1
|
Suske T, Sorger H, Manhart G, Ruge F, Prutsch N, Zimmerman MW, Eder T, Abdallah DI, Maurer B, Wagner C, Schönefeldt S, Spirk K, Pichler A, Pemovska T, Schweicker C, Pölöske D, Hubanic E, Jungherz D, Müller TA, Aung MMK, Orlova A, Pham HTT, Zimmel K, Krausgruber T, Bock C, Müller M, Dahlhoff M, Boersma A, Rülicke T, Fleck R, de Araujo ED, Gunning PT, Aittokallio T, Mustjoki S, Sanda T, Hartmann S, Grebien F, Hoermann G, Haferlach T, Staber PB, Neubauer HA, Look AT, Herling M, Moriggl R. Hyperactive STAT5 hijacks T cell receptor signaling and drives immature T cell acute lymphoblastic leukemia. J Clin Invest 2024; 134:e168536. [PMID: 38618957 PMCID: PMC11014662 DOI: 10.1172/jci168536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.
Collapse
Affiliation(s)
| | | | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frank Ruge
- Institute of Animal Breeding and Genetics and
| | - Nicole Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Eder
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Diaaeldin I. Abdallah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | - Alexander Pichler
- Department of Medicine I, Clinical Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Tea Pemovska
- Department of Medicine I, Clinical Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Carmen Schweicker
- Department of Medicine I, Clinical Division of Hematology, Medical University of Vienna, Vienna, Austria
| | | | | | - Dennis Jungherz
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, Cologne, Germany
| | - Tony Andreas Müller
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, Cologne, Germany
| | | | - Anna Orlova
- Institute of Animal Breeding and Genetics and
| | | | | | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | | | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Auke Boersma
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Elvin Dominic de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Thomas Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Janpix, London, United Kingdom
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Satu Mustjoki
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Takaomi Sanda
- Cancer Science Institute of Singapore and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | | | | | - Philipp Bernhard Staber
- Department of Medicine I, Clinical Division of Hematology, Medical University of Vienna, Vienna, Austria
| | | | - Alfred Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, Cologne, Germany
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics and
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
2
|
Carbone F, Russo C, Colamatteo A, La Rocca C, Fusco C, Matarese A, Procaccini C, Matarese G. Cellular and molecular signaling towards T cell immunological self-tolerance. J Biol Chem 2024; 300:107134. [PMID: 38432631 PMCID: PMC10981134 DOI: 10.1016/j.jbc.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity. In this context, signals deriving from co-stimulatory molecules (i.e., CD80, CD86), co-inhibitory receptors (PD-1, CTLA-4), the tyrosine phosphatase CD45 and cytokines such as IL-2 synergize with TCR-derived signals to guide T cell fate and differentiation. The balance of these mechanisms is also crucial for the generation of CD4+ Foxp3+ regulatory T cells, a cellular subset involved in the control of immunological self-tolerance. This review provides an overview of the most relevant pathways induced by TCR activation combined with those derived from co-stimulatory and co-inhibitory molecules implicated in the cell-intrinsic modulation of T cell activation. In addition to the latter, we dissected mechanisms responsible for T cell-mediated suppression of immune cell activation through regulatory T cell generation, homeostasis, and effector functions. We also discuss how imbalanced signaling derived from TCR and accessory molecules can contribute to autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II", Napoli, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy.
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
3
|
York J, Gowrishankar K, Micklethwaite K, Palmer S, Cunningham AL, Nasr N. Evolving Strategies to Eliminate the CD4 T Cells HIV Viral Reservoir via CAR T Cell Immunotherapy. Front Immunol 2022; 13:873701. [PMID: 35572509 PMCID: PMC9098815 DOI: 10.3389/fimmu.2022.873701] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although the advent of ART has significantly reduced the morbidity and mortality associated with HIV infection, the stable pool of HIV in latently infected cells requires lifelong treatment adherence, with the cessation of ART resulting in rapid reactivation of the virus and productive HIV infection. Therefore, these few cells containing replication-competent HIV, known as the latent HIV reservoir, act as the main barrier to immune clearance and HIV cure. While several strategies involving HIV silencing or its reactivation in latently infected cells for elimination by immune responses have been explored, exciting cell based immune therapies involving genetically engineered T cells expressing synthetic chimeric receptors (CAR T cells) are highly appealing and promising. CAR T cells, in contrast to endogenous cytotoxic T cells, can function independently of MHC to target HIV-infected cells, are efficacious and have demonstrated acceptable safety profiles and long-term persistence in peripheral blood. In this review, we present a comprehensive picture of the current efforts to target the HIV latent reservoir, with a focus on CAR T cell therapies. We highlight the current challenges and advances in this field, while discussing the importance of novel CAR designs in the efforts to find a HIV cure.
Collapse
Affiliation(s)
- Jarrod York
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kavitha Gowrishankar
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Children’s Cancer Research Unit, Kids Research, The Children’s Hospital at Westmead, Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory – Institute of Clinical Pathology and Medical Research (ICPMR) Westmead, Sydney, NSW, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Fleury M, Vazquez-Mateo C, Hernandez-Escalante J, Dooms H. Partial STAT5 signaling is sufficient for CD4 + T cell priming but not memory formation. Cytokine 2022; 150:155770. [PMID: 34839177 PMCID: PMC8761165 DOI: 10.1016/j.cyto.2021.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/06/2021] [Indexed: 02/03/2023]
Abstract
Signal transducer and activator of transcription 5 (STAT5) plays an important role in regulating gene expression in response to cytokines of the common (γc) chain family. In this capacity, STAT5 promotes CD8+ effector and memory T cell survival and regulatory T cell development. However, its function in conventional CD4+ T cells is less clear. In this study, the requirement of intact STAT5 signaling for CD4+ effector and memory T cell generation and maintenance was investigated by using DO11.10 TCR transgenic T cells that are genetically deficient in STAT5A or B, as well as by transducing DO11 T cells with a dominant-negative STAT5 to temporally block STAT5 function. We found that the presence of STAT5A or B alone was sufficient for primary CD4+ effector T cell generation, but not for establishing a long-lived memory cell population. Similarly, blocking STAT5 signaling during priming did not prevent initial T cell activation, but inhibited the generation of memory cells. Surprisingly, blocking STAT5 post-priming did not impact the long-term survival of CD4+ memory T cells in vivo. Mechanistically, intact STAT5B, but not STAT5A, was required for IL-7Rα re-expression in activated T cells, which is an important cytokine receptor for CD4+ memory generation. These data show that fully functional STAT5 is essential to deliver an early, non-redundant signal for memory programming during the primary CD4+ T cell response, while partial STAT5 signaling is sufficient for effector differentiation. Our results have implications for the precise use of STAT5 inhibitors to timely inhibit memory T cell responses.
Collapse
Affiliation(s)
- Michelle Fleury
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States; Department of Microbiology, Boston University School of Medicine, Boston MA 02118, United States
| | - Cristina Vazquez-Mateo
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States
| | - Jaileene Hernandez-Escalante
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States; Department of Microbiology, Boston University School of Medicine, Boston MA 02118, United States
| | - Hans Dooms
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States; Department of Microbiology, Boston University School of Medicine, Boston MA 02118, United States; Department of Pathology, University of California San Francisco, San Francisco CA 94143, United States.
| |
Collapse
|
5
|
Lewis DA, Ly T. Cell Cycle Entry Control in Naïve and Memory CD8 + T Cells. Front Cell Dev Biol 2021; 9:727441. [PMID: 34692683 PMCID: PMC8526999 DOI: 10.3389/fcell.2021.727441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
CD8+ T cells play important roles in immunity and immuno-oncology. Upon antigen recognition and co-stimulation, naïve CD8+ T cells escape from dormancy to engage in a complex programme of cellular growth, cell cycle entry and differentiation, resulting in rapid proliferation cycles that has the net effect of producing clonally expanded, antigen-specific cytotoxic T lymphocytes (CTLs). A fraction of activated T cells will re-enter dormancy by differentiating into memory T cells, which have essential roles in adaptive immunity. In this review, we discuss the current understanding of cell cycle entry control in CD8+ T cells and crosstalk between these mechanisms and pathways regulating immunological phenotypes.
Collapse
Affiliation(s)
- David A. Lewis
- Ashworth Laboratories, Institute of Immunology and Infectious Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
6
|
Stem cells-derived natural killer cells for cancer immunotherapy: current protocols, feasibility, and benefits of ex vivo generated natural killer cells in treatment of advanced solid tumors. Cancer Immunol Immunother 2021; 70:3369-3395. [PMID: 34218295 DOI: 10.1007/s00262-021-02975-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, natural killer (NK) cell-based immunotherapy provides a practical therapeutic strategy for patients with advanced solid tumors (STs). This approach is adaptively conducted by the autologous and identical NK cells after in vitro expansion and overnight activation. However, the NK cell-based cancer immunotherapy has been faced with some fundamental and technical limitations. Moreover, the desirable outcomes of the NK cell therapy may not be achieved due to the complex tumor microenvironment by inhibition of intra-tumoral polarization and cytotoxicity of implanted NK cells. Currently, stem cells (SCs) technology provides a powerful opportunity to generate more effective and universal sources of the NK cells. Till now, several strategies have been developed to differentiate types of the pluripotent and adult SCs into the mature NK cells, with both feeder layer-dependent and/or feeder laye-free strategies. Higher cytokine production and intra-tumoral polarization capabilities as well as stronger anti-tumor properties are the main features of these SCs-derived NK cells. The present review article focuses on the principal barriers through the conventional NK cell immunotherapies for patients with advanced STs. It also provides a comprehensive resource of protocols regarding the generation of SCs-derived NK cells in an ex vivo condition.
Collapse
|
7
|
Jones DM, Read KA, Oestreich KJ. Dynamic Roles for IL-2-STAT5 Signaling in Effector and Regulatory CD4 + T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2021; 205:1721-1730. [PMID: 32958706 DOI: 10.4049/jimmunol.2000612] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
CD4+ Th cells are responsible for orchestrating diverse, pathogen-specific immune responses through their differentiation into a number of subsets, including TH1, TH2, TH9, T follicular helper, T follicular regulatory, and regulatory T cells. The differentiation of each subset is guided by distinct regulatory requirements, including those derived from extracellular cytokine signals. IL-2 has emerged as a critical immunomodulatory cytokine that both positively and negatively affects the differentiation of individual Th cell subsets. IL-2 signals are propagated, in part, via activation of STAT5, which functions as a key regulator of CD4+ T cell gene programs. In this review, we discuss current understanding of the mechanisms that allow IL-2-STAT5 signaling to exert divergent effects across CD4+ T cell subsets and highlight specific roles for this pathway in the regulation of individual Th cell differentiation programs.
Collapse
Affiliation(s)
- Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and
| |
Collapse
|
8
|
Healy ZR, Weinhold KJ, Murdoch DM. Transcriptional Profiling of CD8+ CMV-Specific T Cell Functional Subsets Obtained Using a Modified Method for Isolating High-Quality RNA From Fixed and Permeabilized Cells. Front Immunol 2020; 11:1859. [PMID: 32983102 PMCID: PMC7492549 DOI: 10.3389/fimmu.2020.01859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Previous studies suggest that the presence of antigen-specific polyfunctional T cells is correlated with improved pathogen clearance, disease control, and clinical outcomes; however, the molecular mechanisms responsible for the generation, function, and survival of polyfunctional T cells remain unknown. The study of polyfunctional T cells has been, in part, limited by the need for intracellular cytokine staining (ICS), necessitating fixation and cell membrane permeabilization that leads to unacceptable degradation of RNA. Adopting elements from prior research efforts, we developed and optimized a modified protocol for the isolation of high-quality RNA (i.e., RIN > 7) from primary human T cells following aldehyde-fixation, detergent-based permeabilization, intracellular cytokines staining, and sorting. Additionally, this method also demonstrated utility preserving RNA when staining for transcription factors. This modified protocol utilizes an optimized combination of an RNase inhibitor and high-salt buffer that is cost-effective while maintaining the ability to identify and resolve cell populations for sorting. Overall, this protocol resulted in minimal loss of RNA integrity, quality, and quantity during cytoplasmic staining of cytokines and subsequent flourescence-activated cell sorting. Using this technique, we obtained the transcriptional profiles of functional subsets (i.e., non-functional, monofunctional, bifunctional, polyfunctional) of CMV-specific CD8+T cells. Our analyses demonstrated that these functional subsets are molecularly distinct, and that polyfunctional T cells are uniquely enriched for transcripts involved in viral response, inflammation, cell survival, proliferation, and metabolism when compared to monofunctional cells. Polyfunctional T cells demonstrate reduced activation-induced cell death and increased proliferation after antigen re-challenge. Further in silico analysis of transcriptional data suggested a critical role for STAT5 transcriptional activity in polyfunctional cell activation. Pharmacologic inhibition of STAT5 was associated with a significant reduction in polyfunctional cell cytokine expression and proliferation, demonstrating the requirement of STAT5 activity not only for proliferation and cell survival, but also cytokine expression. Finally, we confirmed this association between CMV-specific CD8+ polyfunctionality with STAT5 signaling also exists in immunosuppressed transplant recipients using single cell transcriptomics, indicating that results from this study may translate to this vulnerable patient population. Collectively, these results shed light on the mechanisms governing polyfunctional T cell function and survival and may ultimately inform multiple areas of immunology, including but not limited to the development of new vaccines, CAR-T cell therapies, and adoptive T cell transfer.
Collapse
Affiliation(s)
- Zachary R Healy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, NC, United States
| | - Kent J Weinhold
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - David M Murdoch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, NC, United States
| |
Collapse
|
9
|
de Castro LL, Lopes-Pacheco M, Weiss DJ, Cruz FF, Rocco PRM. Current understanding of the immunosuppressive properties of mesenchymal stromal cells. J Mol Med (Berl) 2019; 97:605-618. [PMID: 30903229 DOI: 10.1007/s00109-019-01776-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/17/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Several studies have demonstrated the anti-inflammatory potential of mesenchymal stromal cells (MSCs) isolated from bone marrow, adipose tissue, placenta, and other sources. Nevertheless, MSCs may also induce immunosuppression when administered systemically or directly to injured environments, as shown in different preclinical disease models. MSCs express certain receptors, including toll-like receptors and the aryl-hydrocarbon receptor, that are activated by the surrounding environment, thus leading to modulation of their immunosuppressive activity. Once MSCs are activated, they can affect a wide range of immune cells (e.g., neutrophils, monocytes/macrophages, dendritic cells, natural killer cells, T and B lymphocytes), a phenomenon that has been correlated to secretion of several mediators (e.g., indolamine 2,3-dioxygenase, galectins, prostaglandin E2, nitric oxide, and damage- and pathogen-associated molecular patterns) and stimulation of certain signaling pathways (e.g., protein kinase R, signal transducer and activator of transcription-1, nuclear factor-κB). Additionally, MSC manipulation and culture conditions, as well as the number of passages, duration of cryopreservation, and O2 content available, can significantly affect the immunosuppressive properties of MSCs. This review sheds light on current knowledge regarding the mechanisms by which MSCs exert immunosuppressive effects both in vitro and in vivo, focusing on the receptors expressed by MSCs, the correlation between soluble factors secreted by MSCs and their immunosuppressive effects, and interactions between MSCs and immune cells.
Collapse
Affiliation(s)
- Ligia Lins de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Daniel Jay Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Mann EH, Gabryšová L, Pfeffer PE, O'Garra A, Hawrylowicz CM. High-Dose IL-2 Skews a Glucocorticoid-Driven IL-17 +IL-10 + Memory CD4 + T Cell Response towards a Single IL-10-Producing Phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:684-693. [PMID: 30598515 PMCID: PMC6341182 DOI: 10.4049/jimmunol.1800697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
Abstract
Glucocorticoids are known to increase production of the anti-inflammatory cytokine IL-10, and this action is associated with their clinical efficacy in asthmatics. However, glucocorticoids also enhance the synthesis of IL-17A by PBMCs, which, in excess, is associated with increased asthma severity and glucocorticoid-refractory disease. In this study, we show that the glucocorticoid dexamethasone significantly increased IL-10 production by human memory CD4+ T cells from healthy donors, as assessed by intracellular cytokine staining. In addition, dexamethasone increased production of IL-17A, IL-17F, and IL-22, with the most striking enhancement in cells coproducing Th17-associated cytokines together with IL-10. Of note, an increase in IFN-γ+IL-10+ cells was also observed despite overall downregulation of IFN-γ production. These dexamethasone-driven IL-10+ cells, and predominantly the IL-17+IL-10+ double-producing cells, were markedly refractory to the inhibitory effect of dexamethasone on proliferation and IL-2Rα expression, which facilitated their preferential IL-2-dependent expansion. Although lower concentrations of exogenous IL-2 promoted IL-10+ cells coproducing proinflammatory cytokines, higher IL-2 doses, both alone and in combination with dexamethasone, increased the proportion of single IL-10+ T cells. Thus, glucocorticoid-induced IL-10 is only accompanied by an increase of IL-17 in a low IL-2 setting, which is, nevertheless, likely to be protective owing to the induction of regulatory IL-17+IL-10+-coproducing cells. These findings open new avenues of investigation with respect to the role of IL-2 in glucocorticoid responsiveness that have potential implications for optimizing the benefit/risk ratio of glucocorticoids in the clinic.
Collapse
Affiliation(s)
- Elizabeth H Mann
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 9RT, United Kingdom
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Leona Gabryšová
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Paul E Pfeffer
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 9RT, United Kingdom
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW3 6LY, United Kingdom
| | - Catherine M Hawrylowicz
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 9RT, United Kingdom;
| |
Collapse
|
11
|
Bak S, Tischer S, Dragon A, Ravens S, Pape L, Koenecke C, Oelke M, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. Selective Effects of mTOR Inhibitor Sirolimus on Naïve and CMV-Specific T Cells Extending Its Applicable Range Beyond Immunosuppression. Front Immunol 2018; 9:2953. [PMID: 30619313 PMCID: PMC6304429 DOI: 10.3389/fimmu.2018.02953] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Cytomegalovirus (CMV) infection/reactivation remains among the most important complications of immunosuppression after transplantation. However, recent clinical observations indicate that mammalian target of rapamycin (mTOR) inhibition with sirolimus may improve the outcome of CMV complications. Underlying mechanisms of this observation, particularly the effect of sirolimus on naïve- and CMV-specific cytotoxic CD8+ T-cell (CMV-CTL) functionality is still undiscovered. Here, the influence of sirolimus on naïve and memory CMV-CTLs was determined by CD3/CD28 crosslinking and alloreactivity assays. After stimulating CMV-CTL with HLA-A*02:01-restricted CMVpp65-peptide loaded artificial antigen-presenting cells (aAPCs), we measured the effect of sirolimus on T-cell proliferation, phenotype, and functionality. Sirolimus significantly improved CMV-specific effector memory T-cell function and negatively influenced naïve T cells. This unique mechanism of action was further characterized by increased secretion of interferon-gamma (IFN-γ), granzyme B (GzB) and enhanced target-cell-dependent cytotoxic capacity of activated CMV-CTLs. Next-generation-sequencing (NGS) was applied to monitor T-cell receptor (TCR)-repertoire dynamics and to verify, that the increased functionality was not related to sirolimus-resistant CTL-clones. Instead, modulation of environmental cues during CMV-CTL development via IL-2 receptor (IL-2R)-driven signal transducer and activator of transcription-5 (STAT-5) signaling under mTOR inhibition allowed fine-tuning of T-cell programming for enhanced antiviral response with stable TCR-repertoire dynamics. We show for the first time that sirolimus acts selectively on human naïve and memory T cells and improves CMV-specific T-cell function via modulation of the environmental milieu. The data emphasize the importance to extend immune monitoring including cytokine levels and T-cell functionality which will help to identify patients who may benefit from individually tailored immunosuppression.
Collapse
Affiliation(s)
- Szilvia Bak
- Hannover Medical School, Institute for Transfusion Medicine, Hannover, Germany
| | - Sabine Tischer
- Hannover Medical School, Institute for Transfusion Medicine, Hannover, Germany
| | - Anna Dragon
- Hannover Medical School, Institute for Transfusion Medicine, Hannover, Germany
| | - Sarina Ravens
- Hannover Medical School, Institute of Immunology, Hannover, Germany
| | - Lars Pape
- Department of Pediatric Nephrology, Hannover Medical School, Hannover, Germany
| | - Christian Koenecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Mathias Oelke
- Department of Pathology, John Hopkins School of Medicine, Baltimore, MD, United States.,NexImmune Inc., Gaithersburg, MD, United States
| | - Rainer Blasczyk
- Hannover Medical School, Institute for Transfusion Medicine, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Hannover Medical School, Institute for Transfusion Medicine, Hannover, Germany
| |
Collapse
|
12
|
Nan Y, Wu C, Zhang YJ. Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation. Viruses 2018; 10:v10040196. [PMID: 29662014 PMCID: PMC5923490 DOI: 10.3390/v10040196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
13
|
Peter B, Bibi S, Eisenwort G, Wingelhofer B, Berger D, Stefanzl G, Blatt K, Herrmann H, Hadzijusufovic E, Hoermann G, Hoffmann T, Schwaab J, Jawhar M, Willmann M, Sperr WR, Zuber J, Sotlar K, Horny HP, Moriggl R, Reiter A, Arock M, Valent P. Drug-induced inhibition of phosphorylation of STAT5 overrides drug resistance in neoplastic mast cells. Leukemia 2017; 32:1016-1022. [PMID: 29249817 PMCID: PMC6037300 DOI: 10.1038/leu.2017.338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Systemic mastocytosis (SM) is a mast cell (MC) neoplasm with complex pathology and a variable clinical course. In aggressive SM (ASM) and MC leukemia (MCL) responses to conventional drugs are poor and the prognosis is dismal. R763 is a multi-kinase inhibitor that blocks the activity of Aurora-kinase-A/B, ABL1, AKT and FLT3. We examined the effects of R763 on proliferation and survival of neoplastic MC. R763 produced dose-dependent inhibition of proliferation in the human MC lines HMC-1.1 (IC50 5-50 nM), HMC-1.2 (IC50 1-10 nM), ROSAKIT WT (IC50 1-10 nM), ROSAKIT D816V (IC50 50-500 nM) and MCPV-1.1 (IC50 100-1000 nM). Moreover, R763 induced growth inhibition in primary neoplastic MC in patients with ASM and MCL. Growth-inhibitory effects of R763 were accompanied by signs of apoptosis and a G2/M cell cycle arrest. R763 also inhibited phosphorylation of KIT, BTK, AKT and STAT5 in neoplastic MC. The most sensitive target appeared to be STAT5. In fact, tyrosine phosphorylation of STAT5 was inhibited by R763 at 10 nM. At this low concentration, R763 produced synergistic growth-inhibitory effects on neoplastic MC when combined with midostaurin or dasatinib. Together, R763 is a novel promising multi-kinase inhibitor that blocks STAT5 activation and thereby overrides drug-resistance in neoplastic MC.
Collapse
Affiliation(s)
- B Peter
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - S Bibi
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR 8113, Ecole Normale Superieure de Cachan, Cachan, France
| | - G Eisenwort
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - B Wingelhofer
- Ludwig Boltzmann Institute for Cancer Research, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, Vienna, Austria
| | - D Berger
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - G Stefanzl
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - K Blatt
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - H Herrmann
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - E Hadzijusufovic
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria.,Department for Companion Animals and Horses, Clinical Unit of Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - G Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna,Austria
| | - T Hoffmann
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - J Schwaab
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M Jawhar
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M Willmann
- Department for Companion Animals and Horses, Clinical Unit of Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - W R Sperr
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - J Zuber
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - K Sotlar
- University Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - H-P Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - R Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, Vienna, Austria
| | - A Reiter
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M Arock
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR 8113, Ecole Normale Superieure de Cachan, Cachan, France.,Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - P Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Beldi-Ferchiou A, Skouri N, Ben Ali C, Safra I, Abdelkefi A, Ladeb S, Mrad K, Ben Othman T, Ben Ahmed M. Abnormal repression of SHP-1, SHP-2 and SOCS-1 transcription sustains the activation of the JAK/STAT3 pathway and the progression of the disease in multiple myeloma. PLoS One 2017; 12:e0174835. [PMID: 28369102 PMCID: PMC5378363 DOI: 10.1371/journal.pone.0174835] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Sustained activation of JAK/STAT3 signaling pathway is classically described in Multiple Myeloma (MM). One explanation could be the silencing of the JAK/STAT suppressor genes, through the hypermethylation of SHP-1 and SOCS-1, previously demonstrated in MM cell lines or in whole bone marrow aspirates. The link between such suppressor gene silencing and the degree of bone marrow invasion or the treatment response has not been evaluated in depth. Using real-time RT-PCR, we studied the expression profile of three JAK/STAT suppressor genes: SHP-1, SHP-2 and SOCS-1 in plasma cells freshly isolated from the bone marrows of MM patients and healthy controls. Our data demonstrated an abnormal repression of such genes in malignant plasma cells and revealed a significant correlation between such defects and the sustained activation of the JAK/STAT3 pathway during MM. The repressed expression of SHP-1 and SHP-2 correlated significantly with a high initial degree of bone marrow infiltration but was, unexpectedly, associated with a better response to the induction therapy. Collectively, our data provide new evidences that substantiate the contribution of JAK/STAT suppressor genes in the pathogenesis of MM. They also highlight the possibility that the decreased gene expression of SHP-1 and SHP-2 could be of interest as a new predictive factor of a favorable treatment response, and suggest new potential mechanisms of action of the therapeutic molecules. Whether such defect helps the progression of the disease from monoclonal gammopathy of unknown significance to MM remains, however, to be determined.
Collapse
Affiliation(s)
- Asma Beldi-Ferchiou
- Institut Pasteur de Tunis, Laboratory of Clinical Immunology, Tunis, Tunisia
| | - Nour Skouri
- Institut Pasteur de Tunis, Laboratory of Clinical Immunology, Tunis, Tunisia
| | - Cyrine Ben Ali
- Institut Pasteur de Tunis, Laboratory of Clinical Immunology, Tunis, Tunisia
| | - Ines Safra
- Institut Pasteur de Tunis, Laboratory of Molecular and Cellular Hematology, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisie
| | | | - Saloua Ladeb
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisie
- Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Karima Mrad
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisie
- Salah Azaiez Institute, Department of Pathology, Tunis, Tunisia
| | - Tarek Ben Othman
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisie
- Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mélika Ben Ahmed
- Institut Pasteur de Tunis, Laboratory of Clinical Immunology, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
15
|
Roles of SMC Complexes During T Lymphocyte Development and Function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:17-42. [DOI: 10.1016/bs.apcsb.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Diamantopoulos PT, Sofotasiou M, Georgoussi Z, Giannakopoulou N, Papadopoulou V, Galanopoulos A, Kontandreopoulou E, Zervakis P, Pallaki P, Kalala F, Kyrtsonis MC, Dimitrakopoulou A, Vassilakopoulos T, Angelopoulou M, Spanakis N, Viniou NA. Prognostic significance of signal transducer and activator of transcription 5 and 5b expression in Epstein-Barr virus-positive patients with chronic lymphocytic leukemia. Cancer Med 2016; 5:2240-8. [PMID: 27367207 PMCID: PMC5055175 DOI: 10.1002/cam4.804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/24/2016] [Accepted: 05/20/2016] [Indexed: 01/16/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins have been intensively studied in hematologic malignancies, and the efficacy of agents against STATs in lymphomas is already under research. We investigated the expression of total STAT5 and STAT5b in peripheral blood samples of patients with chronic lymphocytic leukemia (CLL) in correlation with the presence of Epstein-Barr Virus (EBV) and its major oncoprotein (latent membrane protein 1, LMP1). The EBV load was measured in the peripheral blood by real-time PCR for the BXLF1 gene and the levels of LMP1 by PCR and ELISA. Western blotting was performed for total STAT5 and STAT5b in protein extracts. STAT5b was only expressed in patients (not in healthy subjects) and STAT5 but particularly STAT5b expression was correlated with the presence of the virus (77.3% vs. 51.2%, P = 0.006 for STAT5b) and to the expression of LMP1 (58.3% vs. 21.6%, P = 0.011 for STAT5b). Moreover, the expression of STAT5b and the presence of EBV and LMP1 were strongly negatively correlated with the overall survival of the patients (log-rank test P = 0.011, 0.015, 0.006, respectively). Double positive (for EBV and STAT5b) patients had the lowest overall survival (log-rank test P = 0.013). This is the first report of a survival disadvantage of EBV+ patients with CLL, and the first time that STAT5b expression is correlated with survival. The correlation of STAT5 expression with the presence of the virus, along with our survival correlations defines a subgroup of patients with CLL that may benefit from anti-STAT agents.
Collapse
Affiliation(s)
- Panagiotis T Diamantopoulos
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece.
| | - Maria Sofotasiou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Nefeli Giannakopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Vasiliki Papadopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | | - Elina Kontandreopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Panagiotis Zervakis
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Paschalina Pallaki
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Fani Kalala
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Marie-Christine Kyrtsonis
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Aglaia Dimitrakopoulou
- Department of Immunology and Histocompatibility, Laikon General Hospital, Athens, Greece
| | - Theodoros Vassilakopoulos
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Maria Angelopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Spanakis
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
17
|
Villarino A, Laurence A, Robinson GW, Bonelli M, Dema B, Afzali B, Shih HY, Sun HW, Brooks SR, Hennighausen L, Kanno Y, O'Shea JJ. Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. eLife 2016; 5. [PMID: 26999798 PMCID: PMC4856466 DOI: 10.7554/elife.08384] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/18/2016] [Indexed: 12/13/2022] Open
Abstract
The transcription factor STAT5 is fundamental to the mammalian immune system. However, the relationship between its two paralogs, STAT5A and STAT5B, and the extent to which they are functionally distinct, remain uncertain. Using mouse models of paralog deficiency, we demonstrate that they are not equivalent for CD4+ 'helper' T cells, the principal orchestrators of adaptive immunity. Instead, we find that STAT5B is dominant for both effector and regulatory (Treg) responses and, therefore, uniquely necessary for immunological tolerance. Comparative analysis of genomic distribution and transcriptomic output confirm that STAT5B has fargreater impact but, surprisingly, the data point towards asymmetric expression (i.e. paralog dose), rather than distinct functional properties, as the key distinguishing feature. Thus, we propose a quantitative model of STAT5 paralog activity whereby relative abundance imposes functional specificity (or dominance) in the face of widespread structural homology. DOI:http://dx.doi.org/10.7554/eLife.08384.001 The immune system in mammals is one of the most complex networks in the animal kingdom. One way that its many components communicate is via proteins called cytokines, which are released by cells and detected by receptors on the surface of other cells. This leads to the activation of signals inside the responding cells that alter the activity of genes and, ultimately, direct how they behave. STAT5 is a signal protein that is activated when certain cytokines bind to receptors on the cell surface. Consequently, it is an attractive target for drug therapies that seek to alter immune responses and there is keen interest in understanding how it works. It is an unusual protein in that there are two versions – termed STAT5A and STAT5B – that are produced by two separate genes. Together, STAT5A and STAT5B are fundamental to the immune system but there is considerable debate about whether they perform the same job or have distinct roles. Villarino et al. used a combination of genetic and genomic approaches to investigate how both versions of STAT5 work in mice. The experiments show that STAT5B plays a much bigger role in immune cells than STAT5A. Unexpectedly, the experiments indicate that the disparity is not due to differences in protein activity, but is caused by differences in the amount of these proteins in cells. Villarino et al.’s findings resolve longstanding questions about the relationship between STAT5A and STAT5B within the immune system. A logical next step is to find the molecular mechanisms responsible for causing different amounts of STAT5A and STAT5B to be produced in immune cells. Future work will also compare the roles of STAT5A and STAT5B in non-immune cells and explore whether it might be possible to develop therapies that specifically target one version and not the other. DOI:http://dx.doi.org/10.7554/eLife.08384.002
Collapse
Affiliation(s)
- Alejandro Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Gertraud W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Michael Bonelli
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Barbara Dema
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Behdad Afzali
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Hong-Wei Sun
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Stephen R Brooks
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
18
|
Xiao M, Zhang L, Zhou Y, Rajoria P, Wang C. Pyrvinium selectively induces apoptosis of lymphoma cells through impairing mitochondrial functions and JAK2/STAT5. Biochem Biophys Res Commun 2016; 469:716-22. [DOI: 10.1016/j.bbrc.2015.12.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022]
|
19
|
Grishkan IV, Tosi DM, Bowman MD, Harary M, Calabresi PA, Gocke AR. Antigenic Stimulation of Kv1.3-Deficient Th Cells Gives Rise to a Population of Foxp3-Independent T Cells with Suppressive Properties. THE JOURNAL OF IMMUNOLOGY 2015; 195:1399-1407. [PMID: 26150529 DOI: 10.4049/jimmunol.1403024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/12/2015] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the CNS that has been linked with defects in regulatory T cell function. Therefore, strategies to selectively target pathogenic cells via enhanced regulatory T cell activity may provide therapeutic benefit. Kv1.3 is a voltage-gated potassium channel expressed on myelin-reactive T cells from MS patients. Kv1.3-knockout (KO) mice are protected from experimental autoimmune encephalomyelitis, an animal model of MS, and Kv1.3-KO Th cells display suppressive capacity associated with increased IL-10. In this article, we demonstrate that myelin oligodendrocyte glycoprotein-specific Kv1.3-KO Th cells exhibit a unique regulatory phenotype characterized by high CD25, CTLA4, pSTAT5, FoxO1, and GATA1 expression without a corresponding increase in Foxp3. These phenotypic changes result from increased signaling through IL-2R. Moreover, myelin oligodendrocyte glycoprotein-specific Kv1.3-KO Th cells can ameliorate experimental autoimmune encephalomyelitis following transfer to wild-type recipients in a manner that is partially dependent on IL-2R and STAT5 signaling. The present study identifies a population of Foxp3(-) T cells with suppressive properties that arises in the absence of Kv1.3 and enhances the understanding of the molecular mechanism by which these cells are generated. This increased understanding could contribute to the development of novel therapies for MS patients that promote heightened immune regulation.
Collapse
Affiliation(s)
- Inna V Grishkan
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Dominique M Tosi
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Melissa D Bowman
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Maya Harary
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Anne R Gocke
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| |
Collapse
|
20
|
Hatting M, Spannbauer M, Peng J, Al Masaoudi M, Sellge G, Nevzorova YA, Gassler N, Liedtke C, Cubero FJ, Trautwein C. Lack of gp130 expression in hepatocytes attenuates tumor progression in the DEN model. Cell Death Dis 2015; 6:e1667. [PMID: 25741592 PMCID: PMC4385909 DOI: 10.1038/cddis.2014.590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/30/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Chronic liver inflammation is a crucial event in the development and growth of hepatocellular carcinoma (HCC). Compelling evidence has shown that interleukin-6 (IL-6)/gp130-dependent signaling has a fundamental role in liver carcinogenesis. Thus, in the present study we aimed to investigate the role of gp130 in hepatocytes for the initiation and progression of HCC. Hepatocyte-specific gp130 knockout mice (gp130(Δhepa)) and control animals (gp130(f/f)) were treated with diethylnitrosamine (DEN). The role of gp130 for acute injury (0-144 h post treatment), tumor initiation (24 weeks) and progression (40 weeks) was analyzed. After acute DEN-induced liver injury we observed a reduction in the inflammatory response in gp130(Δhepa) animals as reflected by decreased levels of IL-6 and oncostatin M. The loss of gp130 slightly attenuated the initiation of HCC 24 weeks after DEN treatment. In contrast, 40 weeks after DEN treatment, male and female gp130(Δhepa) mice showed smaller tumors and reduced tumor burden, indicating a role for hepatocyte-specific gp130 expression during HCC progression. Oxidative stress and DNA damage were substantially and similarly increased by DEN in both gp130(f/f) and gp130(Δhepa) animals. However, gp130(Δhepa) livers revealed aberrant STAT5 activation and decreased levels of transforming growth factor-β (TGFβ), pSMAD2/3 and SMAD2, whereas phosphorylation of STAT3 at Tyr705 and Ser727 was absent. Our results indicate that gp130 deletion in hepatocytes reduces progression, but not HCC initiation in the DEN model. Gp130 deletion resulted in STAT3 inhibition but increased STAT5 activation and diminished TGF-dependent signaling. Hence, blocking gp130 in hepatocytes might be an interesting therapeutic target to inhibit the growth of HCC.
Collapse
Affiliation(s)
- M Hatting
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - M Spannbauer
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - J Peng
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - M Al Masaoudi
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - G Sellge
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - Y A Nevzorova
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - N Gassler
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - C Liedtke
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - F J Cubero
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - C Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
21
|
|
22
|
Elgizouli M, Logan C, Nieters A, Brenner H, Rothenbacher D. Cord blood PRF1 methylation patterns and risk of lower respiratory tract infections in infants: findings from the Ulm Birth Cohort. Medicine (Baltimore) 2015; 94:e332. [PMID: 25569648 PMCID: PMC4602833 DOI: 10.1097/md.0000000000000332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Lower respiratory tract infections (LRTIs) are a major cause of morbidity in children. DNA methylation provides a mechanism for transmitting environmental effects on the genome, but its potential role in LRTIs is not well studied. We investigated the methylation pattern of an enhancer region of the immune effector gene perforin-1 (PRF1), which encodes a cytolytic molecule of cytotoxic T lymphocytes (CTLs) and natural killer cells (NK), in cord blood DNA of children recruited in a German birth cohort in association with LRTIs in the first year of life.Pyrosequencing was used to determine the methylation levels of target cytosine-phosphate-guanines (CpGs) in a 2-stage case-control design. Cases were identified as children who developed ≥2 episodes of physician-recorded LRTIs during the first year of life and controls as children who had none. Discovery (n = 87) and replication (n = 90) sets were arranged in trios of 1 case and 2 controls matched for sex and season of birth.Logistic regression analysis revealed higher levels of methylation at a CpG that corresponds to a signal transducer and activator of transcription 5 (STAT5) responsive enhancer in the discovery (odds ratio [OR] per 1% methylation difference 1.24, 95% confidence interval [CI] 1.03-1.50) and replication (OR per 1% methylation difference 1.25, 95% CI 1.04-1.50) sets. Adjustment for having siblings <5 years old in the discovery and replication sets produced ORs of 1.19 (95% CI 0.98-1.45) and 1.25 (95% CI 1.04-1.50), respectively. Adjustment for gestational age in the replication set had no influence on the results. Methylation levels at adjacent CpGs varied with maternal age, smoking, education, and having siblings <5 years old.Our data support an association between cord blood PRF1 enhancer methylation patterns and subsequent risk of LRTIs in infants. Methylation levels at specific CpGs of the PRF1 enhancer varied according to maternal and family environmental factors suggesting a role for DNA methylation in mediating environmental influences on gene function.
Collapse
Affiliation(s)
- Magdeldin Elgizouli
- From the Center for Chronic Immunodeficiency (CCI) (ME, AN), University Medical Center Freiburg, Freiburg; Institute of Epidemiology and Medical Biometry (CL, DR), Ulm University, Ulm; and Division of Clinical Epidemiology and Aging Research (HB, DR), German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
23
|
Nivarthi H, Prchal-Murphy M, Swoboda A, Hager M, Schlederer M, Kenner L, Tuckermann J, Sexl V, Moriggl R, Ermakova O. Stat5 gene dosage in T cells modulates CD8+ T-cell homeostasis and attenuates contact hypersensitivity response in mice. Allergy 2015; 70:67-79. [PMID: 25333229 DOI: 10.1111/all.12535] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Contact hypersensitivity assay (CHS) faithfully models human allergies. The Stat5 transcription factors are essential for both lymphocyte development and acute immune responses. Although consequences of Stat5 ablation and transgenic overexpression for the lymphocyte development and functions have been extensively studied, the role of Stat5 gene dosage in contact allergies has not been addressed. OBJECTIVE We investigated the effect of Stat5 gene dosage modulation in contact allergies using CHS in mice. METHODS Transgenic animals heterozygous for the germline Stat5 null allele were subjected to CHS. To dissect cell type sensitive to Stat5 gene dosage, animals with Stat5 haplo-insufficiency in T cells, where one Stat5 allele was removed by Lck-Cre-mediated deletion (Stat5(ΔT/+)), were tested by CHS. Frequency of T cells, B cells, and monocytes were analyzed in Stat5(ΔT/+) and wild-type animals by flow cytometry. Proliferation of Stat5(ΔT/+) CD8(+) T cells was studied in vitro by stimulation with IL-4 and IL-2 cytokines, and changes in the expression of Stat5 target genes were assayed by quantitative real-time PCR assay. RESULT Haplo-insufficiency of Stat5 in T cells leads to the reduction in CD8(+) T cells in all lymphoid organs and attenuates CHS response. Stat5(ΔT/+) CD8(+) T cells failed to fully activate Stat5-dependent expression of cell cycle/survival target genes, such as Bcl2 and Pim1, and to proliferate efficiently in response to IL-2 and IL-4 cytokine. CONCLUSION Our data identify Stat5 as a dose-dependent regulator of CD8(+) T-cell functions in contact allergies and suggest that modulation of Stat5 dosage could be used to target contact allergies in humans.
Collapse
Affiliation(s)
- H. Nivarthi
- Ludwig Boltzmann Institute for Cancer Research; Vienna Austria
| | - M. Prchal-Murphy
- Institute of Pharmacology and Toxicology; University of Veterinary Medicine Vienna; Vienna Austria
| | - A. Swoboda
- Ludwig Boltzmann Institute for Cancer Research; Vienna Austria
| | - M. Hager
- Ludwig Boltzmann Institute for Cancer Research; Vienna Austria
| | - M. Schlederer
- Ludwig Boltzmann Institute for Cancer Research; Vienna Austria
| | - L. Kenner
- Ludwig Boltzmann Institute for Cancer Research; Vienna Austria
| | - J. Tuckermann
- Institute of General Zoology and Endocrinology; University of Ulm; Ulm Germany
| | - V. Sexl
- Institute of Pharmacology and Toxicology; University of Veterinary Medicine Vienna; Vienna Austria
| | - R. Moriggl
- Ludwig Boltzmann Institute for Cancer Research; Vienna Austria
| | - O. Ermakova
- Mouse Biology Unit; European Molecular Biology Laboratory; Monterotondo Italy
| |
Collapse
|
24
|
Schepers H, Wierenga ATJ, Vellenga E, Schuringa JJ. STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells. JAKSTAT 2014; 1:13-22. [PMID: 24058747 PMCID: PMC3670129 DOI: 10.4161/jkst.19316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 01/07/2023] Open
Abstract
The level of transcription factor activity critically regulates cell fate decisions such as hematopoietic stem cell self-renewal and differentiation. The balance between hematopoietic stem cell self-renewal and differentiation needs to be tightly controlled, as a shift toward differentiation might exhaust the stem cell pool, while a shift toward self-renewal might mark the onset of leukemic transformation. A number of transcription factors have been proposed to be critically involved in governing stem cell fate and lineage commitment, such as Hox transcription factors, c-Myc, Notch1, β-catenin, C/ebpα, Pu.1 and STAT5. It is therefore no surprise that dysregulation of these transcription factors can also contribute to the development of leukemias. This review will discuss the role of STAT5 in both normal and leukemic hematopoietic stem cells as well as mechanisms by which STAT5 might contribute to the development of human leukemias.
Collapse
Affiliation(s)
- Hein Schepers
- Department of Experimental Hematology; University Medical Center Groningen; Groningen, The Netherlands ; Department of Stem Cell Biology; University Medical Center Groningen; Groningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Lewis RS, Noor SM, Fraser FW, Sertori R, Liongue C, Ward AC. Regulation of embryonic hematopoiesis by a cytokine-inducible SH2 domain homolog in zebrafish. THE JOURNAL OF IMMUNOLOGY 2014; 192:5739-48. [PMID: 24835394 DOI: 10.4049/jimmunol.1301376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytokine-inducible SH2 domain-containing protein (CISH), a member of the suppressor of cytokine signaling family of negative feedback regulators, is induced by cytokines that activate STAT5 and can inhibit STAT5 signaling in vitro. However, demonstration of a definitive in vivo role for CISH during development has remained elusive. This study employed expression analysis and morpholino-mediated knockdown in zebrafish in concert with bioinformatics and biochemical approaches to investigate CISH function. Two zebrafish CISH paralogs were identified, cish.a and cish.b, with high overall conservation (43-46% identity) with their mammalian counterparts. The cish.a gene was maternally derived, with transcripts present throughout embryogenesis, and increasing at 4-5 d after fertilization, whereas cish.b expression commenced at 8 h after fertilization. Expression of cish.a was regulated by the JAK2/STAT5 pathway via conserved tetrameric STAT5 binding sites (TTCN3GAA) in its promoter. Injection of morpholinos targeting cish.a, but not cish.b or control morpholinos, resulted in enhanced embryonic erythropoiesis, myelopoiesis, and lymphopoiesis, including a 2- 3-fold increase in erythrocytic markers. This occurred concomitantly with increased activation of STAT5. This study indicates that CISH functions as a conserved in vivo target and regulator of STAT5 in the control of embryonic hematopoiesis.
Collapse
Affiliation(s)
- Rowena S Lewis
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria 3050, Australia
| | - Suzita M Noor
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fiona W Fraser
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| | - Robert Sertori
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| |
Collapse
|
26
|
Lee GR. Transcriptional regulation of T helper type 2 differentiation. Immunology 2014; 141:498-505. [PMID: 24245687 DOI: 10.1111/imm.12216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
Considerable progress has been made in recent years towards our understanding of the molecular mechanisms of transcriptional regulation of T helper type 2 (Th2) cell differentiation. Additional transcription factors and chromatin-modifying factors were identified and shown to promote Th2 cell differentiation and inhibit differentiation into other subsets. Analyses of mice lacking several cis-regulatory elements have yielded more insight into the regulatory mechanism of Th2 cytokine genes. Gene deletion studies of several chromatin modifiers confirmed their impact on CD4 T-cell differentiation. In addition, recent genome-wide analyses of transcription factor binding and chromatin status revealed unexpected roles of these factors in Th2-cell differentiation. In this review, these recent findings and their implication are summarized.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
27
|
Waight JD, Banik D, Griffiths EA, Nemeth MJ, Abrams SI. Regulation of the interferon regulatory factor-8 (IRF-8) tumor suppressor gene by the signal transducer and activator of transcription 5 (STAT5) transcription factor in chronic myeloid leukemia. J Biol Chem 2014; 289:15642-52. [PMID: 24753251 DOI: 10.1074/jbc.m113.544320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase inhibitors such as imatinib can effectively target the BCR-ABL oncoprotein in a majority of patients with chronic myeloid leukemia (CML). Unfortunately, some patients are resistant primarily to imatinib and others develop drug resistance, prompting interest in the discovery of new drug targets. Although much of this resistance can be explained by the presence of mutations within the tyrosine kinase domain of BCR-ABL, such mutations are not universally identified. Interferon regulatory factor-8 (IRF-8) is a transcription factor that is essential for myelopoiesis. Depressed IRF-8 levels are observed in a majority of CML patients and Irf-8(-/-) mice exhibit a CML-like disease. The underlying mechanisms of IRF-8 loss in CML are unknown. We hypothesized that BCR-ABL suppresses transcription of IRF-8 through STAT5, a proximal BCR-ABL target. Treatment of primary cells from newly diagnosed CML patients in chronic phase as well as BCR-ABL(+) cell lines with imatinib increased IRF-8 transcription. Furthermore, IRF-8 expression in cell line models was necessary for imatinib-induced antitumor responses. We have demonstrated that IRF-8 is a direct target of STAT5 and that silencing of STAT5 induced IRF-8 expression. Conversely, activating STAT5 suppressed IRF-8 transcription. Finally, we showed that STAT5 blockade using a recently discovered antagonist increased IRF-8 expression in patient samples. These data reveal a previously unrecognized BCR-ABL-STAT5-IRF-8 network, which widens the repertoire of potentially new anti-CML targets.
Collapse
Affiliation(s)
| | | | - Elizabeth A Griffiths
- Pharmacology and Therapeutics, and Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Michael J Nemeth
- From the Departments of Immunology, Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|
28
|
Kim H, Kwon B, Sin JI. Combined stimulation of IL-2 and 4-1BB receptors augments the antitumor activity of E7 DNA vaccines by increasing Ag-specific CTL responses. PLoS One 2013; 8:e83765. [PMID: 24391824 PMCID: PMC3877103 DOI: 10.1371/journal.pone.0083765] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 11/07/2013] [Indexed: 11/29/2022] Open
Abstract
Human papillomavirus (HPV) infection is a major cause of cervical cancer. Here, we investigate whether concurrent therapy using HPV E7 DNA vaccines (pE7) plus IL-2 vs. IL-15 cDNA and anti-4-1BB Abs might augment antitumor activity against established tumors. IL-2 cDNA was slightly better than IL-15 cDNA as a pE7 adjuvant. Co-delivery of pE7+IL-2 cDNA increased tumor cure rates from 7% to 27%, whereas co-delivery of pE7+IL-2 cDNA with anti-4-1BB Abs increased tumor cure rates from 27% to 67% and elicited long-term memory responses. This increased activity was concomitant with increased induction of Ag-specific CTL activity and IFN-γ responses, but not with Ag-specific IgG production. Moreover, the combined stimulation of IL-2 and 4-1BB receptors with rIL-2 and anti-4-1BB Abs resulted in enhanced production of IFN-γ from Ag-specific CD8+ T cells. However, this effect was abolished by treatment with anti-IL-2 Abs and 4-1BB-Fc, suggesting that the observed effect was IL-2- and anti-4-1BB Ab-specific. A similar result was also obtained for Ag-specific CTL activity. Thus, these studies demonstrate that combined stimulation through the IL-2 and 4-1BB receptors augments the Ag-specific CD8+ CTL responses induced by pE7, increasing tumor cure rates and long-term antitumor immune memory. These findings may have implications for the design of DNA-based therapeutic vaccines against cancer.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Humans
- Interferon-gamma/metabolism
- Interleukin-15/antagonists & inhibitors
- Interleukin-15/immunology
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/immunology
- Mice
- Mice, Inbred C57BL
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/prevention & control
- Papillomavirus E7 Proteins/immunology
- Papillomavirus Vaccines/therapeutic use
- Stromal Cells/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
| | - Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Jeong-Im Sin
- Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Korea
- * E-mail:
| |
Collapse
|
29
|
Cho JH, Kim HO, Kim KS, Yang DH, Surh CD, Sprent J. Unique Features of Naive CD8+ T Cell Activation by IL-2. THE JOURNAL OF IMMUNOLOGY 2013; 191:5559-73. [DOI: 10.4049/jimmunol.1302293] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Mityushova EV, Shatrova AN, Zenin VV, Aksenov ND, Marakhova II. STAT5 signaling in expression of the α-subunit of interleukin-2 receptor in human blood lymphocytes. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x13050076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Nagy ZS, Ross JA, Rodriguez G, Balint BL, Szeles L, Nagy L, Kirken RA. Genome wide mapping reveals PDE4B as an IL-2 induced STAT5 target gene in activated human PBMCs and lymphoid cancer cells. PLoS One 2013; 8:e57326. [PMID: 23451206 PMCID: PMC3581501 DOI: 10.1371/journal.pone.0057326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
IL-2 is the primary growth factor for promoting survival and proliferation of activated T cells that occurs following engagement of the Janus Kinase (JAK)1–3/and Signal Transducer and Activator of Transcription (STAT) 5 signaling pathway. STAT5 has two isoforms: STAT5A and STAT5B (commonly referred to as STAT5) which, in T cells, play redundant roles transcribing cell cycle and survival genes. As such, inhibition of STAT5 by a variety of mechanisms can rapidly induce apoptosis in certain lymphoid tumor cells, suggesting that it and its target genes represent therapeutic targets to control certain lymphoid diseases. To search for these molecules we aligned IL-2 regulated genes detected by Affymetrix gene expression microarrays with the STAT5 cistrome identified by chip-on-ChIP analysis in an IL-2-dependent human leukemia cell line, Kit225. Select overlapping genes were then validated using qRT2PCR medium-throughput arrays in human PHA-activated PBMCs. Of 19 putative genes, one key regulator of T cell receptor signaling, PDE4B, was identified as a novel target, which was readily up-regulated at the protein level (3 h) in IL-2 stimulated, activated human PBMCs. Surprisingly, only purified CD8+ primary T-cells expressed PDE4B, but not CD4+ cells. Moreover, PDE4B was found to be highly expressed in CD4+ lymphoid cancer cells, which suggests that it may represent a physiological role unique to the CD8+ and lymphoid cancer cells and thus might represent a target for pharmaceutical intervention for certain lymphoid diseases.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
32
|
Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application. Biomark Res 2013; 1:5. [PMID: 24252238 PMCID: PMC3776247 DOI: 10.1186/2050-7771-1-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 12/15/2022] Open
Abstract
JAK-STAT (Janus associated kinase-signal transducer and activator of transcription) pathway plays a critical role in transduction of extracellular signals from cytokines and growth factors involved in hematopoiesis, immune regulation, fertility, lactation, growth and embryogenesis. JAK family contains four cytoplasmic tyrosine kinases, JAK1-3 and Tyk2. Seven STAT proteins have been identified in human cells, STAT1-6, including STAT5a and STAT5b. Negative regulators of JAK-STAT pathways include tyrosine phosphatases (SHP1 and 2, CD45), protein inhibitors of activated STATs (PIAS), suppressors of cytokine signaling (SOCS) proteins, and cytokine-inducible SH2-containing protein (CIS). Dysregulation of JAK-STAT pathway have been found to be key events in a variety of hematological malignancies. JAK inhibitors are among the first successful agents reaching clinical application. Ruxolitinib (Jakafi), a non-selective inhibitor of JAK1 & 2, has been approved by FDA for patients with intermediate to high risk primary or secondary myelofibrosis. This review will also summarize early data on selective JAK inhibitors, including SAR302503 (TG101348), lestaurtinib (CEP701), CYT387, SB1518 (pacritinib), LY2784544, XL019, BMS-911543, NS-018, and AZD1480.
Collapse
|
33
|
Chueh FY, Yu CL. Engagement of T-cell antigen receptor and CD4/CD8 co-receptors induces prolonged STAT activation through autocrine/paracrine stimulation in human primary T cells. Biochem Biophys Res Commun 2012; 426:242-6. [PMID: 22935418 DOI: 10.1016/j.bbrc.2012.08.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 08/15/2012] [Indexed: 01/27/2023]
Abstract
Signal transducer and activator of transcription (STAT) proteins are key signaling molecules in response to cytokines and in regulating T cell biology. However, there are contradicting reports on whether STAT is involved in T-cell antigen receptor (TCR) signaling. To better define the role of STAT in TCR signaling, we activated the CD4/CD8-associated Lck kinase by co-crosslinking TCR and CD4/CD8 co-receptors in human peripheral blood T cells. Sequential STAT1, STAT3 and STAT5 activation was observed 1 h after TCR stimulation suggesting that STAT proteins are not the immediate targets in the TCR complex. We further identified interferon-γ as the key cytokine in STAT1 activation upon TCR engagement. In contrast to transient STAT activation in cytokine response, this autocrine/paracrine-induced STAT activation was sustained. It correlated with the absence of two suppressors of cytokine signaling (SOCS) proteins, SOCS3 and cytokine-inducible SH2 containing protein that are negative feedback regulators of STAT signaling. Moreover, enforced expression of SOCS3 inhibited tyrosine phosphorylation of zeta-associated protein kinase of 70 kD in TCR-stimulated human Jurkat T cells. This is the first report demonstrating delayed and prolonged STAT activation coordinated with the loss of SOCS expression in human primary T cells after co-crosslinking of TCR and CD4/CD8 co-receptors.
Collapse
Affiliation(s)
- Fu-Yu Chueh
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | |
Collapse
|
34
|
Popmihajlov Z, Xu D, Morgan H, Milligan Z, Smith KA. Conditional IL-2 Gene Deletion: Consequences for T Cell Proliferation. Front Immunol 2012; 3:102. [PMID: 22590468 PMCID: PMC3349275 DOI: 10.3389/fimmu.2012.00102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/15/2012] [Indexed: 01/02/2023] Open
Abstract
To explore the role of interleukin-2 (IL-2) in T cell proliferation, and to circumvent the IL-2 deficiency autoimmune syndrome of conventional il2 gene deletion, mice were created to allow conditional il2 gene deletion when treated with the estrogen analog, tamoxifen (TAM) as adults. Splenocytes from four different mouse strains, C57Bl/6 wild type (WT), conventional IL-2(−/−), TAM-treated Cre recombinase-negative (Cre−)/IL2fl/fl, and Cre recombinase-positive (Cre+)/IL2fl/fl, were activated with anti-CD3 and anti-CD28, and monitored for CD4+ and CD8+ T cell lymphocyte blastogenesis, aerobic glycolysis, BrdU incorporation into newly synthesized DNA, and CFSE dye dilution to monitor cell division. IL-2 production was monitored by quantitative ELISA and multiple additional cytokines were monitored by quantitative protein-bead arrays. Splenocytes from conventional IL-2(−/−) and TAM-treated Cre+ mice resulted in undetectable IL-2 production by ELISA, so that both strains were IL-2-deficient. As monitored by flow cytometry, activated CD4+ and CD8+ T cells from WT, Cre+, and Cre− mice all underwent blastogenesis, whereas far fewer cells from conventional IL-2(−/−) mice did so. By comparison, only cells from IL-2 sufficient WT and Cre− mice switched to aerobic glycolysis as evidenced by a drop in media pH. Blastogenesis was mirrored by BrdU incorporation and CFSE dye dilution by CD4+ and CD8+ T cells from WT, Cre+, and Cre− mice, which were all equivalent, while proliferation of cells from conventional IL-2(−/−) mice was compromised. Splenocytes from IL-2 deficient conventional IL-2(−/−) mice produced low or undetectable other γc-chain cytokines (IL-4, IL-7, IL-9, IL-13, IL-15, and IL-21), whereas production of these γc-chain cytokines from IL-2-deficient conditional IL-2(−/−) Cre+ mice were comparable with WT and Cre− mice. These results indicate that CD4+ and CD8+ T cell blastogenesis cannot be attributable to IL-2 alone, but a switch to aerobic glycolysis was attributable to IL-2, and proliferation after CD3/CD28 activation is dependent on γc-chain cytokines, and not CD3/28 triggering per se.
Collapse
Affiliation(s)
- Zoran Popmihajlov
- Division of Immunology, Department of Medicine, Weill Cornell Medical College New York, NY, USA
| | | | | | | | | |
Collapse
|
35
|
Alari-Pahissa E, Vega-Ramos J, Zhang JG, Castaño AR, Turley SJ, Villadangos JA, Lauzurica P. Differential effect of CD69 targeting on bystander and antigen-specific T cell proliferation. J Leukoc Biol 2012; 92:145-58. [PMID: 22544938 DOI: 10.1189/jlb.1011499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In spite of an initially proposed role as a costimulatory molecule for CD69, in vivo studies showed it as a regulator of immune responses and lymphocyte egress. We found constitutive CD69 expression by T cell subsets and pDC. We examined a possible effect of CD69 on T cell proliferation using transfer models and in vitro assays. In mice locally expressing or receiving antigen, anti-CD692.2 treatment did not affect the proliferation of antigen-specific transgenic T cells in ADLN, although we observed the presence of proliferated T cells in non-ADLN and spleen. This was not affected by FTY720 treatment and thus, not contributed by increased egress of proliferated lymphocytes from ADLN. In the absence of antigen, anti-CD69 2.2 treatment induced bystander proliferation of transferred memory phenotype T cells. This proliferation was mediated by IL-2, as it was inhibited by anti-IL-2 or anti-CD25 antibodies in vitro and by anti-CD25 antibodies in vivo. It was also dependent on CD69 expression by donor T cells and recipient cells. CD69 targeting on T cells enhanced IL-2-mediated proliferation and CD25 expression. However, it did not lead to increased early IL-2 production by T cells. No T cell subset was found to be specifically required in the recipient. Instead, CD69 targeting on pDC induced their expression of IL-2 and CD25, and pDC depletion showed that this subset was involved in the proliferation induction. These results indicate that CD69 targeting induces bystander T cell proliferation through pDC IL-2 production and T cell sensitization to IL-2 without affecting antigen-driven T cell proliferation.
Collapse
|
36
|
Abstract
Since its discovery two decades ago, the activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway by numerous cytokines and growth factors has resulted in it becoming one of the most well-studied intracellular signalling networks. The field has progressed from the identification of the individual components to high-resolution crystal structures of both JAK and STAT, and an understanding of the complexities of the molecular activation and deactivation cycle which results in a diverse, yet highly specific and regulated pattern of transcriptional responses. While there is still more to learn, we now appreciate how disruption and deregulation of this pathway can result in clinical disease and look forward to adoption of the next generation of JAK inhibitors in routine clinical treatment.
Collapse
Affiliation(s)
- Hiu Kiu
- Walter & Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
| | | |
Collapse
|
37
|
Wang J, Pae M, Meydani SN, Wu D. Epigallocatechin-3-gallate inhibits expression of receptors for T cell regulatory cytokines and their downstream signaling in mouse CD4+ T cells. J Nutr 2012; 142:566-71. [PMID: 22323768 DOI: 10.3945/jn.111.154419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We previously showed a suppressive effect of epigallocatechin-3-gallate (EGCG) on T cell cycling and expansion as well as a paradoxical effect on IL-2 levels (upregulating) and IL-2 receptor (IL-2R)α expression (downregulating). Thus, in the current study, we tested the hypothesis that EGCG affects T cell responses via impairing the IL-2/IL-2R signaling. We found that EGCG inhibited anti-CD3/CD28-induced proliferation of naïve CD4(+) T cells from C57BL/6 mice. EGCG increased accumulation of IL-2 but inhibited expression of IL-2R, including all its subunits [IL-2Rα, IL-2/IL-15Rβ, and common γ chain (γc)]. Using phosphorylation of STAT5 as a marker, we further found that EGCG suppressed IL-2R downstream signaling. Because IL-2R subunits IL-2/IL-15Rβ- and γc are shared with IL-15R and γc is shared with IL-7R, we suspected that EGCG might also influence the signaling of IL-15 and IL-7, the two key regulators in maintaining T cell homeostasis. Results showed that EGCG suppressed IL-15 and IL-7 signaling; further, EGCG not only inhibited the subunits in IL-15R and IL-7R shared with IL-2R, but also affected their proprietary α chains in a manner that aligns with an impaired signaling. Although IL-2, IL-15, and IL-7 have separate and distinctive roles in regulating T cells, all of them are critical for T cell survival, expansion, and differentiation. Thus, these findings indicate an involvement of T cell growth cytokines in EGCG-induced T cell suppression through downregulated expression of their receptors and downstream signaling. This implies a potential application in controlling dysregulated T cell functions such as those observed in autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Junpeng Wang
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | | | | | | |
Collapse
|
38
|
Rani A, Afzali B, Kelly A, Tewolde-Berhan L, Hackett M, Kanhere AS, Pedroza-Pacheco I, Bowen H, Jurcevic S, Jenner RG, Cousins DJ, Ragheb JA, Lavender P, John S. IL-2 regulates expression of C-MAF in human CD4 T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:3721-9. [PMID: 21876034 DOI: 10.4049/jimmunol.1002354] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Blockade of IL-2R with humanized anti-CD25 Abs, such as daclizumab, inhibits Th2 responses in human T cells. Recent murine studies have shown that IL-2 also plays a significant role in regulating Th2 cell differentiation by activated STAT5. To explore the role of activated STAT5 in the Th2 differentiation of primary human T cells, we studied the mechanisms underlying IL-2 regulation of C-MAF expression. Chromatin immunoprecipitation studies revealed that IL-2 induced STAT5 binding to specific sites in the C-MAF promoter. These sites corresponded to regions enriched for markers of chromatin architectural features in both resting CD4 and differentiated Th2 cells. Unlike IL-6, IL-2 induced C-MAF expression in CD4 T cells with or without prior TCR stimulation. TCR-induced C-MAF expression was significantly inhibited by treatment with daclizumab or a JAK3 inhibitor, R333. Furthermore, IL-2 and IL-6 synergistically induced C-MAF expression in TCR-activated T cells, suggesting functional cooperation between these cytokines. Finally, both TCR-induced early IL4 mRNA expression and IL-4 cytokine expression in differentiated Th2 cells were significantly inhibited by IL-2R blockade. Thus, our findings demonstrate the importance of IL-2 in Th2 differentiation in human T cells and support the notion that IL-2R-directed therapies may have utility in the treatment of allergic disorders.
Collapse
Affiliation(s)
- Aradhana Rani
- Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Melanoma is the most aggressive form of skin cancer whose worldwide incidence is rising faster than any other cancer. Few treatment options are available to patients with metastatic disease, and standard chemotherapeutic agents are generally ineffective. Cytokines such as IFN-α or IL-2 can promote immune recognition of melanoma, occasionally inducing dramatic and durable clinical responses. Here, we discuss several immunomodulatory agents, the safety of which are being evaluated in clinical trials. Challenges include an incomplete understanding of signaling pathways, appropriate clinical dose and route, and systemic immunosuppression in advanced melanoma patients. We consider how targeted cytokine therapy will integrate into the clinical arena, as well as the low likelihood of success of single cytokine therapies. Evidence supports a synergy between cytokine immunotherapy and other therapeutic approaches in melanoma, and strengthening this area of research will improve our understanding of how to use cytokine therapy better.
Collapse
Affiliation(s)
- Courtney Nicholas
- The Ohio State University, Department of Internal Medicine, Division of Medical Oncology, Columbus, OH 43210, USA
| | - Gregory B Lesinski
- The Ohio State University, Department of Internal Medicine, Division of Medical Oncology, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Nadeau K, Hwa V, Rosenfeld RG. STAT5b deficiency: an unsuspected cause of growth failure, immunodeficiency, and severe pulmonary disease. J Pediatr 2011; 158:701-8. [PMID: 21414633 DOI: 10.1016/j.jpeds.2010.12.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/02/2010] [Accepted: 12/23/2010] [Indexed: 01/03/2023]
Affiliation(s)
- Kari Nadeau
- Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
41
|
Ermakova O, Piszczek L, Luciani L, Cavalli FMG, Ferreira T, Farley D, Rizzo S, Paolicelli RC, Al-Banchaabouchi M, Nerlov C, Moriggl R, Luscombe NM, Gross C. Sensitized phenotypic screening identifies gene dosage sensitive region on chromosome 11 that predisposes to disease in mice. EMBO Mol Med 2011; 3:50-66. [PMID: 21204268 PMCID: PMC3402001 DOI: 10.1002/emmm.201000112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The identification of susceptibility genes for human disease is a major goal of current biomedical research. Both sequence and structural variation have emerged as major genetic sources of phenotypic variability and growing evidence points to copy number variation as a particularly important source of susceptibility for disease. Here we propose and validate a strategy to identify genes in which changes in dosage alter susceptibility to disease-relevant phenotypes in the mouse. Our approach relies on sensitized phenotypic screening of megabase-sized chromosomal deletion and deficiency lines carrying altered copy numbers of ∼30 linked genes. This approach offers several advantages as a method to systematically identify genes involved in disease susceptibility. To examine the feasibility of such a screen, we performed sensitized phenotyping in five therapeutic areas (metabolic syndrome, immune dysfunction, atherosclerosis, cancer and behaviour) of a 0.8 Mb reciprocal chromosomal duplication and deficiency on chromosome 11 containing 27 genes. Gene dosage in the region significantly affected risk for high-fat diet-induced metabolic syndrome, antigen-induced immune hypersensitivity, ApoE-induced atherosclerosis, and home cage activity. Follow up studies on individual gene knockouts for two candidates in the region showed that copy number variation in Stat5 was responsible for the phenotypic variation in antigen-induced immune hypersensitivity and metabolic syndrome. These data demonstrate the power of sensitized phenotypic screening of segmental aneuploidy lines to identify disease susceptibility genes.
Collapse
Affiliation(s)
- Olga Ermakova
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Forward NA, Conrad DM, Power Coombs MR, Doucette CD, Furlong SJ, Lin TJ, Hoskin DW. Curcumin blocks interleukin (IL)-2 signaling in T-lymphocytes by inhibiting IL-2 synthesis, CD25 expression, and IL-2 receptor signaling. Biochem Biophys Res Commun 2011; 407:801-6. [DOI: 10.1016/j.bbrc.2011.03.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 12/11/2022]
|
43
|
Eckelhart E, Warsch W, Zebedin E, Simma O, Stoiber D, Kolbe T, Rülicke T, Mueller M, Casanova E, Sexl V. A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood 2011; 117:1565-73. [PMID: 21127177 DOI: 10.1182/blood-2010-06-291633] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We generated a transgenic mouse line that expresses the Cre recombinase under the control of the Ncr1 (p46) promoter. Cre-mediated recombination was tightly restricted to natural killer (NK) cells, as revealed by crossing Ncr1-iCreTg mice to the eGFP-LSLTg reporter strain. Ncr1-iCreTg mice were further used to study NK cell-specific functions of Stat5 (signal transducers and activators of transcription 5) by generating Stat5(f/f) Ncr1-iCreTg animals. Stat5(f/f) Ncr1-iCreTg mice were largely devoid of NK cells in peripheral lymphoid organs. In the bone marrow, NK-cell maturation was abrogated at the NK cell-precursor stage. Moreover, we found that in vitro deletion of Stat5 in interleukin 2-expanded NK cells was incompatible with NK-cell viability. In vivo assays confirmed the complete abrogation of NK cell-mediated tumor control against B16F10-melanoma cells. In contrast, T cell-mediated tumor surveillance against MC38-adenocarcinoma cells was undisturbed. In summary, the results of our study show that STAT5 has a cell-intrinsic role in NK-cell development and that Ncr1-iCreTg mice are a powerful novel tool with which to study NK-cell development, biology, and function.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/metabolism
- Animals
- Antigens, Ly/physiology
- Blotting, Western
- Cell Survival
- Cytotoxicity, Immunologic
- Flow Cytometry
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Integrases/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Natural Cytotoxicity Triggering Receptor 1/physiology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- STAT5 Transcription Factor/physiology
Collapse
Affiliation(s)
- Eva Eckelhart
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rawlings JS, Gatzka M, Thomas PG, Ihle JN. Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. EMBO J 2011; 30:263-76. [PMID: 21169989 PMCID: PMC3025460 DOI: 10.1038/emboj.2010.314] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/11/2010] [Indexed: 11/08/2022] Open
Abstract
Naive T cells encountering their cognate antigen become activated and acquire the ability to proliferate in response to cytokines. Stat5 is an essential component in this response. We demonstrate that Stat5 cannot access DNA in naive T cells and acquires this ability only after T-cell receptor (TCR) engagement. The transition is not associated with changes in DNA methylation or global histone modification but rather chromatin decondensation. Condensation occurs during thymocyte development and proper condensation is dependent on kleisin-β of the condensin II complex. Our findings suggest that this unique chromatin condensation, which can affect interpretations of chromatin accessibility assays, is required for proper T-cell development and maintenance of the quiescent state. This mechanism ensures that cytokine driven proliferation can only occur in the context of TCR stimulation.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Animals
- Base Sequence
- Blotting, Western
- Cell Proliferation
- Chromatin Assembly and Disassembly/immunology
- Chromatin Assembly and Disassembly/physiology
- Chromatin Immunoprecipitation
- DNA-Binding Proteins/metabolism
- Fluorescent Antibody Technique
- Gene Expression Regulation/immunology
- Immunity, Cellular/immunology
- Interleukin-2/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Multiprotein Complexes/metabolism
- Promoter Regions, Genetic/genetics
- Receptors, Antigen, T-Cell/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/immunology
- Sequence Analysis, DNA
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Jason S Rawlings
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Martina Gatzka
- Department of Immunology, Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James N Ihle
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
45
|
Maier E, Hebenstreit D, Posselt G, Hammerl P, Duschl A, Horejs-Hoeck J. Inhibition of suppressive T cell factor 1 (TCF-1) isoforms in naive CD4+ T cells is mediated by IL-4/STAT6 signaling. J Biol Chem 2011; 286:919-28. [PMID: 20980261 PMCID: PMC3019123 DOI: 10.1074/jbc.m110.144949] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 10/08/2010] [Indexed: 11/06/2022] Open
Abstract
The Wnt pathway transcription factor T cell factor 1 (TCF-1) plays essential roles in the control of several developmental processes, including T cell development in the thymus. Although previously regarded as being required only during early T cell development, recent studies demonstrate an important role for TCF-1 in T helper 2 (Th2) cell polarization. TCF-1 was shown to activate expression of the Th2 transcription factor GATA-binding protein 3 (GATA3) and thus to promote the development of IL-4-producing Th2 cells independent of STAT6 signaling. In this study, we show that TCF-1 is down-regulated in human naive CD4(+) T cells cultured under Th2-polarizing conditions. The down-regulation is largely due to the polarizing cytokine IL-4 because IL-4 alone is sufficient to substantially inhibit TCF-1 expression. The IL-4-induced suppression of TCF-1 is mediated by STAT6, as shown by electrophoretic mobility shift assays, chromatin immunoprecipitation, and STAT6 knockdown experiments. Moreover, we found that IL-4/STAT6 predominantly inhibits the shorter, dominant-negative TCF-1 isoforms, which were reported to inhibit IL-4 transcription. Thus, this study provides a model for an IL-4/STAT6-dependent fine tuning mechanism of TCF-1-driven T helper cell polarization.
Collapse
Affiliation(s)
- Elisabeth Maier
- From the Department of Molecular Biology, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria and
| | - Daniel Hebenstreit
- the Department of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge, CB2 OQH United Kingdom
| | - Gernot Posselt
- From the Department of Molecular Biology, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria and
| | - Peter Hammerl
- From the Department of Molecular Biology, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria and
| | - Albert Duschl
- From the Department of Molecular Biology, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria and
| | - Jutta Horejs-Hoeck
- From the Department of Molecular Biology, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria and
| |
Collapse
|
46
|
Friedbichler K, Kerenyi MA, Kovacic B, Li G, Hoelbl A, Yahiaoui S, Sexl V, Müllner EW, Fajmann S, Cerny-Reiterer S, Valent P, Beug H, Gouilleux F, Bunting KD, Moriggl R. Stat5a serine 725 and 779 phosphorylation is a prerequisite for hematopoietic transformation. Blood 2010; 116:1548-58. [PMID: 20508164 PMCID: PMC2938843 DOI: 10.1182/blood-2009-12-258913] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/15/2010] [Indexed: 12/21/2022] Open
Abstract
Stat5 transcription factors are essential gene regulators promoting proliferation, survival, and differentiation of all hematopoietic cell types. Mutations or fusions of oncogenic tyrosine kinases often result in constitutive Stat5 activation. We have modeled persistent Stat5 activity by using an oncogenic Stat5a variant (cS5). To analyze the hitherto unrecognized role of Stat5 serine phosphorylation in this context, we have generated cS5 constructs with mutated C-terminal serines 725 and 779, either alone or in combination. Genetic complementation assays in primary Stat5(null/null) mast cells and Stat5(DeltaN) T cells demonstrated reconstitution of proliferation with these mutants. Similarly, an in vivo reconstitution experiment of transduced Stat5(null/null) fetal liver cells transplanted into irradiated wild-type recipients revealed that these mutants exhibit biologic activity in lineage differentiation. By contrast, the leukemogenic potential of cS5 in bone marrow transplants decreased dramatically in cS5 single-serine mutants or was completely absent upon loss of both serine phosphorylation sites. Our data suggest that Stat5a serine phosphorylation is a prerequisite for cS5-mediated leukemogenesis. Hence, interference with Stat5a serine phosphorylation might provide a new therapeutic option for leukemia and myeloid dysplasias without affecting major functions of Stat5 in normal hematopoiesis.
Collapse
|
47
|
Long-term regulation of Na,K-ATPase pump during T-cell proliferation. Pflugers Arch 2010; 460:777-89. [DOI: 10.1007/s00424-010-0843-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
|
48
|
Funakoshi-Tago M, Tago K, Abe M, Sonoda Y, Kasahara T. STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2 V617F mutant. J Biol Chem 2009; 285:5296-307. [PMID: 20028972 DOI: 10.1074/jbc.m109.040733] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It has been well established that disruption of JAK2 signaling regulation is involved in various hematopoietic disorders; however, the detailed mechanism by which abnormal activation of JAK2 exhibits transforming activity remains to be elucidated. Here, to clarify the functional role of the erythropoietin receptor (EpoR) and its downstream transcription factor STAT5 in the abnormal activation of JAK2-induced hematopoietic diseases, we generated a stable transfectant of Ba/F3 cells expressing EpoR and analyzed the molecular mechanism of how JAK2 mutation induces cell growth disorder. JAK2 V617F mutant exhibited transforming activity when EpoR was coexpressed. According to a study utilizing several truncated mutants of EpoR, the ability of EpoR to facilitate the transforming activity of JAK2 V617F mutant required the intracellular domain to interact with STAT5. Strikingly, once the truncated EpoR (EpoR-H) was mutated on Tyr-343, the phosphorylation of which is known to be important for interaction with STAT5, JAK2 V617F mutant failed to exhibit transforming activity, suggesting that STAT5 is critical for JAK2 mutant-induced hematopoietic disorder. Furthermore, the expression of the constitutively active STAT5 mutant exhibited transforming activity in Ba/F3 cells, and short hairpin RNA-mediated knockdown of STAT5 significantly inhibited the transforming activity of JAK2 V617F mutant. Taking these observations together, STAT5 plays an essential role in EpoR-JAK2 V617F mutant-induced hematopoietic disorder. Although it remains unclear why the presence of EpoR is required to activate oncogenic signaling via the JAK2 mutant and STAT5, its interacting ability is a target for the treatment of these hematopoietic diseases.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Department of Biochemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, USA.
| | | | | | | | | |
Collapse
|
49
|
Ablation of SLP-76 signaling after T cell priming generates memory CD4 T cells impaired in steady-state and cytokine-driven homeostasis. Proc Natl Acad Sci U S A 2009; 107:827-31. [PMID: 20080760 DOI: 10.1073/pnas.0908126107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular signaling mechanisms regulating the generation and long-term persistence of memory T cells in vivo remain unclear. In this study, we used mouse models with conditional deletion of the key T cell receptor (TCR)-coupled adaptor molecule SH2-domain-containing phosphoprotein of 76 kDa (SLP-76), to analyze signaling mechanisms for memory CD4 T cell generation, maintenance, and homeostasis. We found that ablation of SLP-76 expression after T cell priming did not inhibit generation of phenotypic effector or memory CD4 T cells; however, the resultant SLP-76-deficient memory CD4 T cells could not produce recall cytokines in response to TCR-mediated stimulation and showed decreased persistence in vivo. In addition, SLP-76-deficient memory CD4 T cells exhibited reduced steady-state homeostasis and were impaired in their ability to homeostatically expand in vivo in response to the gamma(c) cytokine IL-7, despite intact proximal signaling through the IL-7R-coupled JAK3/STAT5 pathway. Direct in vivo deletion of SLP-76 in polyclonal memory CD4 T cells likewise led to impaired steady-state homeostasis as well as impaired homeostatic responses to IL-7. Our findings demonstrate a dominant role for SLP-76-dependent TCR signals in regulating turnover and perpetuation of memory CD4 T cells and their responses to homeostatic cytokines, with implications for the selective survival of memory CD4 T cells following pathogen exposure, vaccination, and aging.
Collapse
|
50
|
Carbonnelle D, Duflos M, Marchand P, Chauvet C, Petit JY, Lang F. A novel indole-3-propanamide exerts its immunosuppressive activity by inhibiting JAK3 in T cells. J Pharmacol Exp Ther 2009; 331:710-6. [PMID: 19710367 DOI: 10.1124/jpet.109.155986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously identified an indole-3-propanamide derivative, 3-[1-(4-chlorobenzyl)indol-3-yl]-N-(pyridin-4-yl)propanamide (AD412), as a potential immunosuppressive agent. Here, we document that AD412 inhibited the proliferative response of CD3/CD28-stimulated human T cells without inhibiting their interleukin 2 (IL-2) production and also inhibited the proliferation of CTL-L2 cells in response to IL-2. These results prompted us to analyze the effect of our compound on the three main signaling pathways coupled to the IL-2 receptor. We provide evidence that AD412 inhibited the JAK1/3-dependent phosphorylations of Akt, STAT5a/b, and ERK1/2 in IL-2-stimulated CTL-L2 cells. In contrast, AD412 had little effect on the JAK1/2-dependent INF-gamma-induced phosphorylation of STAT1 in U266 cells. This suggested a preferential inhibition of JAK3 over JAK1 or JAK 2 activities by AD412 that was confirmed by in vitro kinase assays with purified JAK2 and JAK3 kinases. In addition, we provide evidence that the inhibition of IL-2 response by AD412 was not due to inhibition of IL-2Ralpha up-regulation because neither AD412 nor JAK3 inhibitors described previously [4-[(3-bromo-4-hydroxyphenyl)amino]-6,7-dimethoxyquinazoline (WHI-P154) and alpha-cyano-(3,4-dihydroxy)-N-benzylcinnamid (AG-490)] significantly inhibited IL-2-induced IL-2Ralpha overexpression. Finally, we further document the immunosuppressive activity of AD412 in vivo by showing that its administration per os significantly prolonged heart allograft graft survival. This molecule may thus represent an interesting lead compound to develop new immunosuppressive agents in the field of transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- Delphine Carbonnelle
- Departments of Immunopharmacology, Unité Propre de Recherche et de l'Enseignement Supérieur, Equipe d'Accueil, Nantes-Atlantique University, Unité de Formation et de Recherche of Pharmaceutical Sciences, Nantes, France
| | | | | | | | | | | |
Collapse
|