1
|
Guichard V, Leão FB, Zhao J, Zhang Y, Ito T, Shirley S, Postler TS, Tian R, Huang Y, Ghosh S. Pre-existing epigenetic state and differential NF-κB activation shape type 2 immune cell responses. Immunity 2025:S1074-7613(25)00179-7. [PMID: 40367949 DOI: 10.1016/j.immuni.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/20/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
CD4+ T helper 2 (Th2) cells and group 2 innate lymphoid cells (ILC2s) drive type 2 immune responses via similar effector molecules that are primarily induced by different signals-interleukin (IL)-33 in ILC2s and TCR engagement in Th2 cells. Here, we examined the transcriptional regulation of type 2 immunity, focusing on the NF-κB pathway, which is differentially activated by TCR engagement or cytokine signaling. Conditional deletion of the NF-κB subunits c-Rel and p65 limited the expression of key type 2 genes, including Il13 and Il5, in ILC2s but not in Th2 cells. Genome-wide analysis revealed that the regulatory regions of such genes exist in an open chromatin state in ILC2s, allowing NF-κB binding upon IL-33 stimulation. These regions are less accessible in unstimulated Th2 cells, where NFAT plays a dominant role. Accordingly, p65 deletion impaired ILC2 activation and function during airway inflammation and helminth infection. Thus, innate and adaptive lymphocytes leverage distinct epigenetic landscapes and transcriptional regulators to control shared effector genes.
Collapse
Affiliation(s)
- Vincent Guichard
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Felipe Batista Leão
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jingyao Zhao
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yingyu Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Takamasa Ito
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Simon Shirley
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Thomas S Postler
- Vaccine Design and Development Laboratory, IAVI, New York, NY 10004, USA
| | - Ruxiao Tian
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yuefeng Huang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. eLife 2025; 13:RP98287. [PMID: 40326866 PMCID: PMC12055012 DOI: 10.7554/elife.98287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Furthermore, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Madison Mack
- Immunology and Inflammation Research Therapeutic Area, SanofiCambridgeUnited States
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Anna M Trier
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Jenny M Karo
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joseph C Sun
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
3
|
Hughes EP, Manna AK, Sun W, Osburn-Staker SM, Aamodt S, Warren KJ, Cox JE, Tantin D. Transcriptional co-regulator OCA-B/Pou2af1 restricts Th2 differentiation. Front Immunol 2025; 16:1548636. [PMID: 40364837 PMCID: PMC12069319 DOI: 10.3389/fimmu.2025.1548636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Background Type 2 immunity is initiated through a synergistic response between innate and adaptive immune cells to facilitate host-pathogen defense and wound repair, yet aberrant responses can contribute to chronic inflammation and allergic disease. CD4+ type 2 helper T (Th2) cells facilitate the adaptive immune response through the secretion of cytokines such as IL-4, IL-5, and IL-13. While the Th2 program is governed by the transcription factor GATA3, less is known about regulators that fine-tune the Th2 cytokine response. Method We used a proximity labeling system to map proteins associated with the transcriptional co-regulator OCA-B, encoded by Pou2af1, in T cells. We used a series of genomic, biochemical and immunological assays to probe the interaction with one particular hit from the screen. Results We find that OCA-B indirectly associates with GATA3. ChIP-seq analysis reveals coenrichment of Gata3 and the transcription factor Oct1, a partner protein of OCA-B, at genomic locations responsible for the Th2 program including Il4, Il13, Il5, Gata3, and Irf4. DNA binding data using recombinant proteins and reporter data using T cell lines are consistent with a model in which OCA-B restricts transcription at the Th2 locus control region and subsequent IL-4 and IL-13 secretion. Finally, in an in vivo papain allergy model we show OCA-B expression in T cells limits the frequency of T cells within the lung. Conclusion These findings shown that OCA-B helps restrict Th2 function at least in part through communication with GATA3.
Collapse
Affiliation(s)
- Erik P. Hughes
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Asit K. Manna
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Wenxiang Sun
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Sandra M. Osburn-Staker
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Samuel Aamodt
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Kristi J. Warren
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - James E. Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
4
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.23.590767. [PMID: 38712036 PMCID: PMC11071423 DOI: 10.1101/2024.04.23.590767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Further, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M. Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Madison Mack
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA 02141, USA
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anna M. Trier
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Steven J. Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny M. Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai 10019
| |
Collapse
|
5
|
Khan M, Alteneder M, Reiter W, Krausgruber T, Dobnikar L, Madern M, Waldherr M, Bock C, Hartl M, Ellmeier W, Henriksson J, Boucheron N. Single-cell and chromatin accessibility profiling reveals regulatory programs of pathogenic Th2 cells in allergic asthma. Nat Commun 2025; 16:2565. [PMID: 40089475 PMCID: PMC11910648 DOI: 10.1038/s41467-025-57590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Lung pathogenic T helper type 2 (pTh2) cells are important in mediating allergic asthma, but fundamental questions remain regarding their heterogeneity and epigenetic regulation. Here we investigate immune regulation in allergic asthma by single-cell RNA sequencing in mice challenged with house dust mite, in the presence and absence of histone deacetylase 1 (HDAC1) function. Our analyses indicate two distinct highly proinflammatory subsets of lung pTh2 cells and pinpoint thymic stromal lymphopoietin (TSLP) and Tumour Necrosis Factor Receptor Superfamily (TNFRSF) members as important drivers to generate pTh2 cells in vitro. Using our in vitro model, we uncover how signalling via TSLP and a TNFRSF member shapes chromatin accessibility at the type 2 cytokine gene loci by modulating HDAC1 repressive function. In summary, we have generated insights into pTh2 cell biology and establish an in vitro model for investigating pTh2 cells that proves useful for discovering molecular mechanisms involved in pTh2-mediated allergic asthma.
Collapse
Affiliation(s)
- Matarr Khan
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Marlis Alteneder
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Wolfgang Reiter
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Center for Medical Data Science, Institute of Artificial Intelligence, Vienna, Austria
| | - Lina Dobnikar
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Moritz Madern
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Monika Waldherr
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
- FH Campus Wien, Department of Applied Life Sciences/Bioengineering/Bioinformatics, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Center for Medical Data Science, Institute of Artificial Intelligence, Vienna, Austria
| | - Markus Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Johan Henriksson
- Umeå University, Umeå Centre for Microbial Research (UCMR), Integrated Science Lab (Icelab), Department of Molecular Biology, Umeå, Sweden
| | - Nicole Boucheron
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria.
| |
Collapse
|
6
|
Nagashima H, Shayne J, Jiang K, Petermann F, Pękowska A, Kanno Y, O'Shea JJ. Remodeling of Il4-Il13-Il5 locus underlies selective gene expression. Nat Immunol 2024; 25:2220-2233. [PMID: 39567762 DOI: 10.1038/s41590-024-02007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
The type 2 cytokines, interleukin (IL)-4, IL-13 and IL-5 reside within a multigene cluster. Both innate (ILC2) and adaptive T helper 2 (TH2) lymphocytes secrete type 2 cytokines with diverse production spectra. Using transcription factor footprint and chromatin accessibility, we systemically cataloged regulatory elements (REs) denoted as SHS-I/II, KHS-I/II, +6.5kbIl13, 5HS-I(a, b, c, d, e), 5HS-II and 5HS-III(a, b, c) across the extended Il4-Il13-Il5 locus in mice. Physical proximities among REs were coordinately remodeled in three-dimensional space after cell activation, leading to divergent compartmentalization of Il4, Il13 and Il5 with varied combinations of REs. Deletions of REs revealed no single RE solely accounted for selective regulation of a given cytokine in vivo. Instead, individual RE differentially contribute to proper genomic positioning of REs and target genes. RE deletions resulted in context-dependent dysregulation of cytokine expression and immune response in tissue. Thus, signal-dependent remodeling of three-dimensional configuration underlies divergent cytokine outputs from the type 2 loci.
Collapse
Affiliation(s)
| | - Justin Shayne
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Franziska Petermann
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
- NGS Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Aleksandra Pękowska
- Genomics and Immunity Section, NIAMS, NIH, Bethesda, MD, USA
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Ben-Baruch Morgenstern N, Rochman Y, Caldwell JM, Collins MH, Mukkada VA, Putnam PE, Bolton SM, Kliewer KL, Rothenberg ME. T H2 cell compensatory effect following benralizumab treatment for eosinophilic gastritis. J Allergy Clin Immunol 2024; 154:1325-1332.e2. [PMID: 39089335 DOI: 10.1016/j.jaci.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Eosinophil accumulation is a main feature of eosinophilic gastritis (EoG) and is associated with its histologic diagnosis and pathology. However, a recent clinical trial has demonstrated that EoG endoscopic, noneosinophil histologic, and clinical features remain persistent despite complete eosinophil depletion. OBJECTIVE Our aim was to examine gastric T-cell composition and associated cytokine levels of patients with EoG following benralizumab-induced eosinophil depletion versus following administration of placebo. METHODS A cohort of subjects with EoG from a subset of subjects who participated in a recent phase 2 benralizumab trial was treated for 12 weeks with administration of 3 doses of benralizumab (anti-IL-5 receptor α antibody [n = 5]) or placebo (n = 4). Single-cell suspensions obtained by gastric biopsy were stimulated with phorbol 12,13-dibutyrate and ionomycin in the presence of brefeldin A and monensin. Harvested cells were fixed, stained, and analyzed by flow cytometry to examine T-cell populations and associated cytokines. RESULTS Following benralizumab treatment but not placebo, blood and gastric eosinophil levels decreased 16-fold and 10-fold, respectively. Whereas histologic score and features were significantly decreased, no change was observed in endoscopic score and features. Following complete eosinophil depletion with benralizumab, gastric TH2 cell levels were 3-fold higher than the levels in the patients with EoG who were given placebo; and the levels of associated type 2 cytokine production of IL-4, IL-5, and IL-13 in the benralizumab-treated patients were, respectively, 4-, 5.5-, and 2.5-fold, higher than those in the placebo-treated patients. CONCLUSION We have identified a putative positive feedback loop whereby eosinophil depletion results in a paradoxic increase in levels of TH2 cells and derived cytokines; this finding suggests an explanation for the limited success of eosinophil depletion as monotherapy in eosinophil-associated gastrointestinal disorders.
Collapse
Affiliation(s)
- Netali Ben-Baruch Morgenstern
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Yrina Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Margaret H Collins
- Division of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vincent A Mukkada
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Philip E Putnam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Scott M Bolton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kara L Kliewer
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
8
|
Niese ML, Pajulas AL, Rostron CR, Cheung CCL, Krishnan MS, Zhang J, Cannon AM, Kaplan MH. TL1A priming induces a multi-cytokine Th9 cell phenotype that promotes robust allergic inflammation in murine models of asthma. Mucosal Immunol 2024; 17:537-553. [PMID: 38493956 PMCID: PMC11354665 DOI: 10.1016/j.mucimm.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Multi-cytokine-producing Th9 cells secrete IL-9 and type 2 cytokines and mediate mouse and human allergic inflammation. However, the cytokines that promote a multi-cytokine secreting phenotype have not been defined. Tumor necrosis factor superfamily member TL1A signals through its receptor DR3 to increase IL-9. Here we demonstrate that TL1A increases expression of IL-9 and IL-13 co-expressing cells in murine Th9 cell cultures, inducing a multi-cytokine phenotype. Mechanistically, this is linked to histone modifications allowing for increased accessibility at the Il9 and Il13 loci. We further show that TL1A alters the transcription factor network underlying expression of IL-9 and IL-13 in Th9 cells and increases binding of transcription factors to Il9 and Il13 loci. TL1A-priming enhances the pathogenicity of Th9 cells in murine models of allergic airway disease through the increased expression of IL-9 and IL-13. Lastly, in both chronic and memory-recall models of allergic airway disease, blockade of TL1A signaling decreases the multi-cytokine Th9 cell population and attenuates the allergic phenotype. Taken together, these data demonstrate that TL1A promotes the development of multi-cytokine Th9 cells that drive allergic airway diseases and that targeting pathogenic T helper cell-promoting cytokines could be an effective approach for modifying disease.
Collapse
Affiliation(s)
- Michelle L Niese
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abigail L Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cameron R Rostron
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cherry C L Cheung
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maya S Krishnan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony M Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Liu S, Cao Y, Cui K, Ren G, Zhao T, Wang X, Wei D, Chen Z, Gurram RK, Liu C, Wu C, Zhu J, Zhao K. Regulation of T helper cell differentiation by the interplay between histone modification and chromatin interaction. Immunity 2024; 57:987-1004.e5. [PMID: 38614090 PMCID: PMC11096031 DOI: 10.1016/j.immuni.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tingting Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuezheng Wang
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Davis MJ, Martin RE, Pinheiro GM, Hoke ES, Moyer S, Ueno K, Rodriguez-Gil JL, Mallett MA, Khillan JS, Pavan WJ, Chang YC, Kwon-Chung KJ. Inbred SJL mice recapitulate human resistance to Cryptococcus infection due to differential immune activation. mBio 2023; 14:e0212323. [PMID: 37800917 PMCID: PMC10653822 DOI: 10.1128/mbio.02123-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Cryptococcosis studies often utilize the common C57BL/6J mouse model. Unfortunately, infection in these mice fails to replicate the basic course of human disease, particularly hampering immunological studies. This work demonstrates that SJL/J mice can recapitulate human infection better than other mouse strains. The immunological response to Cryptococcus infection in SJL/J mice was markedly different from C57BL/6J and much more productive in combating this infection. Characterization of infected mice demonstrated strain-specific genetic linkage and differential regulation of multiple important immune-relevant genes in response to Cryptococcus infection. While our results validate many of the previously identified immunological features of cryptococcosis, we also demonstrate limitations from previous mouse models as they may be less translatable to human disease. We concluded that SJL/J mice more faithfully recapitulate human cryptococcosis serving as an exciting new animal model for immunological and genetic studies.
Collapse
Affiliation(s)
- M. J. Davis
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - R. E. Martin
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - G. M. Pinheiro
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - E. S. Hoke
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - S. Moyer
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - K. Ueno
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - J. L. Rodriguez-Gil
- Genomics, Development and Disease Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - M. A. Mallett
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - J. S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - W. J. Pavan
- Genomics, Development and Disease Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Y. C. Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - K. J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
11
|
Kim YW, Kang J, Kim A. Hematopoietic/erythroid enhancers activate nearby target genes by extending histone H3K27ac and transcribing intergenic RNA. FASEB J 2023; 37:e22870. [PMID: 36929052 DOI: 10.1096/fj.202201891r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Enhancers activate gene transcription remotely, which requires tissue specific transcription factors binding to them. GATA1 and TAL1 are hematopoietic/erythroid-specific factors and often bind together to enhancers, activating target genes. Interestingly, we found that some hematopoietic/erythroid genes are transcribed in a GATA1-dependent but TAL1-independnet manner. They appear to have enhancers within a relatively short distance. In this study, we paired highly transcribed hematopoietic/erythroid genes with the nearest GATA1/TAL1-binding enhancers and analyzed these putative enhancer-gene pairs depending on distance between them. Enhancers located at various distances from genes in the pairs, which was not related to transcription level of the genes. However, genes with enhancers at short distances away tended to be transcriptionally unaffected by TAL1 depletion. Histone H3K27ac extended from the enhancers to target genes. The H3K27ac extension was maintained without TAL1, even though it disappeared owing to the loss of GATA1. Intergenic RNA was highly transcribed from the enhancers to nearby target genes, independent of TAL1. Taken together, TAL1-independent transcription of hematopoietic/erythroid genes appears to be promoted by enhancers present in a short distance. These enhancers are likely to activate nearby target genes by tracking the intervening regions.
Collapse
Affiliation(s)
- Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
- Department of Biomedical Laboratory Science, College of Healthcare Medical Science and Engineering, Inje University, Gimhae, South Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
12
|
Stikker BS, Hendriks RW, Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy 2023; 78:940-956. [PMID: 36727912 DOI: 10.1111/all.15666] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Asthma is a complex and heterogeneous chronic inflammatory disease of the airways. Alongside environmental factors, asthma susceptibility is strongly influenced by genetics. Given its high prevalence and our incomplete understanding of the mechanisms underlying disease susceptibility, asthma is frequently studied in genome-wide association studies (GWAS), which have identified thousands of genetic variants associated with asthma development. Virtually all these genetic variants reside in non-coding genomic regions, which has obscured the functional impact of asthma-associated variants and their translation into disease-relevant mechanisms. Recent advances in genomics technology and epigenetics now offer methods to link genetic variants to gene regulatory elements embedded within non-coding regions, which have started to unravel the molecular mechanisms underlying the complex (epi)genetics of asthma. Here, we provide an integrated overview of (epi)genetic variants associated with asthma, focusing on efforts to link these disease associations to biological insight into asthma pathophysiology using state-of-the-art genomics methodology. Finally, we provide a perspective as to how decoding the genetic and epigenetic basis of asthma has the potential to transform clinical management of asthma and to predict the risk of asthma development.
Collapse
Affiliation(s)
- Bernard S Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Lee GR. Molecular Mechanisms of T Helper Cell Differentiation and Functional Specialization. Immune Netw 2023; 23:e4. [PMID: 36911803 PMCID: PMC9995992 DOI: 10.4110/in.2023.23.e4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 03/07/2023] Open
Abstract
Th cells, which orchestrate immune responses to various pathogens, differentiate from naïve CD4 T cells into several subsets that stimulate and regulate immune responses against various types of pathogens, as well as a variety of immune-related diseases. Decades of research have revealed that the fate decision processes are controlled by cytokines, cytokine receptor signaling, and master transcription factors that drive the differentiation programs. Since the Th1 and Th2 paradigm was proposed, many subsets have been added to the list. In this review, I will summarize these events, including the fate decision processes, subset functions, transcriptional regulation, metabolic regulation, and plasticity and heterogeneity. I will also introduce current topics of interest.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea
| |
Collapse
|
14
|
Qurashi TA, Shah A, Bhat GA, Khan MS, Rasool R, Mudassar S. Atopy in Kashmir-validation from a case control study with respect to IgE and Interleukin genes. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:119. [PMID: 34814942 PMCID: PMC8609820 DOI: 10.1186/s13223-021-00623-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Increased levels of serum Immunoglobulin-E (IgE) and different genetic variants of cytokines are common biochemical manifestation in Allergy. The current study was aimed to study the association of IgE and different variants of Interleukin-4 (IL-4), and Interleukin-13 (IL-13) genes with different kind of allergies. METHODS A pre-tested questionnaire was used to collect all the dietary, life style and clinical details by a trained staff. A blood sample of 2 ml each was collected in coagulated and anti-coagulated vials. DNA and serum samples were extracted and stored until further use. Serum IgE were estimated by ELISA while as the genotypic analysis was done by PCR-RFLP methods. RESULTS Statistically a significant difference of serum IgE levels were observed among cases and controls (P < 0.05). The observed significant difference of serum IgE levels were retained among subjects who also harboured variant genotypes of IL-4 and IL-13 genes (P < 0.05). Additionally, the above genetic variants significantly modified the risk of allergy when stratification was done based on various clinical characteristics. CONCLUSION Our study suggests that increased IgE levels and in association with variant forms of IL-4 and IL-13 genes are significantly associated with different types of allergies in study population.
Collapse
Affiliation(s)
- Taha Ashraf Qurashi
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, 190006, India
| | - Gulzar Ahmad Bhat
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Mosin Saleem Khan
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Roohi Rasool
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, 190011, India
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India.
| |
Collapse
|
15
|
Qurashi TA, Bhat GA, Khan MS, Rasool R, Sameen F, Hassan I, Mudassar S. Interleukin 4 and Interleukin 4 receptor alpha gene variants and risk of atopy - A case control study based assessment. Clin Immunol 2021; 229:108783. [PMID: 34129931 DOI: 10.1016/j.clim.2021.108783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION IL4 pathway is known to upregulate IgE mediated immune responses and responsible for the manifestation of Atopic disorders. The current study was aimed to elucidate the genetic variations of Interleukin 4 (IL4) and Interleukin 4 receptor alpha (IL4R) genes and their possible association with atopic subjects. METHODS The well-designed questionnaire was used to collect the subject demographic and clinical details. Biochemical parameters were analysed using Chemiluminescent Immunoassay (CLIA) technique. The genotyping was performed using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). RESULTS We observed a statistically significant difference of serum Immunoglobulin-E (IgE) levels among cases and controls (P<0.05). Subjects harbouring the variant genotypes of I50V and Q576R single nucleotide polymorphisms (SNPs) in IL4R gene showed statistically differential risk towards atopic disorders. However, the variants genotype of 70 bp VNTR polymorphism in IL4 gene showed a protective role towards in predisposition to Atopy. On stratification, the above genetic variants had a significant impact on modifiable and non-modifiable factors associated with the disease. CONCLUSION Our study demonstrates that increased IgE levels and IL4 gene variants (I50V and Q576R) are significantly associated towards predisposition to allergic disorders in this study population.
Collapse
Affiliation(s)
- Taha Ashraf Qurashi
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, 190011, J&K, India
| | - Gulzar Ahmad Bhat
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, 190011, J&K, India
| | - Mosin Saleem Khan
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, 190011, J&K, India
| | - Roohi Rasool
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, 190011, J&K, India
| | - Farah Sameen
- Department of Dermatology, SKIMS Medical College, Bemina, 190018, J&K, India
| | - Iffat Hassan
- Department of Dermatology & Venereal Diseases, Govt. Medical College Srinagar and Associated Hospitals, Karan Nagar, 190010, J&K, India
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, 190011, J&K, India.
| |
Collapse
|
16
|
The Predictive Role of Biomarkers and Genetics in Childhood Asthma Exacerbations. Int J Mol Sci 2021; 22:ijms22094651. [PMID: 33925009 PMCID: PMC8124320 DOI: 10.3390/ijms22094651] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Asthma exacerbations are associated with significant childhood morbidity and mortality. Recurrent asthma attacks contribute to progressive loss of lung function and can sometimes be fatal or near-fatal, even in mild asthma. Exacerbation prevention becomes a primary target in the management of all asthmatic patients. Our work reviews current advances on exacerbation predictive factors, focusing on the role of non-invasive biomarkers and genetics in order to identify subjects at higher risk of asthma attacks. Easy-to-perform tests are necessary in children; therefore, interest has increased on samples like exhaled breath condensate, urine and saliva. The variability of biomarker levels suggests the use of seriate measurements and composite markers. Genetic predisposition to childhood asthma onset has been largely investigated. Recent studies highlighted the influence of single nucleotide polymorphisms even on exacerbation susceptibility, through involvement of both intrinsic mechanisms and gene-environment interaction. The role of molecular and genetic aspects in exacerbation prediction supports an individual-shaped approach, in which follow-up planning and therapy optimization take into account not only the severity degree, but also the risk of recurrent exacerbations. Further efforts should be made to improve and validate the application of biomarkers and genomics in clinical settings.
Collapse
|
17
|
Pongubala JMR, Murre C. Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development. Front Immunol 2021; 12:633825. [PMID: 33854505 PMCID: PMC8039525 DOI: 10.3389/fimmu.2021.633825] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Higher-order spatial organization of the genome into chromatin compartments (permissive and repressive), self-associating domains (TADs), and regulatory loops provides structural integrity and offers diverse gene regulatory controls. In particular, chromatin regulatory loops, which bring enhancer and associated transcription factors in close spatial proximity to target gene promoters, play essential roles in regulating gene expression. The establishment and maintenance of such chromatin loops are predominantly mediated involving CTCF and the cohesin machinery. In recent years, significant progress has been made in revealing how loops are assembled and how they modulate patterns of gene expression. Here we will discuss the mechanistic principles that underpin the establishment of three-dimensional (3D) chromatin structure and how changes in chromatin structure relate to alterations in gene programs that establish immune cell fate.
Collapse
Affiliation(s)
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Meta-Analysis of Gene Popularity: Less Than Half of Gene Citations Stem from Gene Regulatory Networks. Genes (Basel) 2021; 12:genes12020319. [PMID: 33672419 PMCID: PMC7926953 DOI: 10.3390/genes12020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 12/04/2022] Open
Abstract
The reasons for selecting a gene for further study might vary from historical momentum to funding availability, thus leading to unequal attention distribution among all genes. However, certain biological features tend to be overlooked in evaluating a gene’s popularity. Here we present a meta-analysis of the reasons why different genes have been studied and to what extent, with a focus on the gene-specific biological features. From unbiased datasets we can define biological properties of genes that reasonably may affect their perceived importance. We make use of both linear and nonlinear computational approaches for estimating gene popularity to then compare their relative importance. We find that roughly 25% of the studies are the result of a historical positive feedback, which we may think of as social reinforcement. Of the remaining features, gene family membership is the most indicative followed by disease relevance and finally regulatory pathway association. Disease relevance has been an important driver until the 1990s, after which the focus shifted to exploring every single gene. We also present a resource that allows one to study the impact of reinforcement, which may guide our research toward genes that have not yet received proportional attention.
Collapse
|
19
|
Role of Cytokines in EGPA and the Possibility of Treatment with an Anti-IL-5 Antibody. J Clin Med 2020; 9:jcm9123890. [PMID: 33265990 PMCID: PMC7760889 DOI: 10.3390/jcm9123890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023] Open
Abstract
Eosinophilic granulomatosis with polyangiitis (EGPA) is a type of systemic vasculitis with eosinophilia in the peripheral blood, which is preceded by bronchial asthma or allergic disease. EGPA is pathologically characterized by microangiopathy granulomatosis vasculitis. Vasculitis can be exacerbated and cause central nervous system and cardiovascular disorders and gastrointestinal perforation. Histological examination reveals eosinophil infiltration and granulomas in lesions in areas such as the lung, nervous system, and skin. Laboratory tests show inflammatory findings such as C-reactive protein (CRP) elevation, increased eosinophils, elevated serum IgE, and elevated myeloperoxidase-anti-neutrophil cytoplasmic antibodies (MPO-ANCA). MPO-ANCA is positive in approximately 40-70% of cases of this disease. EGPA is a necrotizing vasculitis that affects small- and medium-sized blood vessels; however, it differs from other types of ANCA-related vasculitis (such as microscopic polyangiitis and granulomatosis) because it is preceded by bronchial asthma and eosinophilia in the blood and tissues. Treatment with immunosuppressive agents such as steroids or cyclophosphamide depends on the Five Factor Score, which predicts the prognosis and severity of the condition. If the effect of appropriate treatment with steroids is insufficient, the anti-interleukin-5 antibody mepolizumab can be administered. The combination of mepolizumab with standard treatment leads to a significantly longer duration of remission, a higher proportion of patients who achieve sustained remission, and less steroid use than with a placebo.
Collapse
|
20
|
Pham D, Moseley CE, Gao M, Savic D, Winstead CJ, Sun M, Kee BL, Myers RM, Weaver CT, Hatton RD. Batf Pioneers the Reorganization of Chromatin in Developing Effector T Cells via Ets1-Dependent Recruitment of Ctcf. Cell Rep 2020; 29:1203-1220.e7. [PMID: 31665634 PMCID: PMC7182170 DOI: 10.1016/j.celrep.2019.09.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/28/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022] Open
Abstract
The basic leucine zipper transcription factor activating transcription factor-like (Batf) contributes to transcriptional programming of multiple effector T cells and is required for T helper 17 (Th17) and T follicular helper (Tfh) cell development. Here, we examine mechanisms by which Batf initiates gene transcription in developing effector CD4 T cells. We find that, in addition to its pioneering function, Batf controls developmentally regulated recruitment of the architectural factor Ctcf to promote chromatin looping that is associated with lineage-specific gene transcription. The chromatin-organizing actions of Batf are largely dependent on Ets1, which appears to be indispensable for the Batf-dependent recruitment of Ctcf. Moreover, most of the Batf-dependent sites to which Ctcf is recruited lie outside of activating protein-1-interferon regulatory factor (Ap-1-Irf) composite elements (AICEs), indicating that direct involvement of Batf-Irf complexes is not required. These results identify a cooperative role for Batf, Ets1, and Ctcf in chromatin reorganization that underpins the transcriptional programming of effector T cells.
Collapse
Affiliation(s)
- Duy Pham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carson E Moseley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Gao
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Savic
- Human Genomics and Genetics, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Colleen J Winstead
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mengxi Sun
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Barbara L Kee
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Richard M Myers
- Human Genomics and Genetics, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Robin D Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
21
|
Sendler M, van den Brandt C, Glaubitz J, Wilden A, Golchert J, Weiss FU, Homuth G, De Freitas Chama LL, Mishra N, Mahajan UM, Bossaller L, Völker U, Bröker BM, Mayerle J, Lerch MM. NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice With Acute Pancreatitis. Gastroenterology 2020; 158:253-269.e14. [PMID: 31593700 DOI: 10.1053/j.gastro.2019.09.040] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatitis starts with primarily sterile local inflammation that induces systemic inflammatory response syndrome, followed by compensatory anti-inflammatory response syndrome (CARS). We investigated the mechanisms of these processes in mice and human serum. METHODS We induced severe acute pancreatitis by partial duct ligation with caerulein stimulation or intraperitoneal injection of l-arginine in mice with deletion of interleukin (IL)12B, NLRP3, or IL18 and in mice given MCC950, a small molecule inhibitor of the NLRP3-inflammasome. Pancreata were collected from mice and analyzed by histology, and cytokine levels were measured in serum samples. We measured activation of adaptive immune responses in mice with pancreatitis by flow cytometry analysis of T cells (CD25 and CD69) isolated from the spleen. Differentiation of T-helper (Th1) cells, Th2 cells, and T-regulatory cells was determined by nuclear staining for TBET, GATA3, and FOXP3. We performed transcriptome analysis of mouse lymph nodes and bone marrow-derived macrophages after incubation with acini. We measured levels of cytokines in serum samples from patients with mild and severe acute pancreatitis. RESULTS Activation of the adaptive immune response in mice was initiated by macrophage-derived, caspase 1-processed cytokines and required activation of NLRP3 (confirmed in serum samples from patients with pancreatitis). Spleen cells from mice with pancreatitis had increases in Th2 cells but not in Th1 cells. Bone marrow-derived macrophages secreted IL1B and IL18, but not IL12, after co-incubation with pancreatic acini. T-cell activation and severity of acute pancreatitis did not differ significantly between IL12B-deficient and control mice. In contrast, NLRP3- or IL18-deficient mice had reduced activation of T cells and no increase in Th2 cell-mediated responses compared with control mice. The systemic type 2 immune response was mediated by macrophage-derived cytokines of the IL1 family. Specifically, IL18 induced a Th2 cell-mediated response in the absence of IL12. MCC950 significantly reduced neutrophil infiltration, T-cell activation, and disease severity in mice. CONCLUSIONS In mice with severe pancreatitis, we found systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome developed in parallel. Infiltrating macrophages promote inflammation and simultaneously induce a Th2 cell-mediated response via IL18. Inhibition of NLRP3 reduces systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome and might be used to treat patients with severe pancreatitis.
Collapse
Affiliation(s)
- Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany.
| | - Cindy van den Brandt
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Juliane Glaubitz
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Anika Wilden
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, University of Greifswald, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, University of Greifswald, Greifswald, Germany
| | | | - Neha Mishra
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Ujjwal Mukund Mahajan
- Medizinische Klinik und Poliklinik II, Klinikum der Ludwig Maximilian University München-Grosshadern, München, Germany
| | - Lukas Bossaller
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, University of Greifswald, Greifswald, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, University of Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany; Medizinische Klinik und Poliklinik II, Klinikum der Ludwig Maximilian University München-Grosshadern, München, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| |
Collapse
|
22
|
Stark JM, Tibbitt CA, Coquet JM. The Metabolic Requirements of Th2 Cell Differentiation. Front Immunol 2019; 10:2318. [PMID: 31611881 PMCID: PMC6776632 DOI: 10.3389/fimmu.2019.02318] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Upon activation, naïve CD4+ T cells differentiate into a number of specialized T helper (Th) cell subsets. Th2 cells are central players in immunity to helminths and are implicated in mediating the inflammatory pathology associated with allergies. The differentiation of Th2 cells is dependent on transcription factors such as GATA3 and STAT6, which prime Th2 cells for the secretion of interleukin- (IL-) 4, IL-5, and IL-13. Several lines of work now suggest that differentiating Th2 cells in the lymph node are potent IL-4 cytokine producers, but do not become competent IL-5- and IL-13-producing cells until after receiving cues from non-lymphoid tissue. It is evident that Th2 cells that enter tissues undergo considerable changes in chromatin architecture and gene expression, and that over this time, the metabolic requirements of these cells change considerably. Herein, we discuss the metabolic requirements of Th2 cells during their early and late differentiation, focusing on the impact of glucose and lipid metabolism, mTOR activation, the nuclear receptor PPAR-γ and several metabolites.
Collapse
Affiliation(s)
- Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christopher A Tibbitt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Leonard WJ, Lin JX, O'Shea JJ. The γ c Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 2019; 50:832-850. [PMID: 30995502 DOI: 10.1016/j.immuni.2019.03.028] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
The common cytokine receptor γ chain, γc, is a component of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21. Mutation of the gene encoding γc results in X-linked severe combined immunodeficiency in humans, and γc family cytokines collectively regulate development, proliferation, survival, and differentiation of immune cells. Here, we review the basic biology of these cytokines, highlighting mechanisms of signaling and gene regulation that have provided insights for immunodeficiency, autoimmunity, allergic diseases, and cancer. Moreover, we discuss how studies of this family stimulated the development of JAK3 inhibitors and present an overview of current strategies targeting these pathways in the clinic, including novel antibodies, antagonists, and partial agonists. The diverse roles of these cytokines on a range of immune cells have important therapeutic implications.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Metabolic, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| |
Collapse
|
24
|
Hur K, Kim SH, Kim JM. Potential Implications of Long Noncoding RNAs in Autoimmune Diseases. Immune Netw 2019; 19:e4. [PMID: 30838159 PMCID: PMC6399094 DOI: 10.4110/in.2019.19.e4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are non-protein coding RNAs of more than 200 nucleotides in length. Despite the term “noncoding”, lncRNAs have been reported to be involved in gene expression. Accumulating evidence suggests that lncRNAs play crucial roles in the regulation of immune system and the development of autoimmunity. lncRNAs are expressed in various immune cells including T lymphocytes, B lymphocytes, macrophages, neutrophils, dendritic cells, and NK cells, and are also involved in the differentiation and activation of these immune cells. Here, we review recent studies on the role of lncRNAs in immune regulation and the differential expression of lncRNAs in various autoimmune diseases.
Collapse
Affiliation(s)
- Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Keimyung University College of Medicine, Daegu 41931, Korea
| | - Ji-Min Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Keimyung University College of Medicine, Daegu 41931, Korea
| |
Collapse
|
25
|
Van Gool F, Nguyen MLT, Mumbach MR, Satpathy AT, Rosenthal WL, Giacometti S, Le DT, Liu W, Brusko TM, Anderson MS, Rudensky AY, Marson A, Chang HY, Bluestone JA. A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity 2019; 50:362-377.e6. [PMID: 30709738 PMCID: PMC6476426 DOI: 10.1016/j.immuni.2018.12.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/25/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022]
Abstract
Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Child
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Polyendocrinopathies, Autoimmune/genetics
- Polyendocrinopathies, Autoimmune/immunology
- Polyendocrinopathies, Autoimmune/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Frédéric Van Gool
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle L T Nguyen
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wendy L Rosenthal
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Simone Giacometti
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Duy T Le
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weihong Liu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Marson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Harrison OJ, Linehan JL, Shih HY, Bouladoux N, Han SJ, Smelkinson M, Sen SK, Byrd AL, Enamorado M, Yao C, Tamoutounour S, Van Laethem F, Hurabielle C, Collins N, Paun A, Salcedo R, O'Shea JJ, Belkaid Y. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 2018; 363:science.aat6280. [PMID: 30523076 DOI: 10.1126/science.aat6280] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Barrier tissues are primary targets of environmental stressors and are home to the largest number of antigen-experienced lymphocytes in the body, including commensal-specific T cells. We found that skin-resident commensal-specific T cells harbor a paradoxical program characterized by a type 17 program associated with a poised type 2 state. Thus, in the context of injury and exposure to inflammatory mediators such as interleukin-18, these cells rapidly release type 2 cytokines, thereby acquiring contextual functions. Such acquisition of a type 2 effector program promotes tissue repair. Aberrant type 2 responses can also be unleashed in the context of local defects in immunoregulation. Thus, commensal-specific T cells co-opt tissue residency and cell-intrinsic flexibility as a means to promote both local immunity and tissue adaptation to injury.
Collapse
Affiliation(s)
- Oliver J Harrison
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Jonathan L Linehan
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.,NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Shurjo K Sen
- Leidos Biomedical Research Inc., Basic Science Program, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Allyson L Byrd
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Chen Yao
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Samira Tamoutounour
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Francois Van Laethem
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Charlotte Hurabielle
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.,Inserm Unité 976, Hôpital Saint-Louis, Paris, France
| | - Nicholas Collins
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Andrea Paun
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Rosalba Salcedo
- Cancer and Inflammation Program, National Cancer Institute, Bethesda, MD 20892, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. .,NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
A conserved enhancer regulates Il9 expression in multiple lineages. Nat Commun 2018; 9:4803. [PMID: 30442929 PMCID: PMC6237898 DOI: 10.1038/s41467-018-07202-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cytokine genes are regulated by multiple regulatory elements that confer tissue-specific and activation-dependent expression. The cis-regulatory elements of the gene encoding IL-9, a cytokine that promotes allergy, autoimmune inflammation and tumor immunity, have not been defined. Here we identify an enhancer (CNS-25) upstream of the Il9 gene that binds most transcription factors (TFs) that promote Il9 gene expression. Deletion of the enhancer in the mouse germline alters transcription factor binding to the remaining Il9 regulatory elements, and results in diminished IL-9 production in multiple cell types including Th9 cells, and attenuates IL-9-dependent immune responses. Moreover, deletion of the homologous enhancer (CNS-18) in primary human Th9 cultures results in significant decrease of IL-9 production. Thus, Il9 CNS-25/IL9 CNS-18 is a critical and conserved regulatory element for IL-9 production. Interleukin-9 (IL-9) is important for allergy, autoimmunity and tumor immunity, but how its expression is regulated is unclear. Here the authors show the essential function of an enhancer, CNS-25 in mouse and CNS-18 in human, for IL-9 expression, with the deletion of this enhancer severely hampering IL-9 production in mice or human cells.
Collapse
|
28
|
Zhao CN, Mao YM, Liu LN, Li XM, Wang DG, Pan HF. Emerging role of lncRNAs in systemic lupus erythematosus. Biomed Pharmacother 2018; 106:584-592. [DOI: 10.1016/j.biopha.2018.06.175] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
|
29
|
Lorentsen KJ, Cho JJ, Luo X, Zuniga AN, Urban JF, Zhou L, Gharaibeh R, Jobin C, Kladde MP, Avram D. Bcl11b is essential for licensing Th2 differentiation during helminth infection and allergic asthma. Nat Commun 2018; 9:1679. [PMID: 29700302 PMCID: PMC5920086 DOI: 10.1038/s41467-018-04111-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
During helminth infection and allergic asthma, naive CD4+ T-cells differentiate into cytokine-producing Type-2 helper (Th2) cells that resolve the infection or induce asthma-associated pathology. Mechanisms regulating the Th2 differentiation in vivo remain poorly understood. Here we report that mice lacking Bcl11b in mature T-cells have a diminished capacity to mount Th2 responses during helminth infection and allergic asthma, showing reduced Th2 cytokines and Gata3, and elevated Runx3. We provide evidence that Bcl11b is required to maintain chromatin accessibility at Th2-cytokine promoters and locus-control regions, and binds the Il4 HS IV silencer, reducing its accessibility. Bcl11b also binds Gata3-intronic and downstream-noncoding sites, sustaining the Gata3 expression. In addition, Bcl11b binds and deactivates upstream enhancers at Runx3 locus, restricting the Runx3 expression and its availability to act at the Il4 HS IV silencer. Thus, our results establish novel roles for Bcl11b in the regulatory loop that licenses Th2 program in vivo.
Collapse
Affiliation(s)
- Kyle J Lorentsen
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Jonathan J Cho
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Xiaoping Luo
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Ashley N Zuniga
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Joseph F Urban
- Beltsville Human Nutrition Research Center, Agricultural Research Service, Diet, Genomic and Immunology Laboratory, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA.,UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Raad Gharaibeh
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.,Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, 2033 Mowry Rd., CGRC 461, Gainesville, FL, 32610, USA
| | - Christian Jobin
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.,Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, 2033 Mowry Rd., CGRC 461, Gainesville, FL, 32610, USA
| | - Michael P Kladde
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 2033 Mowry Rd., CGRC 359, Gainesville, FL, 32610, USA
| | - Dorina Avram
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA. .,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA. .,UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
30
|
Babu SP, Chen YYK, Bonne-Annee S, Yang J, Maric I, Myers TG, Nutman TB, Klion AD. Dysregulation of interleukin 5 expression in familial eosinophilia. Allergy 2017; 72:1338-1345. [PMID: 28226398 PMCID: PMC5546948 DOI: 10.1111/all.13146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Familial eosinophilia (FE) is a rare autosomal dominant inherited disorder characterized by the presence of lifelong peripheral eosinophilia (>1500/μL). Mapped to chromosome 5q31-q33, the genetic cause of FE is unknown, and prior studies have failed to demonstrate a primary abnormality in the eosinophil lineage. OBJECTIVE The aim of this study was to identify the cells driving the eosinophilia in FE. METHODS Microarray analysis and real-time PCR were used to examine transcriptional differences in peripheral blood mononuclear cells (PBMC), and in purified cell subsets from affected and unaffected family members belonging to a single large kindred. Cytokine levels in serum and PBMC culture supernatants were assessed by suspension array multiplexed immunoassays. RESULTS Whereas IL-5 mRNA expression was significantly increased in freshly isolated PBMC from affected family members, this was not accompanied by increased mRNA expression of other Th2 cytokines (IL-4 or IL-13). Serum levels of IL-5 and IL-5 receptor α, but not IgE, were similarly increased in affected family members. Of note, IL-5 mRNA expression was significantly increased in purified CD3+ CD4+, CD14+, CD19+, and ILC2 cells from affected family members, as were IL-5 protein levels in supernatants from both stimulated PBMC and ILC2 cultures. CONCLUSIONS These data are consistent with the hypothesis that the eosinophilia in FE is secondary to dysregulation of IL-5 production in PBMC (and their component subsets).
Collapse
Affiliation(s)
- Senbagavalli Prakash Babu
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Yun-Yun K. Chen
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Sandra Bonne-Annee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| | - Irina Maric
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Amy D. Klion
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
31
|
Igarashi K, Kurosaki T, Roychoudhuri R. BACH transcription factors in innate and adaptive immunity. Nat Rev Immunol 2017; 17:437-450. [PMID: 28461702 DOI: 10.1038/nri.2017.26] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4+ regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi-ku, Yokohama 230-0045, Japan
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
32
|
T follicular helper and T H2 cells in allergic responses. Allergol Int 2017; 66:377-381. [PMID: 28499720 DOI: 10.1016/j.alit.2017.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/23/2022] Open
Abstract
IL-4 is a cytokine commonly secreted by TH2 and follicular helper T (TFH) cells after antigenic sensitization. TH2 cells have been thought to be the major contributor of B cell help as a source of IL-4 responsible for class switch recombination to Immunoglobulin G1 (IgG1) and Immunoglobulin E (IgE). Importantly, there are some differences in transcriptional regulation between these two T cell subsets. The IL-4 production by TH2 and TFH cells is distinctively regulated by two pathways, GATA-3-mediated Il4-HS2 enhancer and Notch mediated Il4-CNS-2 enhancer. IgE and IgG1 antibody responses are mainly controlled by IL-4-secreting TFH cells, but not by TH2 cells. In this review, we discuss the role of TH2 and TFH cells in IgE production and allergic responses.
Collapse
|
33
|
Li P, Shi ML, Shen WL, Zhang Z, Xie DJ, Zhang XY, He C, Zhang Y, Zhao ZH. Coordinated regulation of IFITM1, 2 and 3 genes by an IFN-responsive enhancer through long-range chromatin interactions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:885-893. [PMID: 28511927 PMCID: PMC7102783 DOI: 10.1016/j.bbagrm.2017.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 11/26/2022]
Abstract
Interferon-induced transmembrane protein (IFITM) 1, 2 and 3 genes encode a family of interferon (IFN)-induced transmembrane proteins that block entry of a broad spectrum of pathogens. However, the transcriptional regulation of these genes, especially whether there exist any enhancers and their roles during the IFN induction process remain elusive. Here, through public data mining, episomal luciferase reporter assay and in vivo CRISPR-Cas9 genome editing, we identified an IFN-responsive enhancer located 35kb upstream of IFITM3 gene promoter upregulating the IFN-induced expression of IFITM1, 2 and 3 genes. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA) and luciferase reporter assay demonstrated that signal transducers and activators of transcription (STAT) 1 bound to the enhancer with the treatment of IFN and was indispensable for the enhancer activity. Furthermore, using chromosome conformation capture technique, we revealed that the IFITM1, 2 and 3 genes physically clustered together and constitutively looped to the distal enhancer through long-range interactions in both HEK293 and A549 cells, providing structural basis for coordinated regulation of IFITM1, 2 and 3 by the enhancer. Finally, we showed that in vivo truncation of the enhancer impaired IFN-induced resistance to influenza A virus (IAV) infection. These findings expand our understanding of the mechanisms underlying the transcriptional regulation of IFITM1, 2 and 3 expression and its ability to mediate IFN signaling.
Collapse
Affiliation(s)
- Ping Li
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Ming-Lei Shi
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Wen-Long Shen
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Zhang Zhang
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - De-Jian Xie
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiang-Yuan Zhang
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Chao He
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Zhi-Hu Zhao
- Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Fengtai District, Beijing 100071, China.
| |
Collapse
|
34
|
Affiliation(s)
- C H Flayer
- Pulmonary, Critical Care and Sleep Medicine, Translational Lung Biology Center, University of California, Davis, Davis, CA, USA
| | - A Haczku
- Pulmonary, Critical Care and Sleep Medicine, Translational Lung Biology Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
35
|
Xia Y, Yang J, Wang G, Li C, Li Q. Age-Related Changes in DNA Methylation Associated with Shifting Th1/Th2 Balance. Inflammation 2017; 39:1892-1903. [PMID: 27650651 DOI: 10.1007/s10753-016-0425-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study was conducted in order to explore age-related changes in the production of Th1 and Th2 cytokines and determine the corresponding status of DNA methylation. The plasma IL-4 and IFN-γ levels and expression of Th-related cytokines and transcription factors in CD4+ splenocytes were observed in mice at different weeks of age. The DNA methylation levels of IL-4 and IFN-γ promoters and the related regulatory regions in CD4+ splenocytes of mice at different weeks of age were analyzed. The DNA methyltransferase (DNMT) levels in CD4+ splenocytes of mice were analyzed. Changes in plasma IL-4 and IFN-γ levels after 5-AZA injection were evaluated. Plasma IL-4 and IL-4 expression in CD4+ splenocytes declined with increasing age, while the IFN-γ expression levels increased. Th-related transcription factors showed no differences in mice at different weeks of age. The DNMT1 and DNMT3b mRNA expression did not show significant changes in CD4+ splenocytes, whereas the DNMT3a mRNA expression increased with age. DNA methylation in the IL-4 promoter was increased, while DNA methylation in the IFN-γ promoter was decreased. The methylation of RSH7, CNS-1, and HSV increased significantly with age. Age-related changes in DNA methylation may be associated with the shift in Th1/Th2 balance.
Collapse
Affiliation(s)
- Yu Xia
- Department of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jun Yang
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, 518026, Guangdong, China
| | - Guobin Wang
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, 518026, Guangdong, China
| | - Chengrong Li
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, 518026, Guangdong, China.
| | - Qiu Li
- Department of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
36
|
Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics 2017; 9:539-571. [PMID: 28322581 DOI: 10.2217/epi-2016-0162] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Allergic diseases are on the rise in the Western world and well-known allergy-protecting and -driving factors such as microbial and dietary exposure, pollution and smoking mediate their influence through alterations of the epigenetic landscape. Here, we review key facts on the involvement of epigenetic modifications in allergic diseases and summarize and critically evaluate the lessons learned from epigenome-wide association studies. We show the potential of epigenetic changes for various clinical applications: as diagnostic tools, to assess tolerance following immunotherapy or possibly predict the success of therapy at an early time point. Furthermore, new technological advances such as epigenome editing and DNAzymes will allow targeted alterations of the epigenome in the future and provide novel therapeutic tools.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL).,John Paul II Hospital, Krakow, Poland
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co KG, Planegg, Germany
| | - Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
37
|
Bevington SL, Cauchy P, Withers DR, Lane PJL, Cockerill PN. T Cell Receptor and Cytokine Signaling Can Function at Different Stages to Establish and Maintain Transcriptional Memory and Enable T Helper Cell Differentiation. Front Immunol 2017; 8:204. [PMID: 28316598 PMCID: PMC5334638 DOI: 10.3389/fimmu.2017.00204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Experienced T cells exhibit immunological memory via a rapid recall response, responding to restimulation much faster than naïve T cells. The formation of immunological memory starts during an initial slow response, when naïve T cells become transformed to proliferating T blast cells, and inducible immune response genes are reprogrammed as active chromatin domains. We demonstrated that these active domains are supported by thousands of priming elements which cooperate with inducible transcriptional enhancers to enable efficient responses to stimuli. At the conclusion of this response, a small proportion of these cells return to the quiescent state as long-term memory T cells. We proposed that priming elements can be established in a hit-and-run process dependent on the inducible factor AP-1, but then maintained by the constitutive factors RUNX1 and ETS-1. This priming mechanism may also function to render genes receptive to additional differentiation-inducing factors such as GATA3 and TBX21 that are encountered under polarizing conditions. The proliferation of recently activated T cells and the maintenance of immunological memory in quiescent memory T cells are also dependent on various cytokine signaling pathways upstream of AP-1. We suggest that immunological memory is established by T cell receptor signaling, but maintained by cytokine signaling.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Peter J L Lane
- Institute of Immunology and Immunotherapy, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| |
Collapse
|
38
|
Development of chronic allergic responses by dampening Bcl6-mediated suppressor activity in memory T helper 2 cells. Proc Natl Acad Sci U S A 2017; 114:E741-E750. [PMID: 28096407 DOI: 10.1073/pnas.1613528114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mice deficient in the transcriptional repressor B-cell CLL/lymphoma 6 (Bcl6) exhibit similar T helper 2 (TH2) immune responses as patients with allergic diseases. However, the molecular mechanisms underlying Bcl6-directed regulation of TH2 cytokine genes remain unclear. We identified multiple Bcl6/STAT binding sites (BSs) in TH2 cytokine gene loci. We found that Bcl6 is modestly associated with the BSs, and it had no significant effect on cytokine production in newly differentiated TH2 cells. Contrarily, in memory TH2 (mTH2) cells derived from adaptively transferred TH2 effectors, Bcl6 outcompeted STAT5 for binding to TH2 cytokine gene loci, particularly Interleukin4 (Il4) loci, and attenuated GATA binding protein 3 (GATA3) binding to highly conserved intron enhancer regions in mTH2 cells. Bcl6 suppressed cytokine production epigenetically in mTH2 cells to negatively tune histone acetylation at TH2 cytokine gene loci, including Il4 loci. In addition, IL-33, a pro-TH2 cytokine, diminished Bcl6's association with loci to which GATA3 recruitment was inversely augmented, resulting in altered IL-4, but not IL-5 and IL-13, production in mTH2 cells but no altered production in newly differentiated TH2 cells. Use of a murine asthma model that generates high levels of pro-TH2 cytokines, such as IL-33, suggested that the suppressive function of Bcl6 in mTH2 cells is abolished in severe asthma. These findings indicate a role of the interaction between TH2-promoting factors and Bcl6 in promoting appropriate IL-4 production in mTH2 cells and suggest that chronic allergic diseases involve the TH2-promoting factor-mediated functional breakdown of Bcl6, resulting in allergy exacerbation.
Collapse
|
39
|
Yamaguchi T, Schares S, Fischer U, Dijkstra JM. Identification of a fourth ancient member of the IL-3/IL-5/GM-CSF cytokine family, KK34, in many mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:268-279. [PMID: 27492645 DOI: 10.1016/j.dci.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
The related cytokine genes IL-3, IL-5 and GM-CSF map to the (extended) TH2 cytokine locus of the mammalian genome. For chicken an additional related cytokine gene, KK34, was reported downstream of the IL-3 plus GM-CSF cluster, but hitherto it was believed that mammalian genomes lack this gene. However, the present study identifies an intact orthologue of chicken KK34 gene in many mammals like cattle and pig, while remnants of KK34 can be found in human and mouse. Bovine KK34 was found to be transcribed, and its recombinant protein could induce STAT5 phosphorylation and proliferation of lymphocytes upon incubation with bovine PBMCs. This concludes that KK34 is a fourth functional cytokine of the IL-3/IL-5/GM-CSF/KK34-family (alias IL-5 family) in mammals. While analyzing KK34, the present study also made new identifications of cytokine genes in the extended TH2 cytokine loci for reptiles, birds and marsupials. This includes a hitherto unknown cytokine gene in birds and reptiles which we designated "IL-5famE". Other newly identified genes are KK34, GM-CSF(-like), IL-5, and IL-13 in reptiles, and IL-3 in marsupials.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Susann Schares
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
40
|
Li X, Hawkins GA, Moore WC, Hastie AT, Ampleford EJ, Milosevic J, Li H, Busse WW, Erzurum SC, Kaminski N, Wenzel SE, Bleecker ER, Meyers DA. Expression of asthma susceptibility genes in bronchial epithelial cells and bronchial alveolar lavage in the Severe Asthma Research Program (SARP) cohort. J Asthma 2016; 53:775-82. [PMID: 27050946 PMCID: PMC5137190 DOI: 10.3109/02770903.2016.1158268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Genome-wide association studies (GWASs) have identified genes associated with asthma, however expression of these genes in asthma-relevant tissues has not been studied. This study tested expression and correlation between GWAS-identified asthma genes and asthma or asthma severity. METHODS Correlation analyses of expression levels of GWAS-identified asthma genes and asthma-related biomarkers were performed in cells from human bronchial epithelial biopsy (BEC, n = 107) and bronchial alveolar lavage (BAL, n = 94). RESULTS Expression levels of asthma genes between BEC and BAL and with asthma or asthma severity were weakly correlated. The expression levels of IL18R1 were consistently higher in asthma than controls or in severe asthma than mild/moderate asthma in BEC and BAL (p < 0.05). In RAD50-IL13 region, the expression levels of RAD50, not IL4, IL5, or IL13, were positively correlated between BEC and BAL (ρ = 0.53, P = 4.5 × 10(-6)). The expression levels of IL13 were positively correlated with IL5 in BEC (ρ = 0.35, P = 1.9 × 10(-4)) and IL4 in BAL (ρ = 0.42, P = 2.5 × 10(-5)), respectively. rs3798134 in RAD50, a GWAS-identified SNP, was correlated with IL13 expression and the expression levels of IL13 were correlated with asthma (P = 0.03). rs17772583 in RAD50 was significantly correlated with RAD50 expression in BAL and BEC (P = 7.4 × 10(-7) and 0.04) but was not associated with asthma. CONCLUSIONS This is the first report studying the expression of GWAS-identified asthma genes in BEC and BAL. IL13, rather than RAD50, IL4, or IL5, is more likely to be the asthma susceptibility gene. Our study illustrates tissue-specific expression of asthma-related genes. Therefore, whenever possible, disease-relevant tissues should be used for transcription analysis.
Collapse
Affiliation(s)
- Xingnan Li
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gregory A. Hawkins
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Wendy C. Moore
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Annette T. Hastie
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Elizabeth J. Ampleford
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jadranka Milosevic
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Huashi Li
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - William W. Busse
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Serpil C. Erzurum
- Department of Pathobiology, The Lerner Research Institute, Cleveland, Ohio, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sally E. Wenzel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eugene R. Bleecker
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Deborah A. Meyers
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
41
|
Jacobson E, Perry JK, Long DS, Vickers MH, O'Sullivan JM. A potential role for genome structure in the translation of mechanical force during immune cell development. Nucleus 2016; 7:462-475. [PMID: 27673560 PMCID: PMC5120600 DOI: 10.1080/19491034.2016.1238998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 12/29/2022] Open
Abstract
Immune cells react to a wide range of environments, both chemical and physical. While the former has been extensively studied, there is growing evidence that physical and in particular mechanical forces also affect immune cell behavior and development. In order to elicit a response that affects immune cell behavior or development, environmental signals must often reach the nucleus. Chemical and mechanical signals can initiate signal transduction pathways, but mechanical forces may also have a more direct route to the nucleus, altering nuclear shape via mechanotransduction. The three-dimensional organization of DNA allows for the possibility that altering nuclear shape directly remodels chromatin, redistributing critical regulatory elements and proteins, and resulting in wide-scale gene expression changes. As such, integrating mechanotransduction and genome architecture into the immunology toolkit will improve our understanding of immune development and disease.
Collapse
Affiliation(s)
- Elsie Jacobson
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jo K. Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - David S. Long
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
42
|
Vieira Braga FA, Teichmann SA, Chen X. Genetics and immunity in the era of single-cell genomics. Hum Mol Genet 2016; 25:R141-R148. [PMID: 27412011 PMCID: PMC5036872 DOI: 10.1093/hmg/ddw192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 12/28/2022] Open
Abstract
Recent developments in the field of single-cell genomics (SCG) are changing our understanding of how functional phenotypes of cell populations emerge from the behaviour of individual cells. Some of the applications of SCG include the discovery of new gene networks and novel cell subpopulations, fine mapping of transcription kinetics, and the relationships between cell clonality and their functional phenotypes. Immunology is one of the fields that is benefiting the most from such advancements, providing us with completely new insights into mammalian immunity. In this review, we start by covering new immunological insights originating from the use of single-cell genomic tools, specifically single-cell RNA-sequencing. Furthermore, we discuss how new genetic study designs are starting to explain inter-individual variation in the immune response. We conclude with a perspective on new multi-omics technologies capable of integrating several readouts from the same single cell and how such techniques might push our biological understanding of mammalian immunity to a new level.
Collapse
Affiliation(s)
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI) Cavendish Laboratory, Cambridge University, Cambridge, UK
| | - Xi Chen
- Wellcome Trust Sanger Institute
| |
Collapse
|
43
|
Flachsbart F, Ellinghaus D, Gentschew L, Heinsen F, Caliebe A, Christiansen L, Nygaard M, Christensen K, Blanché H, Deleuze J, Derbois C, Galan P, Büning C, Brand S, Peters A, Strauch K, Müller‐Nurasyid M, Hoffmann P, Nöthen MM, Lieb W, Franke A, Schreiber S, Nebel A. Immunochip analysis identifies association of the RAD50/IL13 region with human longevity. Aging Cell 2016; 15:585-8. [PMID: 27004735 PMCID: PMC4854908 DOI: 10.1111/acel.12471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 01/10/2023] Open
Abstract
Human longevity is characterized by a remarkable lack of confirmed genetic associations. Here, we report on the identification of a novel locus for longevity in the RAD50/IL13 region on chromosome 5q31.1 using a combined European sample of 3208 long-lived individuals (LLI) and 8919 younger controls. First, we performed a large-scale association study on 1458 German LLI (mean age 99.0 years) and 6368 controls (mean age 57.2 years) by targeting known immune-associated loci covered by the Immunochip. The analysis of 142 136 autosomal single nucleotide polymorphisms (SNPs) revealed an Immunochip-wide significant signal (PI mmunochip = 7.01 × 10(-9) ) for the SNP rs2075650 in the TOMM40/APOE region, which has been previously described in the context of human longevity. To identify novel susceptibility loci, we selected 15 markers with PI mmunochip < 5 × 10(-4) for replication in two samples from France (1257 LLI, mean age 102.4 years; 1811 controls, mean age 49.1 years) and Denmark (493 LLI, mean age 96.2 years; 740 controls, mean age 63.1 years). The association at SNP rs2706372 replicated in the French study collection and showed a similar trend in the Danish participants and was also significant in a meta-analysis of the combined French and Danish data after adjusting for multiple testing. In a meta-analysis of all three samples, rs2706372 reached a P-value of PI mmunochip+Repl = 5.42 × 10(-7) (OR = 1.20; 95% CI = 1.12-1.28). SNP rs2706372 is located in the extended RAD50/IL13 region. RAD50 seems a plausible longevity candidate due to its involvement in DNA repair and inflammation. Further studies are needed to identify the functional variant(s) that predispose(s) to a long and healthy life.
Collapse
Affiliation(s)
| | - David Ellinghaus
- Institute of Clinical Molecular BiologyKiel UniversityKielGermany
| | | | | | - Amke Caliebe
- Institute of Medical Informatics and StatisticsKiel UniversityKielGermany
| | - Lene Christiansen
- Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of SouthernDenmarkOdenseDenmark
| | - Marianne Nygaard
- Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of SouthernDenmarkOdenseDenmark
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of SouthernDenmarkOdenseDenmark
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
- Department of Clinical Biochemistry and PharmacologyOdense University HospitalOdenseDenmark
| | - Hélène Blanché
- Fondation Jean Dausset‐Centre du Polymorphisme Humain (CEPH)ParisFrance
| | - Jean‐François Deleuze
- Fondation Jean Dausset‐Centre du Polymorphisme Humain (CEPH)ParisFrance
- Centre National de Génotypage CNG‐IG‐CEAEvryFrance
| | | | - Pilar Galan
- Université Sorbonne Paris Cité‐URENUnité de Recherche en Epidémiologie Nutritionnelle; U557 Inserm; U1125 Inra; Cnam; Université Paris 13CRNH IdFBobignyFrance
| | - Carsten Büning
- Department of Gastroenterology, Hepatology and EndocrinologyCharitéCampus MitteBerlinGermany
| | - Stephan Brand
- Department of Medicine II – GrosshadernLudwig‐Maximilians‐University MunichMunichGermany
| | - Anette Peters
- Institute of Epidemiology IIHelmholtz Zentrum München – German Research Center for Environmental HealthNeuherbergGermany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart AllianceMunichGermany
- German Center for Diabetes ResearchNeuherbergGermany
| | - Konstantin Strauch
- Institute of Genetic EpidemiologyHelmholtz Zentrum München – German Research Center for Environmental HealthNeuherbergGermany
- Institute of Medical Informatics, Biometry and EpidemiologyChair of Genetic EpidemiologyLudwig‐Maximilians‐University MunichMunichGermany
| | - Martina Müller‐Nurasyid
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart AllianceMunichGermany
- Institute of Genetic EpidemiologyHelmholtz Zentrum München – German Research Center for Environmental HealthNeuherbergGermany
- Department of Medicine ILudwig‐Maximilians‐University MunichMunichGermany
| | - Per Hoffmann
- Institute of Human GeneticsUniversity of BonnBonnGermany
- Department of Genomics, Life and Brain CenterUniversity of BonnBonnGermany
- Division of Medical GeneticsUniversity Hospital Basel and Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Markus M. Nöthen
- Institute of Human GeneticsUniversity of BonnBonnGermany
- Department of Genomics, Life and Brain CenterUniversity of BonnBonnGermany
| | - Wolfgang Lieb
- Institute of Epidemiology and Popgen BiobankKiel UniversityKielGermany
| | - Andre Franke
- Institute of Clinical Molecular BiologyKiel UniversityKielGermany
| | - Stefan Schreiber
- Institute of Clinical Molecular BiologyKiel UniversityKielGermany
- Clinic for Internal Medicine IUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Almut Nebel
- Institute of Clinical Molecular BiologyKiel UniversityKielGermany
| |
Collapse
|
44
|
Hwang SS, Kim LK, Lee GR, Flavell RA. Role of OCT-1 and partner proteins in T cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:825-31. [PMID: 27126747 DOI: 10.1016/j.bbagrm.2016.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells.
Collapse
Affiliation(s)
- Soo Seok Hwang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 135-720, South Korea
| | - Gap Ryol Lee
- Department of Life-Science, Sogang University, Baekbeom-ro, Seoul 121-742, South Korea
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
45
|
Zhang Y. Potential therapeutic targets from genetic and epigenetic approaches for asthma. World J Transl Med 2016; 5:14-25. [DOI: 10.5528/wjtm.v5.i1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Asthma is a complex disorder characterised by inflammation of airway and symptoms of wheeze and shortness of breath. Allergic asthma, atopic dermatitis and allergic rhinitis are immunoglobulin E (IgE) related diseases. Current therapies targeting asthma rely on non-specific medication to control airway inflammation and prevent symptoms. Severe asthma remains difficult to treat. Genetic and genomic approaches of asthma and IgE identified many novel loci underling the disease pathophysiology. Recent epigenetic approaches also revealed the insights of DNA methylation and chromatin modification on histones in asthma and IgE. More than 30 microRNAs have been identified to have regulating roles in asthma. Understanding the pathways of the novel genetic loci and epigenetic elements in asthma and IgE will provide new therapeutic means for clinical management of the disease in future.
Collapse
|
46
|
Narożna B, Hoffmann A, Sobkowiak P, Schoneich N, Bręborowicz A, Szczepankiewicz A. Polymorphisms in the interleukin 4, interleukin 4 receptor and interleukin 13 genes and allergic phenotype: A case control study. Adv Med Sci 2016; 61:40-5. [PMID: 26426602 DOI: 10.1016/j.advms.2015.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 06/18/2015] [Accepted: 07/24/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE Interleukin 4 (IL4), interleukin 4 receptor (IL4R) and interleukin 13 (IL13) play a key role in the pathogenesis of allergy and asthma development. IL4 and IL13 strongly influence bronchial hyperreactivity in response to allergen, airway remodeling, airway inflammation and airway smooth muscle proliferation. Both IL4 and IL13 exert biologic effect via interleukin 4 receptor. The aim of this study was to evaluate the impact of the polymorphisms within interleukin 4 (rs2243250, rs2227284), interleukin 4 receptor α chain (rs1805010, rs1805011) and interleukin 13 (rs20541) genes on the incidence of allergic phenotype in Polish pediatric population. MATERIAL/METHODS We compared 177 asthmatic pediatric patients with 194 healthy children. Five polymorphisms within IL4, IL13 and IL4Rα genes were analyzed. Genotypes of four polymorphisms (rs2243250, rs2227284, rs1805011, rs20541) were assigned by TaqMan SNP Genotyping Assays (Applied Biosystems), whereas rs18050100 polymorphism was established using PCR-RFLP method. RESULTS We observed an association of rs1805011 polymorphism of IL4Rα gene with allergy (p=0.021), mild asthma (p=0.00005) and atopic dermatitis (p=0.0056). Significant correlation was found between rs20541 in IL-13 gene and the positive skin prick test results (p=0.029), along with rs2243250 polymorphism with clinical atopy (p=0.033) and rs2227284 with total IgE levels (p=0.00047). No associations were found for rs1805010. CONCLUSIONS Our results indicate that rs1805011 polymorphism of IL4Rα gene seems to influence allergy risk, especially mild asthma and atopic dermatitis predisposition in Polish children. Subgroup analysis of three other SNPs revealed possible influence on allergy development.
Collapse
|
47
|
Kim K, Kim N, Lee GR. Transcription Factors Oct-1 and GATA-3 Cooperatively Regulate Th2 Cytokine Gene Expression via the RHS5 within the Th2 Locus Control Region. PLoS One 2016; 11:e0148576. [PMID: 26840450 PMCID: PMC4740509 DOI: 10.1371/journal.pone.0148576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
The T helper type 2 (Th2) locus control region (LCR) regulates Th2 cell differentiation. Several transcription factors bind to the LCR to modulate the expression of Th2 cytokine genes, but the molecular mechanisms behind Th2 cytokine gene regulation are incompletely understood. Here, we used database analysis and an oligonucleotide competition/electrophoretic mobility shift assays to search for transcription factors binding to RHS5, a DNase I hypersensitive site (DHS) within the Th2 LCR. Consequently, we demonstrated that GATA-binding protein-3 (GATA-3), E26 transformation-specific protein 1 (Ets-1), octamer transcription factor-1 (Oct-1), and Oct-2 selectively associate with RHS5. Furthermore, chromatin immunoprecipitation and luciferase reporter assays showed that Oct-1 and Oct-2 bound within the Il4 promoter region and the Th2 LCR, and that Oct-1 and GATA-3 or Oct-2 synergistically triggered the transactivational activity of the Il4 promoter through RHS5. These results suggest that Oct-1 and GATA-3/Oct-2 direct Th2 cytokine gene expression in a cooperative manner.
Collapse
Affiliation(s)
- Kiwan Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Najung Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
48
|
Regulation of IL-4 Expression in Immunity and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:31-77. [PMID: 27734408 DOI: 10.1007/978-94-024-0921-5_3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-4 was first identified as a T cell-derived growth factor for B cells. Studies over the past several decades have markedly expanded our understanding of its cellular sources and function. In addition to T cells, IL-4 is produced by innate lymphocytes, such as NTK cells, and myeloid cells, such as basophils and mast cells. It is a signature cytokine of type 2 immune response but also has a nonimmune function. Its expression is tightly regulated at several levels, including signaling pathways, transcription factors, epigenetic modifications, microRNA, and long noncoding RNA. This chapter will review in detail the molecular mechanism regulating the cell type-specific expression of IL-4 in physiological and pathological type 2 immune responses.
Collapse
|
49
|
Li T, Ren Z, Deng Y, Wang Y, Zhou H. Lack of association between RAD50-IL13 polymorphisms and pediatric asthma susceptibility in Northeastern Han Chinese. J Asthma 2015; 53:114-8. [PMID: 26365633 DOI: 10.3109/02770903.2015.1067322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE RAD50-IL13 region has been recently identified as one of critical asthma susceptibility loci in genome-wide association studies, yet the role of these genetic variants or single-nucleotide polymorphisms (SNPs) in the risk of developing asthma in Northeastern Han Chinese remains largely unknown. METHODS We conducted an association study by genotyping four SNPs (rs2244012 and rs6871536 in RAD50 as well as rs1295686 and rs1800925 in IL13) in 652 asthmatic children and age-matched 752 healthy controls from Northeastern Han Chinese to evaluate the asthma susceptibility with each individual SNP using SNaPshot genotyping method. RESULTS We did not find the allele or genotype frequency distribution of four SNPs in RAD50-IL13 region which was significantly different between asthmatic children and controls (p > 0.05). CONCLUSIONS Our findings first suggested that the variants in RAD50-IL13 region were not associated with asthma risk in Northeastern Han Chinese children.
Collapse
Affiliation(s)
- Tianxiao Li
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China
| | | | - Ying Deng
- c Department of Emergency , The Second Affiliated Hospital, Harbin Medical University , Harbin , China , and
| | - Yi Wang
- d Biotechnology Experimental Teaching Center, Harbin Medical University , Harbin , China
| | - Hongbo Zhou
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China
| |
Collapse
|
50
|
Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 2015; 75:25-37. [PMID: 26073683 DOI: 10.1016/j.cyto.2015.05.008] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States
| | - R Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|