimpanzee genomes via the sequence analysis of almost one-half of the immunologically critical MHC. This 1,750,601-bp stretch of DNA, which encompasses the entire class I along with the telomeric part of the MHC class III regions, corresponds to an orthologous 1,870,955 bp of the human HLA region. Sequence analysis confirms the existence of a high degree of sequence similarity between the two species. However, and importantly, this 98.6% sequence identity drops to only 86.7% taking into account the multiple insertions/deletions (indels) dispersed throughout the region. This is functionally exemplified by a large deletion of 95 kb between the virtual locations of human MICA and MICB genes, which results in a single hybrid chimpanzee MIC gene, in a segment of the MHC genetically linked to species-specific handling of several viral infections (HIV/SIV, hepatitis B and C) as well as susceptibility to various autoimmune diseases. Finally, if generalized, these data suggest that evolution may have used the mechanistically more drastic indels instead of the more subtle single-nucleotide substitutions for shaping the recently emerged primate species.
Collapse
Affiliation(s)
- Tatsuya Anzai
- Department of Genetic Information, Division of Molecular Life Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martin S, Delattre V, Leicht C, Weltzien HU, Simon JC. A high frequency of allergen-specific CD8+ Tc1 cells is associated with the murine immune response to the contact sensitizer trinitrophenyl. Exp Dermatol 2003; 12:78-85. [PMID: 12631250 DOI: 10.1034/j.1600-0625.2003.120110.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chemical haptens induce a variety of allergic immune reactions by induction of hapten-specific T cells. Contact sensitizers such as the hapten trinitrochlorobenzene (TNCB) elicit an allergic response, which is confined to the area of antigen exposure. Despite this localized allergic response, we show here that the trinitrophenyl (TNP)-specific immune response is characterized by a rapid induction of CD8+ Tc1 type cytotoxic effector cells already after a single allergen contact which can be detected in all secondary lymphoid organs tested. We furthermore demonstrate that the rapid induction of CD8+ Tc1 effector cells correlates with an unusually high frequency of polyclonal TNP-specific CD8+ effector T cells with specificities for a variety of MHC class I binding TNP-peptides carrying the hapten in different positions. These data suggest that allergies to chemical haptens may in part be due to an unusually high frequency of polyclonal, allergen-specific effector cells which are detected in all secondary lymphoid organs.
Collapse
Affiliation(s)
- Stefan Martin
- Clinical Research Group, Department of Dermatology, University of Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
31
|
Kjer-Nielsen L, Clements CS, Purcell AW, Brooks AG, Whisstock JC, Burrows SR, McCluskey J, Rossjohn J. A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity 2003; 18:53-64. [PMID: 12530975 DOI: 10.1016/s1074-7613(02)00513-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have examined the basis for immunodominant or "public" TCR usage in an antiviral CTL response. Residues encoded by each of the highly selected genetic elements of an immunodominant clonotype recognizing Epstein-Barr virus were critical to the antigen specificity of the receptor. Upon recognizing antigen, the immunodominant TCR undergoes extensive conformational changes in the complementarity determining regions (CDRs), including the disruption of the canonical structures of the germline-encoded CDR1alpha and CDR2alpha loops to produce an enhanced fit with the HLA-peptide complex. TCR ligation induces conformational changes in the TCRalpha constant domain thought to form part of the docking site for CD3epsilon. These findings indicate that TCR immunodominance is associated with structural properties conferring receptor specificity and suggest a novel structural link between TCR ligation and intracellular signaling.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Crystallography, X-Ray
- HLA-B8 Antigen/chemistry
- HLA-B8 Antigen/genetics
- Herpesvirus 4, Human/immunology
- Humans
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/genetics
- Ligands
- Models, Molecular
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Lars Kjer-Nielsen
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cohen GB, Islam SA, Noble MS, Lau C, Brander C, Altfeld MA, Rosenberg ES, Schmitz JE, Cameron TO, Kalams SA. Clonotype tracking of TCR repertoires during chronic virus infections. Virology 2002; 304:474-84. [PMID: 12504586 DOI: 10.1006/viro.2002.1743] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human viral infections such as HIV and EBV typically evoke a strong and diverse CD8(+) T cell response. Relatively little is known about the extent to which TCR repertoire evolution occurs during viral infection or how repertoire evolution affects the efficacy of the CD8(+) T cell response. In this study we describe a general approach for tracking TCR repertoire evolution during viral infection. IFNgamma surface capture and MHC class I tetramer staining were independently used to isolate EBV-specific CD8(+) T cells from peripheral blood. Anchored RT-PCR and clonotype TCR repertoire analysis were performed immediately after isolating the cells. We find that the TCR repertoires of the IFNgamma-secreting and MHC class I tetramer staining populations were similar. In one subject a detailed analysis of the TCR repertoire during the first year of EBV infection was performed and over 600 TCR sequences targeting an EBV-immunodominant epitope were analyzed. Although some repertoire evolution occurred during the year, in general, the degree of repertoire drift was small. TCR repertoire analysis for an HIV-immunodominant epitope revealed a highly conserved amino acid motif in the Dbeta region of TCR that recognizes the epitope and suggested that T cell precursor frequency influences which epitopes are targeted early in HIV infection. This methodology, which allows one to sort antigen-specific T cells based on different functional assays and to obtain a snapshot of their TCR repertoire with relative ease, should lead to a richer understanding of the rules underlying antigen recognition and T cell evolution during viral infection.
Collapse
MESH Headings
- CD8-Positive T-Lymphocytes/immunology
- Cell Line
- Chronic Disease
- Epstein-Barr Virus Infections/immunology
- HIV Infections/immunology
- Herpesvirus 4, Human/immunology
- Humans
- Immunodominant Epitopes
- Interferon-gamma/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- George B Cohen
- Partners AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Boston 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Adams EJ, Garcia KC. A T cell receptor goes public. Structure 2002; 10:1468-9. [PMID: 12429085 DOI: 10.1016/s0969-2126(02)00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The crystal structure of a human T cell receptor, which is used almost exclusively in the immune response to an Epstein-Barr virus protein, highlights the importance of noncontact residues in antigen recognition.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
34
|
Kjer-Nielsen L, Clements CS, Brooks AG, Purcell AW, McCluskey J, Rossjohn J. The 1.5 A crystal structure of a highly selected antiviral T cell receptor provides evidence for a structural basis of immunodominance. Structure 2002; 10:1521-32. [PMID: 12429093 DOI: 10.1016/s0969-2126(02)00878-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite a potential repertoire of >10(15) alphabeta T cell receptors (TcR), the HLA B8-restricted cytolytic T cell response to a latent antigen of Epstein-Barr virus (EBV) is strikingly limited in the TcR sequences that are selected. Even in unrelated individuals this response is dominated by a single highly restricted TcR clonotype that selects identical combinations of hypervariable Valpha, Vbeta, D, J, and N region genes. We have determined the 1.5 A crystal structure of this "public" TcR, revealing that five of the six hypervariable loops adopt novel conformations providing a unique combining site that contains a deep pocket predicted to overlay the HLA B8-peptide complex. The findings suggest a structural basis for the immunodominance of this clonotype in the immune response to EBV.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Crystallography, X-Ray
- DNA, Complementary/metabolism
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Plasmids/metabolism
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Denkberg G, Klechevsky E, Reiter Y. Modification of a tumor-derived peptide at an HLA-A2 anchor residue can alter the conformation of the MHC-peptide complex: probing with TCR-like recombinant antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4399-407. [PMID: 12370373 DOI: 10.4049/jimmunol.169.8.4399] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A common assumption about peptide binding to the class I MHC complex is that each residue in the peptide binds independently. Based on this assumption, modifications in class I MHC anchor positions were used to improve the binding properties of low-affinity peptides (termed altered peptide ligands), especially in the case when tumor-associated peptides are used for immunotherapy. Using a new molecular tool in the form of recombinant Abs endowed with Ag-specific MHC-restricted specificity of T cells, we show that changes in the identity of anchor residues may have significant effects, such as altering the conformation of the peptide-MHC complex, and as a consequence, may affect the TCR-contacting residues. We herein demonstrate that the binding of TCR-like recombinant Abs, specific for the melanoma differentiation Ag gp100 T cell epitope G9-209, is entirely dependent on the identity of a single peptide anchor residue at position 2. An example is shown in which TCR-like Abs can recognize the specific complex only when a modified peptide, G9-209-2 M, with improved affinity to HLA-A2 was used, but not with the unmodified natural peptide. Importantly, these results demonstrate, using a novel molecular tool, that modifications at anchor residues can dramatically influence the conformation of the MHC peptide groove and thus may have a profound effect on TCR interactions. Moreover, these results may have important implications in designing modifications in peptides for cancer immunotherapy, because most such peptides studied are of low affinity.
Collapse
MESH Headings
- Amino Acid Substitution
- Binding Sites, Antibody
- Cell Line, Transformed
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunoglobulin Fab Fragments/isolation & purification
- Immunoglobulin Fab Fragments/metabolism
- Membrane Glycoproteins/immunology
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Oligopeptides/chemistry
- Oligopeptides/immunology
- Oligopeptides/metabolism
- Peptide Library
- Protein Conformation
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Structure-Activity Relationship
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Cells, Cultured
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- Galit Denkberg
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | |
Collapse
|
36
|
Wang B, Sharma A, Maile R, Saad M, Collins EJ, Frelinger JA. Peptidic termini play a significant role in TCR recognition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3137-45. [PMID: 12218131 DOI: 10.4049/jimmunol.169.6.3137] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR recognition of class I MHC is dependent on the composition of the antigenic peptide and the MHC. Single amino acid substitutions in either the MHC or the peptide may dramatically alter recognition. While the major interactions between TCR and the peptide/MHC complex appear to be focused on the complementarity-determining region (CDR)3, it is also clear from the cocrystal structure of class I MHC and TCR that the amino and carboxyl ends of the peptide may play a role through interactions with the CDR1. In this work we show that gp33 variants substituted at the peptidic termini at the putative CDR1 contact regions show improved recognition in B6 mice. The rank order of recognition is different using the P14 transgenic T cells, suggesting that one reason for improved recognition is a change in the TCR repertoire that recognizes the peptide. However, the affinity of the TCR by some of the peptide/MHC complex with increased recognition is improved, as shown by increased tetramer binding to P14 T cells. These substitutions at the termini of the peptide-binding cleft cause localized conformational changes as seen by changes in mAb binding and crystallographic structures. The different peptide structures also show different conformations in the center of the peptide, but these are shown to be energetically similar and thus most likely have no significance with respect to TCR recognition. Therefore, small conformational changes, localized to the CDR1 contact regions, may play a significant role in TCR recognition.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Amino Acid Substitution/immunology
- Animals
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Glycoproteins/immunology
- Glycoproteins/metabolism
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oligopeptides/immunology
- Oligopeptides/metabolism
- Oligopeptides/physiology
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
- Protein Conformation
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Bo Wang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wang Z, Turner R, Baker BM, Biddison WE. MHC allele-specific molecular features determine peptide/HLA-A2 conformations that are recognized by HLA-A2-restricted T cell receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3146-54. [PMID: 12218132 DOI: 10.4049/jimmunol.169.6.3146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The structures of alphabeta TCRs bound to complexes of class I MHC molecules and peptide show that the TCRs make multiple contacts with the alpha1 and alpha2 helixes of the MHC. Previously we have shown that the A6 TCR in complex with the HLA-A2/Tax peptide has 15 contact sites on HLA-A2. Single amino acid mutagenesis of these contact sites demonstrated that mutation of only three amino acids clustered on the alpha1 helix (R65, K66, A69) disrupted recognition by the A6 TCR. In the present study we have asked whether TCRs that recognize four other peptides presented by HLA-A2 interact with the MHC in identical, similar, or different patterns as the A6 TCR. Mutants K66A and Q155A had the highest frequency of negative effects on lysis. A subset of peptide-specific CTL also selectively recognized mutants K66A or Q155A in the absence of exogenous cognate peptides, indicating that these mutations affected the presentation of endogenous peptide/HLA-A2 complexes. These findings suggest that most HLA-A2-restricted TCRs recognize surfaces on the HLA-A2/peptide complex that are dependent upon the side chains of K66 and Q155 in the central portion of the peptide binding groove. Crystallographic structures of several peptide/HLA-A2 structures have shown that the side chains of these critical amino acids that make contact with the A6 TCR also contact the bound peptide. Collectively, our results indicate that the generalized effects of changes at these critical amino acids are probably due to the fact that they can be directly contacted by TCRs as well as influence the binding and presentation of the bound peptides.
Collapse
Affiliation(s)
- Zichun Wang
- Molecular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
38
|
Reichstetter S, Papadopoulos GK, Moustakas AK, Swanson E, Liu AW, Beheray S, Ettinger RA, Nepom GT, Kwok WW. Mutational analysis of critical residues determining antigen presentation and activation of HLA-DQ0602 restricted T-cell clones. Hum Immunol 2002; 63:185-93. [PMID: 11872236 DOI: 10.1016/s0198-8859(01)00377-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Three different HLA-DQ0602 restricted T-lymphocyte clones (clones 5, 44, and 48) specific for two different Herpes simplex virus type 2 (HSV-2) VP16 peptides were used in a series of proliferation assays with BLS-1 cell lines expressing mutated HLA-DQ0604 molecules as APC. Up to four residues in the peptide-binding region of DQ0604 were replaced by the respective DQ0602 residue. For all three clones, residue beta70 played a crucial role in TCR recognition; beta30 and beta57 were important, although beta86 was less significant. Clone 5 and 48, specific to the HSV-2 VP16 369--379 peptide, responded to the same mutated DQ0604 molecules. Both clones could be stimulated only when the antigen presenting DQ molecule contained the DQ0602-like Gly at position beta70. Stimulation of clone 44, which recognized a different HSV-2 VP16 epitope (VP16 40-50), was less restricted. Molecular homology modeling showed that the beta70Arg of DQ0604 partially covered the peptide around P5/P6. Interactions of beta70 with residues from the antigen-peptide and polymorphic residues at positions beta30 and beta57 can modulate this effect. Supported by molecular modeling data, we conclude that the distinct molecular topography of DQ0602 is not contributed by a single residue, but rather the interactions of various polymorphic DQ residues with particular antigenic peptides.
Collapse
|
39
|
Ostrov DA, Roden MM, Shi W, Palmieri E, Christianson GJ, Mendoza L, Villaflor G, Tilley D, Shastri N, Grey H, Almo SC, Roopenian D, Nathenson SG. How H13 histocompatibility peptides differing by a single methyl group and lacking conventional MHC binding anchor motifs determine self-nonself discrimination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:283-9. [PMID: 11751972 DOI: 10.4049/jimmunol.168.1.283] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse H13 minor histocompatibility (H) Ag, originally detected as a barrier to allograft transplants, is remarkable in that rejection is a consequence of an extremely subtle interchange, P4(Val/Ile), in a nonamer H2-D(b)-bound peptide. Moreover, H13 peptides lack the canonical P5(Asn) central anchor residue normally considered important for forming a peptide/MHC complex. To understand how these noncanonical peptide pMHC complexes form physiologically active TCR ligands, crystal structures of allelic H13 pD(b) complexes and a P5(Asn) anchored pD(b) analog were solved to high resolution. The structures show that the basis of TCRs to distinguish self from nonself H13 peptides is their ability to distinguish a single solvent-exposed methyl group. In addition, the structures demonstrate that there is no need for H13 peptides to derive any stabilization from interactions within the central C pocket to generate fully functional pMHC complexes. These results provide a structural explanation for a classical non-MHC-encoded H Ag, and they call into question the requirement for contact between anchor residues and the major MHC binding pockets in vaccine design.
Collapse
Affiliation(s)
- David A Ostrov
- Department of Biochemistry, Albert Einstein College of Medicine, 1600 Morris Boulevard, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guillet M, Sebille F, Soulillou J. TCR usage in naive and committed alloreactive cells: implications for the understanding of TCR biases in transplantation. Curr Opin Immunol 2001; 13:566-71. [PMID: 11544005 DOI: 10.1016/s0952-7915(00)00260-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The direct pathway of allorecognition is involved in acute allograft rejection and is characterised by TCR-mediated recognition of the MHC framework; this is thought to occur in a peptide-dependent but not peptide-specific manner. In contrast, the indirect pathway is restricted to the recipient's own MHC molecules and prevails in chronic rejection. In this pathway, the peptide has a major influence on the TCR recognition and selects alloreactive T cells with altered TCR Vbeta usage. However, qualitative analysis of Vbeta usage alone might limit our understanding of alloreactivity. The advantages of a combined quantitative assessment of Vbeta mRNA usage are discussed.
Collapse
MESH Headings
- Animals
- Humans
- Interphase/immunology
- Isoantigens/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Transplantation Immunology/immunology
Collapse
Affiliation(s)
- M Guillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 437, Immunointervention dans les Allo- et les Xéno-transplantations, 30 Boulevard Jean Monnet, 44093 Nantes 01, Cedex, France
| | | | | |
Collapse
|
41
|
Stöckl J, Majdic O, Fischer G, Maurer D, Knapp W. Monomorphic molecules function as additional recognition structures on haptenated target cells for HLA-A1-restricted, hapten-specific CTL. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2724-33. [PMID: 11509616 DOI: 10.4049/jimmunol.167.5.2724] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hapten-specific T cells have been shown to recognize haptenated peptides with high avidity and, in some instances, with promiscuous MHC restriction. In this study, the impact of Ag density on MHC restriction of a CTL response specific to the trinitrophenyl (TNP) hapten was investigated. In this study, we demonstrate a novel recognition mechanism used by TNP-specific CD8(+) CTL in the presence of high Ag doses. Although low levels of TNP epitopes on target cells allowed for HLA-A1-restricted CTL activity only, entirely MHC-independent target cell recognition became operative at high TNP loading. In both cases, recognition was mediated by the TCR. This MHC-independent recognition is target cell type restricted and critically involves in our model direct recognition of the ectonucleotidase family surface molecule CD39 by the CTL.
Collapse
Affiliation(s)
- J Stöckl
- Institute of Immunology, University of Vienna, Medical School, Vienna, Austria.
| | | | | | | | | |
Collapse
|
42
|
Hillig RC, Coulie PG, Stroobant V, Saenger W, Ziegler A, Hülsmeyer M. High-resolution structure of HLA-A*0201 in complex with a tumour-specific antigenic peptide encoded by the MAGE-A4 gene. J Mol Biol 2001; 310:1167-76. [PMID: 11502003 DOI: 10.1006/jmbi.2001.4816] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heterotrimeric complex of the human major histocompatibity complex (MHC) molecule HLA-A*0201, beta2-microglobulin and the decameric peptide GVYDGREHTV derived from the melanoma antigen (MAGE-A4 protein has been determined by X-ray crystallography at 1.4 A resolution. MAGE-A4 belongs to a family of genes that are specifically expressed in a variety of tumours. MAGE-A4-derived peptides are presented by MHC molecules at the cell surface to cytotoxic T-lymphocytes. As the HLA-A*0201:MAGE-A4 complex occurs only on tumour cells, it is considered to be an appropriate target for immunotherapy. The structure presented here reveals potential epitopes specific to the complex and indicates which peptide residues could be recognised by T-cell receptors. In addition, as the structure could be refined anisotropically, it was possible to describe the movements of the bound peptide in more detail.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Binding Sites
- Circular Dichroism
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- HLA-A Antigens/chemistry
- HLA-A Antigens/immunology
- HLA-A Antigens/metabolism
- Humans
- Immunotherapy
- Ligands
- Models, Molecular
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Polyethylene Glycols/chemistry
- Polyethylene Glycols/metabolism
- Protein Binding
- Protein Conformation
- Protein Denaturation
- Receptors, Antigen, T-Cell/immunology
- Temperature
- Thermodynamics
- beta 2-Microglobulin/chemistry
- beta 2-Microglobulin/metabolism
Collapse
Affiliation(s)
- R C Hillig
- Institut für Immungenetik, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Messaoudi I, LeMaoult J, Metzner BM, Miley MJ, Fremont DH, Nikolich-Zugich J. Functional evidence that conserved TCR CDR alpha 3 loop docking governs the cross-recognition of closely related peptide:class I complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:836-43. [PMID: 11441090 DOI: 10.4049/jimmunol.167.2.836] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR recognizes its peptide:MHC (pMHC) ligand by assuming a diagonal orientation relative to the MHC helices, but it is unclear whether and to what degree individual TCRs exhibit docking variations when contacting similar pMHC complexes. We analyzed monospecific and cross-reactive recognition by diverse TCRs of an immunodominant HVH-1 glycoprotein B epitope (HSV-8p) bound to two closely related MHC class I molecules, H-2K(b) and H-2K(bm8). Previous studies indicated that the pMHC portion likely to vary in conformation between the two complexes resided at the N-terminal part of the complex, adjacent to peptide residues 2-4 and the neighboring MHC side chains. We found that CTL clones sharing TCR beta-chains exhibited disparate recognition patterns, whereas those with drastically different TCRbeta-chains but sharing identical TCRalpha CDR3 loops displayed identical functional specificity. This suggested that the CDRalpha3 loop determines the TCR specificity in our model, the conclusion supported by modeling of the TCR over the actual HSV-8:K(b) crystal structure. Importantly, these results indicate a remarkable conservation in CDRalpha3 positioning, and, therefore, in docking of diverse TCRalphabeta heterodimers onto variant peptide:class I complexes, implying a high degree of determinism in thymic selection and T cell activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- Clone Cells
- Conserved Sequence/genetics
- Conserved Sequence/immunology
- Crystallization
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/metabolism
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- Herpesvirus 1, Human/immunology
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/metabolism
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Structure, Secondary/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- I Messaoudi
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
44
|
Amrani A, Serra P, Yamanouchi J, Trudeau JD, Tan R, Elliott JF, Santamaria P. Expansion of the antigenic repertoire of a single T cell receptor upon T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:655-66. [PMID: 11441068 DOI: 10.4049/jimmunol.167.2.655] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activated T cells and their naive precursors display different functional avidities for peptide/MHC, but are thought to have identical antigenic repertoires. We show that, following activation with a cognate mimotope (NRP), diabetogenic CD8(+) T cells expressing a single TCR (8.3) respond vigorously to numerous peptide analogs of NRP that were unable to elicit any responses from naive 8.3-CD8(+) T cells, even at high concentrations. The NRP-reactive, in vivo activated CD8(+) cells arising in pancreatic islets of nonobese diabetic mice are similarly promiscuous for peptide/MHC, and paradoxically this promiscuity expands as the aviditiy of the T cell population for NRP/MHC increases with age. Thus, activation and avidity maturation of T lymphocyte populations can lead to dramatic expansions in the range of peptides that elicit functional T cell responses.
Collapse
Affiliation(s)
- A Amrani
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
45
|
Moris A, Wernet D, Stevanović S, Rammensee HG. The peptide-specific alloreactive human T cell repertoire varies largely between individuals and is not extended in HLA-A*0205--anti-HLA-A*0201 pairings. Int Immunol 2001; 13:863-70. [PMID: 11431416 DOI: 10.1093/intimm/13.7.863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alloreactive T cells recognize framework or peptide-dependent determinants on foreign MHC molecules. Among the peptide-dependent alloreactive T cells a significant proportion is specific for one particular peptide presented by the allo-MHC molecule as antigen-specific T cells would do. Such alloreactive, peptide-specific T cells are referred to as 'allorestricted'. High-avidity HLA-A*02 allorestricted cytotoxic T lymphocyte (CTL) clones specific for peptide libraries can be generated from HLA-A*02(-) donors. We made use of this technique to study the role of closely related self-HLA molecules on shaping of the alloreactive T cell repertoire. Peripheral blood lymphocytes from HLA-A*0205 individuals were stimulated by HLA-A*0201 targets pulsed with an HLA-A*0201 peptide library. We did not observe a bias towards peptide-specific CTL in the HLA-A*0201-directed alloreactive repertoire of HLA-A*0205 donors as compared to HLA-A*02(-) donors. Comparison of the alloreactive T cell response between two donors having similar HLA haplotypes demonstrated that the allorestricted T cell repertoire is largely different between individuals.
Collapse
Affiliation(s)
- A Moris
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
46
|
von Greyerz S, Bültemann G, Schnyder K, Burkhart C, Lotti B, Hari Y, Pichler WJ. Degeneracy and additional alloreactivity of drug-specific human alpha beta(+) T cell clones. Int Immunol 2001; 13:877-85. [PMID: 11431418 DOI: 10.1093/intimm/13.7.877] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been well established that T cells can recognize small mol. wt compounds such as drugs. Results from previous studies revealing a high heterogeneity and cross-reactivity of drug-specific T cell clones (TCC) in individual patients prompted us to analyze the degeneracy of drug-reactive TCR in detail. Hence, we analyzed the MHC restriction pattern of a panel of 100 drug-specific TCC isolated from different drug-allergic donors. We found that 28 of the tested clones showed an MHC allele-unrestricted drug recognition. Most of these clones were at the same time highly drug specific, i.e. they could only be stimulated by the original drug and not by any drug derivatives. In contrast, TCC with the ability to interact with different drug derivatives displayed a clearly MHC allele-restricted drug recognition. Therefore, we concluded that the TCR of these clones is mainly interacting with side chains of the appropriate drug molecules and hence able to tolerate alterations in the MHC molecule. Moreover, we tested all clones for additional alloreactivity and found that 27 clones could be stimulated by a self-MHC--peptide--drug complex as well as by a non-self-MHC--peptide complex. This cross-reactivity with allogeneic MHC molecules was substantially higher in drug-specific TCC compared to tetanus toxoid-specific clones from the same donors. This suggests that from the point of view of drug-specific TCR, non-self-MHC--peptide complexes have a higher incidence to mimic the 'original' self-MHC--peptide-drug complex and this may occur for TCR recognizing self-MHC--pathogen-derived peptide complexes. Finally, the biological functions of bispecific TCC were not influenced by the nature of the stimulating ligand. Both drug as well as allogeneic stimulation led to similar reaction patterns in the analyzed TCC.
Collapse
Affiliation(s)
- S von Greyerz
- Allergology, Clinic for Rheumatology and Clinical Immunology/Allergology, Inselspital, 3010 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
47
|
Sharma AK, Kuhns JJ, Yan S, Friedline RH, Long B, Tisch R, Collins EJ. Class I major histocompatibility complex anchor substitutions alter the conformation of T cell receptor contacts. J Biol Chem 2001; 276:21443-9. [PMID: 11287414 DOI: 10.1074/jbc.m010791200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An immunogenic peptide (GP2) derived from HER-2/neu binds to HLA-A2.1 very poorly. Some altered-peptide ligands (APL) of GP2 have increased binding affinity and generate improved cytotoxic T lymphocyte recognition of GP2-presenting tumor cells, but most do not. Increases in binding affinity of single-substitution APL are not additive in double-substitution APL. A common first assumption about peptide binding to class I major histocompatibility complex is that each residue binds independently. In addition, immunologists interested in immunotherapy frequently assume that anchor substitutions do not affect T cell receptor contact residues. However, the crystal structures of two GP2 APL show that the central residues change position depending on the identity of the anchor residue(s). Thus, it is clear that subtle changes in the identity of anchor residues may have significant effects on the positions of the T cell receptor contact residues.
Collapse
Affiliation(s)
- A K Sharma
- Departments of Microbiology, the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Basu D, Horvath S, O'Mara L, Donermeyer D, Allen PM. Two MHC surface amino acid differences distinguish foreign peptide recognition from autoantigen specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4005-11. [PMID: 11238647 DOI: 10.4049/jimmunol.166.6.4005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KRN T cells can recognize two self MHC alleles with differing biological consequences. They respond to the foreign peptide RN(42--56) bound to I-A(k) or alternatively initiate autoimmune arthritis by interacting with a self Ag, GPI(282--294), on I-A(g7). Five surface amino acid differences between the two MHC molecules collectively alter which peptide side chains are recognized by the KRN TCR. In this study, it is shown that mutation of only two of these residues, alpha 65 and beta 78, in I-A(k) to their I-A(g7) counterparts is sufficient to allow recognition of the TCR contacts from GPI(282--294). To provide a detailed mechanism for the specificity change, the distinct contributions of each of these two mutations to the global effect on peptide specificity were analyzed. The alpha65 mutation is shown to broaden the spectrum of amino acids permissible at P8 of the peptide. In contrast, the beta 78 mutation alone blocks KRN TCR interaction with I-A(k) and requires the simultaneous presence of the alpha 65 mutation to preserve recognition. In the presence of the alpha 65 mutation, the beta 78 residue broadens peptide recognition at P3 and prevents recognition of the P8 L in RN(42--56), thus producing the observed specificity shift. These results localize the functionally relevant differences between the surfaces of two self-restricted MHC molecules to two residues that have counterbalanced positive and negative contributions to interaction with a single TCR. They highlight how subtle structural distinctions attributable to single amino acids can stand at the interface between foreign Ag responsiveness and pathogenic autoreactivity.
Collapse
Affiliation(s)
- D Basu
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- S Bahram
- Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| |
Collapse
|
50
|
Baker BM, Turner RV, Gagnon SJ, Wiley DC, Biddison WE. Identification of a crucial energetic footprint on the alpha1 helix of human histocompatibility leukocyte antigen (HLA)-A2 that provides functional interactions for recognition by tax peptide/HLA-A2-specific T cell receptors. J Exp Med 2001; 193:551-62. [PMID: 11238586 PMCID: PMC2193388 DOI: 10.1084/jem.193.5.551] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Structural studies have shown that class I major histocompatibility complex (MHC)-restricted peptide-specific T cell receptor (TCR)-alpha/betas make multiple contacts with the alpha1 and alpha2 helices of the MHC, but it is unclear which or how many of these interactions contribute to functional binding. We have addressed this question by performing single amino acid mutagenesis of the 15 TCR contact sites on the human histocompatibility leukocyte antigen (HLA)-A2 molecule recognized by the A6 TCR specific for the Tax peptide presented by HLA-A2. The results demonstrate that mutagenesis of only three amino acids (R65, K66, and A69) that are clustered on the alpha1 helix affected T cell recognition of the Tax/HLA-A2 complex. At least one of these three mutants affected T cell recognition by every member of a large panel of Tax/HLA-A2-specific T cell lines. Biacore measurements showed that these three HLA-A2 mutations also altered A6 TCR binding kinetics, reducing binding affinity. These results show that for Tax/HLA-A2-specific TCRs, there is a location on the central portion of the alpha1 helix that provides interactions crucial to their function with the MHC molecule.
Collapse
Affiliation(s)
- Brian M. Baker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Richard V. Turner
- Molecular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Susan J. Gagnon
- Molecular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Don C. Wiley
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138
| | - William E. Biddison
- Molecular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|