1
|
Mitsumori R, Asanomi Y, Morizono T, Shigemizu D, Niida S, Ozaki K. A genome-wide association study identifies a novel East Asian-specific locus for dementia with Lewy bodies in Japanese subjects. Mol Med 2025; 31:87. [PMID: 40045203 PMCID: PMC11884146 DOI: 10.1186/s10020-025-01115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is the second most common type of degenerative dementia in older patients. As with other multifactorial diseases, the pathogenesis results from interactions of environmental and genetic factors. The genetic basis of DLB is not yet fully understood. Recent genomic analyses of DLB in Caucasian cohorts identified genetic susceptibility loci for DLB, but the comprehensive genomic analysis in Asians was still not performed. METHODS We conducted a genome-wide association study (GWAS) in Japanese subjects (211 DLB cases and 6113 controls) to clarify the genetic architecture of DLB pathogenesis. RESULTS We identified the East Asian-specific DHTKD1 locus (rs138587229) on chromosome 10 with genome-wide significance (GWS; P = 3.27 × 10-8) and the ICOS/PARD3B locus on chromosome 2 with suggestive significance (P = 3.95 × 10-7) as novel DLB genetic risk loci. We also confirmed the APOE locus (rs429358, P < 5.0 × 10-8), a known risk locus for DLB and Alzheimer's disease in Caucasians. The DHTKD1 locus was associated with the gene expression of SEC61A2 and showed a causal relationship with cholinesterase levels. In a trans-ethnic meta-analysis that included Japanese, UK Biobank, and other Caucasian GWAS, we confirmed the risk for DLB at APOE and SNCA loci with GWS. Transcriptome-wide association analysis identified ZNF155 and ZNF284 in the brain cortex and GPRIN3 in the substantia nigra as putative causal genes for DLB. CONCLUSIONS This is the first GWAS for DLB in East Asians, and our findings provide new biological and clinical insights into the pathogenesis of DLB.
Collapse
Affiliation(s)
- Risa Mitsumori
- Medical Genome Center, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Yuya Asanomi
- Medical Genome Center, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Takashi Morizono
- Medical Genome Center, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Daichi Shigemizu
- Medical Genome Center, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Shumpei Niida
- National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Kouichi Ozaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan.
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
2
|
Depaoli MR, Hay JC, Graier WF, Malli R. The enigmatic ATP supply of the endoplasmic reticulum. Biol Rev Camb Philos Soc 2018; 94:610-628. [PMID: 30338910 PMCID: PMC6446729 DOI: 10.1111/brv.12469] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a functionally and morphologically complex cellular organelle largely responsible for a variety of crucial functions, including protein folding, maturation and degradation. Furthermore, the ER plays an essential role in lipid biosynthesis, dynamic Ca2+ storage, and detoxification. Malfunctions in ER‐related processes are responsible for the genesis and progression of many diseases, such as heart failure, cancer, neurodegeneration and metabolic disorders. To fulfill many of its vital functions, the ER relies on a sufficient energy supply in the form of adenosine‐5′‐triphosphate (ATP), the main cellular energy source. Despite landmark discoveries and clarification of the functional principles of ER‐resident proteins and key ER‐related processes, the mechanism underlying ER ATP transport remains somewhat enigmatic. Here we summarize ER‐related ATP‐consuming processes and outline our knowledge about the nature and function of the ER energy supply.
Collapse
Affiliation(s)
- Maria R Depaoli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jesse C Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, 32 Campus Drive, HS410, Missoula, MT 59812-4824, U.S.A
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
3
|
van de Weijer ML, van Muijlwijk GH, Visser LJ, Costa AI, Wiertz EJHJ, Lebbink RJ. The E3 Ubiquitin Ligase TMEM129 Is a Tri-Spanning Transmembrane Protein. Viruses 2016; 8:v8110309. [PMID: 27854284 PMCID: PMC5127023 DOI: 10.3390/v8110309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
Misfolded proteins from the endoplasmic reticulum (ER) are transported back into the cytosol for degradation via the ubiquitin-proteasome system. The human cytomegalovirus protein US11 hijacks this ER-associated protein degradation (ERAD) pathway to downregulate human leukocyte antigen (HLA) class I molecules in virus-infected cells, thereby evading elimination by cytotoxic T-lymphocytes. Recently, we identified the E3 ubiquitin ligase transmembrane protein 129 (TMEM129) as a key player in this process, where interference with TMEM129 activity in human cells completely abrogates US11-mediated class I degradation. Here, we set out to further characterize TMEM129. We show that TMEM129 is a non-glycosylated protein containing a non-cleaved signal anchor sequence. By glycosylation scanning mutagenesis, we show that TMEM129 is a tri-spanning ER-membrane protein that adopts an Nexo–Ccyto orientation. This insertion in the ER membrane positions the C-terminal really interesting new gene (RING) domain of TMEM129 in the cytosol, making it available to catalyze ubiquitination reactions that are required for cytosolic degradation of secretory proteins.
Collapse
Affiliation(s)
| | - Guus H van Muijlwijk
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Linda J Visser
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Ana I Costa
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
4
|
Bui DT, Dine E, Anderson JB, Aquadro CF, Alani EE. A Genetic Incompatibility Accelerates Adaptation in Yeast. PLoS Genet 2015; 11:e1005407. [PMID: 26230253 PMCID: PMC4521705 DOI: 10.1371/journal.pgen.1005407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022] Open
Abstract
During mismatch repair (MMR) MSH proteins bind to mismatches that form as the result of DNA replication errors and recruit MLH factors such as Mlh1-Pms1 to initiate excision and repair steps. Previously, we identified a negative epistatic interaction involving naturally occurring polymorphisms in the MLH1 and PMS1 genes of baker’s yeast. Here we hypothesize that a mutagenic state resulting from this negative epistatic interaction increases the likelihood of obtaining beneficial mutations that can promote adaptation to stress conditions. We tested this by stressing yeast strains bearing mutagenic (incompatible) and non-mutagenic (compatible) mismatch repair genotypes. Our data show that incompatible populations adapted more rapidly and without an apparent fitness cost to high salt stress. The fitness advantage of incompatible populations was rapid but disappeared over time. The fitness gains in both compatible and incompatible strains were due primarily to mutations in PMR1 that appeared earlier in incompatible evolving populations. These data demonstrate a rapid and reversible role (by mating) for genetic incompatibilities in accelerating adaptation in eukaryotes. They also provide an approach to link experimental studies to observational population genomics. In nature, bacterial populations with high mutation rates can adapt faster to new environments by acquiring beneficial mutations. However, such populations also accumulate harmful mutations that reduce their fitness. We show that the model eukaryote baker’s yeast can use a similar mutator strategy to adapt to new environments. The mutator state that we observed resulted from an incompatibility involving two genes, MLH1 and PMS1, that work together to remove DNA replication errors through a spellchecking mismatch repair mechanism. This incompatibility can occur through mating between baker’s yeast from different genetic backgrounds, yielding mutator offspring containing an MLH1-PMS1 combination not present in either parent. Interestingly, these offspring adapted more rapidly to stress, compared to the parental strains, and did so without an overall loss in fitness. DNA sequencing analyses of baker’s yeast strains from across the globe support the presence of incompatible hybrid yeast strains in nature. These observations provide a powerful model to understand how the segregation of defects in DNA mismatch repair can serve as an effective strategy to enable eukaryotes to adapt to changing environments.
Collapse
Affiliation(s)
- Duyen T. Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elliot Dine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - James B. Anderson
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Eric E. Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Christianson JC, Ye Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 2014; 21:325-35. [PMID: 24699081 DOI: 10.1038/nsmb.2793] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022]
Abstract
The eukaryotic endoplasmic reticulum (ER) maintains protein homeostasis by eliminating unwanted proteins through the evolutionarily conserved ER-associated degradation (ERAD) pathway. During ERAD, maturation-defective and surplus polypeptides are evicted from the ER lumen and/or lipid bilayer through the process of retrotranslocation and ultimately degraded by the proteasome. An integral facet of the ERAD mechanism is the ubiquitin system, composed of the ubiquitin modifier and the factors for assembling, processing and binding ubiquitin chains on conjugated substrates. Beyond simply marking polypeptides for degradation, the ubiquitin system is functionally intertwined with retrotranslocation machinery to transport polypeptides across the ER membrane.
Collapse
Affiliation(s)
- John C Christianson
- 1] Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK. [2]
| | - Yihong Ye
- 1] Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2]
| |
Collapse
|
6
|
Tretter T, Pereira FP, Ulucan O, Helms V, Allan S, Kalies KU, Römisch K. ERAD and protein import defects in a sec61 mutant lacking ER-lumenal loop 7. BMC Cell Biol 2013; 14:56. [PMID: 24314051 PMCID: PMC3897919 DOI: 10.1186/1471-2121-14-56] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/28/2013] [Indexed: 11/22/2022] Open
Abstract
Background The Sec61 channel mediates protein translocation across the endoplasmic reticulum (ER) membrane during secretory protein biogenesis, and likely also during export of misfolded proteins for ER-associated degradation (ERAD). The mechanisms of channel opening for the different modes of translocation are not understood so far, but the position of the large ER-lumenal loop 7 of Sec61p suggests a decisive role. Results We show here that the Y345H mutation in L7 which causes diabetes in the mouse displays no ER import defects in yeast, but a delay in misfolded protein export. A complete deletion of L7 in Sec61p resulted in viable, cold- and tunicamycin-hypersensitive yeast cells with strong defects in posttranslational protein import of soluble proteins into the ER, and in ERAD of soluble substrates. Membrane protein ERAD was only moderately slower in sec61∆L7 than in wildtype cells. Although Sec61∆L7 channels were unstable in detergent, co-translational protein integration into the ER membrane, proteasome binding to Sec61∆L7 channels, and formation of hetero-heptameric Sec complexes were not affected. Conclusions We conclude that L7 of Sec61p is required for initiation of posttranslational soluble protein import into and misfolded soluble protein export from the ER, suggesting a key role for L7 in transverse gating of the Sec61 channel.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karin Römisch
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, Campus A1,5, 66123 Saarbrücken, Germany.
| |
Collapse
|
7
|
Azad AK, Jahan MA, Hasan MM, Ishikawa T, Sawa Y, Shibata H. Molecular cloning and sequence and 3D models analysis of the Sec61α subunit of protein translocation complex from Penicillium ochrochloron. BMB Rep 2012; 44:719-24. [PMID: 22118537 DOI: 10.5483/bmbrep.2011.44.11.719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sec61α subunit is the core subunit of the protein conducting channel which is required for protein translocation in eukaryotes and prokaryotes. In this study, we cloned a Sec61α subunit from Penicillium ochrochloron (PoSec61α). Sequence and 3D structural model analysis showed that PoSec61α conserved the typical characteristics of eukaryotic and prokaryotic Sec61α subunit homologues. The pore ring known as the constriction point of the channel is formed by seven hydrophobic amino acids. Two methionine residues from transmembrane α-helice 7 (TM7) contribute to the pore ring formation and projected notably to the pore area and narrowed the pore compared with the superposed residues at the corresponding positions in the crystal structures or the 3D models of the Sec61α subunit homologues in archaea or other eukaryotes, respectively. Results reported herein indicate that the pore ring residues differ among Sec61α subunit homologues and two hydrophobic residues in the TM7 contribute to the pore ring formation.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Bangladesh.
| | | | | | | | | | | |
Collapse
|
8
|
St Pierre P, Nabi IR. The Gp78 ubiquitin ligase: probing endoplasmic reticulum complexity. PROTOPLASMA 2012; 249 Suppl 1:S11-S18. [PMID: 22045301 DOI: 10.1007/s00709-011-0344-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/17/2011] [Indexed: 05/31/2023]
Abstract
The endoplasmic reticulum (ER) has been classically divided, based on electron microscopy analysis, into parallel ribosome-studded rough ER sheets and a tubular smooth ER network. Recent studies have identified molecular constituents of the ER, the reticulons and DP1, that drive ER tubule formation and whose expression determines expression of ER sheets and tubules and thereby rough and smooth ER. However, segregation of the ER into only two domains remains simplistic and multiple functionally distinct ER domains necessarily exist. In this review, we will discuss the sub-organization of the ER in different domains focusing on the localization and role of the gp78 ubiquitin ligase in the mitochondria-associated smooth ER and on the evidence for a quality control ERAD domain.
Collapse
Affiliation(s)
- Pascal St Pierre
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
9
|
Dang H, Klokk TI, Schaheen B, McLaughlin BM, Thomas AJ, Durns TA, Bitler BG, Sandvig K, Fares H. Derlin-dependent retrograde transport from endosomes to the Golgi apparatus. Traffic 2011; 12:1417-31. [PMID: 21722281 DOI: 10.1111/j.1600-0854.2011.01243.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cells have to maintain stable plasma membrane protein and lipid compositions under normal conditions and to remodel their plasma membranes in response to stimuli. This maintenance and remodeling require that integral membrane proteins at the plasma membrane that become misfolded, because of the relatively harsher extracellular milieu or carbohydrate and amino acid sequence changes, are degraded. We had previously shown that Derlin proteins, required for quality control mechanisms in the endoplasmic reticulum, also localize to endosomes and function in the degradation of misfolded integral membrane proteins at the plasma membrane. In this study, we show that Derlin proteins physically associate with sorting nexins that function in retrograde membrane transport from endosomes to the Golgi apparatus. Using genetic studies in Caenorhabditis elegans and ricin pulse-chase analyses in murine RAW264.7 macrophages, we show that the Derlin-sorting nexin interaction is physiologically relevant. Our studies suggest that at least some integral membrane proteins that are misfolded at the plasma membrane are retrogradely transported to the Golgi apparatus and ultimately to the endoplasmic reticulum for degradation via resident quality control mechanisms.
Collapse
Affiliation(s)
- Hope Dang
- Department of Molecular and Cellular Biology, Life Sciences South Room 531, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu Y, Ye Y. Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res 2011; 21:867-83. [PMID: 21537343 PMCID: PMC3203708 DOI: 10.1038/cr.2011.75] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To deal with the constant challenge of protein misfolding in the endoplasmic reticulum (ER), eukaryotic cells have evolved an ER protein quality control (ERQC) mechanism that is integrated with an adaptive stress response. The ERQC pathway is comprised of factors residing in the ER lumen that function in the identification and retention of aberrantly folded proteins, factors in the ER membrane for retrotranslocation of misfolded polypeptides, and enzymes in the cytosol that degrade retrotranslocated proteins. The integrated stress response (termed ER stress or unfolded protein response, UPR) contains several signaling branches elicited from the ER membrane, which fine-tune the rate of protein synthesis and entry into the ER to match the ER folding capacity. The fitness of the cell, particularly those bearing a high secretory burden, is critically dependent on functional integrity of the ER, which in turn relies on these stress-attenuating mechanisms to maintain protein homeostasis, or proteostasis. Aberrant proteostasis can trigger cellular apoptosis, making these adaptive stress response systems attractive targets for perturbation in treatment of cell malignancies. Here, we review our current understanding of how the cell preserves ER proteostasis and discuss how we may harness the mechanistic information on this process to develop new cancer therapeutics.
Collapse
Affiliation(s)
- Yanfen Liu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| |
Collapse
|
11
|
Protein Quality Control, Retention, and Degradation at the Endoplasmic Reticulum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:197-280. [DOI: 10.1016/b978-0-12-386033-0.00005-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Carvalho P, Stanley AM, Rapoport TA. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 2010; 143:579-91. [PMID: 21074049 PMCID: PMC3026631 DOI: 10.1016/j.cell.2010.10.028] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/13/2010] [Accepted: 10/13/2010] [Indexed: 11/22/2022]
Abstract
Misfolded, luminal endoplasmic reticulum (ER) proteins are retrotranslocated into the cytosol and degraded by the ubiquitin/proteasome system. This ERAD-L pathway requires a protein complex consisting of the ubiquitin ligase Hrd1p, which spans the ER membrane multiple times, and the membrane proteins Hrd3p, Usa1p, and Der1p. Here, we show that Hrd1p is the central membrane component in ERAD-L; its overexpression bypasses the need for the other components of the Hrd1p complex. Hrd1p function requires its oligomerization, which in wild-type cells is facilitated by Usa1p. Site-specific photocrosslinking indicates that, at early stages of retrotranslocation, Hrd1p interacts with a substrate segment close to the degradation signal. This interaction follows the delivery of substrate through other ERAD components, requires the presence of transmembrane segments of Hrd1p, and depends on both the ubiquitin ligase activity of Hrd1p and the function of the Cdc48p ATPase complex. Our results suggest a model for how Hrd1p promotes polypeptide movement through the ER membrane.
Collapse
Affiliation(s)
- Pedro Carvalho
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
13
|
Metabolic regulation of Drosophila apoptosis through inhibitory phosphorylation of Dronc. EMBO J 2010; 29:3196-207. [PMID: 20700104 DOI: 10.1038/emboj.2010.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 07/15/2010] [Indexed: 11/09/2022] Open
Abstract
Apoptosis ensures tissue homeostasis in response to developmental cues or cellular damage. Recently reported genome-wide RNAi screens have suggested that several metabolic regulators can modulate caspase activation in Drosophila. Here, we establish a previously unrecognized link between metabolism and Drosophila apoptosis by showing that cellular NADPH levels modulate the initiator caspase Dronc through its phosphorylation at S130. Depletion of NADPH removed this inhibitory phosphorylation, resulting in the activation of Dronc and subsequent cell death. Conversely, upregulation of NADPH prevented Dronc-mediated apoptosis upon DIAP1 RNAi or cycloheximide treatment. Furthermore, this CaMKII-mediated phosphorylation of Dronc hindered Dronc activation, but not its catalytic activity. Blockade of NADPH production aggravated the death-inducing activity of Dronc in specific neurons, but not in the photoreceptor cells of the eyes of transgenic flies; similarly, non-phosphorylatable Dronc was more potent than wild type in triggering specific neuronal apoptosis. Our observations reveal a novel regulatory circuitry in Drosophila apoptosis, and, as NADPH levels are elevated in cancer cells, also provide a genetic model to understand aberrations in cancer cell apoptosis resulting from metabolic alterations.
Collapse
|
14
|
Homma K, Katagiri K, Nishitoh H, Ichijo H. Targeting ASK1 in ER stress-related neurodegenerative diseases. Expert Opin Ther Targets 2009; 13:653-64. [DOI: 10.1517/14728220902980249] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 2009; 14:996-1007. [PMID: 19360473 DOI: 10.1007/s10495-009-0341-y] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 01/08/2023]
Abstract
The endoplasmic reticulum (ER) is the cell organelle where secretory and membrane proteins are synthesized and folded. Correctly folded proteins exit the ER and are transported to the Golgi and other destinations within the cell, but proteins that fail to fold properly-misfolded proteins-are retained in the ER and their accumulation may constitute a form of stress to the cell-ER stress. Several signaling pathways, collectively known as unfolded protein response (UPR), have evolved to detect the accumulation of misfolded proteins in the ER and activate a cellular response that attempts to maintain homeostasis and a normal flux of proteins in the ER. In certain severe situations of ER stress, however, the protective mechanisms activated by the UPR are not sufficient to restore normal ER function and cells die by apoptosis. Most research on the UPR used yeast or mammalian model systems and only recently Drosophila has emerged as a system to study the molecular and cellular mechanisms of the UPR. Here, we review recent advances in Drosophila UPR research, in the broad context of mammalian and yeast literature.
Collapse
|
16
|
Lipson C, Alalouf G, Bajorek M, Rabinovich E, Atir-Lande A, Glickman M, Bar-Nun S. A proteasomal ATPase contributes to dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates. J Biol Chem 2008; 283:7166-75. [PMID: 18174173 DOI: 10.1074/jbc.m705893200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) eliminates aberrant proteins from the ER by dislocating them to the cytoplasm where they are tagged by ubiquitin and degraded by the proteasome. Six distinct AAA-ATPases (Rpt1-6) at the base of the 19S regulatory particle of the 26S proteasome recognize, unfold, and translocate substrates into the 20S catalytic chamber. Here we show unique contributions of individual Rpts to ERAD by employing equivalent conservative substitutions of the invariant lysine in the ATP-binding motif of each Rpt subunit. ERAD of two substrates, luminal CPY*-HA and membrane 6myc-Hmg2, is inhibited only in rpt4R and rpt2RF mutants. Conversely, in vivo degradation of a cytosolic substrate, DeltassCPY*-GFP, as well as in vitro cleavage of Suc-LLVY-AMC are hardly affected in rpt4R mutant yet are inhibited in rpt2RF mutant. Together, we find that equivalent mutations in RPT4 and RPT2 result in different phenotypes. The Rpt4 mutation is manifested in ERAD defects, whereas the Rpt2 mutation is manifested downstream, in global proteasomal activity. Accordingly, rpt4R strain is particularly sensitive to ER stress and exhibits an activated unfolded protein response, whereas rpt2RF strain is sensitive to general stress. Further characterization of Rpt4 involvement in ERAD reveals that it participates in CPY*-HA dislocation, a function previously attributed to p97/Cdc48, another AAA-ATPase essential for ERAD of CPY*-HA but dispensable for proteasomal degradation of DeltassCPY*-GFP. Pointing to Cdc48 and Rpt4 overlapping functions, excess Cdc48 partially restores impaired ERAD in rpt4R, but not in rpt2RF. We discuss models for Cdc48 and Rpt4 cooperation in ERAD.
Collapse
Affiliation(s)
- Carni Lipson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Hebert DN, Molinari M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 2007; 87:1377-408. [PMID: 17928587 DOI: 10.1152/physrev.00050.2006] [Citation(s) in RCA: 498] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A substantial fraction of eukaryotic gene products are synthesized by ribosomes attached at the cytosolic face of the endoplasmic reticulum (ER) membrane. These polypeptides enter cotranslationally in the ER lumen, which contains resident molecular chaperones and folding factors that assist their maturation. Native proteins are released from the ER lumen and are transported through the secretory pathway to their final intra- or extracellular destination. Folding-defective polypeptides are exported across the ER membrane into the cytosol and destroyed. Cellular and organismal homeostasis relies on a balanced activity of the ER folding, quality control, and degradation machineries as shown by the dozens of human diseases related to defective maturation or disposal of individual polypeptides generated in the ER.
Collapse
Affiliation(s)
- Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
18
|
De Filippi L, Fournier M, Cameroni E, Linder P, De Virgilio C, Foti M, Deloche O. Membrane stress is coupled to a rapid translational control of gene expression in chlorpromazine-treated cells. Curr Genet 2007; 52:171-85. [PMID: 17710403 DOI: 10.1007/s00294-007-0151-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 11/25/2022]
Abstract
Chlorpromazine (CPZ) is a small permeable cationic amphiphilic molecule that inserts into membrane bilayers and binds to anionic lipids such as poly-phosphoinositides (PIs). Since PIs play important roles in many cellular processes, including signaling and membrane trafficking pathways, it has been proposed that CPZ affects cellular growth functions by preventing the recruitment of proteins with specific PI-binding domains. In this study, we have investigated the biological effects of CPZ in the yeast Saccharomyces cerevisiae. We screened a collection of approximately 4,800 gene knockout mutants, and found that mutants defective in membrane trafficking between the late-Golgi and endosomal compartments are highly sensitive to CPZ. Microscopy and transport analyses revealed that CPZ affects membrane structure of organelles, blocks membrane transport and activates the unfolded protein response (UPR). In addition, CPZ-treatment induces phosphorylation of the translation initiation factor (eIF2alpha), which reduces the general rate of protein synthesis and stimulates the production of Gcn4p, a major transcription factor that is activated in response to environmental stresses. Altogether, our results reveal that membrane stress within the cells rapidly activates an important gene expression program, which is followed by a general inhibition of protein synthesis. Remarkably, the increase of phosphorylated eIF2alpha and protein synthesis inhibition were also detected in CPZ-treated NIH-3T3 fibroblasts, suggesting the existence of a conserved mechanism of translational regulation that operates during a membrane stress.
Collapse
Affiliation(s)
- Loic De Filippi
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Lass A, McConnell E, Nowis D, Mechref Y, Kang P, Novotny MV, Wójcik C. A novel function of VCP (valosin-containing protein; p97) in the control of N-glycosylation of proteins in the endoplasmic reticulum. Arch Biochem Biophys 2007; 462:62-73. [PMID: 17493577 PMCID: PMC2040342 DOI: 10.1016/j.abb.2007.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 11/26/2022]
Abstract
alpha-Chain of T-cell receptor (TCR) is a typical ERAD (ER-associated degradation) substrate degraded in the absence of other TCR subunits. Depletion of derlin 1 fails to induce accumulation of alphaTCR despite inducing accumulation of alpha1-antitrypsin, another ERAD substrate. Furthermore, while depletion of VCP does not affect levels of alpha1-antitrypsin, it induces an increase in levels of alphaTCR. RNAi of VCP induces preferential accumulation of alphaTCR with less mannose residues, suggesting its retention within the ER. Mass spectrometric analysis of cellular N-linked glycans revealed that depletion of VCP decreases the level of high-mannose glycoproteins, increases the levels of truncated low-mannose glycoproteins and induces changes in the abundance of complex glycans assembled in post-ER compartments. Since proteasome inhibition was unable to mimic those changes, they cannot be regarded as a simple consequence of inhibited ERAD but represent a complex effect of VCP on the function of the ER.
Collapse
Affiliation(s)
- Agnieszka Lass
- Department of Anatomy and Cell Biology, Indiana University School of Medicine – Evansville, Evansville, IN 47712
| | - Elizabeth McConnell
- Department of Anatomy and Cell Biology, Indiana University School of Medicine – Evansville, Evansville, IN 47712
| | - Dominika Nowis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine – Evansville, Evansville, IN 47712
| | - Yehia Mechref
- National Center for Glycomics and Glycoproteomics, Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Pilsoo Kang
- National Center for Glycomics and Glycoproteomics, Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Milos V. Novotny
- National Center for Glycomics and Glycoproteomics, Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Cezary Wójcik
- Department of Anatomy and Cell Biology, Indiana University School of Medicine – Evansville, Evansville, IN 47712
| |
Collapse
|
20
|
Wahlman J, DeMartino GN, Skach WR, Bulleid NJ, Brodsky JL, Johnson A. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 2007; 129:943-55. [PMID: 17540174 PMCID: PMC1890003 DOI: 10.1016/j.cell.2007.03.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/19/2007] [Accepted: 03/20/2007] [Indexed: 01/27/2023]
Abstract
Secretory proteins unable to assemble into their native states in the endoplasmic reticulum (ER) are transported back or "retrotranslocated" into the cytosol for ER-associated degradation (ERAD). To examine the roles of different components in ERAD, one fluorescence-labeled ERAD substrate was encapsulated with selected lumenal factors inside mammalian microsomes. After mixing microsomes with fluorescence-quenching agents and selected cytosolic proteins, the rate of substrate efflux was monitored continuously in real time by the decrease in fluorescence intensity as cytosolic quenchers contacted dye-labeled substrates. The retrotranslocation kinetics of nonglycosylated pro-alpha factor were not significantly altered by replacing all lumenal proteins with only protein disulfide isomerase or all cytosolic proteins with only PA700, the 19S regulatory particle of the 26S proteasome. Retrotranslocation was blocked by antibodies against a putative retrotranslocation channel protein, derlin-1, but not Sec61alpha. In addition, pro-alpha factor photocrosslinked derlin-1, but not Sec61alpha. Thus, derlin-1 appears to be involved in pro-alpha factor retrotranslocation.
Collapse
Affiliation(s)
- Judit Wahlman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - William R. Skach
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Neil J. Bulleid
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Arthur E. Johnson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| |
Collapse
|
21
|
Worthington ZEV, Carbonetti NH. Evading the proteasome: absence of lysine residues contributes to pertussis toxin activity by evasion of proteasome degradation. Infect Immun 2007; 75:2946-53. [PMID: 17420233 PMCID: PMC1932868 DOI: 10.1128/iai.02011-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pertussis toxin (PT) is an important virulence factor produced by Bordetella pertussis. PT holotoxin comprises one enzymatically active A subunit (S1), associated with a pentamer of B subunits. PT is an ADP-ribosyltransferase that modifies several mammalian heterotrimeric G proteins. Some bacterial toxins are believed to undergo retrograde intracellular transport through the Golgi apparatus to the endoplasmic reticulum (ER). The ER-associated degradation (ERAD) pathway involves the removal of misfolded proteins from the ER and degradation upon their return to the cytosol; this pathway may be exploited by PT and other toxins. In the cytosol, ERAD substrates are ubiquitinated at lysine residues, targeting them to the proteasome for degradation. We hypothesize that S1 avoids ubiquitination and proteasome degradation due to its lack of lysine residues. We predicted that the addition of lysine residues would reduce PT toxicity by allowing ubiquitination and degradation to occur. Variant forms of PT were engineered, replacing one, two, or three arginines with lysines in a variety of locations on S1. Several variants were identified with wild-type in vitro enzymatic activity but reduced cellular activity, consistent with our hypothesis. Significant recovery of the cellular activity of these variants was observed when CHO cells were pretreated with a proteasome inhibitor. We concluded that the replacement of arginine residues with lysine in the S1 subunit of PT renders the toxin subject to proteasomal degradation, suggesting that wild-type PT avoids proteasome degradation due to an absence of lysine residues.
Collapse
Affiliation(s)
- Zoë E V Worthington
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 660 W. Redwood Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
22
|
Abstract
Glycosylation of asparagine residues in Asn-x-Ser/Thr motifs is a common covalent modification of proteins in the lumen of the endoplasmic reticulum (ER). By substantially contributing to the overall hydrophilicity of the polypeptide, pre-assembled core glycans inhibit possible aggregation caused by the inevitable exposure of hydrophobic patches on the as yet unstructured chains. Thereafter, N-glycans are modified by ER-resident enzymes glucosidase I (GI), glucosidase II (GII), UDP-glucose:glycoprotein glucosyltransferase (UGT) and mannosidase(s) and become functional appendices that determine the fate of the associated polypeptide. Recent work has improved our understanding of how the removal of terminal glucose residues from N-glycans allows newly synthesized proteins to access the calnexin chaperone system; how substrate retention in this specialized chaperone system is regulated by de-/re-glucosylation cycles catalyzed by GII and UGT1; and how acceleration of N-glycan dismantling upon induction of EDEM variants promotes ER-associated degradation (ERAD) under conditions of ER stress. In particular, characterization of cells lacking certain ER chaperones has revealed important new information on the mechanisms regulating protein folding and quality control. Tight regulation of N-glycan modifications is crucial to maintain protein quality control, to ensure the synthesis of functional polypeptides and to avoid constipation of the ER with folding-defective polypeptides.
Collapse
Affiliation(s)
- Lloyd W Ruddock
- Biocenter Oulu and Department of Biochemistry, University of Oulu, FIN-90014 Oulu, Finland
| | | |
Collapse
|
23
|
Abstract
The extracellular space is an environment hostile to unmodified polypeptides. For this reason, many eukaryotic proteins destined for exposure to this environment through secretion or display at the cell surface require maturation steps within a specialized organelle, the endoplasmic reticulum (ER). A complex homeostatic mechanism, known as the unfolded protein response (UPR), has evolved to link the load of newly synthesized proteins with the capacity of the ER to mature them. It has become apparent that dysfunction of the UPR plays an important role in some human diseases, especially those involving tissues dedicated to extracellular protein synthesis. Diabetes mellitus is an example of such a disease, since the demands for constantly varying levels of insulin synthesis make pancreatic beta-cells dependent on efficient UPR signaling. Furthermore, recent discoveries in this field indicate that the importance of the UPR in diabetes is not restricted to the beta-cell but is also involved in peripheral insulin resistance. This review addresses aspects of the UPR currently understood to be involved in human disease, including their role in diabetes mellitus, atherosclerosis, and neoplasia.
Collapse
Affiliation(s)
- Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
24
|
Nishikawa M, Kira Y, Yabunaka Y, Inoue M. Identification and characterization of endoplasmic reticulum-associated protein, ERp43. Gene 2006; 386:42-51. [PMID: 17020792 DOI: 10.1016/j.gene.2006.06.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 06/07/2006] [Accepted: 06/30/2006] [Indexed: 11/28/2022]
Abstract
Disposal of misfolded proteins from the lumen of the endoplasmic reticulum (ER) is one of the quality control mechanisms present in the protein secretory pathway. Through ER-associated degradation, misfolded substrates are targeted to the cytosol where they are degraded by proteasomes. Here we describe the identification of a human ER-associated 43-kD protein (ERp43) by sequencing of the subtraction suppression hybridization cDNA library from ER stress-treated cells. The ERp43 gene encodes a protein of 383 amino acid residues that contains a potential transmembrane domain. Analysis revealed that ERp43 is primarily located in the ER. Quantitative reverse transcriptase-polymerase chain reaction demonstrated that gene expression was relatively high in the neuronal tissues and in the kidney, with ERp43 protein highly expressed in the spinal cord and in the kidney. In cultured cells, overexpression of ERp43 accelerated cell growth and inhibited ER stress-induced cell death, while down-regulation of ERp43 expression decreased proliferation rate and enhanced this type of cell death. These findings indicate that ERp43 plays important roles in cell growth and ER stress-induced cell death.
Collapse
Affiliation(s)
- Manabu Nishikawa
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School, Osaka 545-8585, Japan.
| | | | | | | |
Collapse
|
25
|
Nowis D, McConnell E, Wójcik C. Destabilization of the VCP-Ufd1-Npl4 complex is associated with decreased levels of ERAD substrates. Exp Cell Res 2006; 312:2921-32. [PMID: 16822501 DOI: 10.1016/j.yexcr.2006.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 05/16/2006] [Accepted: 05/28/2006] [Indexed: 10/24/2022]
Abstract
p97/VCP associated with Ufd1-Npl4 is considered a key player in ER-associated degradation (ERAD). RNA interference (RNAi) of one component of the Ufd1-Npl4 heterodimer destabilizes the VCP-Ufd1-Npl4 complex inducing proteasome-dependent degradation of the other component and releasing free VCP. In contrast to RNAi of VCP, RNAi of Ufd1 or Npl4 depleting approximately 90% of the VCP-Ufd1-Npl4 complexes does not induce unfolded protein response, indicating that the Ufd1-Npl4 dimer is not involved in the regulation of ER function by VCP. RNAi of Ufd1 or Npl4 is associated with a 2-fold increase in the levels of polyubiquitinated proteins, which form dispersed aggregates often associated with calnexin-positive structures. However, contrary to the effects of proteasome inhibition, RNAi of Ufd1 or Npl4 does not induce an accumulation of alpha-TCR and delta-CD3, two ERAD substrates overexpressed in HeLa cells. Instead, a 60-70% decrease in their levels is observed. The decrease in alpha-TCR levels is associated with a 50% decrease of its half-life. Upregulation of the putative channel forming protein, derlin-1, may contribute to the increased degradation of ERAD substrates. To explain our findings, we propose a model, where association of emerging ERAD substrates with VCP-Ufd1-Npl4 is not required for their degradation but has a regulatory role.
Collapse
Affiliation(s)
- Dominika Nowis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine-Evansville, 8600 University Boulevard, Evansville, IN 47712, USA
| | | | | |
Collapse
|
26
|
Bar-Nun S. The role of p97/Cdc48p in endoplasmic reticulum-associated degradation: from the immune system to yeast. Curr Top Microbiol Immunol 2006; 300:95-125. [PMID: 16573238 DOI: 10.1007/3-540-28007-3_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quality control mechanisms in the endoplasmic reticulum prevent deployment of aberrant or unwanted proteins to distal destinations and target them to degradation by a process known as endoplasmic reticulum-associated degradation, or ERAD. Attempts to characterize ERAD by identifying a specific component have revealed that the most general characteristic of ERAD is that the protein substrates are initially translocated to the ER and eventually eliminated in the cytosol by the ubiquitin-proteasome pathway. Hence, dislocation from the ER back to the cytosol is a hallmark in ERAD and p97/Cdc48p, a cytosolic AAA-ATPase that is essential for ERAD, appears to provide the driving force for this process. Moreover, unlike many ERAD components that participate in degradation of either lumenal or membrane substrates, p97/Cdc48p has a more general role in that it is required for ERAD of both types of substrates. Although p97/Cdc48p is not dedicated exclusively to ERAD, its ability to physically associate with ERAD substrates, with VIMP and with the E3 gp78 suggest that the p97/Cdc48Ufdl/Npl4 complex acts as a coordinator that maintains coupling between the different steps in ERAD.
Collapse
Affiliation(s)
- S Bar-Nun
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 2006; 13:363-73. [PMID: 16397583 DOI: 10.1038/sj.cdd.4401817] [Citation(s) in RCA: 549] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The proper functioning of the endoplasmic reticulum (ER) is critical for numerous aspects of cell physiology. Accordingly, all eukaryotes react rapidly to ER dysfunction through a set of adaptive pathways known collectively as the ER stress response (ESR). Normally, this suite of responses succeeds in restoring ER homeostasis. However, in metazoans, persistent or intense ER stress can also trigger programmed cell death, or apoptosis. ER stress and the apoptotic program coupled to it have been implicated in many important pathologies but the regulation and execution of ER stress-induced apoptosis in mammals remain incompletely understood. Here, we review what is known about the ESR in both yeast and mammals, and highlight recent findings on the mechanism and pathophysiological importance of ER stress-induced apoptosis.
Collapse
Affiliation(s)
- M Boyce
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Wang N, Hebert DN. Tyrosinase maturation through the mammalian secretory pathway: bringing color to life. ACTA ACUST UNITED AC 2006; 19:3-18. [PMID: 16420243 DOI: 10.1111/j.1600-0749.2005.00288.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tyrosinase has been extensively utilized as a model substrate to study the maturation of glycoproteins in the mammalian secretory pathway. The visual nature of its enzymatic activity (melanin production) has facilitated the identification and characterization of the proteins that assist it becoming a functional enzyme, localized to its proper cellular location. Here, we review the steps involved in the maturation of tyrosinase from when it is first synthesized by cytosolic ribosomes until the mature protein reaches its post-Golgi residence in the melanosomes. These steps include protein processing, covalent modifications, chaperone binding, oligomerization, and trafficking. The disruption of any of these steps can lead to a wide range of pigmentation disorders.
Collapse
Affiliation(s)
- Ning Wang
- Program in Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | | |
Collapse
|
29
|
McCracken AA, Brodsky JL. Recognition and delivery of ERAD substrates to the proteasome and alternative paths for cell survival. Curr Top Microbiol Immunol 2006; 300:17-40. [PMID: 16573235 DOI: 10.1007/3-540-28007-3_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a protein quality control mechanism that minimizes the detrimental effects of protein misfolding in the secretory pathway. Molecular chaperones and ER lumenal lectins are essential components of this process because they maintain the solubility of unfolded proteins and can target ERAD substrates to the cytoplasmic proteasome. Other factors are likely required to aid in the selection of ERAD substrates, and distinct proteinaceous machineries are required for substrate retrotranslocation/dislocation from the ER and proteasome targeting. When the capacity of the ERAD machinery is exceeded or compromised, multiple degradative routes can be enlisted to prevent the detrimental consequences of ERAD substrate accumulation, which include cell death and disease.
Collapse
Affiliation(s)
- A A McCracken
- Biology Department, University of Nevada, Reno, NV 89557, USA.
| | | |
Collapse
|
30
|
Endoplasmic Reticulum-associated Protein Degradation in Plant Cells. PLANT CELL MONOGRAPHS 2006. [DOI: 10.1007/7089_066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Lilley BN, Ploegh HL. Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol Rev 2005; 207:126-44. [PMID: 16181332 DOI: 10.1111/j.0105-2896.2005.00318.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Viruses that establish long-term infections in their hosts have evolved a number of methods to interfere with the activities of the innate and adaptive immune systems. Control of viral infections is achieved in part through the action of cytotoxic T lymphocytes (CTLs) that recognize cytosolically derived antigenic peptides in the context of class I major histocompatibility complex (MHC) molecules. Viral replication within host cells produces abundant proteinaceous fodder for proteasomal digestion and display by class I MHC products. Tactics that disrupt antigen-presentation pathways and prevent the display of peptides to CD8(+) CTLs have been favored during the course of host-virus co-evolution. Viral immunoevasins exploit diverse cellular processes to interfere with host antiviral functions. The study of such viral factors has uncovered novel host proteins that assist these viral factors in their task and that themselves perform important cellular functions. Here, we focus on viral immunoevasins that, together with their cellular targets, interfere with antigen-presentation pathways. In particular, we emphasize the intersection of the cellular quality-control machinery in the endoplasmic reticulum with the herpesvirus proteins that have co-opted it.
Collapse
Affiliation(s)
- Brendan N Lilley
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
32
|
Hassink G, Kikkert M, Voorden S, Lee SJ, Spaapen R, Laar T, Coleman C, Bartee E, Früh K, Chau V, Wiertz E. TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum. Biochem J 2005; 388:647-55. [PMID: 15673284 PMCID: PMC1138973 DOI: 10.1042/bj20041241] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the present study, the human TEB4 is identified as a novel ER (endoplasmic reticulum)-resident ubiquitin ligase. TEB4 has homologues in many species and has a number of remarkable properties. TEB4 contains a conserved RING (really interesting new gene) finger and 13 predicted transmembrane domains. The RING finger of TEB4 and its homologues is situated at the N-terminus and has the unconventional C4HC3 configuration. The N-terminus of TEB4 is located in the cytosol. We show that the isolated TEB4 RING domain catalyses ubiquitin ligation in vitro in a reaction that is ubiquitin Lys48-specific and involves UBC7 (ubiquitin-conjugating enzyme 7). These properties are reminiscent of E3 enzymes, which are involved in ER-associated protein degradation. TEB4 is an ER degradation substrate itself, promoting its own degradation in a RING finger- and proteasome-dependent manner.
Collapse
Affiliation(s)
- Gerco Hassink
- *Department of Medical Microbiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Marjolein Kikkert
- *Department of Medical Microbiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Sjaak van Voorden
- *Department of Medical Microbiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Shiow-Ju Lee
- †Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 161, Sect. 6, Minchiuan E. Road, Neihu Chiu, Taipei 114, Taiwan, Republic of China
| | - Robbert Spaapen
- *Department of Medical Microbiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Theo van Laar
- ‡Division of Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Catherine S. Coleman
- §Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Eric Bartee
- ∥Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, U.S.A
| | - Klaus Früh
- ∥Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, U.S.A
| | - Vincent Chau
- §Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Emmanuel Wiertz
- *Department of Medical Microbiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Kanuka H, Kuranaga E, Takemoto K, Hiratou T, Okano H, Miura M. Drosophila caspase transduces Shaggy/GSK-3beta kinase activity in neural precursor development. EMBO J 2005; 24:3793-806. [PMID: 16222340 PMCID: PMC1276714 DOI: 10.1038/sj.emboj.7600822] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 08/30/2005] [Indexed: 01/22/2023] Open
Abstract
Caspases are well known for their role in the execution of apoptotic programs, in which they cleave specific target proteins, leading to the elimination of cells, and for their role in cytokine maturation. In this study, we identified a novel substrate, which, through cleavage by caspases, can regulate Drosophila neural precursor development. Shaggy (Sgg)46 protein, an isoform encoded by the sgg gene and essential for the negative regulation of Wingless signaling, is cleaved by the Dark-dependent caspase. This cleavage converts it to an active kinase, which contributes to the formation of neural precursor (sensory organ precursor (SOP)) cells. Our evidence suggests that caspase regulation of the wingless pathway is not associated with apoptotic cell death. These results imply a novel role for caspases in modulating cell signaling pathways through substrate cleavage in neural precursor development.
Collapse
Affiliation(s)
- Hirotaka Kanuka
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Erina Kuranaga
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Kiwamu Takemoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Tetsuo Hiratou
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Sinjuku-ku, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Sinjuku-ku, Tokyo, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Tel.: +81 3 5841 4860; Fax: +81 3 5841 4867; E-mail:
| |
Collapse
|
34
|
Kanuka H, Hiratou T, Igaki T, Kanda H, Kuranaga E, Sawamoto K, Aigaki T, Okano H, Miura M. Gain-of-function screen identifies a role of the Sec61alpha translocon in Drosophila postmitotic neurotoxicity. Biochim Biophys Acta Gen Subj 2005; 1726:225-37. [PMID: 16243437 DOI: 10.1016/j.bbagen.2005.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 12/20/2022]
Abstract
To elucidate the intrinsic mechanisms of neurotoxicity induction, including those underlying neural cell death and neurodegeneration, we developed a gain-of-function screen for gene products causing neural cell loss. To identify novel genes with a cell-death-related function in neurons, we screened 4,964 Drosophila GS lines, in which one or two genes from much of the Drosophila genome can be overexpressed. Approximately 0.68% of the GS lines produced phenotypes involving a loss of postmitotic neurons. Of these, we identified and characterized the endd2 gene, which encodes the Drosophila ortholog of Sec61alpha (DSec61alpha), an endoplasmic reticulum protein with protein translocation activity. Ectopic expression of DSec61alpha caused neural cell death accompanied by the accumulation of ubiquitinated proteins, which was mediated by DSec61alpha's translocon activity. This supported our previous observation that the DSec61alpha translocon contributes to expanded polyglutamine-mediated neuronal toxicity, which is also associated with ubiquitinated protein accumulation. These data suggest that the translocon may be a novel component of neural cell death and degeneration pathways. Our approach can be used to identify potential neurotoxic factors within the whole genome, which will increase our understanding of the molecular mechanisms of various types of cell death, including those associated with human neurodegenerative diseases.
Collapse
Affiliation(s)
- Hirotaka Kanuka
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sayeed A, Ng DTW. Search and destroy: ER quality control and ER-associated protein degradation. Crit Rev Biochem Mol Biol 2005; 40:75-91. [PMID: 15814429 DOI: 10.1080/10409230590918685] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Proteins synthesized in the endoplasmic reticulum (ER) encounter quality control checkpoints that verify their fitness to proceed in the secretory pathway. Molecules undergoing folding and assembly are kept out of the exocytic pathway until maturation is complete. Misfolded side products that inevitably form are removed from the mixture of conformers and returned to the cytosol for degradation. How unfolded proteins are recognized and how irreversibly misfolded proteins are sorted to ER-associated degradation pathways was poorly understood. Recent developments from a combination of genetic and biochemical analyses has revealed new insights into these mechanisms. The emerging view shows distinct pathways working in collaboration to filter the diverse range of unfolded proteins from the transport flow and to divert misfolded molecules for destruction.
Collapse
Affiliation(s)
- Ayaz Sayeed
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
36
|
Kim W, Spear ED, Ng DTW. Yos9p Detects and Targets Misfolded Glycoproteins for ER-Associated Degradation. Mol Cell 2005; 19:753-64. [PMID: 16168371 DOI: 10.1016/j.molcel.2005.08.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 06/23/2005] [Accepted: 08/10/2005] [Indexed: 11/21/2022]
Abstract
Endoplasmic reticulum (ER) quality control mechanisms monitor the folding of nascent secretory and membrane polypeptides. Immature molecules are actively retained in the folding compartment whereas proteins that fail to fold are diverted to proteasome-dependent degradation pathways. We report that a key pathway of ER quality control consists of a two-lectin receptor system consisting of Yos9p and Htm1/Mnl1p that recognizes N-linked glycan signals embedded in substrates. This pathway recognizes lumenally oriented determinants of soluble and membrane proteins. Yos9p binds directly to substrates to discriminate misfolded from folded proteins. Substrates displaying cytosolic determinants can be degraded independently of this system. Our studies show that mechanistically divergent systems collaborate to guard against passage and accumulation of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Woong Kim
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
37
|
Tirosh B, Iwakoshi NN, Lilley BN, Lee AH, Glimcher LH, Ploegh HL. Human cytomegalovirus protein US11 provokes an unfolded protein response that may facilitate the degradation of class I major histocompatibility complex products. J Virol 2005; 79:2768-79. [PMID: 15708995 PMCID: PMC548438 DOI: 10.1128/jvi.79.5.2768-2779.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) glycoprotein US11 diverts class I major histocompatibility complex (MHC) heavy chains (HC) from the endoplasmic reticulum (ER) to the cytosol, where HC are subjected to proteasome-mediated degradation. In mouse embryonic fibroblasts that are deficient for X-box binding protein 1 (XBP-1), a key transcription factor in the unfolded protein response (UPR) pathway, we show that degradation of endogenous mouse HC is impaired. Moreover, the rate of US11-mediated degradation of ectopically expressed HLA-A2 is reduced when XBP-1 is absent. In the human astrocytoma cell line U373, turning on expression of US11, but not US2, is sufficient to induce a UPR, as manifested by upregulation of the ER chaperone Bip and by splicing of XBP-1 mRNA. In the presence of dominant-negative versions of XBP-1 and activating transcription factor 6, the kinetics of class I MHC HC degradation were delayed when expression of US11 was turned on. The magnitude of these effects, while reproducible, was modest. Conversely, in cells that stably express high levels of US11, the degradation of HC is not affected by the presence of the dominant negative effectors of the UPR. An infection of human foreskin fibroblasts with human cytomegalovirus induced XBP-1 splicing in a manner that coincides with US11 expression. We conclude that the contribution of the UPR is more pronounced on HC degradation shortly after induction of US11 expression and that US11 is sufficient to induce such a response.
Collapse
Affiliation(s)
- Boaz Tirosh
- Department of Pathology, Harvard Medical School, 77 Ave. Louis Pasteur, Room 836, Boston MA 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
Lee YM, Kim IC, Jung SO, Lee JS. Analysis of 686 expressed sequence tags (ESTs) from the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda). MARINE POLLUTION BULLETIN 2005; 51:757-68. [PMID: 16291190 DOI: 10.1016/j.marpolbul.2005.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The intertidal harpacticoid copepod Tigriopus japonicus is an important species in the study of marine pollution. To facilitate molecular biomonitoring using T. japonicus, we constructed a T. japonicus unidirectional cDNA library using lambdaZAP expression vector, excised to pBluescript vector with the aid of helper phage, and analyzed 686 randomly picked expressed sequence tags (ESTs) from this species. From the 686 ESTs sequenced, we found several functional genes such as vitellin, kinases and potential detoxification-related genes. We are now preparing a T. japonicus cDNA chip for molecular ecotoxicological studies. In this paper, we discuss the potential use of T. japonicus ESTs and their importance in ecotoxicology.
Collapse
Affiliation(s)
- Young-Mi Lee
- Department of Environmental Science, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | |
Collapse
|
39
|
Schmitz A, Schneider A, Kummer MP, Herzog V. Endoplasmic reticulum-localized amyloid beta-peptide is degraded in the cytosol by two distinct degradation pathways. Traffic 2004; 5:89-101. [PMID: 14690498 DOI: 10.1111/j.1600-0854.2004.00159.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The paradigm of endoplasmic reticulum (ER)-associated degradation (ERAD) holds that misfolded secretory and membrane proteins are translocated back to the cytosol and degraded by the proteasome in a coupled process. Analyzing the degradation of ER-localized amyloid beta-peptide (Abeta), we found a divergence from this general model. Cell-free reconstitution of the export in biosynthetically loaded ER-derived brain microsomes showed that the export was mediated by the Sec61p complex and required a cytosolic factor but was independent of ATP. In contrast to the ERAD substrates known so far, the exported Abeta was degraded by both, a proteasome-dependent and a proteasome-independent pathway. RNA interference experiments in Abeta-transfected cells identified the protease of the proteasome-independent pathway as insulin-degrading enzyme (IDE). The IDE-mediated clearance mechanism for ER-localized Abeta represents an as yet unknown type of ERAD which is not entirely dependent on the proteasome.
Collapse
Affiliation(s)
- Anton Schmitz
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Ulrich-Haberland-Str 61a, 53121 Bonn, Germany.
| | | | | | | |
Collapse
|
40
|
Huyer G, Piluek WF, Fansler Z, Kreft SG, Hochstrasser M, Brodsky JL, Michaelis S. Distinct Machinery Is Required in Saccharomyces cerevisiae for the Endoplasmic Reticulum-associated Degradation of a Multispanning Membrane Protein and a Soluble Luminal Protein. J Biol Chem 2004; 279:38369-78. [PMID: 15252059 DOI: 10.1074/jbc.m402468200] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The folding and assembly of proteins in the endoplasmic reticulum (ER) lumen and membrane are monitored by ER quality control. Misfolded or unassembled proteins are retained in the ER and, if they cannot fold or assemble correctly, ultimately undergo ER-associated degradation (ERAD) mediated by the ubiquitin-proteasome system. Whereas luminal and integral membrane ERAD substrates both require the proteasome for their degradation, the ER quality control machinery for these two classes of proteins likely differs because of their distinct topologies. Here we establish the requirements for the ERAD of Ste6p*, a multispanning membrane protein with a cytosolic mutation, and compare them with those for mutant form of carboxypeptidase Y (CPY*), a soluble luminal protein. We show that turnover of Ste6p* is dependent on the ubiquitin-protein isopeptide ligase Doa10p and is largely independent of the ubiquitin-protein isopeptide ligase Hrd1p/Der3p, whereas the opposite is true for CPY*. Furthermore, the cytosolic Hsp70 chaperone Ssa1p and the Hsp40 co-chaperones Ydj1p and Hlj1p are important in ERAD of Ste6p*, whereas the ER luminal chaperone Kar2p is dispensable, again opposite their roles in CPY* turnover. Finally, degradation of Ste6p*, unlike CPY*, does not appear to require the Sec61p translocon pore but, like CPY*, could depend on the Sec61p homologue Ssh1p. The ERAD pathways for Ste6p* and CPY* converge at a post-ubiquitination, pre-proteasome step, as both require the ATPase Cdc48p. Our results demonstrate that ERAD of Ste6p* employs distinct machinery from that of the soluble luminal substrate CPY* and that Ste6p* is a valuable model substrate to dissect the cellular machinery required for the ERAD of multispanning membrane proteins with a cytosolic mutation.
Collapse
Affiliation(s)
- Gregory Huyer
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Lee RJ, Liu CW, Harty C, McCracken AA, Latterich M, Römisch K, DeMartino GN, Thomas PJ, Brodsky JL. Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J 2004; 23:2206-15. [PMID: 15152188 PMCID: PMC419910 DOI: 10.1038/sj.emboj.7600232] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 04/19/2004] [Indexed: 11/09/2022] Open
Abstract
Aberrant polypeptides in the endoplasmic reticulum (ER) are retro-translocated to the cytoplasm and degraded by the 26S proteasome via ER-associated degradation (ERAD). To begin to resolve the requirements for the retro-translocation and degradation steps during ERAD, a cell-free assay was used to investigate the contributions of specific factors in the yeast cytosol and in ER-derived microsomes during the ERAD of a model, soluble polypeptide. As ERAD was unaffected when cytoplasmic chaperone activity was compromised, we asked whether proteasomes on their own supported both export and degradation in this system. Proficient ERAD was observed if wild-type cytosol was substituted with either purified yeast or mammalian proteasomes. Moreover, addition of only the 19S cap of the proteasome catalyzed ATP-dependent export of the polypeptide substrate, which was degraded upon subsequent addition of the 20S particle.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chang-wei Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carol Harty
- University of Cambridge, Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Cambridge, UK
| | | | - Martin Latterich
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Karin Römisch
- University of Cambridge, Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Cambridge, UK
| | - George N DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philip J Thomas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, University of Pittsburgh, 274 Crawford Hall, Pittsburgh, PA 15260, USA. Tel.: +1 412 624 4831; Fax: +1 412 624 4759; E-mail:
| |
Collapse
|
42
|
Kikkert M, Doolman R, Dai M, Avner R, Hassink G, van Voorden S, Thanedar S, Roitelman J, Chau V, Wiertz E. Human HRD1 Is an E3 Ubiquitin Ligase Involved in Degradation of Proteins from the Endoplasmic Reticulum. J Biol Chem 2004; 279:3525-34. [PMID: 14593114 DOI: 10.1074/jbc.m307453200] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The ubiquitin system plays an important role in endoplasmic reticulum (ER)-associated degradation of proteins that are misfolded, that fail to associate with their oligomerization partners, or whose levels are metabolically regulated. E3 ubiquitin ligases are key enzymes in the ubiquitination process as they recognize the substrate and facilitate coupling of multiple ubiquitin units to the protein that is to be degraded. The Saccharomyces cerevisiae ER-resident E3 ligase Hrd1p/Der3p functions in the metabolically regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and additionally facilitates the degradation of a number of misfolded proteins from the ER. In this study we characterized the structure and function of the putative human orthologue of yeast Hrd1p/Der3p, designated human HRD1. We show that human HRD1 is a non-glycosylated, stable ER protein with a cytosolic RING-H2 finger domain. In the presence of the ubiquitin-conjugating enzyme UBC7, the RING-H2 finger has in vitro ubiquitination activity for Lys(48)-specific polyubiquitin linkage, suggesting that human HRD1 is an E3 ubiquitin ligase involved in protein degradation. Human HRD1 appears to be involved in the basal degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase but not in the degradation that is regulated by sterols. Additionally we show that human HRD1 is involved in the elimination of two model ER-associated degradation substrates, TCR-alpha and CD3-delta.
Collapse
Affiliation(s)
- Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, P. O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Schmitz A, Herzog V. Endoplasmic reticulum-associated degradation: exceptions to the rule. Eur J Cell Biol 2004; 83:501-9. [PMID: 15679096 DOI: 10.1078/0171-9335-00412] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quality control mechanisms in the endoplasmic reticulum (ER) ensure that misfolded proteins are recognized and targeted for degradation. According to the current view of ER-associated degradation (ERAD), the degradation does not occur in the ER itself but requires the retrotranslocation of the proteins to the cytosol where they are degraded by proteasomes. Although this model appears to be valid for many different proteins a number of exceptions from this rule suggest that additional proteasome-independent ERAD pathways may exist. In this review, we will summarize what is known about these alternative ERAD pathways.
Collapse
Affiliation(s)
- Anton Schmitz
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.
| | | |
Collapse
|
44
|
Elkabetz Y, Shapira I, Rabinovich E, Bar-Nun S. Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplamic reticulum-bound p97/Cdc48p and proteasome. J Biol Chem 2003; 279:3980-9. [PMID: 14607830 DOI: 10.1074/jbc.m309938200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates from the endoplasmic reticulum (ER) lumen to cytosol is considered to occur in a single step that is tightly coupled to proteasomal degradation. Here we show that dislocation of luminal ERAD substrates occurs in two distinct consecutive steps. The first is passage across ER membrane to the ER cytosolic face, where substrates can accumulate as ubiquitin conjugates. In vivo, this step occurs despite proteasome inhibition but requires p97/Cdc48p because substrates remain entrapped in ER lumen and are prevented from ubiquitination in cdc48 yeast strain. The second dislocation step is the release of accumulated substrates to the cytosol. In vitro, this release requires active proteasome, consumes ATP, and relies on salt-removable ER-bound components, among them the ER-bound p97 and ER-bound proteasome, which specifically interact with the cytosol-facing substrates. An additional role for Cdc48p subsequent to ubiquitination is revealed in the cdc48 strain at permissive temperature, consistent with our finding that p97 recognizes luminal ERAD substrates through multiubiquitin. BiP interacts exclusively with ERAD substrates, suggesting a role for this chaperone in ERAD. We propose a model that assigns the cytosolic face of the ER as a midpoint to which luminal ERAD substrates emerge and p97/Cdc48p and the proteasome are recruited. Although p97/Cdc48p plays a dual role in dislocation and is involved both in passage of the substrate across ER membrane and subsequent to its ubiquitination, the proteasome takes part in the release of the substrate from the ER face to the cytosol en route to degradation.
Collapse
Affiliation(s)
- Yechiel Elkabetz
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
45
|
Abstract
Apolipoprotein B is a large, amphipathic protein that plays a central role in lipoprotein metabolism. Because its overproduction and deficiency leads to metabolic and pathologic disorders, much effort has been paid to investigate the mechanisms of how its homeostasis is achieved. Earlier and recent studies have showed that apoB gene locus might reside in different chromatin domains in the hepatic and intestinal cells, and two sets of very distinct regulatory elements operate to control its transcription. Posttranscriptional modification of apoB mRNA is performed by a multicomponent enzyme complex, several possible pathways regulate the editing efficiency. Understanding of the mechanism responsible for apoB mRNA editing will provide the basis for C-to-U editing in gene therapy. In addition to apoB mRNA abundance and stability, its translation can be also regulated at the steps of elongation. The translocation of apoB into the ER is an important and complicated process that is less understood. Successful transport and correct folding of apoB may lead to its final secretion, otherwise subject to intracellular degradation, which is accomplished by proteasomal and nonproteasomal pathways at multiple levels and may differ among cell types.
Collapse
Affiliation(s)
- Ai-Bing Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 10005, People's Republic of China
| | | | | |
Collapse
|
46
|
Jarosch E, Lenk U, Sommer T. Endoplasmic reticulum-associated protein degradation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 223:39-81. [PMID: 12641210 DOI: 10.1016/s0074-7696(05)23002-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Proteins that fail to fold properly as well as constitutive or regulated short-lived proteins of the endoplasmatic reticulum (ER) are subjected to proteolysis by cytosolic 26 S proteasomes. This process, termed ER-associated protein degradation (ERAD), has also been implicated in the generation of some important human disorders, for example, cystic fibrosis. To become accessible to the proteasome, ERAD substrates must first be retrogradely transported from the ER into the cytosol, in a process termed dislocation. Surprisingly, protein dislocation from the ER seems to require at least some components that also mediate import into this compartment. Moreover, polyubiquitination of ERAD substrates at the ER membrane as well as the cytoplasmic Cdc48p/Npl4p/Ufd1p complex were shown to contribute to this export reaction. In this article we will summarize our current knowledge on ERAD and discuss the possible function of certain components involved in this process.
Collapse
Affiliation(s)
- Ernst Jarosch
- Max-Delbrück-Centrum für Molekulare Medizin, 13092 Berlin, Germany
| | | | | |
Collapse
|
47
|
Kanuka H, Kuranaga E, Hiratou T, Igaki T, Nelson B, Okano H, Miura M. Cytosol-endoplasmic reticulum interplay by Sec61alpha translocon in polyglutamine-mediated neurotoxicity in Drosophila. Proc Natl Acad Sci U S A 2003; 100:11723-8. [PMID: 14504396 PMCID: PMC208825 DOI: 10.1073/pnas.1934748100] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intracellular deposition of aggregated and ubiquitinated proteins is a prominent cytopathological feature of most neurodegenerative disorders frequently correlated with neural cell death. To elucidate mechanisms in neural cell death and degeneration, we characterized the Drosophila ortholog of Sec61alpha (DSec61alpha), a component of the translocon that is involved in both protein import and endoplasmic reticulum-associated degradation. Loss-of-function experiments for DSec61alpha revealed that the translocon contributes to expanded polyglutamine-mediated neuronal toxicity, likely resulting from proteasome inhibition and leading to accumulation of ubiquitinated proteins. Taken together, proteasome inhibition by expanded polyglutamine tracts may lead to the accumulation of toxic undegraded proteins normally transported by the Sec61alpha translocon.
Collapse
Affiliation(s)
- Hirotaka Kanuka
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Taxis C, Hitt R, Park SH, Deak PM, Kostova Z, Wolf DH. Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J Biol Chem 2003; 278:35903-13. [PMID: 12847107 DOI: 10.1074/jbc.m301080200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) harbors a protein quality control system, which monitors protein folding in the ER. Elimination of malfolded proteins is an important function of this protein quality control. Earlier studies with various soluble and transmembrane ER-associated degradation (ERAD) substrates revealed differences in the ER degradation machinery used. To unravel the nature of these differences we generated two type I membrane ERAD substrates carrying malfolded carboxypeptidase yscY (CPY*) as the ER-luminal ERAD recognition motif. Whereas the first, CT* (CPY*-TM), has no cytoplasmic domain, the second, CTG*, has the green fluorescent protein present in the cytosol. Together with CPY*, these three substrates represent topologically diverse malfolded proteins, degraded via ERAD. Our data show that degradation of all three proteins is dependent on the ubiquitin-proteasome system involving the ubiquitin-protein ligase complex Der3/Hrd1p-Hrd3p, the ubiquitin conjugating enzymes Ubc1p and Ubc7p, as well as the AAA-ATPase complex Cdc48-Ufd1-Npl4 and the 26S proteasome. In contrast to soluble CPY*, degradation of the membrane proteins CT* and CTG* does not require the ER proteins Kar2p (BiP) and Der1p. Instead, CTG* degradation requires cytosolic Hsp70, Hsp40, and Hsp104p chaperones.
Collapse
Affiliation(s)
- Christof Taxis
- Institut für Biochemie, Universität Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Furman MH, Loureiro J, Ploegh HL, Tortorella D. Ubiquitinylation of the cytosolic domain of a type I membrane protein is not required to initiate its dislocation from the endoplasmic reticulum. J Biol Chem 2003; 278:34804-11. [PMID: 12832421 DOI: 10.1074/jbc.m300913200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus US2 and US11 target newly synthesized class I major histocompatibility complex (MHC) heavy chains for rapid degradation by the proteasome through a process termed dislocation. The presence of US2 induces the formation of class I MHC heavy chain conjugates of increased molecular weight that are recognized by a conformation-specific monoclonal antibody, W6/32, suggesting that these class I MHC molecules retain their proper tertiary structure. These conjugates are properly folded glycosylated heavy chains modified by attachment of an estimated one, two, and three ubiquitin molecules. The folded ubiquitinated class I MHC heavy chains are not observed in control cells or in cells transfected with US11, suggesting that US2 targets class I MHC heavy chains for dislocation in a manner distinct from that used by US11. This is further supported by the fact that US2 and US11 show different requirements in terms of the conformation of the heavy chain molecule. Although ubiquitin conjugation may occur on the cytosolic tail of the class I MHC molecule, replacement of lysines in the cytosolic tail of heavy chains with arginine does not prevent their degradation by US2. In an in vitro system that recapitulates US2-mediated dislocation, heavy chains that lack these lysines still occur in an ubiquitin-modified form, but in the soluble (cytoplasmic) fraction. Such ubiquitin conjugation can only occur on the class I MHC lumenal domain and is likely to take place once class I MHC heavy chains have been discharged from the endoplasmic reticulum. We conclude that ubiquitinylation of class I MHC heavy chain is not required during the initial step of the US2-mediated dislocation reaction.
Collapse
Affiliation(s)
- Margo H Furman
- Harvard Medical School, Department of Pathology, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
50
|
Kabani M, Kelley SS, Morrow MW, Montgomery DL, Sivendran R, Rose MD, Gierasch LM, Brodsky JL. Dependence of endoplasmic reticulum-associated degradation on the peptide binding domain and concentration of BiP. Mol Biol Cell 2003; 14:3437-48. [PMID: 12925775 PMCID: PMC181579 DOI: 10.1091/mbc.e02-12-0847] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ER-associated degradation (ERAD) removes defective and mis-folded proteins from the eukaryotic secretory pathway, but mutations in the ER lumenal Hsp70, BiP/Kar2p, compromise ERAD efficiency in yeast. Because attenuation of ERAD activates the UPR, we screened for kar2 mutants in which the unfolded protein response (UPR) was induced in order to better define how BiP facilitates ERAD. Among the kar2 mutants isolated we identified the ERAD-specific kar2-1 allele (Brodsky et al. J. Biol. Chem. 274, 3453-3460). The kar2-1 mutation resides in the peptide-binding domain of BiP and decreases BiP's affinity for a peptide substrate. Peptide-stimulated ATPase activity was also reduced, suggesting that the interdomain coupling in Kar2-1p is partially compromised. In contrast, Hsp40 cochaperone-activation of Kar2-1p's ATPase activity was unaffected. Consistent with UPR induction in kar2-1 yeast, an ERAD substrate aggregated in microsomes prepared from this strain but not from wild-type yeast. Overexpression of wild-type BiP increased substrate solubility in microsomes obtained from the mutant, but the ERAD defect was exacerbated, suggesting that simply retaining ERAD substrates in a soluble, retro-translocation-competent conformation is insufficient to support polypeptide transit to the cytoplasm.
Collapse
Affiliation(s)
- Mehdi Kabani
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|