1
|
Aydın Ö, Apaydın Yıldırım B. Determination of systemic inflammation response index (SIRI), systemic inflammatory index (SII), HMGB1, Mx1 and TNF levels in neonatal calf diarrhea with systemic inflammatory response syndrome. Vet Immunol Immunopathol 2024; 275:110815. [PMID: 39153273 DOI: 10.1016/j.vetimm.2024.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The objective of this study was to examine the values of MX dynamin-like GTPase 1 (Mx1), high mobility group box-1 (HMGB1), systemic inflammatory response index (SIRI), systemic inflammatory index (SII), tumor necrosis factor (TNF), and other hematological indices in calves with systemic inflammatory response syndrome (SIRS). The study material was divided into two groups: the SIRS group (comprising 13 calves) and the control group (comprising 10 calves). The independent samples t-test and Mann-Whitney U test were employed for normally distributed and non-normally distributed data, respectively. The relationship between the two groups was determined using Spearman correlation coefficient analysis. Significant differences were identified between the SIRS group and the control group with regard to white blood cell (WBC; P < 0.05), neutrophil (NEU; P < 0.01), and neutrophil-to-lymphocyte ratio (NLR; P < 0.001) values, in addition to SIRI (P < 0.05), SII (P < 0.01) values. Furthermore, HMGB1 (P < 0.001), Mx1 (P < 0.05), and TNF values (P < 0.001) demonstrated notable disparities between the two groups. As a result of this study, it was concluded that there were significant increases in inflammatory hematological indices, as well as in the levels of HMGB1, Mx1, and TNF, in calves with SIRS.
Collapse
Affiliation(s)
- Ömer Aydın
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Betül Apaydın Yıldırım
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
2
|
Finotti G, Pietronigro E, Balanzin C, Lonardi S, Constantin G, Chao MP, Tecchio C, Vermi W, Cassatella MA. slan+ Monocytes Kill Cancer Cells Coated in Therapeutic Antibody by Trogoptosis. Cancer Immunol Res 2023; 11:1538-1552. [PMID: 37695535 DOI: 10.1158/2326-6066.cir-23-0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/04/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Monocytes positive for 6-Sulfo LacNAc (slan) are a major subset of nonclassical CD14dimCD16+ monocytes in humans. We have shown that slan+ cells infiltrate lymphomas and elicit an antibody-dependent cellular cytotoxicity (ADCC) of neoplastic B cells mediated by the anti-CD20 therapeutic rituximab. Herein, by performing blocking experiments and flow cytometry analyses, as well as confocal microscopy and live-cell imaging assays, we extended the findings to other humanized antibodies and deciphered the underlying effector mechanism(s). Specifically, we show that, after coculture with target cells coated with anti-CD20 or anti-CD38, slan+ monocytes mediate trogocytosis, a cell-cell contact dependent, antibody-mediated process that triggers an active, mechanic disruption of target cell membranes. Trogocytosis by slan+ monocytes leads to a necrotic type of target cell death known as trogoptosis, which, once initiated, was partially sustained by endogenous TNFα. We also found that slan+ monocytes, unlike natural killer (NK) cells, mediate a direct ADCC with all types of anti-CD47 analyzed, and this was independent of their IgG isotype. The latter findings unveil a potentially relevant contribution by slan+ monocytes in mediating the therapeutic efficacy of anti-CD47 in clinical practice, which could be particularly important when NK cells are exhausted or deficient in number. Overall, our observations shed new light on the cytotoxic mechanisms exerted by slan+ monocytes in antibody-dependent tumor cell targeting and advance our knowledge on how to expand our therapeutic arsenal for cancer therapy.
Collapse
Affiliation(s)
- Giulia Finotti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Enrica Pietronigro
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Camillo Balanzin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Lonardi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Mark P Chao
- Division of Hematology, Stanford University, Stanford, California
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Tamassia N, Bianchetto-Aguilera F, Gasperini S, Grimaldi A, Montaldo C, Calzetti F, Gardiman E, Signoretto I, Castellucci M, Barnaba V, Tripodi M, Cassatella MA. The slan antigen identifies the prototypical non-classical CD16 +-monocytes in human blood. Front Immunol 2023; 14:1287656. [PMID: 37965335 PMCID: PMC10641684 DOI: 10.3389/fimmu.2023.1287656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Peripheral monocytes in humans are conventionally divided into classical (CL, CD14++CD16-), intermediate (INT, CD14++CD16+) and non-classical (NC, CD14dim/-CD16++) cells, based on their expression levels of CD14 and CD16. A major fraction of the NC-monocytes has been shown to express the 6-sulfo LacNAc (slan) antigen, but whether these slan+/NC-monocytes represent the prototypical non-classical monocytes or whether they are simply a sub-fraction with identical features as the remainder of NC monocytes is still unclear. Methods We analyzed transcriptome (by bulk and single cell RNA-seq), proteome, cell surface markers and production of discrete cytokines by peripheral slan+/NC- and slan-/NC-monocytes, in comparison to total NC-, CL- and INT- monocytes. Results By bulk RNA-seq and proteomic analysis, we found that slan+/NC-monocytes express higher levels of genes and proteins specific of NC-monocytes than slan-/NC-monocytes do. Unsupervised clustering of scRNA-seq data generated one cluster of NC- and one of INT-monocytes, where all slan+/NC-monocytes were allocated to the NC-monocyte cluster, while slan-/NC-monocytes were found, in part (13.4%), within the INT-monocyte cluster. In addition, total NC- and slan-/NC-monocytes, but not slan+/NC-monocytes, were found by both bulk RNA-seq and scRNA-seq to contain a small percentage of natural killer cells. Conclusion In addition to comparatively characterize total NC-, slan-/NC- and slan+/NC-monocyte transcriptomes and proteomes, our data prove that slan+/NC-, but not slan-/NC-, monocytes are more representative of prototypical NC-monocytes.
Collapse
Affiliation(s)
- Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Alessio Grimaldi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Federica Calzetti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Ilaria Signoretto
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Vincenzo Barnaba
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
4
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|
5
|
Preuß SL, Oehrl S, Zhang H, Döbel T, Engel U, Young JL, Spatz JP, Schäkel K. Immune complex-induced haptokinesis in human non-classical monocytes. Front Immunol 2023; 14:1078241. [PMID: 36936904 PMCID: PMC10014541 DOI: 10.3389/fimmu.2023.1078241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Formation and deposition of immune complexes (ICs) are hallmarks of various autoimmune diseases. Detection of ICs by IC receptors on leukocytes induces downstream signaling and shapes the local immune response. In many cases the pathological relevance of ICs is not well understood. We here show that ICs induce a distinct migratory response, i.e. haptokinesis in 6-sulfo LacNAc+ monocytes (slanMo) and in non-classical monocytes (ncMo) but not in intermediate (imMo) and classical monocytes (cMo). Using live imaging combined with automated cell tracking, we show that the main features of IC-dependent haptokinesis are elongation of the cell body, actin polarization at the leading edge, and highly directional migration. We find that CD16-dependent signaling mediates haptokinesis as blocking of CD16 or blocking SYK-signaling inhibited the migratory response. The activity of the metalloproteinase ADAM17 also modifies IC-dependent haptokinesis, likely at least partially via cleavage of CD16. Furthermore, using matrices with defined ligand spacing, we show that ligand density impacts the magnitude of the migratory response. Taken together, we have demonstrated that ICs induce a specific migratory response in ncMo but not in other monocyte subsets. Therefore, our work lays the groundwork for the investigation of IC-dependent haptokinesis in ncMo as a potential pathomechanism in IC-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Sophie L. Preuß
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Oehrl
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hao Zhang
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center, Heidelberg University, Heidelberg, Germany
| | - Jennifer L. Young
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Biomedical Engineering Department, National University of Singapore, Singapore, Singapore
| | - Joachim P. Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Biophysical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
- *Correspondence: Knut Schäkel,
| |
Collapse
|
6
|
Clinical Significance of Tie-2-Expressing Monocytes/Macrophages and Angiopoietins in the Progression of Ovarian Cancer-State-of-the-Art. Cells 2022; 11:cells11233851. [PMID: 36497114 PMCID: PMC9737633 DOI: 10.3390/cells11233851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tumour growth and metastasis are specific to advanced stages of epithelial ovarian cancer (EOC). Tumour angiogenesis is an essential part of these processes. It is responsible for providing tumours with nutrients, metabolites, and cytokines and facilitates tumour and immune cell relocation. Destabilised vasculature, a distinctive feature of tumours, is also responsible for compromising drug delivery into the bulk. Angiogenesis is a complex process that largely depends on how the tumour microenvironment (TME) is composed and how a specific organ is formed. There are contrary reports on whether Tie-2-expressing monocytes/macrophages (TEMs) reported as the proangiogenic population of monocytes have any impact on tumour development. The aim of this paper is to summarise knowledge about ovarian-cancer-specific angiogenesis and the unique role of Tie-2-expressing monocytes/macrophages in this process. The significance of this cell subpopulation for the pathophysiology of EOC remains to be investigated.
Collapse
|
7
|
Jachiet V, Ricard L, Hirsch P, Malard F, Pascal L, Beyne-Rauzy O, Peterlin P, Maria ATJ, Vey N, D'Aveni M, Gourin MP, Dimicoli-Salazar S, Banos A, Wickenhauser S, Terriou L, De Renzis B, Durot E, Natarajan-Ame S, Vekhoff A, Voillat L, Park S, Vinit J, Dieval C, Dellal A, Grobost V, Willems L, Rossignol J, Solary E, Kosmider O, Dulphy N, Zhao LP, Adès L, Fenaux P, Fain O, Mohty M, Gaugler B, Mekinian A. Reduced peripheral blood dendritic cell and monocyte subsets in MDS patients with systemic inflammatory or dysimmune diseases. Clin Exp Med 2022:10.1007/s10238-022-00866-5. [PMID: 35953763 DOI: 10.1007/s10238-022-00866-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Systemic inflammatory and autoimmune diseases (SIADs) occur in 10-20% of patients with myelodysplastic syndrome (MDS). Recently identified VEXAS (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) syndrome, associated with somatic mutations in UBA1 (Ubiquitin-like modifier-activating enzyme 1), encompasses a range of severe inflammatory conditions along with hematological abnormalities, including MDS. The pathophysiological mechanisms underlying the association between MDS and SIADs remain largely unknown, especially the roles of different myeloid immune cell subsets. The aim of this study was to quantitatively evaluate peripheral blood myeloid immune cells (dendritic cells (DC) and monocytes) by flow cytometry in MDS patients with associated SIAD (n = 14, most often including relapsing polychondritis or neutrophilic dermatoses) and to compare their distribution in MDS patients without SIAD (n = 23) and healthy controls (n = 7). Most MDS and MDS/SIAD patients had low-risk MDS. Eight of 14 (57%) MDS/SIAD patients carried UBA1 somatic mutations, defining VEXAS syndrome.Compared with MDS patients, most DC and monocyte subsets were significantly decreased in MDS/SIAD patients, especially in MDS patients with VEXAS syndrome. Our study provides the first overview of the peripheral blood immune myeloid cell distribution in MDS patients with associated SIADs and raises several hypotheses: possible redistribution to inflammation sites, increased apoptosis, or impaired development in the bone marrow.
Collapse
Affiliation(s)
- Vincent Jachiet
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France. .,Service de Médecine Interne et Inflammation-Immunopathology-Biotherapy Department (DMU i3), Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France.
| | - Laure Ricard
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Pierre Hirsch
- Service d'Hématologie Biologique, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Laurent Pascal
- Service d'Oncologie et d'Hématologie, Hôpital Saint Vincent de Paul, Université Catholique de Lille, Lille, France
| | - Odile Beyne-Rauzy
- Service de Médecine Interne, CHU de Toulouse, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Pierre Peterlin
- Service d'Hématologie Clinique, CHU de Nantes, Nantes, France
| | - Alexandre Thibault Jacques Maria
- Service de Médecine Interne, maladies multi-organiques de l'adulte, Hôpital Saint-Éloi, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Norbert Vey
- Institut Paoli-Calmettes, CRCM, Aix-Marseille Univ, Inserm, CNRS, Marseille, France
| | - Maud D'Aveni
- Service d'Hématologie et de Médecine Interne, Hôpital Brabois, CHRU Nancy, Nancy, France
| | - Marie-Pierre Gourin
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Dupuytren, CHU de Limoges, Limoges, France
| | | | - Anne Banos
- Service d'Hématologie Clinique, Centre Hospitalier Côte Basque, Bayonne, France
| | - Stefan Wickenhauser
- Service d'Hématologie Clinique, Hôpital Universitaire Carémeau, Institut de Cancérologie du Gard, Nîmes, France
| | - Louis Terriou
- Service de Médecine Interne et Immunologie Clinique, CHU Lille, 59000, Lille, France
| | - Benoit De Renzis
- Service d'Hématologie Clinique, Hôpital Estaing, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Eric Durot
- Service d'Hématologie Clinique, Hôpital Robert Debré, CHU de Reims, Reims, France
| | - Shanti Natarajan-Ame
- Service d'Hématologie, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, Strasbourg, France
| | - Anne Vekhoff
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Laurent Voillat
- Service d'Hématologie et Oncologie, CH William Morey, Chalon sur Saône, France
| | - Sophie Park
- Service d'Hématologie, Université Grenoble Alpes Et CHU Grenoble Alpes, Grenoble, France
| | - Julien Vinit
- Service de Médecine Interne, CH William Morey, Chalon sur Saône, France
| | - Céline Dieval
- Service de Médecine Interne et Hématologie, GHLA, CH de Rochefort, Rochefort, France
| | - Azeddine Dellal
- Service de Rhumatologie, Hôpital Montfermeil, Montfermeil, France
| | - Vincent Grobost
- Service de Médecine Interne, CHU Estaing, Clermont-Ferrand, France
| | - Lise Willems
- Service d'Hématologie, AP-HP, Hôpital Cochin, Paris, France
| | - Julien Rossignol
- Service d'Hématologie Adultes, AP-HP, Hôpital Necker-Enfants Malades, 75015, Paris, France
| | - Eric Solary
- Département d'Hématologie, Institut Gustave Roussy, Villejuif, France
| | - Olivier Kosmider
- Service d'Hématologie Biologique, Université de Paris, AP-HP, Hôpital Cochin, 75014, Paris, France
| | - Nicolas Dulphy
- Institut de Recherche Saint Louis, Hôpital Saint Louis, Université de Paris, INSERM U1160, Paris, France
| | - Lin Pierre Zhao
- Département d'Hématologie, Université de Paris, AP-HP, Hôpital Saint Louis, 75010, Paris, France
| | - Lionel Adès
- Département d'Hématologie, Université de Paris, AP-HP, Hôpital Saint Louis, 75010, Paris, France
| | - Pierre Fenaux
- Département d'Hématologie, Université de Paris, AP-HP, Hôpital Saint Louis, 75010, Paris, France
| | - Olivier Fain
- Service de Médecine Interne et Inflammation-Immunopathology-Biotherapy Department (DMU i3), Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Arsène Mekinian
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service de Médecine Interne et Inflammation-Immunopathology-Biotherapy Department (DMU i3), Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | | |
Collapse
|
8
|
Gil-Manso S, Miguens Blanco I, López-Esteban R, Carbonell D, López-Fernández LA, West L, Correa-Rocha R, Pion M. Comprehensive Flow Cytometry Profiling of the Immune System in COVID-19 Convalescent Individuals. Front Immunol 2022; 12:793142. [PMID: 35069575 PMCID: PMC8771913 DOI: 10.3389/fimmu.2021.793142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 has infected more than 200 million people worldwide, with more than 4 million associated deaths. Although more than 80% of infected people develop asymptomatic or mild COVID-19, SARS-CoV-2 can induce a profound dysregulation of the immune system. Therefore, it is important to investigate whether clinically recovered individuals present immune sequelae. The potential presence of a long-term dysregulation of the immune system could constitute a risk factor for re-infection and the development of other pathologies. Here, we performed a deep analysis of the immune system in 35 COVID-19 recovered individuals previously infected with SARS-CoV-2 compared to 16 healthy donors, by flow cytometry. Samples from COVID-19 individuals were analysed from 12 days to 305 days post-infection. We observed that, 10 months post-infection, recovered COVID-19 patients presented alterations in the values of some T-cell, B-cell, and innate cell subsets compared to healthy controls. Moreover, we found in recovered COVID-19 individuals increased levels of circulating follicular helper type 1 (cTfh1), plasmablast/plasma cells, and follicular dendritic cells (foDC), which could indicate that the Tfh-B-foDC axis might be functional to produce specific immunoglobulins 10 months post-infection. The presence of this axis and the immune system alterations could constitute prognosis markers and could play an important role in potential re-infection or the presence of long-term symptoms in some individuals.
Collapse
Affiliation(s)
- Sergio Gil-Manso
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| | - Iria Miguens Blanco
- Department of Emergency, Gregorio Marañón University General Hospital, Madrid, Spain
| | - Rocío López-Esteban
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| | - Diego Carbonell
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
- Department of Hematology, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| | - Luis Andrés López-Fernández
- Service of Pharmacy, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| | - Lori West
- Department of Pediatrics, Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology & Immunology, Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, University of Alberta, Edmonton, AB, Canada
- Department of Laboratory Medicine & Pathology, Alberta Transplant Institute and Canadian Donation and Transplantation Research Program, University of Alberta, Edmonton, AB, Canada
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón University General Hospital, Madrid, Spain
| |
Collapse
|
9
|
Sun L, Konstantinidi A, Ye Z, Nason R, Zhang Y, Büll C, Kahl-Knutson B, Hansen L, Leffler H, Vakhrushev SY, Yang Z, Clausen H, Narimatsu Y. Installation of O-glycan sulfation capacities in human HEK293 cells for display of sulfated mucins. J Biol Chem 2021; 298:101382. [PMID: 34954141 PMCID: PMC8789585 DOI: 10.1016/j.jbc.2021.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
The human genome contains at least 35 genes that encode Golgi sulfotransferases that function in the secretory pathway, where they are involved in decorating glycosaminoglycans, glycolipids, and glycoproteins with sulfate groups. Although a number of important interactions by proteins such as selectins, galectins, and sialic acid–binding immunoglobulin-like lectins are thought to mainly rely on sulfated O-glycans, our insight into the sulfotransferases that modify these glycoproteins, and in particular GalNAc-type O-glycoproteins, is limited. Moreover, sulfated mucins appear to accumulate in respiratory diseases, arthritis, and cancer. To explore further the genetic and biosynthetic regulation of sulfated O-glycans, here we expanded a cell-based glycan array in the human embryonic kidney 293 (HEK293) cell line with sulfation capacities. We stably engineered O-glycan sulfation capacities in HEK293 cells by site-directed knockin of sulfotransferase genes in combination with knockout of genes to eliminate endogenous O-glycan branching (core2 synthase gene GCNT1) and/or sialylation capacities in order to provide simplified substrates (core1 Galβ1–3GalNAcα1–O-Ser/Thr) for the introduced sulfotransferases. Expression of the galactose 3-O-sulfotransferase 2 in HEK293 cells resulted in sulfation of core1 and core2 O-glycans, whereas expression of galactose 3-O-sulfotransferase 4 resulted in sulfation of core1 only. We used the engineered cell library to dissect the binding specificity of galectin-4 and confirmed binding to the 3-O-sulfo-core1 O-glycan. This is a first step toward expanding the emerging cell-based glycan arrays with the important sulfation modification for display and production of glycoconjugates with sulfated O-glycans.
Collapse
Affiliation(s)
- Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Medical College of Yan'an University, Yan'an University, Yan'an, 716000, Shaanxi Province, China
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yuecheng Zhang
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Jan Waldenströms gata 25, 205 06 Malmö, Sweden
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Barbro Kahl-Knutson
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan28, 221 84 Lund, Sweden
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan28, 221 84 Lund, Sweden
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
10
|
Schmiedel BJ, Rocha J, Gonzalez-Colin C, Bhattacharyya S, Madrigal A, Ottensmeier CH, Ay F, Chandra V, Vijayanand P. COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types. Nat Commun 2021; 12:6760. [PMID: 34799557 PMCID: PMC8604964 DOI: 10.1038/s41467-021-26888-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
Common genetic polymorphisms associated with COVID-19 illness can be utilized for discovering molecular pathways and cell types driving disease pathogenesis. Given the importance of immune cells in the pathogenesis of COVID-19 illness, here we assessed the effects of COVID-19-risk variants on gene expression in a wide range of immune cell types. Transcriptome-wide association study and colocalization analysis revealed putative causal genes and the specific immune cell types where gene expression is most influenced by COVID-19-risk variants. Notable examples include OAS1 in non-classical monocytes, DTX1 in B cells, IL10RB in NK cells, CXCR6 in follicular helper T cells, CCR9 in regulatory T cells and ARL17A in TH2 cells. By analysis of transposase accessible chromatin and H3K27ac-based chromatin-interaction maps of immune cell types, we prioritized potentially functional COVID-19-risk variants. Our study highlights the potential of COVID-19 genetic risk variants to impact the function of diverse immune cell types and influence severe disease manifestations.
Collapse
Affiliation(s)
| | - Job Rocha
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Cristian Gonzalez-Colin
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | | | | | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Liverpool Head and Neck Centre, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Vivek Chandra
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Liverpool Head and Neck Centre, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Acute HIV-1 and SARS-CoV-2 Infections Share Slan+ Monocyte Depletion-Evidence from an Hyperacute HIV-1 Case Report. Viruses 2021; 13:v13091805. [PMID: 34578386 PMCID: PMC8473247 DOI: 10.3390/v13091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Monocytes are key modulators in acute viral infections, determining both inflammation and development of specific B- and T-cell responses. Recently, these cells were shown to be associated to different SARS-CoV-2 infection outcome. However, their role in acute HIV-1 infection remains unclear. We had the opportunity to evaluate the mononuclear cell compartment in an early hyper-acute HIV-1 patient in comparison with an untreated chronic HIV-1 and a cohort of SARS-CoV-2 infected patients, by high dimensional flow cytometry using an unsupervised approach. A distinct polarization of the monocyte phenotype was observed in the two viral infections, with maintenance of pro-inflammatory M1-like profile in HIV-1, in contrast to the M2-like immunosuppressive shift in SARS-CoV-2. Noticeably, both acute infections had reduced CD14low/−CD16+ non-classical monocytes, with depletion of the population expressing Slan (6-sulfo LacNac), which is thought to contribute to immune surveillance through pro-inflammatory properties. This depletion indicates a potential role of these cells in acute viral infection, which has not previously been explored. The inflammatory state accompanied by the depletion of Slan+ monocytes may provide new insights on the critical events that determine the rate of viral set-point in acute HIV-1 infection and subsequent impact on transmission and reservoir establishment.
Collapse
|
12
|
Zingaropoli MA, Nijhawan P, Carraro A, Pasculli P, Zuccalà P, Perri V, Marocco R, Kertusha B, Siccardi G, Del Borgo C, Curtolo A, Ajassa C, Iannetta M, Ciardi MR, Mastroianni CM, Lichtner M. Increased sCD163 and sCD14 Plasmatic Levels and Depletion of Peripheral Blood Pro-Inflammatory Monocytes, Myeloid and Plasmacytoid Dendritic Cells in Patients With Severe COVID-19 Pneumonia. Front Immunol 2021; 12:627548. [PMID: 33777012 PMCID: PMC7993197 DOI: 10.3389/fimmu.2021.627548] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background Emerging evidence argues that monocytes, circulating innate immune cells, are principal players in COVID-19 pneumonia. The study aimed to investigate the role of soluble (s)CD163 and sCD14 plasmatic levels in predicting disease severity and characterize peripheral blood monocytes and dendritic cells (DCs), in patients with COVID-19 pneumonia (COVID-19 subjects). Methods On admission, in COVID-19 subjects sCD163 and sCD14 plasmatic levels, and peripheral blood monocyte and DC subsets were compared to healthy donors (HDs). According to clinical outcome, COVID-19 subjects were divided into ARDS and non-ARDS groups. Results Compared to HDs, COVID-19 subjects showed higher sCD163 (p<0.0001) and sCD14 (p<0.0001) plasmatic levels. We observed higher sCD163 plasmatic levels in the ARDS group compared to the non-ARDS one (p=0.002). The cut-off for sCD163 plasmatic level greater than 2032 ng/ml was predictive of disease severity (AUC: 0.6786, p=0.0022; sensitivity 56.7% [CI: 44.1–68.4] specificity 73.8% [CI: 58.9–84.7]). Positive correlation between plasmatic levels of sCD163, LDH and IL-6 and between plasmatic levels of sCD14, D-dimer and ferritin were found. Compared to HDs, COVID-19 subjects showed lower percentages of non-classical (p=0.0012) and intermediate monocytes (p=0.0447), slanDCs (p<0.0001), myeloid DCs (mDCs, p<0.0001), and plasmacytoid DCs (pDCs, p=0.0014). Compared to the non-ARDS group, the ARDS group showed lower percentages of non-classical monocytes (p=0.0006), mDCs (p=0.0346), and pDCs (p=0.0492). Conclusions The increase in sCD163 and sCD14 plasmatic levels, observed on hospital admission in COVID-19 subjects, especially in those who developed ARDS, and the correlations of these monocyte/macrophage activation markers with typical inflammatory markers of COVID-19 pneumonia, underline their potential use to assess the risk of progression of the disease. In an early stage of the disease, the assessment of sCD163 plasmatic levels could have clinical utility in predicting the severity of COVID-19 pneumonia.
Collapse
Affiliation(s)
| | - Parni Nijhawan
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Carraro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paola Zuccalà
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Raffaella Marocco
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Blerta Kertusha
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Guido Siccardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cosmo Del Borgo
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Ambrogio Curtolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Camilla Ajassa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Marco Iannetta
- Department of System Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
13
|
DeRogatis JM, Viramontes KM, Neubert EN, Tinoco R. PSGL-1 Immune Checkpoint Inhibition for CD4 + T Cell Cancer Immunotherapy. Front Immunol 2021; 12:636238. [PMID: 33708224 PMCID: PMC7940186 DOI: 10.3389/fimmu.2021.636238] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
Immune checkpoint inhibition targeting T cells has shown tremendous promise in the treatment of many cancer types and are now standard therapies for patients. While standard therapies have focused on PD-1 and CTLA-4 blockade, additional immune checkpoints have shown promise in promoting anti-tumor immunity. PSGL-1, primarily known for its role in cellular migration, has also been shown to function as a negative regulator of CD4+ T cells in numerous disease settings including cancer. PSGL-1 is highly expressed on T cells and can engage numerous ligands that impact signaling pathways, which may modulate CD4+ T cell differentiation and function. PSGL-1 engagement in the tumor microenvironment may promote CD4+ T cell exhaustion pathways that favor tumor growth. Here we highlight that blocking the PSGL-1 pathway on CD4+ T cells may represent a new cancer therapy approach to eradicate tumors.
Collapse
Affiliation(s)
| | | | | | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
14
|
Van Leeuwen-Kerkhoff N, Westers TM, Poddighe PJ, Povoleri GAM, Timms JA, Kordasti S, De Gruijl TD, Van de Loosdrecht AA. Reduced frequencies and functional impairment of dendritic cell subsets and non-classical monocytes in myelodysplastic syndromes. Haematologica 2021; 107:655-667. [PMID: 33567812 PMCID: PMC8883570 DOI: 10.3324/haematol.2020.268136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 11/09/2022] Open
Abstract
In myelodysplastic syndromes (MDS) the immune system is involved in pathogenesis as well as in disease progression. Dendritic cells (DC) are key players of the immune system by serving as regulators of immune responses. Their function has been scarcely studied in MDS and most of the reported studies didn't investigate naturally occurring DC subsets. Therefore, we here examined the frequency and function of DC subsets and slan+ non-classical monocytes in various MDS risk groups. Frequencies of DC as well as of slan+ monocytes were decreased in MDS bone marrow (BM) compared to normal bone marrow (NBM) samples. Transcriptional profiling revealed down-regulation of transcripts related to pro-inflammatory pathways in MDS-derived cells as compared to NBM. Additionally, their capacity to induce T cell proliferation was impaired. Multidimensional mass cytometry showed that whereas healthy donor-derived slan+ monocytes supported Th1/Th17/Treg differentiation/expansion their MDS-derived counterparts also mediated substantial Th2 expansion. Our findings point to a role for an impaired ability of DC subsets to adequately respond to cellular stress and DNA damage in the immune escape and progression of MDS. As such, it paves the way toward potential novel immunotherapeutic interventions.
Collapse
Affiliation(s)
- Nathalie Van Leeuwen-Kerkhoff
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Theresia M Westers
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Pino J Poddighe
- Department of Clinical Genetics, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam
| | - Giovanni A M Povoleri
- Department Inflammation Biology, King's College London, Centre for Inflammation Biology and Cancer Immunology, London
| | - Jessica A Timms
- Systems Cancer Immunology Lab, Comprehensive Cancer Center, King's College London, London
| | - Shahram Kordasti
- Systems Cancer Immunology Lab, Comprehensive Cancer Center, King's College London, London, United Kingdom; Dipartimento Scienze Cliniche e Molecolari, UNIVPM, Ancona
| | - Tanja D De Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Arjan A Van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam.
| |
Collapse
|
15
|
Funck F, Pahl J, Kyjacova L, Freund L, Oehrl S, Gräbe G, Pezer S, Hassel JC, Sleeman J, Cerwenka A, Schäkel K. Human innate immune cell crosstalk induces melanoma cell senescence. Oncoimmunology 2020; 9:1808424. [PMID: 32939325 PMCID: PMC7470184 DOI: 10.1080/2162402x.2020.1808424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mononuclear phagocytes and NK cells constitute the first line of innate immune defense. How these cells interact and join forces against cancer is incompletely understood. Here, we observed an early accumulation of slan+ (6-sulfo LacNAc) non-classical monocytes (slanMo) in stage I melanoma, which was followed by an increase in NK cell numbers in stage III. Accordingly, culture supernatants of slanMo induced migration of primary human NK cells in vitro via the chemotactic cytokine IL-8 (CXCL8), suggesting a role for slanMo in NK cell recruitment into cancer tissues. High levels of TNF-α and IFN-γ were produced in co-cultures of TLR-ligand stimulated slanMo and NK cells, whereas much lower levels were contained in cultures of slanMo and NK cells alone. Moreover, TNF-α and IFN-γ concentrations in slanMo/NK cell co-cultures exceeded those in CD14+ monocyte/NK cell and slanMo/T cell co-cultures. Importantly, TNF-α and IFN-γ that was produced in TLR-ligand stimulated slanMo/NK cell co-cultures induced senescence in different melanoma cell lines, as indicated by reduced melanoma cell proliferation, increased senescence-associated β-galactosidase expression, p21 upregulation, and induction of a senescence-associated secretory phenotype (SASP). Taken together, we identified a role for slanMo and NK cells in a collaborative innate immune defense against melanoma by generating a tumor senescence-inducing microenvironment. We conclude that enhancing the synergistic innate immune crosstalk of slanMo and NK cells could improve current immunotherapeutic approaches in melanoma.
Collapse
Affiliation(s)
- Felix Funck
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.,Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Pahl
- Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lenka Kyjacova
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lukas Freund
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Oehrl
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Galina Gräbe
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Silvia Pezer
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.,, National Center for Tumor Diseases, Heidelberg, Germany
| | - Jonathan Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience MI3, Mannheim, Germany
| | - Adelheid Cerwenka
- Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience MI3, Mannheim, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Iannetta M, Isnard S, Manuzak J, Guillerme JB, Notin M, Bailly K, Andrieu M, Amraoui S, Vimeux L, Figueiredo S, Charmeteau-de Muylder B, Vaton L, Hatton EX, Samri A, Autran B, Thiébaut R, Chaghil N, Glohi D, Charpentier C, Descamps D, Brun-Vézinet F, Matheron S, Cheynier R, Hosmalin A. Conventional Dendritic Cells and Slan + Monocytes During HIV-2 Infection. Front Immunol 2020; 11:1658. [PMID: 32903610 PMCID: PMC7438582 DOI: 10.3389/fimmu.2020.01658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
HIV-2 infection is characterized by low viremia and slow disease progression as compared to HIV-1 infection. Circulating CD14++CD16+ monocytes were found to accumulate and CD11c+ conventional dendritic cells (cDC) to be depleted in a Portuguese cohort of people living with HIV-2 (PLWHIV-2), compared to blood bank healthy donors (HD). We studied more precisely classical monocytes; CD16+ inflammatory (intermediate, non-classical and slan+ monocytes, known to accumulate during viremic HIV-1 infection); cDC1, important for cross-presentation, and cDC2, both depleted during HIV-1 infection. We analyzed by flow cytometry these PBMC subsets from Paris area residents: 29 asymptomatic, untreated PLWHIV-2 from the IMMUNOVIR-2 study, part of the ANRS-CO5 HIV-2 cohort: 19 long-term non-progressors (LTNP; infection ≥8 years, undetectable viral load, stable CD4 counts≥500/μL; 17 of West-African origin -WA), and 10 non-LTNP (P; progressive infection; 9 WA); and 30 age-and sex-matched controls: 16 blood bank HD with unknown geographical origin, and 10 HD of WA origin (GeoHD). We measured plasma bacterial translocation markers by ELISA. Non-classical monocyte counts were higher in GeoHD than in HD (54 vs. 32 cells/μL, p = 0.0002). Slan+ monocyte counts were twice as high in GeoHD than in HD (WA: 28 vs. 13 cells/μL, p = 0.0002). Thus cell counts were compared only between participants of WA origin. They were similar in LTNP, P and GeoHD, indicating that there were no HIV-2 related differences. cDC counts did not show major differences between the groups. Interestingly, inflammatory monocyte counts correlated with plasma sCD14 and LBP only in PLWHIV-2, especially LTNP, and not in GeoHD. In conclusion, in LTNP PLWHIV-2, inflammatory monocyte counts correlated with LBP or sCD14 plasma levels, indicating a potential innate immune response to subclinical bacterial translocation. As GeoHD had higher inflammatory monocyte counts than HD, our data also show that specific controls are important to refine innate immunity studies.
Collapse
Affiliation(s)
- Marco Iannetta
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Stéphane Isnard
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jennifer Manuzak
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Mathilde Notin
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Karine Bailly
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Muriel Andrieu
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Sonia Amraoui
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Lene Vimeux
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | | | - Laura Vaton
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Etienne X Hatton
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Assia Samri
- Sorbonne Université, Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Brigitte Autran
- Sorbonne Université, Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Rodolphe Thiébaut
- INSERM, Univ. Bordeaux, CIC 1401, UMR 1219, Bordeaux Population Health Research Center, CHU Bordeaux, Bordeaux, France
| | - Nathalie Chaghil
- INSERM, Univ. Bordeaux, CIC 1401, UMR 1219, Bordeaux Population Health Research Center, CHU Bordeaux, Bordeaux, France
| | - David Glohi
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Charlotte Charpentier
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Diane Descamps
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - Sophie Matheron
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France.,INSERM, UMR 1137, IAME (Infection Antimicrobials Modelling Evolution), Université de Paris, Paris, France
| | - Remi Cheynier
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Anne Hosmalin
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
17
|
Mei X, Gu M, Li M. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther 2020. [PMID: 32787930 DOI: 10.1186/s13287‐020‐01857‐7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Paneth cells (PCs) are located at the bottom of small intestinal crypts and play an important role in maintaining the stability of the intestinal tract. Previous studies reported on how PCs shape the intestinal microbiota or the response to the immune system. Recent studies have determined that PCs play an important role in the regulation of the homeostasis of intestinal epithelial cells. PCs can regulate the function and homeostasis of intestinal stem cells through several mechanisms. On the one hand, under pathological conditions, PCs can be dedifferentiated into stem cells to promote the repair of intestinal tissues. On the other hand, PCs can regulate stem cell proliferation by secreting a variety of hormones (such as wnt3a) or metabolic intermediates. In addition, we summarise key signalling pathways that affect PC differentiation and mutual effect with intestinal stem cells. In this review, we introduce the diverse functions of PCs in the intestine.
Collapse
Affiliation(s)
- Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
18
|
Mei X, Gu M, Li M. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther 2020; 11:349. [PMID: 32787930 PMCID: PMC7425583 DOI: 10.1186/s13287-020-01857-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Paneth cells (PCs) are located at the bottom of small intestinal crypts and play an important role in maintaining the stability of the intestinal tract. Previous studies reported on how PCs shape the intestinal microbiota or the response to the immune system. Recent studies have determined that PCs play an important role in the regulation of the homeostasis of intestinal epithelial cells. PCs can regulate the function and homeostasis of intestinal stem cells through several mechanisms. On the one hand, under pathological conditions, PCs can be dedifferentiated into stem cells to promote the repair of intestinal tissues. On the other hand, PCs can regulate stem cell proliferation by secreting a variety of hormones (such as wnt3a) or metabolic intermediates. In addition, we summarise key signalling pathways that affect PC differentiation and mutual effect with intestinal stem cells. In this review, we introduce the diverse functions of PCs in the intestine.
Collapse
Affiliation(s)
- Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
19
|
Uçkay I, Imhof BA, Kressmann B, Lew D, Lipsky BA, Sidibe A. Characterization of Proangiogenic Monocytes from Blood in Patients with Chronic Ischemic Diabetic Foot Ulcers and Controls. Stem Cells Dev 2020; 29:911-918. [PMID: 32423362 DOI: 10.1089/scd.2019.0266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many persons with diabetes mellitus have limb ischemia, which is a major clinical problem. A subset of human monocytes that expresses TIE-2 may enhance neovascularization. We performed 179 phlebotomies on 142 patients (or donors), including 61 patients/donors without diabetes or ischemia (controls), 39 diabetic nonischemic patients (controls), and 42 diabetic patients with severe limb ischemia requiring amputation. We compared these groups for the presence of TIE-2-positive proangiogenic monocytes. The proportion of proangiogenic monocytes in the venous blood (on hospital admission) was significantly increased in diabetic patients without ischemia (9.22% ± 1.19%), compared to controls (6.53% ± 0.58%) or ischemic diabetic patients (5.44% ± 0.56%) (P < 0.05). In this pilot evaluation, we succeeded in extracting potential proangiogenic TIE-2 monocytes from the blood of diabetic patients without ischemia, but less in patients with ischemia. The implications for therapeutic neoangiogenesis require further studies.
Collapse
Affiliation(s)
- Ilker Uçkay
- Service of Infectious Diseases, Department of Specialities in Medicine, University of Geneva, Geneva, Switzerland.,Infectiology, Balgrist University Hospital, Zurich, Switzerland
| | - Beat A Imhof
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Benjamin Kressmann
- Service of Infectious Diseases, Department of Specialities in Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Lew
- Service of Infectious Diseases, Department of Specialities in Medicine, University of Geneva, Geneva, Switzerland
| | - Benjamin A Lipsky
- Service of Infectious Diseases, Department of Specialities in Medicine, University of Geneva, Geneva, Switzerland
| | - Adama Sidibe
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Medical Faculty, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Bianchetto-Aguilera F, Tamassia N, Gasperini S, Calzetti F, Finotti G, Gardiman E, Montioli R, Bresciani D, Vermi W, Cassatella MA. Deciphering the fate of slan + -monocytes in human tonsils by gene expression profiling. FASEB J 2020; 34:9269-9284. [PMID: 32413173 DOI: 10.1096/fj.202000181r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Monocytic cells perform crucial homeostatic and defensive functions. However, their fate and characterization at the transcriptomic level in human tissues are partially understood, often as a consequence of the lack of specific markers allowing their unequivocal identification. The 6-sulfo LacNAc (slan) antigen identifies a subset of non-classical (NC) monocytes in the bloodstream, namely the slan+ -monocytes. In recent studies, we and other groups have reported that, in tonsils, slan marks dendritic cell (DC)-like cells, as defined by morphological, phenotypical, and functional criteria. However, subsequent investigations in lymphomas have uncovered a significant heterogeneity of tumor-infiltrating slan+ -cells, including a macrophage-like state. Based on their emerging role in tissue inflammation and cancer, herein we investigated slan+ -cell fate in tonsils by using a molecular-based approach. Hence, RNA from tonsil slan+ -cells, conventional CD1c+ DCs (cDC2) and CD11b+ CD14+ -macrophages was subjected to gene expression analysis. For comparison, transcriptomes were also obtained from blood cDC2, classical (CL), intermediate (INT), NC, and slan+ -monocytes. Data demonstrate that the main trajectory of human slan+ -monocytes infiltrating the tonsil tissue is toward a macrophage-like population, displaying molecular features distinct from those of tonsil CD11b+ CD14+ -macrophages and cDC2. These findings provide a novel view on the terminal differentiation path of slan+ -monocytes, which is relevant for inflammatory diseases and lymphomas.
Collapse
Affiliation(s)
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Federica Calzetti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Giulia Finotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Riccardo Montioli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Debora Bresciani
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
21
|
Zhang L, Hofer TP, Zawada AM, Rotter B, Krezdorn N, Noessner E, Devaux Y, Heine G, Ziegler-Heitbrock L. Epigenetics in non-classical monocytes support their pro-inflammatory gene expression. Immunobiology 2020; 225:151958. [PMID: 32517883 DOI: 10.1016/j.imbio.2020.151958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/12/2023]
Abstract
Non-classical human monocytes are characterized by high-level expression of cytokines like TNF, but the mechanisms involved are elusive. We have identified miRNAs and CpG-methylation sites that are unique to non-classical monocytes, defined via CD14 and CD16 expression levels. For down-regulated miRNAs that are linked to up-regulated mRNAs the dominant gene ontology term was intracellular signal transduction. This included down-regulated miRNA-20a-5p and miRNA-106b-5p, which both are linked to increased mRNA for the TRIM8 signaling molecule. Methylation analysis revealed 16 hypo-methylated CpG sites upstream of 14 differentially increased mRNAs including 2 sites upstream of TRIM8. Consistent with a positive role in signal transduction, high TRIM8 levels went along with high basal TNF mRNA levels in non-classical monocytes. Since cytokine expression levels in monocytes strongly increase after stimulation with toll-like-receptor ligands, we have analyzed non-classical monocytes (defined via slan expression) after stimulation with lipopolysaccharide (LPS). LPS-stimulated cells continued to have low miRNA-20a and miRNA-106b and high TRIM8 mRNA levels and they showed a 10-fold increase in TNF mRNA. These data suggest that decreased miRNAs and CpG hypo-methylation is linked to enhanced expression of TRIM8 and that this can contribute to the increased TNF levels in non-classical human monocytes.
Collapse
Affiliation(s)
- Lu Zhang
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Thomas P Hofer
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Adam M Zawada
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany
| | | | | | - Elfriede Noessner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Gunnar Heine
- Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany
| | | |
Collapse
|
22
|
Müller-Durovic B, Grählert J, Devine OP, Akbar AN, Hess C. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging (Albany NY) 2020; 11:724-740. [PMID: 30686790 PMCID: PMC6366961 DOI: 10.18632/aging.101774] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
Natural killer cells lacking expression of CD56 (CD56neg NK cells) have been described in chronic HIV and hepatitis C virus infection. Features and functions of CD56neg NK cells in the context of latent infection with CMV and / or EBV with age are not known. In a cohort of healthy donors >60 years of age, we found that co-infection with CMV and EBV drives expansion of CD56neg NK cells. Functionally, CD56neg NK cells displayed reduced cytotoxic capacity and IFN-γ production, a feature that was enhanced with CMV / EBV co-infection. Further, the frequency of CD56neg NK cells correlated with accumulation of end-stage-differentiated T cells and a reduced CD4 / CD8 T cell ratio, reflecting an immune risk profile. CD56neg NK cells had a mature phenotype characterized by low CD57 and KIR expression and lacked characteristics of cell senescence. No changes in their activating NK cell receptor expression, and no upregulation of the negative co-stimulation receptors PD-1 or TIM-3 were observed. In all, our data identify expansion of dysfunctional CD56neg NK cells in CMV+EBV+ elderly individuals suggesting that these cells may function as shape-shifters of cellular immunity and argue for a previously unrecognized role of EBV in mediating immune risk in the elderly.
Collapse
Affiliation(s)
| | - Jasmin Grählert
- University Hospital Basel, Department of Biomedicine, Basel, Switzerland
| | - Oliver P Devine
- Division of Infection and Immunity, University College London, London, UK
| | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, UK
| | - Christoph Hess
- University Hospital Basel, Department of Biomedicine, Basel, Switzerland.,Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS, Kim C, McSkimming C, Taylor AM, Nguyen AT, McNamara CA, Hedrick CC. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arterioscler Thromb Vasc Biol 2019; 39:25-36. [PMID: 30580568 DOI: 10.1161/atvbaha.118.311022] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective- Three distinct human monocyte subsets have been identified based on the surface marker expression of CD14 and CD16. We hypothesized that monocytes were likely more heterogeneous in composition. Approach and Results- We used the high dimensionality of mass cytometry together with the FlowSOM clustering algorithm to accurately identify and define monocyte subsets in blood of healthy human subjects and those with coronary artery disease (CAD). To study the behavior and functionality of the newly defined monocyte subsets, we performed RNA sequencing, transwell migration, and efferocytosis assays. Here, we identify 8 human monocyte subsets based on their surface marker phenotype. We found that 3 of these subsets fall within the CD16+ nonclassical monocyte population and 4 subsets belong to the CD14+ classical monocytes, illustrating significant monocyte heterogeneity in humans. As nonclassical monocytes are important in modulating atherosclerosis in mice, we studied the functions of our 3 newly identified nonclassical monocytes in subjects with CAD. We found a marked expansion of a Slan+CXCR6+ nonclassical monocyte subset in CAD subjects, which was positively correlated with CAD severity. This nonclassical subset can migrate towards CXCL16 and shows an increased efferocytosis capacity, indicating it may play an atheroprotective role. Conclusions- Our data demonstrate that human nonclassical monocytes are a heterogeneous population, existing of several subsets with functional differences. These subsets have changed frequencies in the setting of severe CAD. Understanding how these newly identified subsets modulate CAD will be important for CAD-based therapies that target myeloid cells.
Collapse
Affiliation(s)
- Anouk A J Hamers
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Huy Q Dinh
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Graham D Thomas
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Paola Marcovecchio
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Amy Blatchley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Catherine S Nakao
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Cheryl Kim
- Flow Cytometry Core Facility, La Jolla Institute for Allergy and Immunology, CA (C.K.)
| | - Chantel McSkimming
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Angela M Taylor
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Anh T Nguyen
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| |
Collapse
|
24
|
Rammensee HG, Wiesmüller KH, Chandran PA, Zelba H, Rusch E, Gouttefangeas C, Kowalewski DJ, Di Marco M, Haen SP, Walz JS, Gloria YC, Bödder J, Schertel JM, Tunger A, Müller L, Kießler M, Wehner R, Schmitz M, Jakobi M, Schneiderhan-Marra N, Klein R, Laske K, Artzner K, Backert L, Schuster H, Schwenck J, Weber ANR, Pichler BJ, Kneilling M, la Fougère C, Forchhammer S, Metzler G, Bauer J, Weide B, Schippert W, Stevanović S, Löffler MW. A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J Immunother Cancer 2019; 7:307. [PMID: 31730025 PMCID: PMC6858783 DOI: 10.1186/s40425-019-0796-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We previously showed that the bacterial lipopeptide Pam3Cys-Ser-Ser, meanwhile established as a toll-like receptor (TLR) 1/2 ligand, acts as a strong adjuvant for the induction of virus specific CD8+ T cells in mice, when covalently coupled to a synthetic peptide. CASE PRESENTATION We now designed a new water-soluble synthetic Pam3Cys-derivative, named XS15 and characterized it in vitro by a TLR2 NF-κB luciferase reporter assay. Further, the capacity of XS15 to activate immune cells and stimulate peptide-specific CD8+ T and NK cells by 6-sulfo LacNAc+ monocytes was assessed by flow cytometry as well as cytokine induction using immunoassays. The induction of a functional immune response after vaccination of a volunteer with viral peptides was assessed by ELISpot assay and flow cytometry in peripheral blood cells and infiltrating cells at the vaccination site, as well as by immunohistochemistry and imaging. XS15 induced strong ex vivo CD8+ and TH1 CD4+ responses in a human volunteer upon a single injection of XS15 mixed to uncoupled peptides in a water-in-oil emulsion (Montanide™ ISA51 VG). A granuloma formed locally at the injection site containing highly activated functional CD4+ and CD8+ effector memory T cells. The total number of vaccine peptide-specific functional T cells was experimentally assessed and estimated to be 3.0 × 105 in the granuloma and 20.5 × 106 in peripheral blood. CONCLUSION Thus, in one volunteer we show a granuloma forming by peptides combined with an efficient adjuvant in a water-in-oil-emulsion, inducing antigen specific T cells detectable in circulation and at the vaccination site, after one single vaccination only. The ex vivo T cell responses in peripheral blood were detectable for more than one year and could be strongly boosted by a second vaccination. Hence, XS15 is a promising adjuvant candidate for peptide vaccination, in particular for tumor peptide vaccines in a personalized setting.
Collapse
Affiliation(s)
- Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.
| | | | - P Anoop Chandran
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Henning Zelba
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Elisa Rusch
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Daniel J Kowalewski
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Moreno Di Marco
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Sebastian P Haen
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Yamel Cardona Gloria
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Johanna Bödder
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Jill-Marie Schertel
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Antje Tunger
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Luise Müller
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Maximilian Kießler
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Reinhild Klein
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Karoline Laske
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Kerstin Artzner
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Linus Backert
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Heiko Schuster
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Johannes Schwenck
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tübingen, Tübingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Bernd J Pichler
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany.,Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Christian la Fougère
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tübingen, Tübingen, Germany
| | - Stephan Forchhammer
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Gisela Metzler
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Jürgen Bauer
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Wilfried Schippert
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Markus W Löffler
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany. .,Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Tübingen, Germany. .,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Günther P, Schultze JL. Mind the Map: Technology Shapes the Myeloid Cell Space. Front Immunol 2019; 10:2287. [PMID: 31636632 PMCID: PMC6787770 DOI: 10.3389/fimmu.2019.02287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
The myeloid cell system shows very high plasticity, which is crucial to quickly adapt to changes during an immune response. From the beginning, this high plasticity has made cell type classification within the myeloid cell system difficult. Not surprising, naming schemes have been frequently changed. Recent advancements in multidimensional technologies, including mass cytometry and single-cell RNA sequencing, are challenging our current understanding of cell types, cell subsets, and functional states of cells. Despite the power of these technologies to create new reference maps for the myeloid cell system, it is essential to put these new results into context with previous knowledge that was established over decades. Here we report on earlier attempts of cell type classification in the myeloid cell system, discuss current approaches and their pros and cons, and propose future strategies for cell type classification within the myeloid cell system that can be easily extended to other cell types.
Collapse
Affiliation(s)
- Patrick Günther
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
CD16 + monocytes give rise to CD103 +RALDH2 +TCF4 + dendritic cells with unique transcriptional and immunological features. Blood Adv 2019; 2:2862-2878. [PMID: 30381402 DOI: 10.1182/bloodadvances.2018020123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022] Open
Abstract
Classical CD16- vs intermediate/nonclassical CD16+ monocytes differ in their homing potential and biological functions, but whether they differentiate into dendritic cells (DCs) with distinct contributions to immunity against bacterial/viral pathogens remains poorly investigated. Here, we employed a systems biology approach to identify clinically relevant differences between CD16+ and CD16- monocyte-derived DCs (MDDCs). Although both CD16+ and CD16- MDDCs acquire classical immature/mature DC markers in vitro, genome-wide transcriptional profiling revealed unique molecular signatures for CD16+ MDDCs, including adhesion molecules (ITGAE/CD103), transcription factors (TCF7L2/TCF4), and enzymes (ALDH1A2/RALDH2), whereas CD16- MDDCs exhibit a CDH1/E-cadherin+ phenotype. Of note, lipopolysaccharides (LPS) upregulated distinct transcripts in CD16+ (eg, CCL8, SIGLEC1, MIR4439, SCIN, interleukin [IL]-7R, PLTP, tumor necrosis factor [TNF]) and CD16- MDDCs (eg, MMP10, MMP1, TGM2, IL-1A, TNFRSF11A, lysosomal-associated membrane protein 1, MMP8). Also, unique sets of HIV-modulated genes were identified in the 2 subsets. Further gene set enrichment analysis identified canonical pathways that pointed to "inflammation" as the major feature of CD16+ MDDCs at immature stage and on LPS/HIV exposure. Finally, functional validations and meta-analysis comparing the transcriptome of monocyte and MDDC subsets revealed that CD16+ vs CD16- monocytes preserved their superior ability to produce TNF-α and CCL22, as well as other sets of transcripts (eg, TCF4), during differentiation into DC. These results provide evidence that monocyte subsets are transcriptionally imprinted/programmed with specific differentiation fates, with intermediate/nonclassical CD16+ monocytes being precursors for pro-inflammatory CD103+RALDH2+TCF4+ DCs that may play key roles in mucosal immunity homeostasis/pathogenesis. Thus, alterations in the CD16+ /CD16- monocyte ratios during pathological conditions may dramatically influence the quality of MDDC-mediated immunity.
Collapse
|
27
|
Hofer TP, van de Loosdrecht AA, Stahl-Hennig C, Cassatella MA, Ziegler-Heitbrock L. 6-Sulfo LacNAc (Slan) as a Marker for Non-classical Monocytes. Front Immunol 2019; 10:2052. [PMID: 31572354 PMCID: PMC6753898 DOI: 10.3389/fimmu.2019.02052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Monocytes are subdivided into three subsets, which have different phenotypic and functional characteristics and different roles in inflammation and malignancy. When in man CD14 and CD16 monoclonal antibodies are used to define these subsets, then the distinction of non-classical CD14low and intermediate CD14high monocytes requires setting a gate in what is a gradually changing level of CD14 expression. In the search for an additional marker to better dissect the two subsets we have explored the marker 6-sulfo LacNAc (slan). Slan is a carbohydrate residue originally described to be expressed on the cell surface of a type of dendritic cell in human blood. We elaborate herein that the features of slan+ cells are congruent with the features of CD16+ non-classical monocytes and that slan is a candidate marker for definition of non-classical monocytes. The use of this marker may help in studying the role of non-classical monocytes in health and in diagnosis and monitoring of disease.
Collapse
Affiliation(s)
- Thomas P Hofer
- Immunoanalytics Core Facility and RG Tissue Control of Immunocytes, Helmholtz Centre Munich, Munich, Germany
| | | | | | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
28
|
Brilland B, Scherlinger M, Khoryati L, Goret J, Duffau P, Lazaro E, Charrier M, Guillotin V, Richez C, Blanco P. Platelets and IgE: Shaping the Innate Immune Response in Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2019; 58:194-212. [DOI: 10.1007/s12016-019-08744-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Koster BD, Santegoets SJAM, Harting J, Baars A, van Ham SM, Scheper RJ, Hooijberg E, de Gruijl TD, van den Eertwegh AJM. Autologous tumor cell vaccination combined with systemic CpG-B and IFN-α promotes immune activation and induces clinical responses in patients with metastatic renal cell carcinoma: a phase II trial. Cancer Immunol Immunother 2019; 68:1025-1035. [PMID: 30852622 PMCID: PMC6529601 DOI: 10.1007/s00262-019-02320-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Background In this study the toxicity and efficacy of an irradiated autologous tumor cell vaccine (ATV) co-injected with a class-B CpG oligodeoxynucleotide (CpG-B) and GM-CSF, followed by systemic CpG-B and IFN-α administration, were examined in patients with metastatic renal cell carcinoma (mRCC). Methods A single-arm Phase II trial was conducted, in which patients with mRCC were intradermally injected with a minimum of three whole-cell vaccines containing 0.7–1.3 × 107 irradiated autologous tumor cells (ATC), admixed with 1 mg CpG-B and 100 µg GM-CSF, followed by bi-weekly s.c. injections with 8 mg CpG-B and s.c. injections with 6 MU IFN-α three times per week. Results Fifteen patients were treated according to the protocol. Treatment was well tolerated. Objective clinical responses occurred in three patients, including one long-term complete response. Disease stabilization occurred in another three patients. Positive delayed type hypersensitivity (DTH) responses to ATC were absent before treatment but present in 13 out of 15 patients during treatment. Immune monitoring revealed activation of plasmacytoid dendritic cells, non-classical monocytes and up-regulation of both PD-1 and CTLA4 on effector T cells upon treatment. Moreover, a pre-existing ex vivo IFN-γ response to ATC was associated with clinical response. Conclusions ATV combined with systemic CpG-B and IFN-α is tolerable, safe, immunogenic and able to elicit anti-tumor responses in patients with mRCC. Immune activation and treatment-induced up-regulation of PD-1 and CTLA4 on circulating T cells further suggest an added benefit of combining this approach with immune checkpoint blockade [added]
Collapse
Affiliation(s)
- Bas D Koster
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Saskia J A M Santegoets
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Hippocratespad 21, 2333 ZD, Leiden, The Netherlands
| | - Jorien Harting
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Arnold Baars
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Departments of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Immunopathology, Landsteiner Laboratory, Amsterdam UMC and Swammerdam Institute for Life Sciences, Sanquin Research, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Rik J Scheper
- Departments of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Erik Hooijberg
- Departments of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Pathology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alfons J M van den Eertwegh
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Ahmad F, Döbel T, Schmitz M, Schäkel K. Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo). Front Immunol 2019; 10:948. [PMID: 31191513 PMCID: PMC6540605 DOI: 10.3389/fimmu.2019.00948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
The human mononuclear phagocytes system consists of dendritic cells (DCs), monocytes, and macrophages having different functions in bridging innate and adaptive immunity. Among the heterogeneous population of monocytes the cell surface marker slan (6-sulfo LacNAc) identifies a specific subset of human CD14- CD16+ non-classical monocytes, called slan+ monocytes (slanMo). In this review we discuss the identity and functions of slanMo, their contributions to immune surveillance by pro-inflammatory cytokine production, and cross talk with T cells and NK cells. We also consider the role of slanMo in the regulation of chronic inflammatory diseases and cancer. Finally, we highlight unresolved questions that should be the focus of future research.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universtät Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
31
|
Sekiya T, Takaki S. RGMB enhances the suppressive activity of the monomeric secreted form of CTLA-4. Sci Rep 2019; 9:6984. [PMID: 31061392 PMCID: PMC6502797 DOI: 10.1038/s41598-019-43068-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
The immunoregulatory molecule CTLA-4 plays a crucial role in the maintenance of immune homeostasis. CTLA-4-neutralizing antibodies are now approved for the treatment of advanced melanoma, and are in development for treating other cancers as well. However, a thorough understanding of CTLA-4 function at the molecular level is necessary in order to develop strategies to prevent the unintended autoimmunity that is frequently associated with systemic blockade of CTLA-4 activity. Here, we describe an extracellular molecule, repulsive guidance molecule B (RGMB) as a novel binding partner of CTLA-4. RGMB expression was detected at high levels in dendritic cell subsets that have been suggested to have tolerogenic capabilities. RGMB binds an extracellular domain of CTLA-4, and specifically strengthens the binding of the monomeric, soluble form of CTLA-4 (sCTLA-4) to CD80, enhancing CTLA-4's suppressive effect on co-stimulation. Examination of expression data from tumor tissues revealed a negative correlation between RGMB expression and immune activation status in the majority of non-hematologic tumor tissues. These findings advance our understanding of CTLA-4 activity, as well as identify the RGMB/CTLA-4 binding interface as a potential target for the development of novel immune checkpoint blockade therapies.
Collapse
Affiliation(s)
- Takashi Sekiya
- Section of Immune Response Modification, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan.
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan.
| | - Satoshi Takaki
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| |
Collapse
|
32
|
Zaal A, van Ham SM, Ten Brinke A. Differential effects of anaphylatoxin C5a on antigen presenting cells, roles for C5aR1 and C5aR2. Immunol Lett 2019; 209:45-52. [PMID: 30959077 DOI: 10.1016/j.imlet.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
The anaphylatoxin C5a is well-known for its role as chemoattractant and contributes to immune cell recruitment into inflamed tissue and local inflammation. C5a has recently been implicated in modulation of antigen presenting cell function, such as macrophages and dendritic cells, which are pivotal for T cell activation and final T cell effector function. The published data on the effect of C5a on APC function and subsequent adaptive immune responses are in part conflicting, as both pro and anti-inflammatory effects have been described. In this review the opposing effects of C5a on APC function in mice and human are summarized and discussed in relation to origin of the involved APC subset, being either of the monocyte-derived lineage or dendritic cell lineage. In addition, the current knowledge on the expression of C5aR1 and C5aR2 on the different APC subsets is summarized. Based on the combined data, we propose that the differential effects of C5a on APC function may be attributed to absence or presence of co-expression of C5aR2 and C5aR1 on the specific APC.
Collapse
Affiliation(s)
- Anouk Zaal
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Wagner F, Hölig U, Wilczkowski F, Plesca I, Sommer U, Wehner R, Kießler M, Jarosch A, Flecke K, Arsova M, Tunger A, Bogner A, Reißfelder C, Weitz J, Schäkel K, Troost EGC, Krause M, Folprecht G, Bornhäuser M, Bachmann MP, Aust D, Baretton G, Schmitz M. Neoadjuvant Radiochemotherapy Significantly Alters the Phenotype of Plasmacytoid Dendritic Cells and 6-Sulfo LacNAc + Monocytes in Rectal Cancer. Front Immunol 2019; 10:602. [PMID: 30984181 PMCID: PMC6450462 DOI: 10.3389/fimmu.2019.00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/06/2019] [Indexed: 12/23/2022] Open
Abstract
Neoadjuvant radiochemotherapy (nRCT) can significantly influence the tumor immune architecture that plays a pivotal role in regulating tumor growth. Whereas, various studies have investigated the effect of nRCT on tumor-infiltrating T cells, little is known about its impact on the frequency and activation status of human dendritic cells (DCs). Plasmacytoid DCs (pDCs) essentially contribute to the regulation of innate and adaptive immunity and may profoundly influence tumor progression. Recent studies have revealed that higher pDC numbers are associated with poor prognosis in cancer patients. 6-sulfo LacNAc-expressing monocytes (slanMo) represent a particular proinflammatory subset of human non-classical blood monocytes that can differentiate into DCs. Recently, we have reported that activated slanMo produce various proinflammatory cytokines and efficiently stimulate natural killer cells and T lymphocytes. slanMo were also shown to accumulate in clear cell renal cell carcinoma (ccRCC) and in metastatic lymph nodes from cancer patients. Here, we investigated the influence of nRCT on the frequency of rectal cancer-infiltrating pDCs and slanMo. When evaluating rectal cancer tissues obtained from patients after nRCT, a significantly higher density of pDCs in comparison to pre-nRCT tissue samples was found. In contrast, the density of slanMo was not significantly altered by nRCT. Further studies revealed that nRCT significantly enhances the proportion of rectal cancer-infiltrating CD8+ T cells expressing the cytotoxic effector molecule granzyme B. When exploring the impact of nRCT on the phenotype of rectal cancer-infiltrating pDCs and slanMo, we observed that nRCT markedly enhances the percentage of inducible nitric oxide synthase (iNOS)- or tumor necrosis factor (TNF) alpha-producing slanMo. Furthermore, nRCT significantly increased the percentage of mature CD83+ pDCs in rectal cancer tissues. Moreover, the proportion of pDCs locally expressing interferon-alpha, which plays a major role in antitumor immunity, was significantly higher in post-nRCT tissues compared to pre-nRCT tumor specimens. These novel findings indicate that nRCT significantly influences the frequency and/or phenotype of pDCs, slanMo, and CD8+ T cells, which may influence the clinical response of rectal cancer patients to nRCT.
Collapse
Affiliation(s)
- Felix Wagner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Hölig
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Friederike Wilczkowski
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ioana Plesca
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, University Hospital of Dresden, Dresden, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Kießler
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Armin Jarosch
- Institute of Pathology, University Hospital of Dresden, Dresden, Germany
| | - Katharina Flecke
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maia Arsova
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Andreas Bogner
- Department of Gastrointestinal, Thoracic, and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christoph Reißfelder
- Department of Surgery, Mannheim University Medical Centre, University of Heidelberg, Mannheim, Germany
| | - Jürgen Weitz
- Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Gastrointestinal, Thoracic, and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Mechthild Krause
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Gunnar Folprecht
- Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael P Bachmann
- Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, Dresden, Germany
| | - Daniela Aust
- Institute of Pathology, University Hospital of Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gustavo Baretton
- Institute of Pathology, University Hospital of Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Tang-Huau TL, Segura E. Human in vivo-differentiated monocyte-derived dendritic cells. Semin Cell Dev Biol 2019; 86:44-49. [DOI: 10.1016/j.semcdb.2018.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/07/2017] [Accepted: 02/10/2018] [Indexed: 01/09/2023]
|
35
|
Schierer S, Ostalecki C, Zinser E, Lamprecht R, Plosnita B, Stich L, Dörrie J, Lutz MB, Schuler G, Baur AS. Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC. Life Sci Alliance 2018; 1:e201800093. [PMID: 30519676 PMCID: PMC6277684 DOI: 10.26508/lsa.201800093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
Mature dendritic cells (DC) secrete substantial amounts of vesicles that are primarily ingested by monocytes, leading to differentiation processes in these target cells towards monocyte-derived DC. During inflammation, murine and human monocytes can develop into dendritic cells (DC), but this process is not entirely understood. Here, we demonstrate that extracellular vesicles (EV) secreted by mature human DC (maDC) differentiate peripheral monocytes into immature DC, expressing a unique marker pattern, including 6-sulfo LacNAc (slan), Zbtb46, CD64, and CD14. While EV from both maDC and immature DC differentiated monocytes similar to GM-CSF/IL-4 stimulation, only maDC-EV produced precursors, which upon maturation stimulus developed into T-cell–activating and IL-12p70–secreting maDC. Mechanistically, maDC-EV induced cell signaling through GM-CSF, which was abundant in EV as were IL-4 and other cytokines and chemokines. When injected into the mouse skin, murine maDC-EV attracted immune cells including monocytes that developed activation markers typical for inflammatory cells. Skin-injected EV also reached lymph nodes, causing a similar immune cell infiltration. We conclude that DC-derived EV likely serve to perpetuate an immune reaction and may contribute to chronic inflammation.
Collapse
Affiliation(s)
- Stefan Schierer
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Ricarda Lamprecht
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | | | - Lena Stich
- Department of Immune Modulation, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, Würzburg, Germany
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| | - Andreas S Baur
- Department of Dermatology, University Hospital Erlangen, Kussmaul Campus, Erlangen, Germany
| |
Collapse
|
36
|
Iannetta M, Savinelli S, Rossi R, Mascia C, Marocco R, Vita S, Zuccalà P, Zingaropoli MA, Mengoni F, Massetti AP, Falciano M, d'Ettorre G, Ciardi MR, Mastroianni CM, Vullo V, Lichtner M. Myeloid and lymphoid activation markers in AIDS and non-AIDS presenters. Immunobiology 2018; 224:231-241. [PMID: 30522891 DOI: 10.1016/j.imbio.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023]
Abstract
HIV infection is characterized by a state of chronic activation of the immune system, which is not completely reversed by antiretroviral treatment (ART). The aim of this study was to assess myeloid and lymphoid activation markers during HIV infection, before and one year after ART initiation, in AIDS and non-AIDS presenters. Treatment naïve HIV positive patients were enrolled in this study. Myeloid dendritic cell (mDC), plasmacytoid dendritic cell (pDC), slanDC, monocyte and T-lymphocyte cell counts and activation status, were assessed by flow cytometry in peripheral blood samples. Soluble (s)CD14 and sCD163 were assessed in plasma samples using ELISA assays. Statistical analyses were performed using GraphPad Prism and Minitab Express. Thirty-four ART naïve HIV-1 infected subjects were enrolled in this study (22 non-AIDS and 12 AIDS presenters). Seventeen healthy donors (HD) were included as control group. Although circulating mDC levels resulted unchanged, HLA-DR expression was decreased on mDCs of HIV positive subjects compared to HD (p < 0,0001). AIDS presenters showed the lowest level of expression of HLA-DR on mDCs. Circulating levels of pDCs were decreased in HIV patients compared to HD (p < 0,001), without any changes in HLA-DR expression. SlanDC cell counts were extremely reduced in AIDS presenters, compared to non-AIDS presenters and HD (p < 0,01 and p < 0,0001, respectively) and showed higher HLA-DR expression in HIV patients compared to HD (p < 0,01). Intermediate monocyte (IM) cell counts were increased in AIDS and non-AIDS presenters compared to HD (p < 0,001 and p < 0,001 respectively). Furthermore, IM expansion was directly correlated to HIV viral load (p = 0,036) and independent from CD4 cell counts and activation levels. Plasma concentrations of sCD14 and sCD163 resulted increased in HIV infected subjects compared to HD (p < 0,0001 and p < 0,001), with the highest levels observed in AIDS presenters. After 1 year, ART was able to increase pDC and decrease IM absolute cell counts and modify HLA-DR expression on mDCs and slanDCs, approaching the levels observed in HD. ART reduced also CD4 and CD8 activation levels. In conclusion, in untreated HIV infected subjects circulating dendritic cells resulted altered either in numbers or in HLA-DR expression, especially in AIDS presenters. IM absolute counts were equally increased in AIDS and non-AIDS presenters. ART was able to reduce myeloid and lymphoid inflammation in both advanced and non-advanced HIV patients, confirming the role of ART in hampering disease progression and immune activation associated non-AIDS events.
Collapse
Affiliation(s)
- Marco Iannetta
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Savinelli
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Raffaella Rossi
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudia Mascia
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Raffaella Marocco
- Infectious Diseases Unit, Sapienza University, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy
| | - Serena Vita
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; Infectious Diseases Unit, Sapienza University, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy
| | - Paola Zuccalà
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Fabio Mengoni
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna Paola Massetti
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mario Falciano
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; Infectious Diseases Unit, Sapienza University, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy
| |
Collapse
|
37
|
D'Antoni ML, Mitchell BI, McCurdy S, Byron MM, Ogata-Arakaki D, Chow D, Mehta NN, Boisvert WA, Lefebvre E, Shikuma CM, Ndhlovu LC, Baumer Y. Cenicriviroc inhibits trans-endothelial passage of monocytes and is associated with impaired E-selectin expression. J Leukoc Biol 2018; 104:1241-1252. [PMID: 30088682 DOI: 10.1002/jlb.5a0817-328rrr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/23/2023] Open
Abstract
Incidences of cardiovascular diseases (CVD) are high among virologically suppressed HIV-infected individuals. Monocyte activation and trafficking are key mechanisms in the evolution of CVD. We studied the ability of cenicriviroc (CVC), a dual C-C chemokine receptor type 2 (CCR2) and CCR5 antagonist, to influence the migration of monocytes from HIV-infected individuals on antiretroviral therapy (ART). Monocytes were derived from 23 ART-suppressed HIV-infected and 16 HIV-uninfected donors. In a trans-endothelial migration model, monocytes, and human aortic endothelial cells (HAoECs) were exposed to cenicriviroc and migrated monocytes, quantified. Expression of CCR2 and CCR5 on monocytes and adhesion molecules (E-selectin, ICAM-1, VCAM-1, PECAM-1, and CD99) on HAoECs were measured. The single antagonists, BMS-22 (CCR2), and maraviroc (CCR5), served as controls. When both HAoECs and monocytes together were exposed to the antagonists, cenicriviroc led to a greater decrease in monocyte migration compared to BMS-22 or vehicle in both HIV-infected and HIV-uninfected groups (P < 0.05), with maraviroc having no inhibitory effect. Cenicriviroc treatment of HAoECs alone decreased monocyte migration in the HIV-infected group when compared to vehicle (P < 0.01). Inhibition of migration was not evident when monocytes alone were exposed to cenicriviroc, BMS-22 or maraviroc. Incubation of HAoECs with cenicriviroc decreased E-selectin expression (P = 0.045) but had limited effects on the other adhesion molecules. Cenicriviroc inhibits monocyte trans-endothelial migration more effectively than single chemokine receptor blockade, which may be mediated via disruption of monocyte-endothelial tethering through reduced E-selectin expression. Cenicriviroc should be considered as a therapeutic intervention to reduce detrimental monocyte trafficking.
Collapse
Affiliation(s)
- Michelle L D'Antoni
- Hawaii Center for HIV/AIDS, University of Hawaii, Hawaii, USA.,Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Brooks I Mitchell
- Hawaii Center for HIV/AIDS, University of Hawaii, Hawaii, USA.,Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Sara McCurdy
- Department of Medicine, Center for Cardiovascular Research, University of Hawaii, Hawaii, USA
| | - Mary Margaret Byron
- Hawaii Center for HIV/AIDS, University of Hawaii, Hawaii, USA.,Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | | - Dominic Chow
- Hawaii Center for HIV/AIDS, University of Hawaii, Hawaii, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William A Boisvert
- Department of Medicine, Center for Cardiovascular Research, University of Hawaii, Hawaii, USA
| | | | | | - Lishomwa C Ndhlovu
- Hawaii Center for HIV/AIDS, University of Hawaii, Hawaii, USA.,Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Yvonne Baumer
- Hawaii Center for HIV/AIDS, University of Hawaii, Hawaii, USA.,Department of Medicine, Center for Cardiovascular Research, University of Hawaii, Hawaii, USA.,Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
van Leeuwen-Kerkhoff N, Lundberg K, Westers TM, Kordasti S, Bontkes HJ, Lindstedt M, de Gruijl TD, van de Loosdrecht AA. Human Bone Marrow-Derived Myeloid Dendritic Cells Show an Immature Transcriptional and Functional Profile Compared to Their Peripheral Blood Counterparts and Separate from Slan+ Non-Classical Monocytes. Front Immunol 2018; 9:1619. [PMID: 30061890 PMCID: PMC6055354 DOI: 10.3389/fimmu.2018.01619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
The human bone marrow (BM) gives rise to all distinct blood cell lineages, including CD1c+ (cDC2) and CD141+ (cDC1) myeloid dendritic cells (DC) and monocytes. These cell subsets are also present in peripheral blood (PB) and lymphoid tissues. However, the difference between the BM and PB compartment in terms of differentiation state and immunological role of DC is not yet known. The BM may represent both a site for development as well as a possible effector site and so far, little is known in this light with respect to different DC subsets. Using genome-wide transcriptional profiling we found clear differences between the BM and PB compartment and a location-dependent clustering for cDC2 and cDC1 was demonstrated. DC subsets from BM clustered together and separate from the corresponding subsets from PB, which similarly formed a cluster. In BM, a common proliferating and immature differentiating state was observed for the two DC subsets, whereas DC from the PB showed a more immune-activated mature profile. In contrast, BM-derived slan+ non-classical monocytes were closely related to their PB counterparts and not to DC subsets, implying a homogenous prolife irrespective of anatomical localization. Additional functional tests confirmed these transcriptional findings. DC-like functions were prominently exhibited by PB DC. They surpassed BM DC in maturation capacity, cytokine production, and induction of CD4+ and CD8+ T cell proliferation. This first study on myeloid DC in healthy human BM offers new information on steady state DC biology and could potentially serve as a starting point for further research on these immune cells in healthy conditions as well as in diseases.
Collapse
Affiliation(s)
| | | | - Theresia M Westers
- Cancer Center Amsterdam, Department of Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - Shahram Kordasti
- Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Hetty J Bontkes
- Department of Pathology, VU University Medical Center, Amsterdam, Netherlands
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Tanja D de Gruijl
- Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Arjan A van de Loosdrecht
- Cancer Center Amsterdam, Department of Hematology, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
39
|
Schön MP, Erpenbeck L. The Interleukin-23/Interleukin-17 Axis Links Adaptive and Innate Immunity in Psoriasis. Front Immunol 2018; 9:1323. [PMID: 29963046 PMCID: PMC6013559 DOI: 10.3389/fimmu.2018.01323] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Research into the pathophysiology of psoriasis has shed light onto many fascinating immunological interactions and underlying genetic constellations. Most prominent among these is the crosstalk between components of the innate and the adaptive immune system and the crucial role of interleukins (IL)-23 and -17 within this network. While it is clear that IL-23 drives and maintains the differentiation of Th17 lymphocytes, many aspects of the regulation of IL-23 and IL-17 are not quite as straightforward and have been unraveled only recently. For example, we know now that Th17 cells are not the only source of IL-17 but that cells of the innate immune system also produce considerable amounts of this central effector cytokine. In addition, there is IL-23-independent production of IL-17. Besides other innate immune cells, neutrophilic granulocytes prominently contribute to IL-17-related immune regulations in psoriasis, and it appears that they employ several mechanisms including the formation of neutrophil extracellular traps. Here, we strive to put the central role of the IL-23/IL-17 axis into perspective within the crosstalk between components of the innate and the adaptive immune system. Our aim is to better understand the complex immune regulation in psoriasis, a disorder that has become a model disease for chronic inflammation.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, University of Osnabrück, Osnabrück, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
40
|
Vermi W, Micheletti A, Finotti G, Tecchio C, Calzetti F, Costa S, Bugatti M, Calza S, Agostinelli C, Pileri S, Balzarini P, Tucci A, Rossi G, Furlani L, Todeschini G, Zamò A, Facchetti F, Lorenzi L, Lonardi S, Cassatella MA. slan + Monocytes and Macrophages Mediate CD20-Dependent B-cell Lymphoma Elimination via ADCC and ADCP. Cancer Res 2018; 78:3544-3559. [PMID: 29748373 DOI: 10.1158/0008-5472.can-17-2344] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022]
Abstract
Terminal tissue differentiation and function of slan+ monocytes in cancer is largely unexplored. Our recent studies demonstrated that slan+ monocytes differentiate into a distinct subset of dendritic cells (DC) in human tonsils and that slan+ cells colonize metastatic carcinoma-draining lymph nodes. Herein, we report by retrospective analysis of multi-institutional cohorts that slan+ cells infiltrate various types of non-Hodgkin lymphomas (NHL), particularly the diffuse large B-cell lymphoma (DLBCL) group, including the most aggressive, nodal and extranodal, forms. Nodal slan+ cells displayed features of either immature DC or macrophages, in the latter case ingesting tumor cells and apoptotic bodies. We also found in patients with DLBCL that peripheral blood slan+ monocytes, but not CD14+ monocytes, increased in number and displayed highly efficient rituximab-mediated antibody-dependent cellular cytotoxicity, almost equivalent to that exerted by NK cells. Notably, slan+ monocytes cultured in conditioned medium from nodal DLBCL (DCM) acquired a macrophage-like phenotype, retained CD16 expression, and became very efficient in rituximab-mediated antibody-dependent cellular phagocytosis (ADCP). Macrophages derived from DCM-treated CD14+ monocytes performed very efficient rituximab-mediated ADCP, however, using different FcγRs from those used by slan+ macrophages. Our observations shed new light on the complexity of the immune microenvironment of DLBCL and demonstrate plasticity of slan+ monocytes homing to cancer tissues. Altogether, data identify slan+ monocytes and macrophages as prominent effectors of antibody-mediated tumor cell targeting in patients with DLBCL.Significance: slan+ monocytes differentiate into macrophages that function as prominent effectors of antibody-mediated tumor cell targeting in lymphoma.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3544/F1.large.jpg Cancer Res; 78(13); 3544-59. ©2018 AACR.
Collapse
Affiliation(s)
- William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Department of Pathology and Immunology, Washington University, Saint Louis, Missouri
| | - Alessandra Micheletti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Giulia Finotti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Sara Costa
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Unit of Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudio Agostinelli
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Stefano Pileri
- Unit of Haematopathology, European Institute of Oncology, 20141 Milan, Italy
| | - Piera Balzarini
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Tucci
- Division of Haematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Giuseppe Rossi
- Division of Haematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Lara Furlani
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Todeschini
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alberto Zamò
- Section of Pathology, Department of Public Health and Diagnostics, University of Verona, Verona, Italy
| | - Fabio Facchetti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia Lonardi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
41
|
Lamarthée B, de Vassoigne F, Malard F, Stocker N, Boussen I, Médiavilla C, Tang R, Fava F, Garderet L, Marjanovic Z, Brissot E, Mohty M, Gaugler B. Quantitative and functional alterations of 6-sulfo LacNac dendritic cells in multiple myeloma. Oncoimmunology 2018; 7:e1444411. [PMID: 29900053 DOI: 10.1080/2162402x.2018.1444411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 10/17/2022] Open
Abstract
Multiple myeloma (MM) results from expansion of abnormal plasma cells in the bone marrow (BM). Previous studies have shown that monocytes play a crucial role in MM pathophysiology. A 6-sulfo LacNAc-expressing population of dendritic cells (Slan-DCs) that overlaps with intermediate and non-classical monocytes in terms of phenotype has been described. Slan-DCs represent a circulating and tissue proinflammatory myeloid population which has been shown to play a role in different cancer contexts, and which exhibits a remarkable plasticity. Herein, we studied Slan-DCs from the BM and blood of MM patients. We performed quantitative and functional analyses of these cells from 54 patients with newly diagnosed, symptomatic MM, 21 patients with MGUS and 24 responding MM patients. We found that circulating Slan-DCs were significantly decreased in MM patients as compared to those of healthy donors or patients with MGUS, while CD14+CD16+ intermediate monocytes accumulate in the BM. Moreover, after activation with TLR7/8 ligand R848, IL-12-producing Slan-DCs from the BM or peripheral blood from MM patients were decreased as compared with healthy donors. We show that MM cell lines or MM cells isolated from patients at diagnosis were able to inhibit the production of IL-12 by Slan-DCs, as well as to shift the phenotype of Slan-DCs towards an intermediate monocyte-like phenotype. Finally, Slan-DCs that have been cultured with MM cells reduced their capacity to induce T cell proliferation and Th1 polarization. We conclude that Slan-DCs represent previously unrecognized players in MM development and may represent a therapeutic target.
Collapse
Affiliation(s)
- Baptiste Lamarthée
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Université Paris 06, Paris, France
| | - Frédéric de Vassoigne
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Université Paris 06, Paris, France
| | - Florent Malard
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Université Paris 06, Paris, France
| | - Nicolas Stocker
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Inès Boussen
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Clémence Médiavilla
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Ruoping Tang
- AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Université Paris 06, Paris, France
| | - Fanny Fava
- AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Université Paris 06, Paris, France
| | - Laurent Garderet
- AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Université Paris 06, Paris, France
| | - Zora Marjanovic
- AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Université Paris 06, Paris, France
| | - Eolia Brissot
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Université Paris 06, Paris, France
| | - Mohamad Mohty
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Université Paris 06, Paris, France
| | - Béatrice Gaugler
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Université Paris 06, Paris, France
| |
Collapse
|
42
|
Thomas K, Metz I, Tumani H, Brück W, Ziemssen T. 6-sulpho LacNAc(+) dendritic cells accumulate in various inflammatory, but not ischaemic conditions of the central nervous system. Neuropathol Appl Neurobiol 2018; 42:394-8. [PMID: 26844946 DOI: 10.1111/nan.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Affiliation(s)
- K Thomas
- Department of Neurology, University Hospital, Dresden, Germany
| | - I Metz
- Department of Neuropathology, University Medical Centre, Göttingen, Germany
| | - H Tumani
- Department of Neurology, University Hospital, Ulm, Germany
| | - W Brück
- Department of Neuropathology, University Medical Centre, Göttingen, Germany
| | - T Ziemssen
- Department of Neurology, University Hospital, Dresden, Germany
| |
Collapse
|
43
|
The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018; 10:v10020065. [PMID: 29415518 PMCID: PMC5850372 DOI: 10.3390/v10020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells such as monocytes, dendritic cells (DC) and macrophages (MΦ) are key components of the innate immune system contributing to the maintenance of tissue homeostasis and the development/resolution of immune responses to pathogens. Monocytes and DC, circulating in the blood or infiltrating various lymphoid and non-lymphoid tissues, are derived from distinct bone marrow precursors and are typically short lived. Conversely, recent studies revealed that subsets of tissue resident MΦ are long-lived as they originate from embryonic/fetal precursors that have the ability to self-renew during the life of an individual. Pathogens such as the human immunodeficiency virus type 1 (HIV-1) highjack the functions of myeloid cells for viral replication (e.g., MΦ) or distal dissemination and cell-to-cell transmission (e.g., DC). Although the long-term persistence of HIV reservoirs in CD4+ T-cells during viral suppressive antiretroviral therapy (ART) is well documented, the ability of myeloid cells to harbor replication competent viral reservoirs is still a matter of debate. This review summarizes the current knowledge on the biology of monocytes and DC during homeostasis and in the context of HIV-1 infection and highlights the importance of future studies on long-lived resident MΦ to HIV persistence in ART-treated patients.
Collapse
|
44
|
Keef E, Zhang LA, Swigon D, Urbano A, Ermentrout GB, Matuszewski M, Toapanta FR, Ross TM, Parker RS, Clermont G. Discrete Dynamical Modeling of Influenza Virus Infection Suggests Age-Dependent Differences in Immunity. J Virol 2017; 91:e00395-17. [PMID: 28904202 PMCID: PMC5686742 DOI: 10.1128/jvi.00395-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/23/2017] [Indexed: 01/09/2023] Open
Abstract
Immunosenescence, an age-related decline in immune function, is a major contributor to morbidity and mortality in the elderly. Older hosts exhibit a delayed onset of immunity and prolonged inflammation after an infection, leading to excess damage and a greater likelihood of death. Our study applies a rule-based model to infer which components of the immune response are most changed in an aged host. Two groups of BALB/c mice (aged 12 to 16 weeks and 72 to 76 weeks) were infected with 2 inocula: a survivable dose of 50 PFU and a lethal dose of 500 PFU. Data were measured at 10 points over 19 days in the sublethal case and at 6 points over 7 days in the lethal case, after which all mice had died. Data varied primarily in the onset of immunity, particularly the inflammatory response, which led to a 2-day delay in the clearance of the virus from older hosts in the sublethal cohort. We developed a Boolean model to describe the interactions between the virus and 21 immune components, including cells, chemokines, and cytokines, of innate and adaptive immunity. The model identifies distinct sets of rules for each age group by using Boolean operators to describe the complex series of interactions that activate and deactivate immune components. Our model accurately simulates the immune responses of mice of both ages and with both inocula included in the data (95% accurate for younger mice and 94% accurate for older mice) and shows distinct rule choices for the innate immunity arm of the model between younger and aging mice in response to influenza A virus infection.IMPORTANCE Influenza virus infection causes high morbidity and mortality rates every year, especially in the elderly. The elderly tend to have a delayed onset of many immune responses as well as prolonged inflammatory responses, leading to an overall weakened response to infection. Many of the details of immune mechanisms that change with age are currently not well understood. We present a rule-based model of the intrahost immune response to influenza virus infection. The model is fit to experimental data for young and old mice infected with influenza virus. We generated distinct sets of rules for each age group to capture the temporal differences seen in the immune responses of these mice. These rules describe a network of interactions leading to either clearance of the virus or death of the host, depending on the initial dosage of the virus. Our models clearly demonstrate differences in these two age groups, particularly in the innate immune responses.
Collapse
Affiliation(s)
- Ericka Keef
- Department of Mathematics, Carlow University, Pittsburgh, Pennsylvania, USA
| | - Li Ang Zhang
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Alisa Urbano
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - G Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Matuszewski
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Franklin R Toapanta
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ted M Ross
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert S Parker
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Gilles Clermont
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
van Leeuwen-Kerkhoff N, Lundberg K, Westers TM, Kordasti S, Bontkes HJ, de Gruijl TD, Lindstedt M, van de Loosdrecht AA. Transcriptional profiling reveals functional dichotomy between human slan + non-classical monocytes and myeloid dendritic cells. J Leukoc Biol 2017; 102:1055-1068. [PMID: 28720687 DOI: 10.1189/jlb.3ma0117-037r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022] Open
Abstract
Human 6-sulfo LacNac-positive (slan+) cells have been subject to a paradigm debate. They have previously been classified as a distinct dendritic cell (DC) subset. However, evidence has emerged that they may be more related to monocytes than to DCs. To gain deeper insight into the functional specialization of slan+ cells, we have compared them with both conventional myeloid DC subsets (CD1c+ and CD141+) in human peripheral blood (PB). With the use of genome-wide transcriptional profiling, as well as functional tests, we clearly show that slan+ cells form a distinct, non-DC-like population. They cluster away from both DC subsets, and their gene-expression profile evidently suggests involvement in distinct inflammatory processes. An extensive transcriptional meta-analysis confirmed the relationship of slan+ cells with the monocytic compartment rather than with DCs. From a functional perspective, their ability to prime CD4+ and CD8+ T cells is relatively low. Combined with the finding that "antigen presentation by MHC class II" is at the top of under-represented pathways in slan+ cells, this points to a minimal role in directing adaptive T cell immunity. Rather, the higher expression levels of complement receptors on their cell surface, together with their high secretion of IL-1β and IL-6, imply a specific role in innate inflammatory processes, which is consistent with their recent identification as non-classical monocytes. This study extends our knowledge on DC/monocyte subset biology under steady-state conditions and contributes to our understanding of their role in immune-mediated diseases and their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Nathalie van Leeuwen-Kerkhoff
- Department of Hematology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Theresia M Westers
- Department of Hematology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Shahram Kordasti
- Department of Haematological Medicine, King's College London and King's College Hospital, London, United Kingdom
| | - Hetty J Bontkes
- Department of Oral Cell Biology, Academic Center for Dentistry, Amsterdam, The Netherlands; and
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Arjan A van de Loosdrecht
- Department of Hematology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam University Medical Center, Amsterdam, The Netherlands;
| |
Collapse
|
46
|
Zaal A, Dieker M, Oudenampsen M, Turksma AW, Lissenberg-Thunnissen SN, Wouters D, van Ham SM, Ten Brinke A. Anaphylatoxin C5a Regulates 6-Sulfo-LacNAc Dendritic Cell Function in Human through Crosstalk with Toll-Like Receptor-Induced CREB Signaling. Front Immunol 2017; 8:818. [PMID: 28769928 PMCID: PMC5509794 DOI: 10.3389/fimmu.2017.00818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/27/2017] [Indexed: 01/05/2023] Open
Abstract
Activation of antigen-presenting dendritic cells (DCs) and the complement system are essential early events in the immune defense against invading pathogens. Recently, we and others demonstrated immunological crosstalk between signaling from receptors recognizing complement activation products and PAMPs on DCs. This affects DC effector function, as demonstrated by the finding that C5a prevents induction of pro-inflammatory cytokines by toll-like receptor (TLR) ligands in human monocyte-derived DCs (moDCs). Here, we demonstrate that this regulatory crosstalk is specifically important in 6-sulfo LacNAc dendritic cells (slanDCs), the most pro-inflammatory DC subset found in human. C5aR and TLR signaling show profound interference in the ERK/p38/CREB1 signaling pathways. C5aR signaling accelerates TLR-induced CREB1 phosphorylation both in moDC and slanDC. This is key in the regulatory effect of C5a on pro-inflammatory DC maturation by mediating induction of IL-10, which subsequently inhibits pro-inflammatory cytokine production via negative feedback signaling. Importantly, the regulatory effect of C5a affects T-cell immunity by decreasing Th1 and cytotoxic CD8 T-cell responses. The finding that the pro-inflammatory effector function of slanDC can be down modulated by activation products of the complement system highlights the existence of intricate regulatory interactions between various arms of the immune system. Intensive immune monitoring of patients suffering from complement-mediated diseases or patients receiving complement modulating compounds can give more inside in the contribution of complement receptor and TLR crosstalk in APCs in disease.
Collapse
Affiliation(s)
- Anouk Zaal
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Miranda Dieker
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Manon Oudenampsen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Annelies W Turksma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Suzanne N Lissenberg-Thunnissen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
47
|
Controlling the pro-inflammatory function of 6-sulfo LacNAc (slan) dendritic cells with dimethylfumarate. J Dermatol Sci 2017; 87:278-284. [PMID: 28732748 DOI: 10.1016/j.jdermsci.2017.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 11/23/2022]
Abstract
BACKROUND The fumaric acid ester (FAE) dimethylfumarate (DMF) is a small molecule immunomodulator successfully used for the treatment of psoriasis and multiple sclerosis (MS). DMF is thought to inhibit pathogenic immune responses with Th17/Th1T cells, and IL-23/IL-12 producing dendritic cells (DCs). 6-sulfo LacNAc expressing dendritic cells (slanDCs) are a human pro-inflammatory cell type found frequently among the infiltrating leukocytes in skin lesions of psoriasis and brain lesions of MS. OBJECTIVE To explore the influence of DMF on functional properties and cell signaling pathways of slanDCs. METHODS In the context of slanDCs we studied the role of DMF in modulating cell migration, phenotypic maturation, cytokine production, cell signaling and T cell stimulation. RESULTS Initially, we observed the reduction of slanDCs numbers in psoriasis skin lesions of FAE treated patients. Studying whether DMF controls the migratory capacity of slanDCs to chemotactic factors expressed in psoriasis we observed an inhibition of the CX3CL1 and C5a depedent cell migration. DMF also attenuated the rapid spontaneous phenotypic maturation of slanDCs, as judged by a reduced CD80, CD86, CD83 and HLA-DR expression. In addition, we observed a DMF-dependent decrease of IL-23, IL-12, TNF-α and IL-10 secretion, and noticed a reduced capacity to stimulate Th17/Th1 responses. DMF targeted in slanDCs different intracellular cell signaling pathways including NFκB, STAT1 and HO-1. CONCLUSIONS With this study we identify a frequent pro-inflammatory cell type found in psoriasis and MS as a relevant target for the therapeutic immunomodulatory effects of DMF.
Collapse
|
48
|
Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol Immunol 2017; 89:44-58. [PMID: 28600003 DOI: 10.1016/j.molimm.2017.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The anaphylatoxins (AT) C3a and C5a play important roles as mediators of inflammation. Further, they regulate and control multiple innate and adaptive immune responses through binding and activation of their cognate G protein-coupled receptors, i.e. C3a receptor (C3aR), C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2), although the latter lacks important sequence motifs for G protein-coupling. Based on their pleiotropic functions, they contribute not only to tissue homeostasis but drive, perpetuate and resolve immune responses in many inflammatory diseases including infections, malignancies, autoimmune as well as allergic diseases. During the past few years, transcriptome expression data provided detailed insights into AT receptor tissue mRNA expression. In contrast, our understanding of cellular AT receptor expression in human and mouse tissues under steady and inflammatory conditions is still sketchy. Ligand binding studies, flow cytometric and immunohistochemical analyses convincingly demonstrated tissue-specific C5aR1 expression in various cells of myeloid origin. However, a detailed map for C3aR or C5aR2 expression in human or mouse tissue cells is still lacking. Also, reports about AT expression in lymphoid cells is still controversial. To understand the multiple roles of the ATs in the innate and adaptive immune networks, a detailed understanding of their receptor expression in health and disease is required. Recent findings obtained with novel GFP or tdTomato AT-receptor knock-in mice provide detailed insights into their expression pattern in tissue immune and stroma cells. Here, we will provide an update about our current knowledge of AT receptor expression pattern in humans and mice.
Collapse
|
49
|
Brief Report: HIV-1 Infection Results in Increased Frequency of Active and Inflammatory SlanDCs that Produce High Level of IL-1β. J Acquir Immune Defic Syndr 2017; 73:34-8. [PMID: 27243902 DOI: 10.1097/qai.0000000000001082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HIV infection is marked by phenotypic and functional alterations of immune cells. Different studies have shown both numerical and functional deterioration of dendritic cells in HIV-1-infected patients. In this study, we report an increase of inflammatory 6-sulfo LacNAc dendritic cells (slanDCs) that are more activated and produce higher amounts of interleukin (IL)-1β during HIV-1 infection as compared with healthy controls. IL-1β plays a regulatory role in chronic inflammatory disorders. Therefore, our findings might reveal a compensatory regulatory function of slanDCs during HIV-1 infection.
Collapse
|
50
|
Oehrl S, Prakash H, Ebling A, Trenkler N, Wölbing P, Kunze A, Döbel T, Schmitz M, Enk A, Schäkel K. The phosphodiesterase 4 inhibitor apremilast inhibits Th1 but promotes Th17 responses induced by 6-sulfo LacNAc (slan) dendritic cells. J Dermatol Sci 2017; 87:110-115. [PMID: 28499587 DOI: 10.1016/j.jdermsci.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/14/2017] [Accepted: 04/11/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND The phosphodiesterase 4 (PDE4) inhibitor apremilast increases cellular cAMP levels and has proven effective in the treatment of psoriasis and psoriasis arthritis. We recently described 6-sulfo LacNAc dendritic cells (slanDCs) as immature DCs in blood and as a subset of inflammatory dermal DCs in psoriasis with a pronounced capacity to produce proinflammatory cytokines and to program Th17/Th1 T cell responses. OBJECTIVE The aim of this study was to investigate possible immune regulatory effects of the PDE4 inhibitor apremilast on slanDCs. METHODS In vitro studies were performed analyzing the effects of apremilast on the proinflammatory function of slanDCs and their capacity to induce Th1/Th17-biased T cell responses. RESULTS Increasing cAMP levels in slanDCs by PDE4 inhibition strongly reduced production of IL-12 and TNF-α. In line with these findings, co-culture experiments with apremilast-pulsed slanDCs and allogeneic T cells either from psoriasis patients or healthy controls, revealed a significant reduction of IFN-γ production and expression of the transcription factor T-bet. In parallel, production of IL-23 and IL-1ß by slanDCs was increased and co-cultured T cells revealed a largely augmented IL-17 production and an upregulated RORyt expression. CONCLUSIONS We here demonstrate anti-inflammatory as well as Th17-promoting effects of apremilast when studying blood precursors of human inflammatory dermal dendritic cells. In the concert of the broad anti-inflammatory effects of apremilast on keratinocytes, fibroblasts and endothelial cells, the dual effect on slan+ inflammatory dermal DCs should be taken into account and may constrain therapeutic responses.
Collapse
Affiliation(s)
- Stephanie Oehrl
- Department of Dermatology, University Hospital Heidelberg, Germany
| | | | - Annette Ebling
- Institute of Immunology, Technical University of Dresden, Germany
| | - Nina Trenkler
- Department of Dermatology, University Hospital Heidelberg, Germany
| | - Priscila Wölbing
- Department of Dermatology, University Hospital Heidelberg, Germany
| | - Anja Kunze
- Department of Dermatology, University Hospital Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, University Hospital Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Technical University of Dresden, Germany
| | - Alexander Enk
- Department of Dermatology, University Hospital Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Germany.
| |
Collapse
|