1
|
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20:7-19. [PMID: 34503417 DOI: 10.2174/1570162x19666210908114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| | - Geronimo Fernandez
- Departamento de Bioquímica-Investigación, Aptus Biotech SL, Avda. Cardenal Herrera Oria, 298-28035 Madrid. Spain
| | - Victor M Gonzalez
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| |
Collapse
|
2
|
Curreli F, Ahmed S, Benedict Victor SM, Iusupov IR, Belov DS, Markov PO, Kurkin AV, Altieri A, Debnath AK. Preclinical Optimization of gp120 Entry Antagonists as anti-HIV-1 Agents with Improved Cytotoxicity and ADME Properties through Rational Design, Synthesis, and Antiviral Evaluation. J Med Chem 2020; 63:1724-1749. [PMID: 32031803 DOI: 10.1021/acs.jmedchem.9b02149] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously reported a milestone in the optimization of NBD-11021, an HIV-1 gp120 antagonist, by developing a new and novel analogue, NBD-14189 (Ref1), which showed antiviral activity against HIV-1HXB2, with a half maximal inhibitory concentration of 89 nM. However, cytotoxicity remained high, and the absorption, distribution, metabolism, and excretion (ADME) data showed relatively poor aqueous solubility. To optimize these properties, we replaced the phenyl ring in the compound with a pyridine ring and synthesized a set of 48 novel compounds. One of the new analogues, NBD-14270 (8), showed a marked improvement in cytotoxicity, with 3-fold and 58-fold improvements in selectivity index value compared with that of Ref1 and NBD-11021, respectively. Furthermore, the in vitro ADME data clearly showed improvements in aqueous solubility and other properties compared with those for Ref1. The data for 8 indicated that the pyridine scaffold is a good bioisostere for phenyl, allowing the further optimization of this molecule.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Sofia M Benedict Victor
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Ildar R Iusupov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Pavel O Markov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| |
Collapse
|
3
|
Siderius M, Jagodzinski F. Mutation Sensitivity Maps: Identifying Residue Substitutions That Impact Protein Structure Via a Rigidity Analysis In Silico Mutation Approach. J Comput Biol 2017; 25:89-102. [PMID: 29035580 DOI: 10.1089/cmb.2017.0165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Understanding how an amino acid substitution affects a protein's structure can aid in the design of pharmaceutical drugs that aim at countering diseases caused by protein mutants. Unfortunately, performing even a few amino acid substitutions in vitro is both time and cost prohibitive, whereas an exhaustive analysis that involves systematically mutating all amino acids in the physical protein is infeasible. Computational methods have been developed to predict the effects of mutations, but even many of them are computationally intensive or are else dependent on homology or experimental data that may not be available for the protein being studied. In this work, we motivate and present a computation pipeline whose only input is a Protein Data Bank file containing the 3D coordinates of the atoms of a biomolecule. Our high-throughput approach uses our ProMuteHT algorithm to exhaustively generate in silico amino acid substitutions at each residue, and it also includes an energy minimization option. This is in contrast to our previous work, where we analyzed the effects of in silico mutations to Alanine, Serine, and Glycine only. We exploit the speed of a fast rigidity analysis approach to analyze our protein variants, and develop a Mutation Sensitivity (MuSe) Map, to permit identifying residues that are most sensitive to mutations. We present a case study to show the degree to which a MuSe Map and whisker plots are able to locate amino acids whose mutations most affect a protein's structure as inferred from a rigidity analysis approach.
Collapse
Affiliation(s)
- Michael Siderius
- Department of Computer Science, Western Washington University , Bellingham, Washington
| | - Filip Jagodzinski
- Department of Computer Science, Western Washington University , Bellingham, Washington
| |
Collapse
|
4
|
Kost GC, Yang MY, Li L, Zhang Y, Liu CY, Kim DJ, Ahn CH, Lee YB, Liu ZR. A Novel Anti-Cancer Agent, 1-(3,5-Dimethoxyphenyl)-4-[(6-Fluoro-2-Methoxyquinoxalin-3-yl)Aminocarbonyl] Piperazine (RX-5902), Interferes With β-Catenin Function Through Y593 Phospho-p68 RNA Helicase. J Cell Biochem 2016; 116:1595-601. [PMID: 25649741 DOI: 10.1002/jcb.25113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/23/2015] [Indexed: 02/04/2023]
Abstract
1-(3,5-Dimethoxyphenyl)-4-[(6-fluoro-2-methoxyquinoxalin-3-yl)aminocarbonyl] piperazine (RX-5902) exhibits strong growth inhibition in various human cancer cell lines with IC50 values ranging between 10 and 20 nM. In this study, we demonstrate that p68 RNA helicase is a cellular target of RX-5902 by the drug affinity responsive target stability (DARTS) method, and confirmed the direct binding of (3) H-labeled RX-5902 to Y593 phospho-p68 RNA helicase. We further demonstrated RX-5902 inhibited the β-catenin dependent ATPase activity of p68 RNA helicase in an in vitro system. Furthermore, we showed that treatment of cancer cells with RX-5902 resulted in the downregulation of the expression of certain genes, which are known to be regulated by the β-catenin pathway, such as c-Myc, cyclin D1 and p-c-Jun. Therefore, our study indicates that the inhibition of Y593 phospho-p68 helicase - β-catenin interaction by direct binding of RX-5902 to Y593 phospho-p68 RNA helicase may contribute to the anti-cancer activity of this compound.
Collapse
Affiliation(s)
- Gina Chun Kost
- Rexahn Pharmaceuticals, Inc., Rockville, Maryland, 20850
| | - Mi Young Yang
- Rexahn Pharmaceuticals, Inc., Rockville, Maryland, 20850
| | - Liangwei Li
- Department of Biology, Georgia State University, Atlanta, Georgia, 30303
| | - Yinwei Zhang
- Department of Biology, Georgia State University, Atlanta, Georgia, 30303
| | - Chia-Yi Liu
- Department of Biology, Georgia State University, Atlanta, Georgia, 30303
| | - Deog Joong Kim
- Rexahn Pharmaceuticals, Inc., Rockville, Maryland, 20850
| | - Chang-Ho Ahn
- Rexahn Pharmaceuticals, Inc., Rockville, Maryland, 20850
| | - Young Bok Lee
- Rexahn Pharmaceuticals, Inc., Rockville, Maryland, 20850
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, Georgia, 30303
| |
Collapse
|
5
|
Gadhe CG, Kothandan G, Cho SJ. Characterization of Binding Mode of the Heterobiaryl gp120 Inhibitor in HIV-1 Entry: A Molecular Docking and Dynamics Simulation Study. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.8.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Morellato-Castillo L, Acharya P, Combes O, Michiels J, Descours A, Ramos OHP, Yang Y, Vanham G, Ariën KK, Kwong PD, Martin L, Kessler P. Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with HIV-1 surface glycoprotein. J Med Chem 2013; 56:5033-47. [PMID: 23710622 DOI: 10.1021/jm4002988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface glycoprotein (gp120) and cluster of differentiation 4 (CD4) receptor extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with 11 non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative, named M48U12 (13), bound HIV-1 YU2 gp120 with 8 pM affinity and showed potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine, and its cocrystal structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and the aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity.
Collapse
|
7
|
Narumi T, Arai H, Yoshimura K, Harada S, Nomura W, Matsushita S, Tamamura H. Small molecular CD4 mimics as HIV entry inhibitors. Bioorg Med Chem 2011; 19:6735-42. [PMID: 22014753 DOI: 10.1016/j.bmc.2011.09.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/23/2011] [Accepted: 09/24/2011] [Indexed: 11/16/2022]
Abstract
Derivatives of CD4 mimics were designed and synthesized to interact with the conserved residues of the Phe43 cavity in gp120 to investigate their anti-HIV activity, cytotoxicity, and CD4 mimicry effects on conformational changes of gp120. Significant potency gains were made by installation of bulky hydrophobic groups into the piperidine moiety, resulting in discovery of a potent compound with a higher selective index and CD4 mimicry. The current study identified a novel lead compound 11 with significant anti-HIV activity and lower cytotoxicity than those of known CD4 mimics.
Collapse
Affiliation(s)
- Tetsuo Narumi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Mao Y. Dynamical basis for drug resistance of HIV-1 protease. BMC STRUCTURAL BIOLOGY 2011; 11:31. [PMID: 21740562 PMCID: PMC3149572 DOI: 10.1186/1472-6807-11-31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/08/2011] [Indexed: 11/30/2022]
Abstract
Background Protease inhibitors designed to bind to protease have become major anti-AIDS drugs. Unfortunately, the emergence of viral mutations severely limits the long-term efficiency of the inhibitors. The resistance mechanism of these diversely located mutations remains unclear. Results Here I use an elastic network model to probe the connection between the global dynamics of HIV-1 protease and the structural distribution of drug-resistance mutations. The models for study are the crystal structures of unbounded and bound (with the substrate and nine FDA approved inhibitors) forms of HIV-1 protease. Coarse-grained modeling uncovers two groups that couple either with the active site or the flap. These two groups constitute a majority of the drug-resistance residues. In addition, the significance of residues is found to be correlated with their dynamical changes in binding and the results agree well with the complete mutagenesis experiment of HIV-1 protease. Conclusions The dynamic study of HIV-1 protease elucidates the functional importance of common drug-resistance mutations and suggests a unifying mechanism for drug-resistance residues based on their dynamical properties. The results support the robustness of the elastic network model as a potential predictive tool for drug resistance.
Collapse
Affiliation(s)
- Yi Mao
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
9
|
Gadhe CG, Kothandan G, Madhavan T, Cho SJ. Molecular modeling study of HIV-1 gp120 attachment inhibitors. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9711-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
ZHOU J, SHU Y, GUO P, Smith DD, ROSSI JJ. Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods 2011; 54:284-94. [PMID: 21256218 PMCID: PMC3107903 DOI: 10.1016/j.ymeth.2010.12.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/28/2010] [Accepted: 12/29/2010] [Indexed: 01/06/2023] Open
Abstract
The potent ability of small interfering RNA (siRNA) to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for diseases including HIV. However, efficient delivery of siRNAs remains a key obstacle to successful application. A targeted intracellular delivery approach for siRNAs to specific cell types is highly desirable. HIV-1 infection is initiated by the interactions between viral glycoprotein gp120 and cell surface receptor CD4, leading to fusion of the viral membrane with the target cell membrane. Once HIV infects a cell it produces gp120 which is displayed at the cell surface. We previously described a novel dual inhibitory anti-gp120 aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities. We also demonstrated that gp120 can be used for aptamer mediated delivery of anti-HIV siRNAs. Here we report the design, construction and evaluation of chimerical RNA nanoparticles containing a HIV gp120-binding aptamer escorted by the pRNA of bacteriophage phi29 DNA-packaging motor. We demonstrate that pRNA-aptamer chimeras specifically bind to and are internalized into cells expressing HIV gp120. Moreover, the pRNA-aptamer chimeras alone also provide HIV inhibitory function by blocking viral infectivity. The Ab' pRNA-siRNA chimera with 2'-F modified pyrimidines in the sense strand not only improved the RNA stability in serum, but also was functionally processed by Dicer, resulting in specific target gene silencing. Therefore, this dual functional pRNA-aptamer not only represents a potential HIV-1 inhibitor, but also provides a cell-type specific siRNA delivery vehicle, showing promise for systemic anti-HIV therapy.
Collapse
Affiliation(s)
- Jiehua ZHOU
- Division of Molecular and Cellular Biology, City of Hope, Duarte, CA
| | - Yi SHU
- Nanobiomedical Center, SEEBME, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Peixuan GUO
- Nanobiomedical Center, SEEBME, University of Cincinnati, Cincinnati, OH 45267, USA
| | - David D. Smith
- Division of Biostatistics, Beckman Research Institute of the City of Hope, Duarte, CA
| | - John J ROSSI
- Division of Molecular and Cellular Biology, City of Hope, Duarte, CA
- Graduate School of Biological Sciences, City of Hope, 1500 East Duarte Rd, Duarte, CA 91010, USA
| |
Collapse
|
11
|
|
12
|
Teixeira C, Serradji N, Maurel F, Barbault F. Docking and 3D-QSAR studies of BMS-806 analogs as HIV-1 gp120 entry inhibitors. Eur J Med Chem 2009; 44:3524-32. [DOI: 10.1016/j.ejmech.2009.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/27/2009] [Accepted: 03/19/2009] [Indexed: 10/21/2022]
|
13
|
Zhou J, Swiderski P, Li H, Zhang J, Neff CP, Akkina R, Rossi JJ. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 2009; 37:3094-109. [PMID: 19304999 PMCID: PMC2685106 DOI: 10.1093/nar/gkp185] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The envelope glycoprotein of human immunodeficiency virus (HIV) consists of an exterior glycoprotein (gp120) and a trans-membrane domain (gp41) and has an important role in viral entry into cells. HIV-1 entry has been validated as a clinically relevant anti-viral strategy for drug discovery. In the present work, several 2'-F substituted RNA aptamers that bind to the HIV-1(BaL) gp120 protein with nanomole affinity were isolated from a RNA library by the SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure. From two of these aptamers we created a series of new dual inhibitory function anti-gp120 aptamer-siRNA chimeras. The aptamers and aptamer-siRNA chimeras specifically bind to and are internalized into cells expressing HIV gp160. The Dicer-substrate siRNA delivered by the aptamers is functionally processed by Dicer, resulting in specific inhibition of HIV-1 replication and infectivity in cultured CEM T-cells and primary blood mononuclear cells (PBMCs). Moreover, we have introduced a 'sticky' sequence onto a chemically synthesized aptamer which facilitates attachment of the Dicer substrate siRNAs for potential multiplexing. Our results provide a set of novel inhibitory agents for blocking HIV replication and further validate the use of aptamers for delivery of Dicer substrate siRNAs.
Collapse
Affiliation(s)
- Jiehua Zhou
- Division of Molecular Biology, Beckman Research Institute of City of Hope, City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Mastrolorenzo A, Maresca A, Rusconi S, Supuran CT. Update on the development of HIV entry inhibitors. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17469600.2.5.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HIV fusion and entry are two steps in the viral lifecycle that can be targeted by several classes of antiviral drugs. The discovery of chemokines focused the attention on cellular co-receptors used by the virus for entering cells, and on the various steps of such processes that are subject to interactions with small molecules. Intense research has led to a wide range of effective compounds that are able to inhibit these initial steps of viral replication. All steps in the process of HIV entry into the cell may be targeted by specific compounds, grouped into three main classes (attachment inhibitors, co-receptor binding inhibitors and fusion inhibitors), which may be developed as novel antiretrovirals. Thus, several inhibitors of the gp120–CD4 interaction have been discovered (e.g., zintevir and BMS-378806). Small molecule chemokine receptor antagonists acting as HIV entry inhibitors have also been described recently, including those which interact with both the CXCR4 co-receptor (e.g., AMD3100, AMD3465, ALX40-4C, T22, T134 and T140) and CCR5 co-receptor antagonists (TAK-779, TAK-220, E913, AK-602 and NSC 651016 in clinical trials). Recently, a third family of antivirals started to be used clinically (in addition to reverse transcriptase and protease inhibitors), with the advent of enfuvirtide (T20), the first fusion inhibitor to be approved as an anti-HIV agent. Some of these compounds demonstrated in vitro synergism with other classes of antivirals, thus offering the rationale for their combination in therapies for HIV-infected individuals. Many HIV entry and fusion inhibitors are currently being investigated in controlled clinical trials, and a number of them are bioavailable as oral formulations. In 2007, the US FDA approved maraviroc as an anti-HIV agent. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin. Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. Furthermore, in October 2007, the FDA announced the approval of raltegravir for the treatment of HIV-1 infection as part of combination antiretroviral therapy in treatment-experienced patients with evidence of HIV-1 replication despite optimized background antiretroviral therapy. At present, raltegravir is the only drug in the integrase inhibitor class approved for clinical use. With the approval of raltegravir, oral agents targeting all three constitutive viral enzymes, reverse transcriptase, protease and integrase, are now represented in FDA-approved therapies.
Collapse
Affiliation(s)
- Antonio Mastrolorenzo
- Università degli Studi di Firenze, Dipartimento di Scienze Dermatologiche, Centro MTS, Via degli Alfani 37, I-50121 Florence, Italy
| | - Alfonso Maresca
- Università degli Studi di Firenze, Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica, Via della Lastruccia, 3, Rm. 188, I-50019 Sesto Fiorentino (Florence), Italy
| | - Stefano Rusconi
- Dipartimento di Scienze Cliniche “Luigi Sacco”, Cattedra di Malattie Infettive e Tropicali, Università degli Studi, Ospedale Luigi Sacco, Via GB Grassi 74, 20157 Milano, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica, Via della Lastruccia, 3, Rm. 188, I-50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
15
|
Dessalew N. QSAR Study on Piperidinecarboxamides as Antiretroviral Agents: An Insight Into the Structural Basis for HIV Coreceptor Antagonist Activity. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/qsar.200760177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Hamza A, Zhan CG. How can (-)-epigallocatechin gallate from green tea prevent HIV-1 infection? Mechanistic insights from computational modeling and the implication for rational design of anti-HIV-1 entry inhibitors. J Phys Chem B 2007; 110:2910-7. [PMID: 16471901 DOI: 10.1021/jp0550762] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Possible inhibitors preventing human immunodeficiency virus type 1 (HIV-1) entry into the cells are recognized as hopeful next-generation anti-HIV-1 drugs. It is highly desirable to develop a potent inhibitor blocking binding of glycoprotein CD4 of the cell with glycoprotein gp120 of HIV-1, because the gp120-CD4 binding is the initial step of HIV-1 entry into the cells. It has been recently reported that (-)-epigallocatechin gallate (EGCG) from green tea is an inhibitor blocking gp120-CD4 binding. But the inhibitory mechanism remains unknown. For understanding the inhibitory mechanism, extensive molecular docking, molecular dynamics simulations, and binding free-energy calculations have been performed in this study to predict the most favorable structures of CD4-EGCG, gp120-CD4, and gp120-CD4-EGCG binding complexes in water. The results reveal that EGCG binds with CD4 in such a way that the calculated binding affinity of gp120 with the CD4-EGCG complex is negligible. So, the favorable binding of EGCG with CD4 can effectively block gp120-CD4 binding. The calculated CD4-EGCG binding affinity (DeltaG(bind) = -5.5 kcal/mol, K(d) = 94 microM) is in excellent agreement with available experimental data suggesting IC(50) approximately 100 microM for EGCG-blocking CD4-gp120 binding. These results and insights provide a rational basis for future design of novel, more potent inhibitors to block gp120-CD4 binding.
Collapse
Affiliation(s)
- Adel Hamza
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
17
|
Hornak V, Simmerling C. Targeting structural flexibility in HIV-1 protease inhibitor binding. Drug Discov Today 2007; 12:132-8. [PMID: 17275733 PMCID: PMC4767006 DOI: 10.1016/j.drudis.2006.12.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 11/24/2006] [Accepted: 12/11/2006] [Indexed: 11/21/2022]
Abstract
HIV-1 protease remains an important anti-AIDS drug target. Although it has been known that ligand binding induces large conformational changes in the protease, the dynamic aspects of binding have been largely ignored. Several computational models describing protease dynamics have been reported recently. These have reproduced experimental observations, and have also explained how ligands gain access to the binding site through dynamic behavior of the protease. Specifically, the transitions between three different conformations of the protein have been modeled in atomic detail. Two of these forms were determined by crystallography, and the third was implied by NMR experiments. Based on these computational models, it has been suggested that binding of inhibitors in allosteric sites might affect protease flexibility and disrupt its function.
Collapse
Affiliation(s)
- Viktor Hornak
- Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
- Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
18
|
Triggle DJ. Drug discovery and delivery in the 21st century. Med Princ Pract 2007; 16:1-14. [PMID: 17159357 DOI: 10.1159/000096133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Accepted: 05/28/2006] [Indexed: 02/05/2023] Open
Abstract
Drug discovery in the late 20th century has increasingly focused on the definition and characterization of the macromolecular substrates that serve as targets for drug design. The advent of genomics and the molecular biology revolution has permitted both the definition of new targets and the characterization of the genetic basis of disease states. The introduction of powerful new technologies should greatly accelerate the pace of new drug discovery. Although genomics, both human and nonhuman, should in principle increase the number of potential drug targets and provide a greater understanding of cellular events contributing to the pathology of disease this has yet to occur in practice, primarily because of the underlying complexity of cellular signaling processes. The emerging discipline of systems biology is attempting to bring both order and understanding to these signaling processes. Genomics has, however, impacted on drug discovery in ways that are important beyond a mere increase in potential drug target numbers. Genomics has provided the tools of contemporary drug discovery, the pharmacogenomic pathways to personalized medicine, and has greatly influenced the nature of synthetic organic chemistry, a discipline that is still the cornerstone of contemporary drug discovery. In the future, genomics and the tools of molecular biology will have a corresponding impact on drug delivery processes and mechanisms through introduction of drug delivery machines capable of both synthesis and activation by disease-specific signals. Such machines will be based on a synthetic genome, using an expanded genetic code, and designed for specific drug synthesis and delivery and activation by a pathological signal. This essay is based upon a lecture of the same title presented at the Faculty of Medicine, Kuwait University during a visit in the spring of 2005. It is intended, as was the lecture, to be a broad, descriptive and speculative overview rather than a comprehensive and detailed review.
Collapse
|
19
|
Armour D, de Groot MJ, Edwards M, Perros M, Price DA, Stammen BL, Wood A. The Discovery of CCR5 Receptor Antagonists for the Treatment of HIV Infection: Hit-to-Lead Studies. ChemMedChem 2006; 1:706-9. [PMID: 16902922 DOI: 10.1002/cmdc.200600031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Duncan Armour
- Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Sandwich, Kent, CT13 9NJ, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Nishikawa M, Takashima K, Nishi T, Furuta RA, Kanzaki N, Yamamoto Y, Fujisawa JI. Analysis of binding sites for the new small-molecule CCR5 antagonist TAK-220 on human CCR5. Antimicrob Agents Chemother 2006; 49:4708-15. [PMID: 16251315 PMCID: PMC1280122 DOI: 10.1128/aac.49.11.4708-4715.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G protein-coupled receptor CCR5 is the main coreceptor for macrophage-tropic human immunodeficiency virus type 1 (HIV-1), and various small-molecule CCR5 antagonists are being developed to treat HIV-1 infection. It has been reported that such CCR5 antagonists, including TAK-779, bind to a putative binding pocket formed by transmembrane domains (TMs) 1, 2, 3 and 7 of CCR5, indicating the importance of the conformational changes of the TMs during virus entry. In this report, using a single-round infection assay with human CCR5 and its substitution mutants, we demonstrated that a new CCR5 antagonist, TAK-220, shares the putative interacting amino acid residues Asn252 and Leu255 in TM6 with TAK-779 but also requires the distinct residues Gly163 and Ile198 in TMs 4 and 5, respectively, for its inhibitory effect. We suggested that, together with molecular models of the interactions between the drugs and CCR5, the inhibitory activity of TAK-220 could involve direct interactions with amino acid residues in TMs 4, 5, and 6 in addition to those in the previously postulated binding pocket. The possible interaction of drugs with additional regions of the CCR5 molecule would help to develop a new small-molecule CCR5 antagonist.
Collapse
Affiliation(s)
- Masao Nishikawa
- Department of Microbiology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Stricher F, Martin L, Barthe P, Pogenberg V, Mechulam A, Menez A, Roumestand C, Veas F, Royer C, Vita C. A high-throughput fluorescence polarization assay specific to the CD4 binding site of HIV-1 glycoproteins based on a fluorescein-labelled CD4 mimic. Biochem J 2005; 390:29-39. [PMID: 15836438 PMCID: PMC1184560 DOI: 10.1042/bj20041953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The three-dimensional structure of CD4M33, a mimic of the host-cell receptor-antigen CD4 and a powerful inhibitor of CD4-gp120 (viral envelope glycoprotein 120) interaction and HIV-1 entry into cells [Martin, Stricher, Misse, Sironi, Pugniere, Barthe, Prado-Gotor, Freulon, Magne, Roumestand et al. (2003) Nat. Biotechnol. 21, 71-76], was solved by 1H-NMR and its structure was modelled in its complex with gp120. In this complex, CD4M33 binds in a CD4-like mode and inserts its unnatural and prominent Bip23 (biphenylalanine-23) side-chain into the gp120 interior 'Phe43 cavity', thus filling its volume. CD4M33 was specifically labelled with fluorescein and shown by fluorescence anisotropy to bind to different gp120 glycoproteins with dissociation constants in the nanomolar range. Fluorescent CD4M33 was also used in a miniaturized 384-well-plate assay to study direct binding to a large panel of gp120 glycoproteins and in a competition assay to study binding of CD4 or other ligands targeting the CD4 binding site of gp120. Furthermore, by using the fluorescently labelled CD4M33 and the [Phe23]M33 mutant, which possesses a natural Phe23 residue and thus cannot penetrate the gp120 Phe43 cavity, we show that a recently discovered small-molecule-entry inhibitor, BMS-378806, does not target the CD4 binding site nor the Phe43 cavity of gp120. The fluorescently labelled CD4M33 mimic, its mutants and their derivatives represent useful tools with which to discover new molecules which target the CD4 binding site and/or the Phe43 cavity of gp120 glycoproteins in a high-throughput fluorescence-polarization assay and to characterize their mechanism of action.
Collapse
Affiliation(s)
- François Stricher
- *Department of Protein Engineering and Research, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Loïc Martin
- *Department of Protein Engineering and Research, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Philippe Barthe
- †Structural Biochemistry Center, Faculty of Pharmacy, 34093 Montpellier, France
| | - Vivian Pogenberg
- †Structural Biochemistry Center, Faculty of Pharmacy, 34093 Montpellier, France
| | - Alain Mechulam
- ‡Retroviral and Molecular Immunology Laboratory, IRD/CNRS, 34094 Montpellier, France
| | - André Menez
- *Department of Protein Engineering and Research, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | - Francisco Veas
- ‡Retroviral and Molecular Immunology Laboratory, IRD/CNRS, 34094 Montpellier, France
| | - Catherine Royer
- †Structural Biochemistry Center, Faculty of Pharmacy, 34093 Montpellier, France
| | - Claudio Vita
- *Department of Protein Engineering and Research, CEA Saclay, 91191 Gif-sur-Yvette, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
22
|
Seto M, Miyamoto N, Aikawa K, Aramaki Y, Kanzaki N, Iizawa Y, Baba M, Shiraishi M. Orally active CCR5 antagonists as anti-HIV-1 agents. Part 3: Synthesis and biological activities of 1-benzazepine derivatives containing a sulfoxide moiety. Bioorg Med Chem 2005; 13:363-86. [PMID: 15598559 DOI: 10.1016/j.bmc.2004.10.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 10/08/2004] [Accepted: 10/08/2004] [Indexed: 11/16/2022]
Abstract
In order to develop orally active CCR5 antagonists, 1-propyl- or 1-isobutyl-1-benzazepine derivatives containing a sulfoxide moiety have been designed, synthesized, and evaluated for their biological activities. Sulfoxide compounds containing a 2-pyridyl group were first investigated, which led to discovering that the presence of a methylene group between the sulfoxide moiety and 2-pyridyl group was necessary for increased inhibitory activity in a binding assay. After further chemical modification, it was found that replacement of the pyridyl group with an imidazolyl or 1,2,4-triazolyl group enhanced activity in the binding assay and that S-sulfoxide compounds were more active than R-isomers. Particularly, compounds (S)-4r, (S)-4s, and (S)-4w exhibited highly potent CCR5 antagonistic activities (IC50=1.9, 1.7, 1.6 nM, respectively) and inhibitory effects (IC50=1.0, 2.8, 7.7 nM, respectively) in the HIV-1 envelope mediated membrane fusion assay, together with good pharmacokinetic properties in rats. In addition, we established the synthesis of (S)-4r and (S)-4w by asymmetric oxidation with titanium-(S)-(-)-1,1'-bi-2-naphthol complex.
Collapse
Affiliation(s)
- Masaki Seto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 2-17-85 Jusohonmachi,Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Mastrolorenzo A, Scozzafava A, Supuran CT. Small molecule antagonists of chemokine receptors as emerging anti-HIV agents. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.8.1245] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
|
26
|
An improved synthesis of piperazino-piperidine based CCR5 antagonists with flexible variation on pharmacophore sites. Tetrahedron 2005. [DOI: 10.1016/j.tet.2004.11.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Ikeda K, Ishii Y, Konishi K, Sato M, Tanaka K. Synthesis and biological evaluation of peptide mimics derived from first extracellular loop of CCR5 toward HIV-1. Chem Pharm Bull (Tokyo) 2004; 52:1479-82. [PMID: 15577250 DOI: 10.1248/cpb.52.1479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide mimics derived from the first extracellular loop of CCR5 bearing non-peptide spacers in place of Ala-Ala-Ala sequence in the peptide moiety were synthesized, and the effects of these compounds on the inhibition against HIV-1 were examined. Compound 2b having m-aminophenoxyacetic acid derivative as a non-peptide spacer significantly inhibited HIV-1.
Collapse
Affiliation(s)
- Kiyoshi Ikeda
- School of Pharmaceutical Sciences, University of Shizuoka, Yada, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
28
|
?ysek R, Vogel P. Synthesis ofN-Substituted (3S,4S)- and (3R,4R)-Pyrrolidine-3,4-diols: Search for New Glycosidase Inhibitors. Helv Chim Acta 2004. [DOI: 10.1002/hlca.200490282] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Song M, Breneman CM, Sukumar N. Three-dimensional quantitative structure-activity relationship analyses of piperidine-based CCR5 receptor antagonists. Bioorg Med Chem 2004; 12:489-99. [PMID: 14723967 DOI: 10.1016/j.bmc.2003.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CCR5 chemokine receptor has recently been found to play a crucial role in the viral entry stage of HIV infection and has therefore become an attractive potential target for anti-HIV therapeutics. On the other hand, the lack of CCR5 crystal structure data has impeded the development of structure-based CCR5 antagonist design. In this paper, we compare two three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) methods: Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) on a series of piperidine-based CCR5 antagonists as an alternative approach to investigate the interaction between CCR5 antagonists and their receptor. Superimposition of antagonist structures was performed using two alignment rules: atomic/centroid rms fit and rigid body field fit techniques. The 3D QSAR models were derived from a training set of 72 compounds, and were found to have predictive capability for a set of 19 holdout test compounds. The resulting contour maps produced by the best CoMFA and CoMSIA models were used to identify the structural features relevant to biological activity in this series of compounds. Further analyses of these interaction-field contour maps also showed a high level of internal consistency.
Collapse
Affiliation(s)
- Minghu Song
- Department of Chemistry, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | | | |
Collapse
|
30
|
Naicker KP, Jiang S, Lu H, Ni J, Boyer-Chatenet L, Wang LX, Debnath AK. Synthesis and anti-HIV-1 activity of 4-[4-(4,6-bisphenylamino-triazin-2-ylamino)-5-methoxy-2-methylphenylazo]-5-hydroxynaphthalene-2,7-disulfonic acid and its derivatives. Bioorg Med Chem 2004; 12:1215-20. [PMID: 14980633 DOI: 10.1016/j.bmc.2003.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 11/10/2003] [Indexed: 11/25/2022]
Abstract
A structure-based design approach has been used to optimize a lead HIV-1 entry inhibitor targeted to the envelope glycoprotein gp41. The docking study on this lead compound revealed important structural requirements that need to be preserved as well as structural non-requirements that could be eliminated to substantially reduce the molecular size of the lead compound. Based on the results from docking study, a limited number of analogues were designed and synthesized. This approach yielded a new analogue (compound 4) that retained the anti-HIV-1 activity with reduced molecular size approaching towards more drug-like character.
Collapse
Affiliation(s)
- Kannan P Naicker
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 W. Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Imamura S, Ishihara Y, Hattori T, Kurasawa O, Matsushita Y, Sugihara Y, Kanzaki N, Iizawa Y, Baba M, Hashiguchi S. CCR5 antagonists as anti-HIV-1 agents. 1. Synthesis and biological evaluation of 5-oxopyrrolidine-3-carboxamide derivatives. Chem Pharm Bull (Tokyo) 2004; 52:63-73. [PMID: 14709870 DOI: 10.1248/cpb.52.63] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel lead compound, N-(3-[4-(4-fluorobenzoyl)piperidin-1-yl]propyl)-1-methyl-5-oxo-N-phenylpyrrolidine-3-carboxamide (1), was identified as a CCR5 antagonist by high-throughput screening using [(125)I]RANTES and CCR5-expressing CHO cells. The IC(50) value of 1 was 1.9 microM. In an effort to improve the binding affinity of 1, a series of 5-oxopyrrolidine-3-carboxamides was synthesized. Introduction of 3,4-dichloro substituents to the central phenyl ring (10i, IC(50)=0.057 microM; 11b, IC(50)=0.050 microM) or replacing the 1-methyl group of the 5-oxopyrrolidine moiety with a 1-benzyl group (12e, IC(50)=0.038 microM) was found to be effective for improving CCR5 affinity. Compound 10i, 11b, and 12e also inhibited CCR5-using HIV-1 envelope-mediated membrane fusion with IC(50) values of 0.44, 0.19, and 0.49 microM, respectively.
Collapse
Affiliation(s)
- Shinichi Imamura
- Pharmaceutical Research Division, Takeda Chemical Industries Ltd., 2-17-85 Jusohonmachi, Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jiang XH, Song YL, Long YQ. Facile synthesis of 4-substituted-4-aminopiperidine derivatives, the key building block of piperazine-based CCR5 antagonists. Bioorg Med Chem Lett 2004; 14:3675-8. [PMID: 15203141 DOI: 10.1016/j.bmcl.2004.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 04/28/2004] [Accepted: 05/10/2004] [Indexed: 11/27/2022]
Abstract
4-Substituted-4-aminopiperidine is an interesting structural motif found in a number of bioactive compounds. An efficient and convenient method for the synthesis of 4-differently substituted-4-aminopiperidine derivatives was described, employing isonipecotate as a starting material and Curtius rearrangement as a key step. The alkylation of isonipecotate could introduce various substituents at the 4-position of the piperidine ring. With this key building block, we are able to efficiently synthesize piperazino-piperidine based CCR5 antagonist in a highly convergent manner free of using toxic reagents such as diethylaluminum cyanide. The concise synthesis of a potent bioavailable CCR5 antagonist as HIV-1 entry inhibitor, Sch-350634 (1) was accomplished in excellent yield using N'-Boc-4-methyl-4-aminopiperidine 5a as a smart building block. The new methodology provides a facile and practical access to the piperazino-piperidine amide analogs as HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Xiao-Hua Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, CAS, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | |
Collapse
|
33
|
Holland AU, Munk C, Lucero GR, Nguyen LD, Landau NR. Alpha-complementation assay for HIV envelope glycoprotein-mediated fusion. Virology 2004; 319:343-52. [PMID: 14980494 DOI: 10.1016/j.virol.2003.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 11/10/2003] [Accepted: 11/10/2003] [Indexed: 12/01/2022]
Abstract
The fusion reaction mediated by viral envelope glycoproteins proceeds through an ordered series of conformational changes in the envelope glycoprotein. Fusion inhibitors have been developed that target glycoprotein subunits, arresting the reaction at different points in the process. We report the development of a novel method for detecting viral glycoprotein-mediated fusion that is based on the principle of alpha-complementation of beta-galactosidase. The method is simple, accurate, has a high signal-to-noise ratio, is suited for high-throughput screening, and does not require new transcription or protein synthesis. Cells expressing a viral envelope glycoprotein and the N-terminal alpha fragment of beta-galactosidase were mixed with cells expressing the C-terminal beta-galactosidase fragment, CD4, CCR5, or CXCR4. Fusion was detected after 30 min and continued to increase to very high levels for more than 5 h. The assay was used to examine the temperature dependence of fusion and the effect of coreceptor and glycoprotein density on inhibitor activity.
Collapse
Affiliation(s)
- Anne U Holland
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
34
|
Doncel G, Mauck C. Vaginal microbicides: a novel approach to preventing sexual transmission of HIV. Curr HIV/AIDS Rep 2004; 1:25-32. [PMID: 16091220 DOI: 10.1007/s11904-004-0004-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The AIDS epidemic continues its unrelentless expansion. According to the Joint United Nations Programme on HIV/AIDS, there are more than 40 million people living with HIV, and more than 15,000 new infections occur every day. One approach to curbing HIV is the development of topical microbicidal agents or microbicides. These are compounds designed to protect the body's mucosal surfaces from infection by sexually transmitted disease-causing pathogens, including HIV. Several candidates are in preclinical stages; however, only a handful have been tested in humans for safety, and even fewer are ready for clinical efficacy trials. In this update, we describe microbicide research and development, including preclinical screening algorithms, ideal properties, compounds in the pipeline, and future prospects. This review is based on a previous work, which has been updated to contain new information, especially regarding microbicide candidates in preclinical and clinical stages of development.
Collapse
Affiliation(s)
- Gustavo Doncel
- CONRAD, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, VA 23507, USA.
| | | |
Collapse
|
35
|
Chemokine receptor antagonists as HIV entry inhibitors. Expert Opin Ther Pat 2004. [DOI: 10.1517/13543776.14.2.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Shen DM, Shu M, Mills SG, Chapman KT, Malkowitz L, Springer MS, Gould SL, DeMartino JA, Siciliano SJ, Kwei GY, Carella A, Carver G, Holmes K, Schleif WA, Danzeisen R, Hazuda D, Kessler J, Lineberger J, Miller MD, Emini EA. Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 1: Discovery and SAR study of 4-pyrazolylpiperidine side chains. Bioorg Med Chem Lett 2004; 14:935-9. [PMID: 15012997 DOI: 10.1016/j.bmcl.2003.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 11/24/2003] [Accepted: 12/02/2003] [Indexed: 11/15/2022]
Abstract
Replacement of the flexible connecting chains between the piperidine moiety and an aromatic group in previous CCR5 antagonists with heterocycles, such as pyrazole and isoxazole, provided potent CCR5 antagonists with excellent anti-HIV-1 activity in vitro. SAR studies revealed optimal placement of an unsubstituted nitrogen atom in the heterocycle to be meta to the bond connected to the 4-position of piperidine. Truncation of a benzyl group to a phenyl group afforded compounds with dramatically improved oral bioavailability, albeit with reduced activity.
Collapse
Affiliation(s)
- Dong-Ming Shen
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Seto M, Aramaki Y, Imoto H, Aikawa K, Oda T, Kanzaki N, Iizawa Y, Baba M, Shiraishi M. Orally Active CCR5 Antagonists as Anti-HIV-1 Agents 2: Synthesis and Biological Activities of Anilide Derivatives Containing a Pyridine N-Oxide Moiety. Chem Pharm Bull (Tokyo) 2004; 52:818-29. [PMID: 15256702 DOI: 10.1248/cpb.52.818] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to develop orally active CCR5 antagonists, we investigated 1-benzoxepine derivatives containing new polar substituents, such as phosphonate, phosphine oxide or pyridine N-oxide moieties, as replacements for the previously reported quaternary ammonium moiety. Among these compounds, the 2-(alpha-hydroxybenzyl)pyridine N-oxide 5e exhibited moderate CCR5 antagonistic activity and had an acceptable pharmacokinetic profile in rats. Subsequent chemical modification was performed and compound (S)-5f possessing the (S)-configuration hydroxy group was found to be more active than the (R)-isomer. Replacement of the 1-benzoxepine ring with a 4-methylphenyl group by a 1-benzazepine ring with a 4-[2-(butoxy)ethoxy]phenyl group enhanced the activity in the binding assay. In addition, introduction of a 3-trifluoromethyl group on the phenyl group of the anilide moiety led to greatly increased activity in the HIV-1 envelope-mediated membrane fusion assay. In particular, compound (S)-5s showed the most potent CCR5 antagonistic activity (IC(50)=7.2 nM) and inhibitory effect (IC(50)=5.4 nM) in the fusion assay, together with good pharmacokinetic properties in rats.
Collapse
Affiliation(s)
- Masaki Seto
- Medicinal Chemistry Research Laboratries, Pharmaceutical Research Division, Takeda Chemical Industries Ltd. Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Saurya S, Lichtenstein Z, Karpas A. Deletions in env gene of HIV-1 in AIDS patients treated with highly active antiretroviral therapy (HAART). J Med Virol 2003; 71:167-72. [PMID: 12938189 DOI: 10.1002/jmv.10459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many AIDS patients retain high CD4+ T-cell counts despite a significant increase in PCR viral load after varied periods of treatment on drug combination with Highly Active Antiretroviral Therapy (HAART). In order to investigate this contradictory phenomenon, we assayed for infectious HIV-1 from the plasma of such patients. Since the biological assays failed to reveal any infectious virus, we undertook molecular characterization of the plasma HIV-1 genes. These studies revealed large deletions in the env gene of the free virus, while there were no deletions in the proviral DNA obtained from the infected cells of the patients' blood. This suggests that the viral particles produced and released by the infected cells during the HAART treatment have deletions in the env gene. The deletions were large enough to produce an envelop-deficient virus, which can readily explain why it is not infectious. Such a defective virus is the most likely explanation for its failure to infect the T-cells, which in turn lead to the discordance between the high PCR viral load and stable CD4+ T cell counts.
Collapse
Affiliation(s)
- Shreesh Saurya
- Department of Haematology, University of Cambridge Clinical School, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
39
|
Guo Q, Ho HT, Dicker I, Fan L, Zhou N, Friborg J, Wang T, McAuliffe BV, Wang HGH, Rose RE, Fang H, Scarnati HT, Langley DR, Meanwell NA, Abraham R, Colonno RJ, Lin PF. Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120-CD4 interactions. J Virol 2003; 77:10528-36. [PMID: 12970437 PMCID: PMC228513 DOI: 10.1128/jvi.77.19.10528-10536.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-378806 is a recently discovered small-molecule human immunodeficiency virus type 1 (HIV-1) attachment inhibitor with good antiviral activity and pharmacokinetic properties. Here, we demonstrate that the compound targets viral entry by inhibiting the binding of the HIV-1 envelope gp120 protein to cellular CD4 receptors via a specific and competitive mechanism. BMS-378806 binds directly to gp120 at a stoichiometry of approximately 1:1, with a binding affinity similar to that of soluble CD4. The potential BMS-378806 target site was localized to a specific region within the CD4 binding pocket of gp120 by using HIV-1 gp120 variants carrying either compound-selected resistant substitutions or gp120-CD4 contact site mutations. Mapping of resistance substitutions to the HIV-1 envelope, and the lack of compound activity against a CD4-independent viral infection confirm the gp120-CD4 interactions as the target in infected cells. BMS-378806 therefore serves as a prototype for this new class of antiretroviral agents and validates gp120 as a viable target for small-molecule inhibitors.
Collapse
Affiliation(s)
- Qi Guo
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Defining the mechanisms of HIV-1 entry has enabled the rational design of strategies aimed at interfering with the process. This article delineates what is currently understood about HIV-1 entry, as a window through which to understand what will likely be the next major group of antiretroviral therapeutics. These exciting new approaches offer the promise of adding viral entry to reverse transcription and protein processing as steps to block in the viral life cycle. Several principles learned with other antiretroviral drugs are sure to be valid for entry antagonists, whereas other considerations may be unique to this group of agents. There is no agent to which HIV-1 has not been able to acquire resistance and this is likely to remain the case. Multiple rounds of viral replication are required to generate the genetic diversity that forms the basis of resistance. Combination therapy in which replication is maximally suppressed will remain a cornerstone of treatment with entry inhibitors, as with other agents. Furthermore, the coreceptor specificity of some entry and fusion inhibitors argues that combinations will likely be needed to broaden the effective range of susceptible viral variants. Finally, the targeting of multiple steps within the entry process has the potential for synergy. The fusion inhibitor T20 and CXCR4 antagonist AMD3100 are synergistic in vitro at blocking infection of PBMC with clinical isolates [115] and T20 combined with the CD4 inhibitor PRO 542 have synergistic in vitro effects, with more than 10-fold greater inhibition of R5, X4, and R5X4 strains than either agent alone [116]. Entry antagonists raise other, unique issues. As discussed previously, the theoretic concern exists that blocking CCR5 could enhance the emergence of CXCR4-using variants and possibly accelerate disease. So far, in vitro selection for variants resistant to the CCR5 antagonist SCH-C in PBMC (which express both CCR5 and CXCR4) has resulted in mutants that were resistant to the blocker but still used CCR5. Alternatively, because many HIV-1 strains have the capacity to use several other chemokine or orphan receptors for entry, blocking both CCR5 and CXCR could lead to a variant that uses one of these other molecules in place of the principal coreceptors, although data in vitro so far suggest that this is unlikely [13,14]. This new class of antiviral drugs offers great promise but also novel concerns, and careful analysis of viruses that arise with their use in vivo is essential.
Collapse
Affiliation(s)
- Linda D Starr-Spires
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania School of Medicine, 522 Johnson Pavilion, 36th and Hamilton Walk, Philadelphia, PA 19104-6060, USA
| | | |
Collapse
|
41
|
Affiliation(s)
- A Brelot
- INSERM, Département de Biologie Cellulaire, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, 75014 Paris, France
| | | |
Collapse
|
42
|
Beljaars L, Floris R, Berkhout B, Smit C, Meijer DKF, Molema G. The influence of charge clustering on the anti-HIV-1 activity and in vivo distribution of negatively charged albumins. Biochem Pharmacol 2002; 63:1663-73. [PMID: 12007569 DOI: 10.1016/s0006-2952(02)00912-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The substitution of human serum albumin with negatively charged molecules, such as succinic acid (Suc-HSA) or aconitic acid (Aco-HSA), resulted in proteins with potent anti-HIV activities, by binding to viral gp120 (V3 loop). The aim of the present study was to investigate whether the distribution of negative charges on the albumin backbone influences the anti-HIV activity. Therefore, we prepared albumins with clusters of negatively charged groups by coupling of heparin. The effects of this substitution on anti-HIV activity, in vivo distribution and the protein structure as compared to random succinylation were assessed. In vitro studies indicated that HSA-modified with heparin 6 or 13 kD displayed anti-HIV activity (IC50=660 and 37 nM, respectively) and exhibited affinity for gp120-V3 loop, although the activity was lower than that of Suc-HSA. Combined derivatization of HSA with heparin 13 kD and aconitic acid groups resulted in significantly increased inhibitory actions (IC50=2.8 nM). Structural analysis showed that modification of HSA with heparin did not lead to extensive unfolding of the protein, meaning that these modified proteins were still globular in structure. In contrast, succinylation of HSA resulted in a highly randomly coiled conformation. Dynamic light scattering experiments revealed that, at neutral pH, the heparin fragments attached to the protein were wrapped around the molecule rather than sticking out into the solution. In conclusion, coupling of sufficient clustered negative charges, by coupling of Hep-fragments, on HSA resulted in a clear anti-HIV activity of the protein. Yet, random distribution of anionic groups in the albumin seemed more optimal for in vitro anti-HIV activity. The higher plasma and lymphatic concentrations of Hep-HSA compared to Suc-HSA seemed more favorable for an anti-HIV activity in vivo.
Collapse
Affiliation(s)
- Leonie Beljaars
- Department of Pharmacokinetics and Drug Delivery, University Center for Pharmacy, Groningen University Institute for Drug Exploration (GUIDE), Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
43
|
Beutler JA, McMahon JB, Johnson TR, O'Keefe BR, Buzzell RA, Robbins D, Gardella R, Wilson J, Boyd MR. High throughput screening for cyanovirin-N mimetics binding to HIV-1 gp41. JOURNAL OF BIOMOLECULAR SCREENING 2002; 7:105-10. [PMID: 12006108 DOI: 10.1177/108705710200700202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein gp41 is an important mediator of viral entry into host cells. Previous studies showed that the virucidal protein cyanovirin-N (CV-N) bound to both gp120 and gp41, and that this binding was associated with its antiviral activity. We constructed an HTS assay based on the interaction of europium-labeled CV-N with recombinant glycosylated gp41 ectodomain to support identification of small-molecule mimetics of CV-N that might be developed as antiviral drug leads. Primary screening of over 107,000 natural product extracts in the assay yielded 347 confirmed hits. Secondary assays eliminated extracts that bound directly to labeled CV-N or for which the simple sugars mannose and N-acetylglucosamine blocked the interaction with gp41 (lectin activity). Extracts were further prioritized based on anti-HIV activity and other biological, biochemical, and chemical criteria. The distribution of source organism taxonomy of active extracts was analyzed, as was the cross-correlation of activity between the CV-N-gp41 binding competition assay and the previously reported CV-N-gp120 binding competition assay. A limited set of extracts was selected for bioassay-guided fractionation.
Collapse
Affiliation(s)
- John A Beutler
- Intramural Research Support Program and Molecular Targets Drug Discovery Program, SAIC-Frederick, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Viral envelope glycoproteins promote viral infection by mediating the fusion of the viral membrane with the host-cell membrane. Structural and biochemical studies of two viral glycoproteins, influenza hemagglutinin and HIV-1 envelope protein, have led to a common model for viral entry. The fusion mechanism involves a transient conformational species that can be targeted by therapeutic strategies. This mechanism of infectivity is likely utilized by a wide variety of enveloped viruses for which similar therapeutic interventions should be possible.
Collapse
Affiliation(s)
- D M Eckert
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, M.I.T., Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
45
|
Walker MA. Monitor: molecules and profiles. Drug Discov Today 2002. [DOI: 10.1016/s1359-6446(01)02132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Kim D, Wang L, Caldwell CG, Chen P, Finke PE, Oates B, MacCoss M, Mills SG, Malkowitz L, Gould SL, DeMartino JA, Springer MS, Hazuda D, Miller M, Kessler J, Danzeisen R, Carver G, Carella A, Holmes K, Lineberger J, Schleif WA, Emini EA. Design, synthesis, and SAR of heterocycle-containing antagonists of the human CCR5 receptor for the treatment of HIV-1 infection. Bioorg Med Chem Lett 2001; 11:3103-6. [PMID: 11720852 DOI: 10.1016/s0960-894x(01)00655-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Replacement of the large hydantoin-indole moiety from our previous work with a variety of smaller heterocyclic analogues gave rise to potent CCR5 antagonists having binding affinity comparable to the hydantoin analogues. The synthesis, SAR, and biological profiles of this class of antagonists are described.
Collapse
Affiliation(s)
- D Kim
- Department of Medicinal Chemistry, Merck Research Laboratories, RY 121-240, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
In response to an increasing prevalence of sexually transmitted diseases, especially AIDS, efforts to prevent further infections have been heightened. One of those approaches has been the development of topical microbicidal agents or microbicides. These are compounds designed to protect the body's mucosal surfaces from infection by sexually transmitted disease-causing pathogens. Numerous candidates are currently in preclinical stages; however, only a handful have been tested for safety, and even fewer are ready for clinical efficacy trials. In this update, we describe some of the specific features of microbicide research and development, including preclinical screening algorithms, candidate's ideal properties, examples of compounds presently in the pipeline, and future prospects.
Collapse
Affiliation(s)
- Christine Mauck
- CONRAD Program, 1611 North Kent Street, Arlington, VA 22209, USA.
| | | |
Collapse
|
48
|
Hale JJ, Budhu RJ, Holson EB, Finke PE, Oates B, Mills SG, MacCoss M, Gould SL, DeMartino JA, Springer MS, Siciliano S, Malkowitz L, Schleif WA, Hazuda D, Miller M, Kessler J, Danzeisen R, Holmes K, Lineberger J, Carella A, Carver G, Emini E. 1,3,4-Trisubstituted pyrrolidine CCR5 receptor antagonists. Part 2: lead optimization affording selective, orally bioavailable compounds with potent anti-HIV activity. Bioorg Med Chem Lett 2001; 11:2741-5. [PMID: 11591514 DOI: 10.1016/s0960-894x(01)00545-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Investigations of the structure-activity relationships of 1,3,4-trisubstituted pyrrolidine human CCR5 receptor antagonists afforded orally bioavailable compounds with the ability to inhibit HIV replication in vitro.
Collapse
Affiliation(s)
- J J Hale
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- M A. Walker
- Bristol-Myers Squibb, Pharmaceutical Research Inst, 06492, Tel.: +39 02 2950 2223; fax: +39 02 2951 4197, Wallingford, CT, USA
| | | |
Collapse
|
50
|
Finke PE, Meurer LC, Oates B, Shah SK, Loebach JL, Mills SG, MacCoss M, Castonguay L, Malkowitz L, Springer MS, Gould SL, DeMartino JA. Antagonists of the human CCR5 receptor as anti-HIV-1 agents. Part 3: a proposed pharmacophore model for 1-[N-(methyl)-N-(phenylsulfonyl)amino]-2-(phenyl)-4-[4-(substituted)piperidin-1-yl]butanes. Bioorg Med Chem Lett 2001; 11:2469-73. [PMID: 11549449 DOI: 10.1016/s0960-894x(01)00491-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-activity relationship studies directed toward the optimization of (2S)-2-(3-chlorophenyl)-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-[4-(substituted)piperidin-1-yl]butanes as CCR5 antagonists resulted in the synthesis of the spiro-indanone derivative 8c (IC50=5 nM). These and previous results are summarized in a proposed pharmacophore model for this class of CCR5 antagonist.
Collapse
Affiliation(s)
- P E Finke
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|