1
|
Kim S, Liu TT, Ou F, Murphy TL, Murphy KM. Anatomy of a superenhancer. Adv Immunol 2024; 163:51-96. [PMID: 39271259 DOI: 10.1016/bs.ai.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Interferon regulatory factor-8 (IRF8) is the lineage determining transcription factor for the type one classical dendritic cell (cDC1) subset, a terminal selector for plasmacytoid dendritic cells and important for the function of monocytes. Studies of Irf8 gene regulation have identified several enhancers controlling its activity during development of progenitors in the bone marrow that precisely regulate expression at distinct developmental stages. Each enhancer responds to distinct transcription factors that are expressed at each stage. IRF8 is first expressed in early progenitors that form the monocyte dendritic cell progenitor (MDP) in response to induction of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) acting at the Irf8 +56 kb enhancer. IRF8 levels increase further as the MDP transits into the common dendritic cell progenitor (CDP) in response to E protein activity at the Irf8 +41 kb enhancer. Upon Nfil3-induction in CDPs leading to specification of the cDC1 progenitor, abrupt induction of BATF3 forms the JUN/BATF3/IRF8 heterotrimer that activates the Irf8 +32 kb enhancer that sustains Irf8 autoactivation throughout the cDC1 lifetime. Deletions of each of these enhancers has revealed their stage dependent activation. Surprisingly, studies of compound heterozygotes for each combination of enhancer deletions revealed that activation of each subsequent enhancer requires the successful activation of the previous enhancer in strictly cis-dependent mechanism. Successful progression of enhancer activation is finely tuned to alter the functional accessibility of subsequent enhancers to factors active in the next stage of development. The molecular basis for these phenomenon is still obscure but could have implications for genomic regulation in a broader developmental context.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
2
|
Xiao H, Ulmert I, Bach L, Huber J, Narasimhan H, Kurochkin I, Chang Y, Holst S, Mörbe U, Zhang L, Schlitzer A, Pereira CF, Schraml BU, Baumjohann D, Lahl K. Genomic deletion of Bcl6 differentially affects conventional dendritic cell subsets and compromises Tfh/Tfr/Th17 cell responses. Nat Commun 2024; 15:3554. [PMID: 38688934 PMCID: PMC11061177 DOI: 10.1038/s41467-024-46966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Conventional dendritic cells (cDC) play key roles in immune induction, but what drives their heterogeneity and functional specialization is still ill-defined. Here we show that cDC-specific deletion of the transcriptional repressor Bcl6 in mice alters the phenotype and transcriptome of cDC1 and cDC2, while their lineage identity is preserved. Bcl6-deficient cDC1 are diminished in the periphery but maintain their ability to cross-present antigen to CD8+ T cells, confirming general maintenance of this subset. Surprisingly, the absence of Bcl6 in cDC causes a complete loss of Notch2-dependent cDC2 in the spleen and intestinal lamina propria. DC-targeted Bcl6-deficient mice induced fewer T follicular helper cells despite a profound impact on T follicular regulatory cells in response to immunization and mounted diminished Th17 immunity to Citrobacter rodentium in the colon. Our findings establish Bcl6 as an essential transcription factor for subsets of cDC and add to our understanding of the transcriptional landscape underlying cDC heterogeneity.
Collapse
Affiliation(s)
- Hongkui Xiao
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Isabel Ulmert
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Luisa Bach
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Johanna Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Hamsa Narasimhan
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximillians-Universität München, Planegg-Martinsried, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Ilia Kurochkin
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Signe Holst
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Urs Mörbe
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Lili Zhang
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Barbara U Schraml
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximillians-Universität München, Planegg-Martinsried, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany.
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany.
| | - Katharina Lahl
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark.
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
- Immunology Section, Lund University, Lund, 221 84, Sweden.
| |
Collapse
|
3
|
Lang M, Krump C, Meshcheryakova A, Tam-Amersdorfer C, Schwarzenberger E, Passegger C, Connolly S, Mechtcheriakova D, Strobl H. Microenvironmental and cell intrinsic factors governing human cDC2 differentiation and monocyte reprogramming. Front Immunol 2023; 14:1216352. [PMID: 37539048 PMCID: PMC10395083 DOI: 10.3389/fimmu.2023.1216352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
cDC2s occur abundantly in peripheral tissues and arise from circulating blood cDC2s. However, the factors governing cDC2 differentiation in tissues, especially under inflammatory conditions, remained poorly defined. We here found that psoriatic cDC2s express the efferocytosis receptor Axl and exhibit a bone morphogenetic protein (BMP) and p38MAPK signaling signature. BMP7, strongly expressed within the lesional psoriatic epidermis, cooperates with canonical TGF-β1 signaling for inducing Axl+cDC2s from blood cDC2s in vitro. Moreover, downstream induced p38MAPK promotes Axl+cDC2s at the expense of Axl+CD207+ Langerhans cell differentiation from blood cDC2s. BMP7 supplementation allowed to model cDC2 generation and their further differentiation into LCs from CD34+ hematopoietic progenitor cells in defined serum-free medium. Additionally, p38MAPK promoted the generation of another cDC2 subset lacking Axl but expressing the non-classical NFkB transcription factor RelB in vitro. Such RelB+cDC2s occurred predominantly at dermal sites in the inflamed skin. Finally, we found that cDC2s can be induced to acquire high levels of the monocyte lineage identity factor kruppel-like-factor-4 (KLF4) along with monocyte-derived DC and macrophage phenotypic characteristics in vitro. In conclusion, inflammatory and psoriatic epidermal signals instruct blood cDC2s to acquire phenotypic characteristics of several tissue-resident cell subsets.
Collapse
Affiliation(s)
- Magdalena Lang
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Corinna Krump
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anastasia Meshcheryakova
- Insitute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Elke Schwarzenberger
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Christina Passegger
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sally Connolly
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Diana Mechtcheriakova
- Insitute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int J Mol Sci 2022; 23:ijms23137325. [PMID: 35806328 PMCID: PMC9266676 DOI: 10.3390/ijms23137325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Collapse
|
5
|
Frutos-Rincón L, Gómez-Sánchez JA, Íñigo-Portugués A, Acosta MC, Gallar J. An Experimental Model of Neuro-Immune Interactions in the Eye: Corneal Sensory Nerves and Resident Dendritic Cells. Int J Mol Sci 2022; 23:ijms23062997. [PMID: 35328417 PMCID: PMC8951464 DOI: 10.3390/ijms23062997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
The cornea is an avascular connective tissue that is crucial, not only as the primary barrier of the eye but also as a proper transparent refractive structure. Corneal transparency is necessary for vision and is the result of several factors, including its highly organized structure, the physiology of its few cellular components, the lack of myelinated nerves (although it is extremely innervated), the tightly controlled hydration state, and the absence of blood and lymphatic vessels in healthy conditions, among others. The avascular, immune-privileged tissue of the cornea is an ideal model to study the interactions between its well-characterized and dense sensory nerves (easily accessible for both focal electrophysiological recording and morphological studies) and the low number of resident immune cell types, distinguished from those cells migrating from blood vessels. This paper presents an overview of the corneal structure and innervation, the resident dendritic cell (DC) subpopulations present in the cornea, their distribution in relation to corneal nerves, and their role in ocular inflammatory diseases. A mouse model in which sensory axons are constitutively labeled with tdTomato and DCs with green fluorescent protein (GFP) allows further analysis of the neuro-immune crosstalk under inflammatory and steady-state conditions of the eye.
Collapse
Affiliation(s)
- Laura Frutos-Rincón
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
| | - José Antonio Gómez-Sánchez
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- Correspondence: ; Tel.: +34-965-91-9594
| | - Almudena Íñigo-Portugués
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
| | - M. Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
- Instituto de Investigación Biomédica y Sanitaria de Alicante, 03010 Alicante, Spain
| |
Collapse
|
6
|
Liu D, Duan L, Cyster JG. Chemo- and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen. Immunol Rev 2022; 306:25-42. [PMID: 35147233 PMCID: PMC8852366 DOI: 10.1111/imr.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
Spleen dendritic cells (DC) are critical for initiation of adaptive immune responses against blood-borne invaders. Key to DC function is their positioning at sites of pathogen entry, and their abilities to selectively capture foreign antigens and promptly engage T cells. Focusing on conventional DC2 (cDC2), we discuss the contribution of chemoattractant receptors (EBI2 or GPR183, S1PR1, and CCR7) and integrins to cDC2 positioning and function. We give particular attention to a newly identified role in cDC2 for adhesion G-protein coupled receptor E5 (Adgre5 or CD97) and its ligand CD55, detailing how this mechanosensing system contributes to splenic cDC2 positioning and homeostasis. Additional roles of CD97 in the immune system are reviewed. The ability of cDC2 to be activated by circulating missing self-CD47 cells and to integrate multiple red blood cell (RBC)-derived inputs is discussed. Finally, we describe the process of activated cDC2 migration to engage and prime helper T cells. Throughout the review, we consider the insights into cDC function in the spleen that have emerged from imaging studies.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Lihui Duan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
7
|
Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B 2022; 12:1163-1185. [PMID: 35530162 PMCID: PMC9069318 DOI: 10.1016/j.apsb.2021.08.020] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
Collapse
Key Words
- AKT, alpha-serine/threonine-specific protein kinase
- Adoptive immune-cells transfer immunotherapy
- B2M, beta-2-microglobulin
- BMDCs, bone marrow dendritic cells
- BPS, basil polysaccharide
- BTLA, B- and T-lymphocyte attenuator
- CAFs, cancer-associated fibroblasts
- CCL22, C–C motif chemokine 22
- CIKs, cytokine-induced killer cells
- COX-2, cyclooxygenase-2
- CRC, colorectal cancer
- CTL, cytotoxic T cell
- CTLA-4, cytotoxic T lymphocyte antigen-4
- Cancer immunotherapy
- Cancer vaccines
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- FDA, US Food and Drug Administration
- HCC, hepatocellular carcinoma
- HER-2, human epidermal growth factor receptor-2
- HIF-1α, hypoxia-inducible factor-1α
- HMGB1, high-mobility group box 1
- HSPs, heat shock proteins
- ICD, Immunogenic cell death
- ICTs, immunological checkpoints
- IFN-γ, interferon γ
- IL-10, interleukin-10
- Immuno-check points
- Immunosuppressive microenvironment
- LLC, Lewis lung cancer
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex class
- MITF, melanogenesis associated transcription factor
- MMP-9, matrix metalloprotein-9
- Mcl-1, myeloid leukemia cell differentiation protein 1
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NKTs, natural killer T cells
- NSCLC, non-small cell lung cancer
- Natural products
- OVA, ovalbumin
- PD-1, programmed death-1
- PD-L1, programmed death receptor ligand 1
- PGE-2, prostaglandin E2
- PI3K, phosphoinositide 3-kinase
- ROS, reactive oxygen species
- STAT3, signal transducer and activator of transcription 3
- TAMs, tumor-associated macrophages
- TAP, transporters related with antigen processing
- TGF-β, transforming growth factor-β
- TILs, tumor infiltration lymphocytes
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- TSA, tumor specific antigens
- Teffs, effective T cells
- Th1, T helper type 1
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- mTOR, mechanistic target of rapamycin
Collapse
Affiliation(s)
- Songtao Dong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangnan Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Singh Rawat B, Venkataraman R, Budhwar R, Tailor P. Methionine- and Choline-Deficient Diet Identifies an Essential Role for DNA Methylation in Plasmacytoid Dendritic Cell Biology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:881-897. [PMID: 35101891 DOI: 10.4049/jimmunol.2100763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Diet plays an important role in lifestyle disorders associated with the disturbed immune system. During the study of methionine- and choline-deficient diet-induced nonalcoholic fatty liver disease, we observed a specific decrease in the plasmacytoid dendritic cell (pDC) fraction from murine spleens. While delineating the role for individual components, we identified that l-methionine supplementation correlates with representation of the pDC fraction. S-adenosylmethionine (SAM) is a key methyl donor, and we demonstrate that supplementation of methionine-deficient medium with SAM but not homocysteine reverses the defect in pDC development. l-Methionine has been implicated in maintenance of methylation status in the cell. Based on our observed effect of SAM and zebularine on DC subset development, we sought to clarify the role of DNA methylation in pDC biology. Whole-genome bisulfite sequencing analysis from the splenic DC subsets identified that pDCs display differentially hypermethylated regions in comparison with classical DC (cDC) subsets, whereas cDC1 and cDC2 exhibited comparable methylated regions, serving as a control in our study. We validated differentially methylated regions in the sorted pDC, CD8α+ cDC1, and CD4+ cDC2 subsets from spleens as well as FL-BMDC cultures. Upon analysis of genes linked with differentially methylated regions, we identified that differential DNA methylation is associated with the MAPK pathway such that its inhibition guides DC development toward the pDC subtype. Overall, our study identifies an important role for methionine in pDC biology.
Collapse
Affiliation(s)
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | - Roli Budhwar
- Bionivid Technology Private Ltd., Bengaluru, Karnataka, India; and
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India;
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Verheye E, Bravo Melgar J, Deschoemaeker S, Raes G, Maes A, De Bruyne E, Menu E, Vanderkerken K, Laoui D, De Veirman K. Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. Int J Mol Sci 2022; 23:904. [PMID: 35055096 PMCID: PMC8778019 DOI: 10.3390/ijms23020904] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapeutic approaches, including adoptive cell therapy, revolutionized treatment in multiple myeloma (MM). As dendritic cells (DCs) are professional antigen-presenting cells and key initiators of tumor-specific immune responses, DC-based immunotherapy represents an attractive therapeutic approach in cancer. The past years, various DC-based approaches, using particularly ex-vivo-generated monocyte-derived DCs, have been tested in preclinical and clinical MM studies. However, long-term and durable responses in MM patients were limited, potentially attributed to the source of monocyte-derived DCs and the immunosuppressive bone marrow microenvironment. In this review, we briefly summarize the DC development in the bone marrow niche and the phenotypical and functional characteristics of the major DC subsets. We address the known DC deficiencies in MM and give an overview of the DC-based vaccination protocols that were tested in MM patients. Lastly, we also provide strategies to improve the efficacy of DC vaccines using new, improved DC-based approaches and combination therapies for MM patients.
Collapse
Affiliation(s)
- Emma Verheye
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jesús Bravo Melgar
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sofie Deschoemaeker
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Geert Raes
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Anke Maes
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Elke De Bruyne
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Eline Menu
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Damya Laoui
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Kim De Veirman
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| |
Collapse
|
10
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
11
|
Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proc Natl Acad Sci U S A 2021; 118:2111234118. [PMID: 34526403 DOI: 10.1073/pnas.2111234118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface-expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10ΔCD11c) exhibited a complete loss of splenic ESAMhi cDC2A because ADAM10 regulated the commitment, differentiation, and survival of these cells. The major pathways controlled by ADAM10 in ESAMhi cDC2A are Notch, signaling pathways involved in cell proliferation and survival (e.g., mTOR, PI3K/AKT, and EIF2 signaling), and EBI2-mediated localization within the MZ. In addition, we discovered that ADAM10 is a molecular switch regulating cDC2 subset heterogeneity in the spleen, as the disappearance of ESAMhi cDC2A in ADAM10ΔCD11c mice was compensated for by the emergence of a Clec12a+ cDC2B subset closely resembling cDC2 generally found in peripheral lymph nodes. Moreover, in ADAM10ΔCD11c mice, terminal differentiation of cDC1 was abrogated, resulting in severely reduced splenic Langerin+ cDC1 numbers. Next to the disturbed splenic cDC compartment, ADAM10 deficiency on CD11c+ cells led to an increase in marginal metallophilic macrophage (MMM) numbers. In conclusion, our data identify ADAM10 as a molecular hub on both cDC and MMM regulating their transcriptional programming, turnover, homeostasis, and ability to shape the anatomical niche of the MZ.
Collapse
|
12
|
Zheng WB, Zou Y, Liu Q, Hu MH, Elsheikha HM, Zhu XQ. Toxocara canis Infection Alters lncRNA and mRNA Expression Profiles of Dog Bone Marrow. Front Cell Dev Biol 2021; 9:688128. [PMID: 34277631 PMCID: PMC8277978 DOI: 10.3389/fcell.2021.688128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023] Open
Abstract
Bone marrow is the main hematopoietic organ that produces red blood cells, granulocytes, monocyte/macrophages, megakaryocytes, lymphocytes, and myeloid dendritic cells. Many of these cells play roles in the pathogenesis of Toxocara canis infection, and understanding how infection alters the dynamics of transcription regulation in bone marrow is therefore critical for deciphering the global changes in the dog transcriptional signatures during T. canis infection. In this study, long non-coding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in the bone marrow of Beagle dogs infected with T. canis were determined at 12 h post-infection (hpi), 24 hpi, 96 hpi, and 36 days post-infection (dpi). RNA-sequencing and bioinformatics analysis identified 1,098, 984, 1,120, and 1,305 differentially expressed lncRNAs (DElncRNAs), and 196, 253, 223, and 328 differentially expressed mRNAs (DEmRNAs) at 12 h, 24 h, 96 h, and 36 days after infection, respectively. We also identified 29, 36, 38, and 68 DEmRNAs potentially cis-regulated by 44, 44, 51, and 80 DElncRNAs at 12 hpi, 24 hpi, 96 hpi, and 36 dpi, respectively. To validate the sequencing findings, qRT-PCR was performed on 10 randomly selected transcripts. Many altered genes were involved in the differentiation of bone marrow cells. GO of DElncRNAs and GO and KEGG pathway analyses of DEmRNAs revealed alterations in several signaling pathways, including pathways involved in energy metabolism, amino acid biosynthesis and metabolism, Wnt signaling pathway, Huntington's disease, HIF-1 signaling pathway, cGMP–PKG signaling pathway, dilated cardiomyopathy, and adrenergic signaling in cardiomyocytes. These findings revealed that bone marrow of T. canis-infected dogs exhibits distinct lncRNA and mRNA expression patterns compared to healthy control dogs. Our data provide novel insights into T. canis interaction with the definitive host and shed light on the significance of the non-coding portion of the dog genome in the pathogenesis of toxocariasis.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qing Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Min-Hua Hu
- National Canine Laboratory Animal Resource Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd, Guangzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Yang ZJ, Wang BY, Wang TT, Wang FF, Guo YX, Hua RX, Shang HW, Lu X, Xu JD. Functions of Dendritic Cells and Its Association with Intestinal Diseases. Cells 2021; 10:cells10030583. [PMID: 33800865 PMCID: PMC7999753 DOI: 10.3390/cells10030583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), serve as the sentinel cells of the immune system and are responsible for presenting antigen information. Moreover, the role of DCs derived from monocytes (moDCs) in the development of inflammation has been emphasized. Several studies have shown that the function of DCs can be influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD) and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this review, we summarized the physiological functions of DCs in the intestinal micro-environment, their regulatory relationship with intestinal microorganisms and their regulatory mechanism in intestinal diseases.
Collapse
Affiliation(s)
- Ze-Jun Yang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Bo-Ya Wang
- Undergraduate Student of 2018 Eight Years Program of Clinical Medicine, Peking University Health Science Center, Beijing 100081, China;
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Fei-Fei Wang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Yue-Xin Guo
- Oral Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China;
| | - Rong-Xuan Hua
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Hong-Wei Shang
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Xin Lu
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
- Correspondence:
| |
Collapse
|
14
|
Lalle G, Twardowski J, Grinberg-Bleyer Y. NF-κB in Cancer Immunity: Friend or Foe? Cells 2021; 10:355. [PMID: 33572260 PMCID: PMC7914614 DOI: 10.3390/cells10020355] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of immunotherapies has definitely proven the tight relationship between malignant and immune cells, its impact on cancer outcome and its therapeutic potential. In this context, it is undoubtedly critical to decipher the transcriptional regulation of these complex interactions. Following early observations demonstrating the roles of NF-κB in cancer initiation and progression, a series of studies converge to establish NF-κB as a master regulator of immune responses to cancer. Importantly, NF-κB is a family of transcriptional activators and repressors that can act at different stages of cancer immunity. In this review, we provide an overview of the selective cell-intrinsic contributions of NF-κB to the distinct cell types that compose the tumor immune environment. We also propose a new view of NF-κB targeting drugs as a new class of immunotherapies for cancer.
Collapse
Affiliation(s)
| | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; (G.L.); (J.T.)
| |
Collapse
|
15
|
Sun L, Zhang W, Zhao Y, Wang F, Liu S, Liu L, Zhao L, Lu W, Li M, Xu Y. Dendritic Cells and T Cells, Partners in Atherogenesis and the Translating Road Ahead. Front Immunol 2020; 11:1456. [PMID: 32849502 PMCID: PMC7403484 DOI: 10.3389/fimmu.2020.01456] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic process associated with arterial inflammation, the accumulation of lipids, plaque formation in vessel walls, and thrombosis with late mortal complications such as myocardial infarction and ischemic stroke. Immune and inflammatory responses have significant effects on every phase of atherosclerosis. Increasing evidence has shown that both innate and adaptive “arms” of the immune system play important roles in regulating the progression of atherosclerosis. Accumulating evidence suggests that a unique type of innate immune cell, termed dendritic cells (DCs), play an important role as central instigators, whereas adaptive immune cells, called T lymphocytes, are crucial as active executors of the DC immunity in atherogenesis. These two important immune cell types work in pairs to establish pro-atherogenic or atheroprotective immune responses in vascular tissues. Therefore, understanding the role of DCs and T cells in atherosclerosis is extremely important. Here, in this review, we will present a complete overview, based on existing knowledge of these two cell types in the atherosclerotic microenvironment, and discuss some of the novel means of targeting DCs and T cells as therapeutic tactics for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Shan Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lei Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wei Lu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Minghui Li
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
16
|
Soto JA, Gálvez NMS, Andrade CA, Pacheco GA, Bohmwald K, Berrios RV, Bueno SM, Kalergis AM. The Role of Dendritic Cells During Infections Caused by Highly Prevalent Viruses. Front Immunol 2020; 11:1513. [PMID: 32765522 PMCID: PMC7378533 DOI: 10.3389/fimmu.2020.01513] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of innate immune cells with major relevance in the establishment of an adaptive response, as they are responsible for the activation of lymphocytes. Since their discovery, several reports of their role during infectious diseases have been performed, highlighting their functions and their mechanisms of action. DCs can be categorized into different subsets, and each of these subsets expresses a wide arrange of receptors and molecules that aid them in the clearance of invading pathogens. Interferon (IFN) is a cytokine -a molecule of protein origin- strongly associated with antiviral immune responses. This cytokine is secreted by different cell types and is fundamental in the modulation of both innate and adaptive immune responses against viral infections. Particularly, DCs are one of the most important immune cells that produce IFN, with type I IFNs (α and β) highlighting as the most important, as they are associated with viral clearance. Type I IFN secretion can be induced via different pathways, activated by various components of the virus, such as surface proteins or genetic material. These molecules can trigger the activation of the IFN pathway trough surface receptors, including IFNAR, TLR4, or some intracellular receptors, such as TLR7, TLR9, and TLR3. Here, we discuss various types of dendritic cells found in humans and mice; their contribution to the activation of the antiviral response triggered by the secretion of IFN, through different routes of the induction for this important antiviral cytokine; and as to how DCs are involved in human infections that are considered highly frequent nowadays.
Collapse
Affiliation(s)
- Jorge A Soto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas M S Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V Berrios
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
NFKB2 polymorphisms associate with the risk of developing rheumatoid arthritis and response to TNF inhibitors: Results from the REPAIR consortium. Sci Rep 2020; 10:4316. [PMID: 32152480 PMCID: PMC7062729 DOI: 10.1038/s41598-020-61331-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 02/07/2020] [Indexed: 12/07/2022] Open
Abstract
This study sought to evaluate the association of 28 single nucleotide polymorphisms (SNPs) within NFKB and inflammasome pathway genes with the risk of rheumatoid arthritis (RA) and response to TNF inhibitors (TNFi). We conducted a case-control study in a European population of 1194 RA patients and 1328 healthy controls. The association of potentially interesting markers was validated with data from the DANBIO (695 RA patients and 978 healthy controls) and DREAM (882 RA patients) registries. The meta-analysis of our data with those from the DANBIO registry confirmed that anti-citrullinated protein antibodies (ACPA)-positive subjects carrying the NFKB2rs11574851T allele had a significantly increased risk of developing RA (PMeta_ACPA + = 0.0006) whereas no significant effect was found in ACPA-negative individuals (PMeta_ACPA- = 0.35). An ACPA-stratified haplotype analysis including both cohorts (n = 4210) confirmed that ACPA-positive subjects carrying the NFKB2TT haplotype had an increased risk of RA (OR = 1.39, P = 0.0042) whereas no effect was found in ACPA-negative subjects (OR = 1.04, P = 0.82). The meta-analysis of our data with those from the DANBIO and DREAM registries also revealed a suggestive association of the NFKB2rs1056890 SNP with larger changes in DAS28 (OR = 1.18, P = 0.007). Functional experiments showed that peripheral blood mononuclear cells from carriers of the NFKB2rs1005044C allele (in LD with the rs1056890, r2 = 1.00) showed increased production of IL10 after stimulation with LPS (P = 0.0026). These results provide first evidence of a role of the NFKB2 locus in modulating the risk of RA in an ACPA-dependent manner and suggest its implication in determining the response to TNFi. Additional studies are now warranted to further validate these findings.
Collapse
|
18
|
Saha I, Jaiswal H, Mishra R, Nel HJ, Schreuder J, Kaushik M, Singh Chauhan K, Singh Rawat B, Thomas R, Naik S, Kumar H, Tailor P. RelB suppresses type I Interferon signaling in dendritic cells. Cell Immunol 2020; 349:104043. [PMID: 32044112 DOI: 10.1016/j.cellimm.2020.104043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
Type I Interferon (IFN) signaling plays a critical role in dendritic cell (DC) development and functions. Inhibition of hyper type I IFN signaling promotes cDC2 subtype development. Relb is essential to development of cDC2 subtype and here we analyzed its effect on type I IFN signaling in DCs. We show that Relb suppresses the homeostatic type I IFN signaling in cDC2 cultures. TLR stimulation of FL-DCs led to RelB induction coinciding with fall in IFN signatures; conforming with the observation Relb expression reduced TLR stimulated IFN induction along with decrease in ISGs. Towards understanding mechanism, we show that effects of RelB are mediated by increased levels of IκBα. We demonstrate that RelB dampened antiviral responses by lowering ISG levels and the defect in cDC2 development in RelB null mice can be rescued in Ifnar1-/- background. Overall, we propose a novel role of RelB as a negative regulator of the type I IFN signaling pathway; fine tuning development of cDC2 subtype.
Collapse
Affiliation(s)
- Irene Saha
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | - Hemant Jaiswal
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | - Richa Mishra
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Hendrik J Nel
- The University of Queensland Diamantina Institute, Faculty of Medicine, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Jaring Schreuder
- Molecular Medicine Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Monika Kaushik
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | | | | | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, Faculty of Medicine, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Shalin Naik
- Molecular Medicine Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
19
|
Yang MG, Sun L, Han J, Zheng C, Liang H, Zhu J, Jin T. Biological characteristics of transcription factor RelB in different immune cell types: implications for the treatment of multiple sclerosis. Mol Brain 2019; 12:115. [PMID: 31881915 PMCID: PMC6935142 DOI: 10.1186/s13041-019-0532-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Transcription factor RelB is a member of the nuclear factror-kappa B (NF-κB) family, which plays a crucial role in mediating immune responses. Plenty of studies have demonstrated that RelB actively contributes to lymphoid organ development, dendritic cells maturation and function and T cells differentiation, as well as B cell development and survival. RelB deficiency may cause a variety of immunological disorders in both mice and humans. Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system which involves a board of immune cell populations. Thereby, RelB may exert an impact on MS by modulating the functions of dendritic cells and the differentiation of T cells and B cells. Despite intensive research, the role of RelB in MS and its animal model, experimental autoimmune encephalomyelitis, is still unclear. Herein, we give an overview of the biological characters of RelB, summarize the updated knowledge regarding the role of RelB in different cell types that contribute to MS pathogenesis and discuss the potential RelB-targeted therapeutic implications for MS.
Collapse
Affiliation(s)
- Meng-Ge Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
- Present address: Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Chao Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Hudong Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
20
|
Jeucken KCM, Koning JJ, Mebius RE, Tas SW. The Role of Endothelial Cells and TNF-Receptor Superfamily Members in Lymphoid Organogenesis and Function During Health and Inflammation. Front Immunol 2019; 10:2700. [PMID: 31824495 PMCID: PMC6879661 DOI: 10.3389/fimmu.2019.02700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 01/02/2023] Open
Abstract
Lymph nodes (LNs) are crucial for the orchestration of immune responses. LN reactions depend on interactions between incoming and local immune cells, and stromal cells. To mediate these cellular interactions an organized vascular network within the LN exists. In general, the LN vasculature can be divided into two components: blood vessels, which include the specialized high endothelial venules that recruit lymphocytes from the bloodstream, and lymphatic vessels. Signaling via TNF receptor (R) superfamily (SF) members has been implicated as crucial for the development and function of LNs and the LN vasculature. In recent years the role of cell-specific signaling of TNFRSF members in different endothelial cell (EC) subsets and their roles in development and maintenance of lymphoid organs has been elucidated. Here, we discuss recent insights into EC-specific TNFRSF member signaling and highlight its importance in different EC subsets in LN organogenesis and function during health, and in lymphocyte activation and tertiary lymphoid structure formation during inflammation.
Collapse
Affiliation(s)
- Kim C M Jeucken
- Amsterdam Rheumatology and Immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
22
|
Guermonprez P, Gerber-Ferder Y, Vaivode K, Bourdely P, Helft J. Origin and development of classical dendritic cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:1-54. [PMID: 31759429 DOI: 10.1016/bs.ircmb.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Classical dendritic cells (cDCs) are mononuclear phagocytes of hematopoietic origin specialized in the induction and regulation of adaptive immunity. Initially defined by their unique T cell activation potential, it became quickly apparent that cDCs would be difficult to distinguish from other phagocyte lineages, by solely relying on marker-based approaches. Today, cDCs definition increasingly embed their unique ontogenetic features. A growing consensus defines cDCs on multiple criteria including: (1) dependency on the fms-like tyrosine kinase 3 ligand hematopoietic growth factor, (2) development from the common DC bone marrow progenitor, (3) constitutive expression of the transcription factor ZBTB46 and (4) the ability to induce, after adequate stimulation, the activation of naïve T lymphocytes. cDCs are a heterogeneous cell population that contains two main subsets, named type 1 and type 2 cDCs, arising from divergent ontogenetic pathways and populating multiple lymphoid and non-lymphoid tissues. Here, we present recent knowledge on the cellular and molecular pathways controlling the specification and commitment of cDC subsets from murine and human hematopoietic stem cells.
Collapse
Affiliation(s)
- Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom; Université de Paris, CNRS ERL8252, INSERM1149, Centre for Inflammation Research, Paris, France.
| | - Yohan Gerber-Ferder
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France
| | - Kristine Vaivode
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Pierre Bourdely
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Julie Helft
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France.
| |
Collapse
|
23
|
Lu H, Dai X, Li X, Sun Y, Gao Y, Zhang C. Gal-1 regulates dendritic cells-induced Treg/Th17 balance though NF-κB/RelB-IL-27 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:628. [PMID: 31930029 DOI: 10.21037/atm.2019.11.02] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background This study aimed to investigate the mechanism of galectin (Gal)-1 of regulating Treg/Th17 in pathogenesis of acute rejection after liver transplantation in rat. Methods Mononuclear cells were induced to immature dendritic cells (imDCs), which were transfected with or without NF-κB/RelB. Western Blot was performed to detect the expression of NF-κB/RelB. the expression of CD11c, CD45RB, CD80 and MHC II were detected by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to detect cytokines IL-27 and TGF-β. Lewis and dark agouti (DA) rats were generally anaesthetized by isoflurane inhalation to establish liver transplant models. Results We demonstrate that Gal-1 disturbs maturation of imDCs by downregulating NF-κB/RelB expression, and Gal-1 negatively controls CD4+ proliferation though IL-27 pathway. Conclusions In aggregate, Gal-1 promotes Treg differentiation in CD4+ T cells though NF-κB/RelB-IL-27 pathway. These findings suggest a new therapeutic target to mediate Treg population.
Collapse
Affiliation(s)
- Hao Lu
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xinzheng Dai
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xu Li
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Yu Sun
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Yangjuan Gao
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Chuanyong Zhang
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
24
|
Andreas N, Potthast M, Geiselhöringer AL, Garg G, de Jong R, Riewaldt J, Russkamp D, Riemann M, Girard JP, Blank S, Kretschmer K, Schmidt-Weber C, Korn T, Weih F, Ohnmacht C. RelB Deficiency in Dendritic Cells Protects from Autoimmune Inflammation Due to Spontaneous Accumulation of Tissue T Regulatory Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2602-2613. [PMID: 31578269 DOI: 10.4049/jimmunol.1801530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Foxp3+ regulatory T cells are well-known immune suppressor cells in various settings. In this study, we provide evidence that knockout of the relB gene in dendritic cells (DCs) of C57BL/6 mice results in a spontaneous and systemic accumulation of Foxp3+ T regulatory T cells (Tregs) partially at the expense of microbiota-reactive Tregs. Deletion of nfkb2 does not fully recapitulate this phenotype, indicating that alternative NF-κB activation via the RelB/p52 complex is not solely responsible for Treg accumulation. Deletion of RelB in DCs further results in an impaired oral tolerance induction and a marked type 2 immune bias among accumulated Foxp3+ Tregs reminiscent of a tissue Treg signature. Tissue Tregs were fully functional, expanded independently of IL-33, and led to an almost complete Treg-dependent protection from experimental autoimmune encephalomyelitis. Thus, we provide clear evidence that RelB-dependent pathways regulate the capacity of DCs to quantitatively and qualitatively impact on Treg biology and constitute an attractive target for treatment of autoimmune diseases but may come at risk for reduced immune tolerance in the intestinal tract.
Collapse
Affiliation(s)
- Nico Andreas
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany.,Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Maria Potthast
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anna-Lena Geiselhöringer
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Garima Garg
- Klinikum Rechts der Isar, Neurologische Klinik, Technische Universität München, 81675 Munich, Germany
| | - Renske de Jong
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julia Riewaldt
- Molecular and Cellular Immunology/Immune Regulation, German Research Foundation - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technical University Dresden, 01307 Dresden, Germany
| | - Dennis Russkamp
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marc Riemann
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structural, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Simon Blank
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, German Research Foundation - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technical University Dresden, 01307 Dresden, Germany
| | - Carsten Schmidt-Weber
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany.,German Center for Lung Disease, 35392 Giessen, Germany; and
| | - Thomas Korn
- Klinikum Rechts der Isar, Neurologische Klinik, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Falk Weih
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Caspar Ohnmacht
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| |
Collapse
|
25
|
Schultze JL, Mass E, Schlitzer A. Emerging Principles in Myelopoiesis at Homeostasis and during Infection and Inflammation. Immunity 2019; 50:288-301. [PMID: 30784577 DOI: 10.1016/j.immuni.2019.01.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
Abstract
Myelopoiesis ensures the steady state of the myeloid cell compartment. Technological advances in fate mapping and genetic engineering, as well as the advent of single cell RNA-sequencing, have highlighted the heterogeneity of the hematopoietic system and revealed new concepts in myeloid cell ontogeny. These technologies are also shedding light on mechanisms of myelopoiesis at homeostasis and at different phases of infection and inflammation, illustrating important feedback loops between affected tissues and the bone marrow. We review these findings here and revisit principles in myelopoiesis in light of the evolving understanding of myeloid cell ontogeny and heterogeneity. We argue for the importance of system-wide evaluation of changes in myelopoiesis and discuss how even after the resolution of inflammation, long-lasting alterations in myelopoiesis may play a role in innate immune memory or trained immunity.
Collapse
Affiliation(s)
- Joachim L Schultze
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany; Genomics & Immunoregulation, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| | - Elvira Mass
- Developmental Biology of the Innate Immune System, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| | - Andreas Schlitzer
- Myeloid Cell Biology, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
26
|
Chrisikos TT, Zhou Y, Slone N, Babcock R, Watowich SS, Li HS. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Mol Immunol 2019; 110:24-39. [PMID: 29549977 PMCID: PMC6139080 DOI: 10.1016/j.molimm.2018.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/04/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are the principal antigen-presenting cells of the immune system and play key roles in controlling immune tolerance and activation. As such, DCs are chief mediators of tumor immunity. DCs can regulate tolerogenic immune responses that facilitate unchecked tumor growth. Importantly, however, DCs also mediate immune-stimulatory activity that restrains tumor progression. For instance, emerging evidence indicates the cDC1 subset has important functions in delivering tumor antigens to lymph nodes and inducing antigen-specific lymphocyte responses to tumors. Moreover, DCs control specific therapeutic responses in cancer including those resulting from immune checkpoint blockade. DC generation and function is influenced profoundly by cytokines, as well as their intracellular signaling proteins including STAT transcription factors. Regardless, our understanding of DC regulation in the cytokine-rich tumor microenvironment is still developing and must be better defined to advance cancer treatment. Here, we review literature focused on the molecular control of DCs, with a particular emphasis on cytokine- and STAT-mediated DC regulation. In addition, we highlight recent studies that delineate the importance of DCs in anti-tumor immunity and immune therapy, with the overall goal of improving knowledge of tumor-associated factors and intrinsic DC signaling cascades that influence DC function in cancer.
Collapse
Affiliation(s)
- Taylor T Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie Slone
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rachel Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
CD38 Deficiency Downregulates the Onset and Pathogenesis of Collagen-Induced Arthritis through the NF- κB Pathway. J Immunol Res 2019; 2019:7026067. [PMID: 30949517 PMCID: PMC6425382 DOI: 10.1155/2019/7026067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Aim The RelB gene plays an important role in guiding the progression of arthritis. We have previously demonstrated that the expression of the RelB gene is decreased significantly in bone marrow DCs of CD38−/− mice. In this study, we demonstrate that the cluster of the differentiation (CD38) gene could be a potentially therapeutic target for autoimmune arthritis. Method Collagen-induced arthritis (CIA) models were generated with both the wild-type (WT) C57BL/6 and CD38−/− mice. The expression of the RelB gene and maturation of bone marrow-derived dendritic cells (DCs) from the WT and CD38−/− mice were detected. Antigen-specific T cell responses, joint damage, and expression of proinflammatory cytokines were assessed. The effects of the Nuclear Factor Kappa B (NF-κB) transcription factor and its mechanisms were characterized. Results We demonstrated that in CD38−/− mice, the expression of the RelB gene and major histocompatibility complex II (MHC II) was decreased, accompanied with the inhibited T cell reaction in a mixed lymphocyte reaction (MLR) in bone marrow-derived DCs. Compared to the serious degeneration of the cartilage and the enlarged gap of the cavum articular in WT CIA mice, joint pathological changes of the CD38−/− CIA mice revealed marked attenuation, while the joint structures were well preserved. The preserved effects were observed by the inhibition of proinflammatory cytokines and promotion of anti-inflammatory cytokines. Furthermore, decreased phosphorylation of NF-κB was also observed in CD38−/− CIA mice. Conclusion We demonstrate that CD38 could regulate CIA through NF-κB and this regulatory molecule could be a novel target for the treatment of autoimmune inflammatory joint disease.
Collapse
|
28
|
Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants (Basel) 2019; 8:antiox8020035. [PMID: 30764536 PMCID: PMC6407021 DOI: 10.3390/antiox8020035] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination. As the dearth of safe anti-inflammatory therapies is dire in the case of CNS-related disorders, we reviewed the neuroprotective actions of apigenin and other flavonoids. Existing epidemiological and pre-clinical studies present considerable evidence in favor of developing apigenin as a natural alternative therapy against chronic inflammatory conditions.
Collapse
Affiliation(s)
- Rashida Ginwala
- Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | | | |
Collapse
|
29
|
Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol 2019; 9:3176. [PMID: 30719026 PMCID: PMC6348254 DOI: 10.3389/fimmu.2018.03176] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells, uniquely able to induce naïve T cell activation and effector differentiation. They are, likewise, involved in the induction and maintenance of immune tolerance in homeostatic conditions. Their phenotypic and functional heterogeneity points to their great plasticity and ability to modulate, according to their microenvironment, the acquired immune response and, at the same time, makes their precise classification complex and frequently subject to reviews and improvement. This review will present general aspects of the DC physiology and classification and will address their potential and actual uses in the management of human disease, more specifically cancer, as therapeutic and monitoring tools. New combination treatments with the participation of DC will be also discussed.
Collapse
Affiliation(s)
- Thiago A Patente
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana P Pinho
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline A Oliveira
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela C M Evangelista
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patrícia C Bergami-Santos
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José A M Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Discipline of Molecular Medicine, Department of Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Guindi C, Cloutier A, Gaudreau S, Zerif E, McDonald PP, Tatsiy O, Asselin C, Dupuis G, Gris D, Amrani AA. Role of the p38 MAPK/C/EBPβ Pathway in the Regulation of Phenotype and IL-10 and IL-12 Production by Tolerogenic Bone Marrow-Derived Dendritic Cells. Cells 2018; 7:cells7120256. [PMID: 30544623 PMCID: PMC6316502 DOI: 10.3390/cells7120256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
Dendritic cells (DCs) play a major role in innate and adaptive immunity and self-immune tolerance. Immunogenic versus tolerogenic DC functions are dictated by their levels of costimulatory molecules and their cytokine expression profile. The transcription factor C/EBPβ regulates the expression of several inflammatory genes in many cell types including macrophages. However, little is known regarding the role of C/EBPβ in tolerogenic versus immunogenic DCs functions. We have previously reported that bone marrow-derived DCs generated with GM-CSF (GM/DCs) acquire the signature of semi-mature tolerogenic IL-10-producing DCs as opposed to immunogenic DCs generated with GM-CSF and IL-4 (IL-4/DCs). Here, we show that tolerogenic GM/DCs exhibit higher levels of phosphorylation and enhanced DNA binding activity of C/EBPβ and CREB than immunogenic IL-4/DCs. We also show that the p38 MAPK/CREB axis and GSK3 play an important role in regulating C/EBPβ phosphorylation and DNA binding activity. Inhibition of p38 MAPK in GM/DCs resulted in a drastic decrease of C/EBPβ and CREB DNA binding activities, a reduction of their IL-10 production and an increase of their IL-12p70 production, a characteristic of immunogenic IL-4/DCs. We also present evidence that GSK3 inhibition in GM/DCs reduced C/EBPβ DNA binding activity and increased expression of costimulatory molecules in GM/DCs and their production of IL-10. Analysis of GM/DCs of C/EBPβ-/- mice showed that C/EBPβ was essential to maintain the semimature phenotype and the production of IL-10 as well as low CD4⁺ T cell proliferation. Our results highlight the importance of the p38MAPK-C/EBPβ pathway in regulating phenotype and function of tolerogenic GM/DCs.
Collapse
Affiliation(s)
- Chantal Guindi
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Alexandre Cloutier
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Simon Gaudreau
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Echarki Zerif
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Patrick P McDonald
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Olga Tatsiy
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Claude Asselin
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Gilles Dupuis
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - And Abdelaziz Amrani
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
31
|
Development, Diversity, and Function of Dendritic Cells in Mouse and Human. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028613. [PMID: 28963110 PMCID: PMC6211386 DOI: 10.1101/cshperspect.a028613] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study of murine dendritic cell (DC) development has been integral to the identification of specialized DC subsets that have unique requirements for their form and function. Advances in the field have also provided a framework for the identification of human DC counterparts, which appear to have conserved mechanisms of development and function. Multiple transcription factors are expressed in unique combinations that direct the development of classical DCs (cDCs), which include two major subsets known as cDC1s and cDC2s, and plasmacytoid DCs (pDCs). pDCs are potent producers of type I interferons and thus these cells are implicated in immune responses that depend on this cytokine. Mouse models deficient in the cDC1 lineage have revealed their importance in directing immune responses to intracellular bacteria, viruses, and cancer through the cross-presentation of cell-associated antigen. Models of transcription factor deficiency have been used to identify subsets of cDC2 that are required for T helper (Th)2 and Th17 responses to certain pathogens; however, no single factor is known to be absolutely required for the development of the complete cDC2 lineage. In this review, we will discuss the current state of knowledge of mouse and human DC development and function and highlight areas in the field that remain unresolved.
Collapse
|
32
|
Schlitzer A, Zhang W, Song M, Ma X. Recent advances in understanding dendritic cell development, classification, and phenotype. F1000Res 2018; 7. [PMID: 30345015 PMCID: PMC6173131 DOI: 10.12688/f1000research.14793.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) play an essential role in the induction of adaptive immune responses against infectious agents and in the generation of tolerance to self-antigens. In this mini-review, we summarize new evidence suggesting that the tissue of residence significantly shapes the last developmental steps of DCs into locally adapted cellular entities, enabling them to perform tissue-specific tasks while maintaining the core DC properties. We also discuss recent advances that have highlighted DCs’ rather complex phenotypic and functional heterogeneity in the tumor microenvironment, based on their physical characteristics, such as activation status, maturity, and polarization, illustrating a key role for DCs in the induction of anti-tumor immunity.
Collapse
Affiliation(s)
| | - Wei Zhang
- Shanghai Institute of Cancer Research, Shanghai, China
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.,Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang XF, Wang H. Immune cell subset differentiation and tissue inflammation. J Hematol Oncol 2018; 11:97. [PMID: 30064449 PMCID: PMC6069866 DOI: 10.1186/s13045-018-0637-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Immune cells were traditionally considered as major pro-inflammatory contributors. Recent advances in molecular immunology prove that immune cell lineages are composed of different subsets capable of a vast array of specialized functions. These immune cell subsets share distinct duties in regulating innate and adaptive immune functions and contribute to both immune activation and immune suppression responses in peripheral tissue. Here, we summarized current understanding of the different subsets of major immune cells, including T cells, B cells, dendritic cells, monocytes, and macrophages. We highlighted molecular characterization, frequency, and tissue distribution of these immune cell subsets in human and mice. In addition, we described specific cytokine production, molecular signaling, biological functions, and tissue population changes of these immune cell subsets in both cardiovascular diseases and cancers. Finally, we presented a working model of the differentiation of inflammatory mononuclear cells, their interaction with endothelial cells, and their contribution to tissue inflammation. In summary, this review offers an updated and comprehensive guideline for immune cell development and subset differentiation, including subset characterization, signaling, modulation, and disease associations. We propose that immune cell subset differentiation and its complex interaction within the internal biological milieu compose a “pathophysiological network,” an interactive cross-talking complex, which plays a critical role in the development of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Pu Fang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Dai
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Lauren Cole
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Javier Andres Camacho
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Yuling Zhang
- Cardiovascular Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jingfeng Wang
- Cardiovascular Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Nair PM, Starkey MR, Haw TJ, Ruscher R, Liu G, Maradana MR, Thomas R, O'Sullivan BJ, Hansbro PM. RelB-Deficient Dendritic Cells Promote the Development of Spontaneous Allergic Airway Inflammation. Am J Respir Cell Mol Biol 2018; 58:352-365. [PMID: 28960101 DOI: 10.1165/rcmb.2017-0242oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RelB is a member of the NF-κB family, which is essential for dendritic cell (DC) function and maturation. However, the contribution of RelB to the development of allergic airway inflammation (AAI) is unknown. Here, we identify a pivotal role for RelB in the development of spontaneous AAI that is independent of exogenous allergen exposure. We assessed AAI in two strains of RelB-deficient (RelB-/-) mice: one with a targeted deletion and one expressing a major histocompatibility complex transgene. To determine the importance of RelB in DCs, RelB-sufficient DCs (RelB+/+ or RelB-/-) were adoptively transferred into RelB-/- mice. Both strains had increased pulmonary inflammation compared with their respective wild-type (RelB+/+) and heterozygous (RelB+/-) controls. RelB-/- mice also had increased inflammatory cell influx into the airways, levels of chemokines (CCL2/3/4/5/11/17 and CXCL9/10/13) and T-helper cell type 2-associated cytokines (IL-4/5) in lung tissues, serum IgE, and airway remodeling (mucus-secreting cell numbers, collagen deposition, and epithelial thickening). Transfer of RelB+/- CD11c+ DCs into RelB-/- mice decreased pulmonary inflammation, with reductions in lung chemokines, T-helper cell type 2-associated cytokines (IL-4/5/13/25/33 and thymic stromal lymphopoietin), serum IgE, type 2 innate lymphoid cells, myeloid DCs, γδ T cells, lung Vβ13+ T cells, mucus-secreting cells, airway collagen deposition, and epithelial thickening. These data indicate that RelB deficiency may be a key pathway underlying AAI, and that DC-encoded RelB is sufficient to restore control of this inflammation.
Collapse
Affiliation(s)
- Prema M Nair
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Malcolm R Starkey
- 1 Priority Research Centre for Healthy Lungs and.,3 Priority Research Centre GrowUpWell, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt Jhong Haw
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Roland Ruscher
- 4 Department of Laboratory Medicine and Pathology, and.,5 Center for Immunology, University of Minnesota, Minneapolis, Minnesota; and.,6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Gang Liu
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Muralidhara R Maradana
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Ranjeny Thomas
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Brendan J O'Sullivan
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Philip M Hansbro
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
35
|
Andreas N, Riemann M, Castro CN, Groth M, Koliesnik I, Engelmann C, Sparwasser T, Kamradt T, Haenold R, Weih F. A new RelB-dependent CD117 + CD172a + murine DC subset preferentially induces Th2 differentiation and supports airway hyperresponses in vivo. Eur J Immunol 2018; 48:923-936. [PMID: 29485182 DOI: 10.1002/eji.201747332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/10/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
Abstract
The NF-κB transcription factor subunit RelB is important for the full activation of conventional dendritic cells (cDCs) during T-cell-dependent immune responses. Although the number of splenic DCs is greatly reduced in RelBnull mice, the cause and consequences of this deficiency are currently unknown. To circumvent the impact of the pleiotropic defects in RelBnull mice we used a reporter model for RelB expression (RelBKatushka mice) and conditionally deleted RelB in DCs (RelBCD11c-Cre mice). Thereby, we can show here that RelB is essential for the differentiation of a CD117+ CD172a+ cDC subpopulation that highly expresses RelB. Surprisingly, these DCs depend on p50 for their development and are negatively regulated by a constitutive p52 activation in absence of p100. The absence of p52/p100 had no influence on the homeostasis of CD117+ CD172a+ cDCs. RelB-dependent CD117+ CD172a+ DCs strongly induce the production of the type 2 cytokines IL-4 and IL-13, as well as GM-CSF from naïve Th cells. Consequently, mice lacking RelB in cDCs show an attenuated bronchial hyperresponsiveness with reduced eosinophil infiltration. Taken together, we have identified a new splenic RelB-dependent CD117+ CD172a+ cDC population that preferentially induces Th2 responses.
Collapse
Affiliation(s)
- Nico Andreas
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Marc Riemann
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Carla N Castro
- Institute of Infection Immunology/TWINCORE Centre for Experimental and Clinical Infection Research GmbH, Hannover, Germany
| | - Marco Groth
- High-Throughput Sequencing (HTS) Core Facility, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ievgen Koliesnik
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Christian Engelmann
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology/TWINCORE Centre for Experimental and Clinical Infection Research GmbH, Hannover, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Ronny Haenold
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Falk Weih
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| |
Collapse
|
36
|
Vendelova E, Ashour D, Blank P, Erhard F, Saliba AE, Kalinke U, Lutz MB. Tolerogenic Transcriptional Signatures of Steady-State and Pathogen-Induced Dendritic Cells. Front Immunol 2018. [PMID: 29541071 PMCID: PMC5835767 DOI: 10.3389/fimmu.2018.00333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host’s T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens.
Collapse
Affiliation(s)
- Emilia Vendelova
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Diyaaeldin Ashour
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Patrick Blank
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Sander J, Schmidt SV, Cirovic B, McGovern N, Papantonopoulou O, Hardt AL, Aschenbrenner AC, Kreer C, Quast T, Xu AM, Schmidleithner LM, Theis H, Thi Huong LD, Sumatoh HRB, Lauterbach MAR, Schulte-Schrepping J, Günther P, Xue J, Baßler K, Ulas T, Klee K, Katzmarski N, Herresthal S, Krebs W, Martin B, Latz E, Händler K, Kraut M, Kolanus W, Beyer M, Falk CS, Wiegmann B, Burgdorf S, Melosh NA, Newell EW, Ginhoux F, Schlitzer A, Schultze JL. Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2. Immunity 2017; 47:1051-1066.e12. [PMID: 29262348 PMCID: PMC5772172 DOI: 10.1016/j.immuni.2017.11.024] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
Human in vitro generated monocyte-derived dendritic cells (moDCs) and macrophages are used clinically, e.g., to induce immunity against cancer. However, their physiological counterparts, ontogeny, transcriptional regulation, and heterogeneity remains largely unknown, hampering their clinical use. High-dimensional techniques were used to elucidate transcriptional, phenotypic, and functional differences between human in vivo and in vitro generated mononuclear phagocytes to facilitate their full potential in the clinic. We demonstrate that monocytes differentiated by macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF) resembled in vivo inflammatory macrophages, while moDCs resembled in vivo inflammatory DCs. Moreover, differentiated monocytes presented with profound transcriptomic, phenotypic, and functional differences. Monocytes integrated GM-CSF and IL-4 stimulation combinatorically and temporally, resulting in a mode- and time-dependent differentiation relying on NCOR2. Finally, moDCs are phenotypically heterogeneous and therefore necessitate the use of high-dimensional phenotyping to open new possibilities for better clinical tailoring of these cellular therapies. In vitro monocyte cultures model in vivo inflammatory dendritic cells and macrophages Monocyte-derived dendritic cells integrate interleukin-4 signaling time dependently NCOR2 controls differentiation of in vitro generated monocyte-derived dendritic cells In vitro generated monocyte-derived cells are phenotypically heterogeneous
Collapse
Affiliation(s)
- Jil Sander
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Susanne V Schmidt
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Branko Cirovic
- Myeloid Cell Biology, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Naomi McGovern
- Agency for Science, Technology and Research (A(∗)STAR), Singapore Immunology Network (SIgN), 138648 Singapore, Singapore; Department of Pathology and Center for Trophoblast Research, University of Cambridge, CB2 1QP Cambridge, UK
| | | | - Anna-Lena Hardt
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Christoph Kreer
- Cellular Immunology, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Thomas Quast
- Molecular Immunology & Cell Biology, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Alexander M Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lisa M Schmidleithner
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Heidi Theis
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Lan Do Thi Huong
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Hermi Rizal Bin Sumatoh
- Agency for Science, Technology and Research (A(∗)STAR), Singapore Immunology Network (SIgN), 138648 Singapore, Singapore
| | - Mario A R Lauterbach
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | | | - Patrick Günther
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Jia Xue
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Kevin Baßler
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Thomas Ulas
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Kathrin Klee
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Natalie Katzmarski
- Myeloid Cell Biology, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Stefanie Herresthal
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Wolfgang Krebs
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Bianca Martin
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany; Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Kristian Händler
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Michael Kraut
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Waldemar Kolanus
- Molecular Immunology & Cell Biology, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany; Molecular Immunology, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Sven Burgdorf
- Cellular Immunology, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Evan W Newell
- Agency for Science, Technology and Research (A(∗)STAR), Singapore Immunology Network (SIgN), 138648 Singapore, Singapore
| | - Florent Ginhoux
- Agency for Science, Technology and Research (A(∗)STAR), Singapore Immunology Network (SIgN), 138648 Singapore, Singapore
| | - Andreas Schlitzer
- Myeloid Cell Biology, LIMES-Institute, University of Bonn, 53115 Bonn, Germany; Agency for Science, Technology and Research (A(∗)STAR), Singapore Immunology Network (SIgN), 138648 Singapore, Singapore.
| | - Joachim L Schultze
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics (PRECISE) at the German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
38
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
39
|
Abstract
Dendritic cells (DCs) play critical roles in activating innate immune cells and initiating adaptive immune responses. The functions of DCs were originally obscured by their overlap with other mononuclear phagocytes, but new mouse models have allowed for the selective ablation of subsets of DCs and have helped to identify their non-redundant roles in the immune system. These tools have elucidated the functions of DCs in host defense against pathogens, autoimmunity, and cancer. This review will describe the mouse models generated to interrogate the role of DCs and will discuss how their use has progressively clarified our understanding of the unique functions of DC subsets.
Collapse
Affiliation(s)
- Vivek Durai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
Vroman H, Hendriks RW, Kool M. Dendritic Cell Subsets in Asthma: Impaired Tolerance or Exaggerated Inflammation? Front Immunol 2017; 8:941. [PMID: 28848549 PMCID: PMC5552666 DOI: 10.3389/fimmu.2017.00941] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Asthma is a prevalent chronic heterogeneous inflammatory disease of the airways, leading to reversible airway obstruction, in which various inflammatory responses can be observed. Mild to moderate asthma patients often present with a Th2-mediated eosinophilic inflammation whereas in severe asthma patients, a Th17-associated neutrophilic or combined Th2 and Th17-mediated eosinophilic/neutrophilic inflammation is observed. The differentiation of these effector Th2 and Th17-cells is induced by allergen-exposed dendritic cells (DCs) that migrate toward the lung draining lymph node. The DC lineage comprises conventional DCs (cDCs) and plasmacytoid DCs (pDCs), of which the cDC lineage consists of type 1 cDCs (cDC1s) and cDC2s. During inflammation, also monocytes can differentiate into so-called monocyte-derived DCs (moDCs). These DC subsets differ both in ontogeny, localization, and in their functional properties. New identification tools and the availability of transgenic mice targeting specific DC subsets enable the investigation of how these different DC subsets contribute to or suppress asthma pathogenesis. In this review, we will discuss mechanisms used by different DC subsets to elicit or hamper the pathogenesis of both Th2-mediated eosinophilic asthma and more severe Th17-mediated neutrophilic inflammation.
Collapse
Affiliation(s)
- Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
41
|
Riemann M, Andreas N, Fedoseeva M, Meier E, Weih D, Freytag H, Schmidt-Ullrich R, Klein U, Wang ZQ, Weih F. Central immune tolerance depends on crosstalk between the classical and alternative NF-κB pathways in medullary thymic epithelial cells. J Autoimmun 2017; 81:56-67. [DOI: 10.1016/j.jaut.2017.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
|
42
|
Wu H, Lo Y, Chan A, Law KS, Mok MY. Rel B-modified dendritic cells possess tolerogenic phenotype and functions on lupus splenic lymphocytes in vitro. Immunology 2017; 149:48-61. [PMID: 27278094 PMCID: PMC4981611 DOI: 10.1111/imm.12628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 04/18/2016] [Accepted: 05/28/2016] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by high morbidity and mortality and its treatment remains challenging. Dendritic cells (DCs) have been shown to participate in the initiation and perpetuation of lupus pathogenesis and the DCs that can induce tolerogenicity appear as potential cell‐based therapy in this condition. In this study, we examined the in vitro tolerogenic properties of bone‐marrow derived DCs (BMDCs) in the murine lupus setting. We used lentiviral transduction of RelB‐silencing short hairpin RNA to modify the expression of RelB, a key transcription factor regulating DC maturation, in BMDCs from MRL/MpJ mice. Tolerogenic properties of RelB‐modified DCs were compared with scrambled control (SC) ‐modified DCs. RelB expression was found to be significantly reduced in RelB‐modified DCs derived from MRL/MpJ mice, wild‐type of the same genetic background as MRL/lpr lupus‐prone mice. These MRL/MpJ RelB‐modified DCs displayed semi‐mature phenotype with expression of lower levels of co‐stimulatory molecules compared with SC‐modified DCs. RelB‐modified DCs were found to be low producers of interleukin‐12p70 (IL‐12p70) and could induce hyporesponsiveness of splenic T cells from MRL/MpJ and MRL/lpr mice. Furthermore, they down‐regulated interferon‐γ expression and induced IL‐10‐producing T cells in MRL/MpJ splenocytes, and attenuated interferon‐γ and IL‐17 expression in MRL/lpr splenic CD4+ lymphocytes. Splenocytes primed by RelB‐modified DCs demonstrated antigen‐specific suppressive effects on allogeneic splenocytes. In conclusion, RelB‐silencing in DCs generates DCs of tolerogenic properties with immunomodulatory function and appears as potential option of cell‐targeted therapy.
Collapse
Affiliation(s)
- Haijing Wu
- Division of Rheumatology & Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yi Lo
- Division of Rheumatology & Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong
| | - Albert Chan
- Division of Rheumatology & Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong
| | - Ka Sin Law
- Division of Rheumatology & Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong
| | - Mo Yin Mok
- Division of Rheumatology & Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
43
|
Briseño CG, Gargaro M, Durai V, Davidson JT, Theisen DJ, Anderson DA, Novack DV, Murphy TL, Murphy KM. Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proc Natl Acad Sci U S A 2017; 114:3957-3962. [PMID: 28348230 PMCID: PMC5393217 DOI: 10.1073/pnas.1619863114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RelB is an NF-κB family transcription factor activated in the noncanonical pathway downstream of NF-κB-inducing kinase (NIK) and TNF receptor family members including lymphotoxin-β receptor (LTβR) and CD40. Early analysis suggested that RelB is required for classical dendritic cell (cDC) development based on a severe reduction of cDCs in Relb-/- mice associated with profound myeloid expansion and perturbations in B and T cells. Subsequent analysis of radiation chimeras generated from wild-type and Relb-/- bone marrow showed that RelB exerts cell-extrinsic actions on some lineages, but it has remained unclear whether the impact of RelB on cDC development is cell-intrinsic or -extrinsic. Here, we reevaluated the role of RelB in cDC and myeloid development using a series of radiation chimeras. We found that there was no cell-intrinsic requirement for RelB for development of most cDC subsets, except for the Notch2- and LTβR-dependent subset of splenic CD4+ cDC2s. These results identify a relatively restricted role of RelB in DC development. Moreover, the myeloid expansion in Relb-/- mice resulted from hematopoietic-extrinsic actions of RelB. This result suggests that there is an unrecognized but critical role for RelB within the nonhematopoietic niche that controls normal myelopoiesis.
Collapse
Affiliation(s)
- Carlos G Briseño
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Marco Gargaro
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Vivek Durai
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Jesse T Davidson
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Derek J Theisen
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - David A Anderson
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Deborah V Novack
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Theresa L Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Kenneth M Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110;
- Howard Hughes Medical Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
44
|
Tang M, Diao J, Cattral MS. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cell Mol Life Sci 2017; 74:761-776. [PMID: 27491428 PMCID: PMC11107728 DOI: 10.1007/s00018-016-2317-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DC) play a pivotal role in the tumor microenvironment (TME). As the primary antigen-presenting cells in the tumor, DCs modulate anti-tumor responses by regulating the magnitude and duration of infiltrating cytotoxic T lymphocyte responses. Unfortunately, due to the immunosuppressive nature of the TME, as well as the inherent plasticity of DCs, tumor DCs are often dysfunctional, a phenomenon that contributes to immune evasion. Recent progresses in our understanding of tumor DC biology have revealed potential molecular targets that allow us to improve tumor DC immunogenicity and cancer immunotherapy. Here, we review the molecular mechanisms that drive tumor DC dysfunction. We discuss recent advances in our understanding of tumor DC ontogeny, tumor DC subset heterogeneity, and factors in the tumor microenvironment that affect DC recruitment, differentiation, and function. Finally, we describe potential strategies to optimize tumor DC function in the context of cancer therapy.
Collapse
Affiliation(s)
- Michael Tang
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada
| | - Jun Diao
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada
| | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
45
|
Laffont S, Seillet C, Guéry JC. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function. Front Immunol 2017; 8:108. [PMID: 28239379 PMCID: PMC5300975 DOI: 10.3389/fimmu.2017.00108] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/23/2017] [Indexed: 12/23/2022] Open
Abstract
Autoimmunity, infectious diseases and cancer affect women and men differently. Because they tend to develop more vigorous adaptive immune responses than men, women are less susceptible to some infectious diseases but also at higher risk of autoimmunity. The regulation of immune responses by sex-dependent factors probably involves several non-redundant mechanisms. A privileged area of study, however, concerns the role of sex steroid hormones in the biology of innate immune cells, especially dendritic cells (DCs). In recent years, our understanding of the lineage origin of DC populations has expanded, and the lineage-committing transcription factors shaping peripheral DC subsets have been identified. Both progenitor cells and mature DC subsets express estrogen receptors (ERs), which are ligand-dependent transcription factors. This suggests that estrogens may contribute to the reported sex differences in immunity by regulating DC biology. Here, we review the recent literature and highlight evidence that estrogen-dependent activation of ERα regulates the development or the functional responses of particular DC subsets. The in vitro model of GM-CSF-induced DC differentiation shows that CD11c+ CD11bint Ly6cneg cells depend on ERα activation by estrogen for their development, and for the acquisition of competence to activate naive CD4+ T lymphocytes and mount a robust pro-inflammatory cytokine response to CD40 stimulation. In this model, estrogen signaling in conjunction with GM-CSF is necessary to promote early interferon regulatory factor (Irf)-4 expression in macrophage-DC progenitors and their subsequent differentiation into IRF-4hi CD11c+ CD11bint Ly6cneg cells, closely related to the cDC2 subset. The Flt3L-induced model of DC differentiation in turn shows that ERα signaling promotes the development of conventional DC (cDC) and plasmacytoid DC (pDC) with higher capability of pro-inflammatory cytokine production in response to TLR stimulation. Likewise, cell-intrinsic ER signaling positively regulates the TLR-driven production of type I interferons (IFNs) in mouse pDCs in vivo. This effect of estrogens likely contributes to the greater proficiency of women's pDCs than men's as regards the production of type I IFNs elicited by TLR7 ligands. In summary, evidence is emerging in support of the notion that estrogen signaling regulates important aspects of cDC and pDC development and/or effector functions, in both mice and humans.
Collapse
Affiliation(s)
- Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS , Toulouse , France
| | - Cyril Seillet
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS , Toulouse , France
| |
Collapse
|
46
|
Pandey VK, Amin PJ, Shankar BS. COX-2 inhibitor prevents tumor induced down regulation of classical DC lineage specific transcription factor Zbtb46 resulting in immunocompetent DC and decreased tumor burden. Immunol Lett 2017; 184:23-33. [PMID: 28161224 DOI: 10.1016/j.imlet.2017.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/26/2022]
Abstract
The interaction between the immune and tumor cells in the microenvironment is an important factor deciding the progression of cancer. Though many of the soluble mediators in the microenvironment that mediate immunosuppression are known, the mechanism by which the tumor affects the distal progenitors is not known. We report that the tumor derived prostanoids down regulated classical dendritic cells DC (cDC) lineage specific transcription factor Zbtb46 in the progenitor cells which affects its differentiation. Prostanoids also induced ERK/CREB/IL-10 signaling pathway in DC that is more important for maturation of DC. This was observed under in vitro as well as in vivo conditions leading to phenotypic and functional impairment of DC. siRNA mediated knockdown of Zbtb46 and not exogenous IL-10 mimicked the effects of tumor conditioned medium (TCM) on suppression of maturation markers. Treatment of tumor cells with COX-2 inhibitor NS-398 averted TCM induced phenotypic impairment of DC in vitro. Treatment of tumor bearing mice with NS-398 prevented tumor induced down regulation of Zbtb46 resulting in immunocompetent DC which in turn led to a decrease in tumor burden. The effects of NS-398 was indeed through immunomodulation was corroborated by no such response in SCID mice. Our study provides novel insight into the distal regulation of progenitor cells by tumor and the importance of Zbtb46 expression in anti-tumor immunity. These results identify Zbtb46 expression as an indicator of immunocompetent DC in tumor and also highlights that COX-2 inhibitors could be useful in cancer immunotherapy.
Collapse
Affiliation(s)
- Vipul K Pandey
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Prayag J Amin
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
47
|
Pakalniškytė D, Schraml BU. Tissue-Specific Diversity and Functions of Conventional Dendritic Cells. Adv Immunol 2017; 134:89-135. [DOI: 10.1016/bs.ai.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Heidkamp GF, Sander J, Lehmann CHK, Heger L, Eissing N, Baranska A, Lu hr JJ, Hoffmann A, Reimer KC, Lux A, So der S, Hartmann A, Zenk J, Ulas T, McGovern N, Alexiou C, Spriewald B, Mackensen A, Schuler G, Schauf B, Forster A, Repp R, Fasching PA, Purbojo A, Cesnjevar R, Ullrich E, Ginhoux F, Schlitzer A, Nimmerjahn F, Schultze JL, Dudziak D. Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci Immunol 2016; 1:1/6/eaai7677. [DOI: 10.1126/sciimmunol.aai7677] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/14/2016] [Indexed: 11/02/2022]
|
49
|
Devi KSP, Anandasabapathy N. The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Semin Immunopathol 2016; 39:137-152. [PMID: 27888331 DOI: 10.1007/s00281-016-0602-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are specialized immune sentinels that play key role in maintaining immune homeostasis by efficiently regulating the delicate balance between protective immunity and tolerance to self. Although DCs respond to maturation signals present in the surrounding milieu, multiple layers of suppression also co-exist that reduce the infringement of tolerance against self-antigens. These tolerance inducing properties of DCs are governed by their origin and a range of other factors including distribution, cytokines, growth factors, and transcriptional programing, that collectively impart suppressive functions to these cells. DCs directing tolerance secrete anti-inflammatory cytokines and induce naïve T cells or B cells to differentiate into regulatory T cells (Tregs) or B cells. In this review, we provide a detailed outlook on the molecular mechanisms that induce functional specialization to govern central or peripheral tolerance. The tolerance-inducing nature of DCs can be exploited to overcome autoimmunity and rejection in graft transplantation.
Collapse
Affiliation(s)
- K Sanjana P Devi
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Scheenstra MR, De Cuyper IM, Branco-Madeira F, de Bleser P, Kool M, Meinders M, Hoogenboezem M, Mul E, Wolkers MC, Salerno F, Nota B, Saeys Y, Klarenbeek S, van IJcken WFJ, Hammad H, Philipsen S, van den Berg TK, Kuijpers TW, Lambrecht BN, Gutiérrez L. GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid. THE JOURNAL OF IMMUNOLOGY 2016; 197:4312-4324. [DOI: 10.4049/jimmunol.1600103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023]
|