1
|
Design, Synthesis, and Evaluation of Novel L-Pyroglutamic Acid Derivatives as Potent Antifungal Agents. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Bose T, Wingfield MJ, Roux J, Vivas M, Burgess TI. Phytophthora Species Associated with Roots of Native and Non-native Trees in Natural and Managed Forests. MICROBIAL ECOLOGY 2021; 81:122-133. [PMID: 32740757 DOI: 10.1007/s00248-020-01563-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Roots act as a biological filter that exclusively allows only a portion of the soil-associated microbial diversity to infect the plant. This microbial diversity includes organisms both beneficial and detrimental to plants. Phytophthora species are among the most important groups of detrimental microbes that cause various soil-borne plant diseases. We used a metabarcoding approach with Phytophthora-specific primers to compare the diversity and richness of Phytophthora species associated with roots of native and non-native trees, using different types of soil inocula collected from native and managed forests. Specifically, we analysed (1) roots of two non-native tree species (Eucalyptus grandis and Acacia mearnsii) and native trees, (2) roots of two non-native tree species from an in vivo plant baiting trial, (3) roots collected from the field versus those from the baiting trial, and (4) roots and soil samples collected from the field. The origin of the soil and the interaction between root and soil significantly influenced Phytophthora species richness. Moreover, species richness and community composition were significantly different between the field root samples and field soil samples with a higher number of Phytophthora species in the soil than in the roots. The results also revealed a substantial and previously undetected diversity of Phytophthora species from South Africa.
Collapse
Affiliation(s)
- Tanay Bose
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Jolanda Roux
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Sappi Forests Pty. Ltd., Research Planning and Nurseries (RPN), Shaw Research Centre, Howick, KwaZulu-Natal, South Africa
| | - Maria Vivas
- Institute for Dehesa Research (INDEHESA), Ingeniería Forestal y del Medio Natural, Universidad de Extremadura, Plasencia, Spain
| | - Treena I Burgess
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Phytophthora Science and Management, Centre for Climate Impacted Terrestrial Ecosystems, Harry Butler Institute, Murdoch, Perth, Australia
| |
Collapse
|
3
|
Chase WR, Zhaxybayeva O, Rocha J, Cosgrove DJ, Shapiro LR. Global cellulose biomass, horizontal gene transfers and domain fusions drive microbial expansin evolution. THE NEW PHYTOLOGIST 2020; 226:921-938. [PMID: 31930503 DOI: 10.1111/nph.16428] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/19/2019] [Indexed: 05/23/2023]
Abstract
Plants must rearrange the network of complex carbohydrates in their cell walls during normal growth and development. To accomplish this, all plants depend on proteins called expansins that nonenzymatically loosen noncovalent bonding between cellulose microfibrils. Surprisingly, expansin genes have more recently been found in some bacteria and microbial eukaryotes, where their biological functions are largely unknown. Here, we reconstruct a comprehensive phylogeny of microbial expansin genes. We find these genes in all eukaryotic microorganisms that have structural cell wall cellulose, suggesting expansins evolved in ancient marine microorganisms long before the evolution of land plants. We also find expansins in an unexpectedly high diversity of bacteria and fungi that do not have cellulosic cell walls. These bacteria and fungi inhabit varied ecological contexts, mirroring the diversity of terrestrial and aquatic niches where plant and/or algal cellulosic cell walls are present. The microbial expansin phylogeny shows evidence of multiple horizontal gene transfer events within and between bacterial and eukaryotic microbial lineages, which may in part underlie their unusually broad phylogenetic distribution. Overall, expansins are unexpectedly widespread in bacteria and eukaryotes, and the contribution of these genes to microbial ecological interactions with plants and algae has probbaly been underappreciated.
Collapse
Affiliation(s)
- William R Chase
- Department of Biology, Pennsylvania State University, University Park, PA, 16801, USA
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Jorge Rocha
- Department of Microbiology and Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA, 16801, USA
| | - Lori R Shapiro
- Department of Microbiology and Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Matern A, Böttcher C, Eschen-Lippold L, Westermann B, Smolka U, Döll S, Trempel F, Aryal B, Scheel D, Geisler M, Rosahl S. A substrate of the ABC transporter PEN3 stimulates bacterial flagellin (flg22)-induced callose deposition in Arabidopsis thaliana. J Biol Chem 2019; 294:6857-6870. [PMID: 30833326 DOI: 10.1074/jbc.ra119.007676] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/20/2019] [Indexed: 12/28/2022] Open
Abstract
Nonhost resistance of Arabidopsis thaliana against Phytophthora infestans, a filamentous eukaryotic microbe and the causal agent of potato late blight, is based on a multilayered defense system. Arabidopsis thaliana controls pathogen entry through the penetration-resistance genes PEN2 and PEN3, encoding an atypical myrosinase and an ABC transporter, respectively, required for synthesis and export of unknown indole compounds. To identify pathogen-elicited leaf surface metabolites and further unravel nonhost resistance in Arabidopsis, we performed untargeted metabolite profiling by incubating a P. infestans zoospore suspension on leaves of WT or pen3 mutant Arabidopsis plants. Among the plant-secreted metabolites, 4-methoxyindol-3-yl-methanol and S-(4-methoxy-indol-3-yl-methyl) cysteine were detected in spore suspensions recollected from WT plants, but at reduced levels from the pen3 mutant plants. In both whole-cell and microsome-based assays, 4-methoxyindol-3-yl-methanol was transported in a PEN3-dependent manner, suggesting that this compound is a PEN3 substrate. The syntheses of both compounds were dependent on functional PEN2 and phytochelatin synthase 1. None of these compounds inhibited mycelial growth of P. infestans in vitro Of note, exogenous application of 4-methoxyindol-3-yl methanol slightly elevated cytosolic Ca2+ levels and enhanced callose deposition in hydathodes of seedlings treated with a bacterial pathogen-associated molecular pattern (PAMP), flagellin (flg22). Loss of flg22-induced callose deposition in leaves of pen3 seedlings was partially reverted by the addition of 4-methoxyindol-3-yl methanol. In conclusion, we have identified a specific indole compound that is a substrate for PEN3 and contributes to the plant defense response against microbial pathogens.
Collapse
Affiliation(s)
- Andreas Matern
- From the Department of Stress and Developmental Biology and
| | | | | | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany and
| | - Ulrike Smolka
- From the Department of Stress and Developmental Biology and
| | - Stefanie Döll
- From the Department of Stress and Developmental Biology and
| | - Fabian Trempel
- From the Department of Stress and Developmental Biology and
| | - Bibek Aryal
- the Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Dierk Scheel
- From the Department of Stress and Developmental Biology and
| | - Markus Geisler
- the Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Sabine Rosahl
- From the Department of Stress and Developmental Biology and
| |
Collapse
|
5
|
Krasileva K. From plant immunity to food security: an interview with Ksenia Krasileva. BMC Biol 2018; 16:123. [PMID: 30382892 PMCID: PMC6211597 DOI: 10.1186/s12915-018-0597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 11/17/2022] Open
Abstract
Ksenia Krasileva is an Assistant Professor at UC Berkley, studying innate immunity in plants. Ksenia’s work combines plant genomics and plant-microbe interactions with new technologies, spanning basic studies and translational research in agriculture. In this interview Ksenia shares her experience with research and leading a lab, as well as thoughts on innovations in publishing.
Collapse
Affiliation(s)
- Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Lee HA, Lee HY, Seo E, Lee J, Kim SB, Oh S, Choi E, Choi E, Lee SE, Choi D. Current Understandings of Plant Nonhost Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:5-15. [PMID: 27925500 DOI: 10.1094/mpmi-10-16-0213-cr] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system of plants but yet remains elusive. The underlying mechanism of nonhost resistance has been investigated at multiple levels of plant defense for several decades. In this review, we have comprehensively surveyed the latest literature on nonhost resistance in terms of preinvasion, metabolic defense, pattern-triggered immunity, effector-triggered immunity, defense signaling, and possible application in crop protection. Overall, we summarize the current understanding of nonhost resistance mechanisms. Pre- and postinvasion is not much deviated from the knowledge on host resistance, except for a few specific cases. Further insights on the roles of the pattern recognition receptor gene family, multiple interactions between effectors from nonadapted pathogen and plant factors, and plant secondary metabolites in host range determination could expand our knowledge on nonhost resistance and provide efficient tools for future crop protection using combinational biotechnology approaches. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Joohyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
7
|
Zhong Z, Norvienyeku J, Chen M, Bao J, Lin L, Chen L, Lin Y, Wu X, Cai Z, Zhang Q, Lin X, Hong Y, Huang J, Xu L, Zhang H, Chen L, Tang W, Zheng H, Chen X, Wang Y, Lian B, Zhang L, Tang H, Lu G, Ebbole DJ, Wang B, Wang Z. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species. Sci Rep 2016; 6:25591. [PMID: 27151494 PMCID: PMC4858695 DOI: 10.1038/srep25591] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.
Collapse
Affiliation(s)
- Zhenhui Zhong
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Justice Norvienyeku
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meilian Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiandong Bao
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianyu Lin
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liqiong Chen
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yahong Lin
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoxian Wu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zena Cai
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qi Zhang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoye Lin
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yonghe Hong
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Huang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Linghong Xu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Honghong Zhang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Tang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huakun Zheng
- Haixia Institute of Science and Technology (HIST), Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofeng Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bi Lian
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangsheng Zhang
- Haixia Institute of Science and Technology (HIST), Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haibao Tang
- Haixia Institute of Science and Technology (HIST), Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guodong Lu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daniel J. Ebbole
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Baohua Wang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
8
|
Hosseini S, Elfstrand M, Heyman F, Funck Jensen D, Karlsson M. Deciphering common and specific transcriptional immune responses in pea towards the oomycete pathogens Aphanomyces euteiches and Phytophthora pisi. BMC Genomics 2015; 16:627. [PMID: 26293353 PMCID: PMC4546216 DOI: 10.1186/s12864-015-1829-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/07/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Root rot caused by Aphanomyces euteiches is one of the most destructive pea diseases while a distantly related species P. pisi has been recently described as the agent of pea and faba bean root rot. These two oomycete pathogens with different pathogenicity factor repertories have both evolved specific mechanisms to infect pea. However, little is known about the genes and mechanisms of defence against these pathogens in pea. In the present study, the transcriptomic response of pea to these two pathogens was investigated at two time points during early phase of infection using a Medicago truncatula microarray. RESULTS Of the 37,976 genes analysed, 574 and 817 were differentially expressed in response to A. euteiches at 6 hpi and 20 hpi, respectively, while 544 and 611 genes were differentially regulated against P. pisi at 6 hpi and 20 hpi, respectively. Differentially expressed genes associated with plant immunity responses were involved in cell wall reinforcement, hormonal signalling and phenylpropanoid metabolism. Activation of cell wall modification, regulation of jasmonic acid biosynthesis and induction of ethylene signalling pathway were among the common transcriptional responses to both of these oomycetes. However, induction of chalcone synthesis and the auxin pathway were specific transcriptional changes against A. euteiches. CONCLUSIONS Our results demonstrate a global view of differentially expressed pea genes during compatible interactions with P. pisi and A. euteiches at an early phase of infection. The results suggest that distinct signalling pathways are triggered in pea by these two pathogens that lead to common and specific immune mechanisms in response to these two oomycetes. The generated knowledge may eventually be used in breeding pea varieties with resistance against root rot disease.
Collapse
Affiliation(s)
- Sara Hosseini
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Fredrik Heyman
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| |
Collapse
|
9
|
Millett BP, Gao L, Iorizzo M, Carputo D, Bradeen JM. Potato Tuber Blight Resistance Phenotypes Correlate with RB Transgene Transcript Levels in an Age-Dependent Manner. PHYTOPATHOLOGY 2015; 105:1131-1136. [PMID: 25775104 DOI: 10.1094/phyto-10-14-0291-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plants have evolved strategies and mechanisms to detect and respond to pathogen attack. Different organs of the same plant may be subjected to different environments (e.g., aboveground versus belowground) and pathogens with different lifestyles. Accordingly, plants commonly need to tailor defense strategies in an organ-specific manner. Phytophthora infestans, causal agent of potato late blight disease, infects both aboveground foliage and belowground tubers. We examined the efficacy of transgene RB (known for conferring foliar late blight resistance) in defending against tuber late blight disease. Our results indicate that the presence of the transgene has a positive yet only marginally significant effect on tuber disease resistance on average. However, a significant association between transgene transcript levels and tuber resistance was established for specific transformed lines in an age-dependent manner, with higher transcript levels indicating enhanced tuber resistance. Thus, RB has potential to function in both foliage and tuber to impart late blight resistance. Our data suggest that organ-specific resistance might result directly from transcriptional regulation of the resistance gene itself.
Collapse
Affiliation(s)
- Benjamin P Millett
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Liangliang Gao
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Massimo Iorizzo
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Domenico Carputo
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - James M Bradeen
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| |
Collapse
|
10
|
Martins IM, Matos M, Costa R, Silva F, Pascoal A, Estevinho LM, Choupina AB. Transglutaminases: recent achievements and new sources. Appl Microbiol Biotechnol 2014; 98:6957-64. [PMID: 24962119 DOI: 10.1007/s00253-014-5894-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
Transglutaminases are a family of enzymes (EC 2.3.2.13), widely distributed in various organs, tissues, and body fluids, that catalyze the formation of a covalent bond between a free amine group and the γ-carboxamide group of protein or peptide-bound glutamine. Besides forming these bonds, that exhibit high resistance to proteolytic degradation, transglutaminases also form extensively cross-linked, generally insoluble, protein biopolymers that are indispensable for the organism to create barriers and stable structures. The extremely high cost of transglutaminase of animal origin has hampered its wider application and has initiated efforts to find an enzyme of microbial origin. Since the early 1990s, many microbial transglutaminase-producing strains have been found, and production processes have been optimized. This has resulted in a rapidly increasing number of applications of transglutaminase in the food sector. However, applications of microbial transglutaminase in other sectors have also been explored, but in a much lesser extent. Our group has identified a transglutaminase in the oomycete Phytophthora cinnamomi, which is able to induct defense responses and disease-like symptoms. In this mini-review, we report the achievements in this area in order to illustrate the importance and the versatility of transglutaminases.
Collapse
Affiliation(s)
- Ivone M Martins
- CIMO-Mountain Research Center, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855, Bragança, Portugal
| | | | | | | | | | | | | |
Collapse
|
11
|
Rezinciuc S, Sandoval-Sierra JV, Diéguez-Uribeondo J. Molecular identification of a bronopol tolerant strain of Saprolegnia australis causing egg and fry mortality in farmed brown trout, Salmo trutta. Fungal Biol 2013; 118:591-600. [PMID: 25088073 DOI: 10.1016/j.funbio.2013.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
Some species of the genus Saprolegnia, such as Saprolegnia diclina and Saprolegnia ferax are responsible for devastating infections on salmonid eggs. Members of this group cause saprolegniasis, a disease resulting in considerable economic losses in aquaculture. Although both S. diclina and S. ferax have received much attention, the role of other Saprolegnia species in infecting fish eggs is less known. For this purpose, we have investigated the aetiology of chronic egg mortality events occurring in farmed brown trout, Salmo trutta. A total of 48 isolates were obtained from eggs with signs of infection as well as from water samples. A molecular analysis based on nrDNA internal transcribed spacer (ITS) operational taxonomic units indicated that the majority of the isolates correspond to Saprolegnia australis. All isolates of S. australis exhibited the same random amplified polymorphic DNA (RAPD) band patterns suggesting that a single strain is implicated in egg infections. The isolates followed Koch postulates using trout eggs and fry. Under standard concentrations of bronopol commonly used in farms, these isolates could grow, but not sporulate. However, both growth and sporulation were recovered when treatment was removed. This study shows that S. australis can infect and kill salmon eggs, and helps in defining oomycetes core pathogens.
Collapse
Affiliation(s)
- Svetlana Rezinciuc
- Department of Mycology, Real Jardín Botánico CSIC, Plaza Murillo 2, 28014 Madrid, Spain
| | | | | |
Collapse
|
12
|
Purifying selection after episodes of recurrent adaptive diversification in fungal pathogens. INFECTION GENETICS AND EVOLUTION 2013; 17:123-31. [DOI: 10.1016/j.meegid.2013.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/26/2013] [Accepted: 03/07/2013] [Indexed: 11/20/2022]
|
13
|
Reeves G, Monroy-Barbosa A, Bosland PW. A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici. PHYTOPATHOLOGY 2013; 103:472-478. [PMID: 23577838 DOI: 10.1094/phyto-09-12-0242-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel disease resistance inhibitor gene (inhibitor of P. capsici resistance [Ipcr]), found in the chile pepper (Capsicum annuum) variety 'New Mexico Capsicum Accession 10399' (NMCA10399), inhibits resistance to Phytophthora capsici but not to other species of Phytophthora. When a highly P. capsici-resistant variety was hybridized with NMCA10399, the resultant F1 populations, when screened, were completely susceptible to P. capsici for root rot and foliar blight disease syndromes, despite the dominance inheritance of P. capsici resistance in chile pepper. The F2 population displayed a 3:13 resistant-to-susceptible (R:S) ratio. The testcross population displayed a 1:1 R:S ratio, and a backcross population to NMCA10399 displayed complete susceptibility. These results demonstrate the presence of a single dominant inhibitor gene affecting P. capsici resistance in chile pepper. Moreover, when lines carrying the Ipcr gene were challenged against six Phytophthora spp., the nonhost resistance was not overcome. Therefore, the Ipcr gene is interfering with host-specific resistance but not the pathogen- or microbe-associated molecular pattern nonhost responses.
Collapse
Affiliation(s)
- Gregory Reeves
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA
| | | | | |
Collapse
|
14
|
Mélida H, Sandoval-Sierra JV, Diéguez-Uribeondo J, Bulone V. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. EUKARYOTIC CELL 2013; 12:194-203. [PMID: 23204192 PMCID: PMC3571302 DOI: 10.1128/ec.00288-12] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/23/2012] [Indexed: 11/20/2022]
Abstract
Some of the most devastating plant and animal pathogens belong to the oomycete class. The cell walls of these microorganisms represent an excellent target for disease control, but their carbohydrate composition is elusive. We have undertaken a detailed cell wall analysis in 10 species from 2 major oomycete orders, the Peronosporales and the Saprolegniales, thereby unveiling the existence of 3 clearly different cell wall types: type I is devoid of N-acetylglucosamine (GlcNAc) but contains glucuronic acid and mannose; type II contains up to 5% GlcNAc and residues indicative of cross-links between cellulose and 1,3-β-glucans; type III is characterized by the highest GlcNAc content (>5%) and the occurrence of unusual carbohydrates that consist of 1,6-linked GlcNAc residues. These 3 cell wall types are also distinguishable by their cellulose content and the fine structure of their 1,3-β-glucans. We propose a cell wall paradigm for oomycetes that can serve as a basis for the establishment of cell wall architectural models and the further identification of cell wall subtypes. This paradigm is complementary to morphological and molecular criteria for taxonomic grouping and provides useful information for unraveling poorly understood cell wall carbohydrate biosynthetic pathways through the identification and characterization of the corresponding enzymes.
Collapse
Affiliation(s)
- Hugo Mélida
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | | | | | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| |
Collapse
|
15
|
Lee B, Lee S, Ryu CM. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper. ANNALS OF BOTANY 2012; 110:281-90. [PMID: 22437662 PMCID: PMC3394643 DOI: 10.1093/aob/mcs055] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/10/2012] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. METHODS Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. KEY RESULTS Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. CONCLUSIONS The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.
Collapse
Affiliation(s)
- Boyoung Lee
- Molecular Phytobacteriology Laboratory, Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, South Korea
| |
Collapse
|
16
|
You LP, Miao J, Zou AL, Qi JL, Yang YH. [Nucleotide polymorphism and molecular evolution of the LRR region in potato late blight resistance gene Rpi-blb2]. YI CHUAN = HEREDITAS 2012; 34:485-494. [PMID: 22522166 DOI: 10.3724/sp.j.1005.2012.00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rpi-blb2, which is originally derived from Solanum bulbocastanum, is a broad-spectrum potato late blight resistance gene and belongs to the NBS-LRR family. Here, the LRR homologues of Rpi-blb2 were cloned with PCR method from 40 potato cultivars (including 20 resistant potato cultivars and 20 susceptible ones) and 7 wild potato populations. Then, the similarities of the sequences, polymorphic (segregating) sites, and nucleotide diversities were estimated by bioinformatic methods. The results showed that high nucleotide polymorphism and some hot-spot mutations existed in the LRR region of Rpi-blb2. The test of Ka/Ks ratio showed that the function of LRR was conserved because of the purifying selection, although different positions of the Rpi-blb2 LRR region were under different selection pressures. Moreover, the LRR region of Rpi-blb2 had no clear differentiation between the cultivated and wild potatoes.
Collapse
Affiliation(s)
- Lu-Peng You
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | | | | | | | | |
Collapse
|
17
|
Ali F, Yan J. Disease resistance in maize and the role of molecular breeding in defending against global threat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:134-51. [PMID: 22333113 DOI: 10.1111/j.1744-7909.2012.01105.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Diseases are a potential threat to global food security but plants have evolved an extensive array of methodologies to cope with the invading pathogens. Non-host resistance and quantitative resistance are broad spectrum forms of resistance, and all kinds of resistances are controlled by extremely diverse genes called "R-genes". R-genes follow different mechanisms to defend plants and PAMP-induced defenses in susceptible host plants are referred to as basal resistance. Genetic and phenotypic diversity are vital in maize (Zea mays L.); as such, genome wide association study (GWAS) along with certain other methodologies can explore the maximum means of genetic diversity. Exploring the complete genetic architecture to manipulate maize genetically reduces the losses from hazardous diseases. Genomic studies can reveal the interaction between different genes and their pathways. By confirming the specific role of these genes and protein-protein interaction (proteomics) via advanced molecular and bioinformatics tools, we can shed a light on the most complicated and abstruse phenomena of resistance.
Collapse
Affiliation(s)
- Farhan Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
18
|
An C, Mou Z. Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. PLoS One 2012; 7:e31130. [PMID: 22299054 PMCID: PMC3267768 DOI: 10.1371/journal.pone.0031130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
19
|
Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 2011; 21:567-78. [DOI: 10.1007/s11248-011-9553-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|
20
|
|
21
|
Daurelio LD, Petrocelli S, Blanco F, Holuigue L, Ottado J, Orellano EG. Transcriptome analysis reveals novel genes involved in nonhost response to bacterial infection in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:382-91. [PMID: 20828873 DOI: 10.1016/j.jplph.2010.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/30/2010] [Accepted: 07/30/2010] [Indexed: 05/21/2023]
Abstract
Plants are continuously exposed to pathogen challenge. The most common defense response to pathogenic microorganisms is the nonhost response, which is usually accompanied by transcriptional changes. In order to identify genes involved in nonhost resistance, we evaluated the tobacco transcriptome profile after infection with Xanthomonas axonopodis pv. citri (Xac), a nonhost phytopathogenic bacterium. cDNA-amplified fragment length polymorphism was used to identify differentially expressed transcripts in tobacco leaves infected with Xac at 2, 8 and 24h post-inoculation. From a total of 2087 transcript-derived fragments (TDFs) screened (approximately 20% of the tobacco transcriptome), 316 TDFs showed differential expression. Based on sequence similarities, 82 differential TDFs were identified and assigned to different functional categories: 56 displayed homology to genes with known functions, 12 to proteins with unknown functions and 14 did not have a match. Real-time PCR was carried out with selected transcripts to confirm the expression pattern obtained. The results reveal novel genes associated with nonhost resistance in plant-pathogen interaction in tobacco. These novel genes could be included in future strategies of molecular breeding for nonhost disease resistance.
Collapse
Affiliation(s)
- Lucas Damián Daurelio
- Molecular Biology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
22
|
Chaparro-Garcia A, Wilkinson RC, Gimenez-Ibanez S, Findlay K, Coffey MD, Zipfel C, Rathjen JP, Kamoun S, Schornack S. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana. PLoS One 2011; 6:e16608. [PMID: 21304602 PMCID: PMC3029390 DOI: 10.1371/journal.pone.0016608] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/22/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The filamentous oomycete plant pathogen Phytophthora infestans causes late blight, an economically important disease, on members of the nightshade family (Solanaceae), such as the crop plants potato and tomato. The related plant Nicotiana benthamiana is a model system to study plant-pathogen interactions, and the susceptibility of N. benthamiana to Phytophthora species varies from susceptible to resistant. Little is known about the extent to which plant basal immunity, mediated by membrane receptors that recognise conserved pathogen-associated molecular patterns (PAMPs), contributes to P. infestans resistance. PRINCIPAL FINDINGS We found that different species of Phytophthora have varying degrees of virulence on N. benthamiana ranging from avirulence (incompatible interaction) to moderate virulence through to full aggressiveness. The leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1/SERK3 is a major modulator of PAMP-triggered immunity (PTI) in Arabidopsis thaliana and N. benthamiana. We cloned two NbSerk3 homologs, NbSerk3A and NbSerk3B, from N. benthamiana based on sequence similarity to the A. thaliana gene. N. benthamiana plants silenced for NbSerk3 showed markedly enhanced susceptibility to P. infestans infection but were not altered in resistance to Phytophthora mirabilis, a sister species of P. infestans that specializes on a different host plant. Furthermore, silencing of NbSerk3 reduced the cell death response triggered by the INF1, a secreted P. infestans protein with features of PAMPs. CONCLUSIONS/SIGNIFICANCE We demonstrated that N. benthamiana NbSERK3 significantly contributes to resistance to P. infestans and regulates the immune responses triggered by the P. infestans PAMP protein INF1. In the future, the identification of novel surface receptors that associate with NbSERK3A and/or NbSERK3B should lead to the identification of new receptors that mediate recognition of oomycete PAMPs, such as INF1.
Collapse
Affiliation(s)
| | | | | | | | - Michael D. Coffey
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - Cyril Zipfel
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | - John P. Rathjen
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
23
|
Pearce G, Yamaguchi Y, Barona G, Ryan CA. A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes. Proc Natl Acad Sci U S A 2010; 107:14921-5. [PMID: 20679205 PMCID: PMC2930467 DOI: 10.1073/pnas.1007568107] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Among the arsenal of plant-derived compounds activated upon attack by herbivores and pathogens are small peptides that initiate and amplify defense responses. However, only a handful of plant signaling peptides have been reported. Here, we have isolated a 12-aa peptide from soybean (Glycine max) leaves that causes a pH increase of soybean suspension-cultured cell media within 10 min at low nanomolar concentrations, a response that is typical of other endogenous peptide elicitors and pathogen-derived elicitors. The amino acid sequence was determined and was found to be derived from a member of the subtilisin-like protease (subtilase) family. The sequence of the peptide was located within a region of the protein that is unique to subtilases in legume plants and not found within any other plant subtilases thus far identified. We have named this peptide signal Glycine max Subtilase Peptide (GmSubPep). The gene (Glyma18g48580) was expressed in all actively growing tissues of the soybean plant. Although transcription of Glyma18g48580 was not induced by wounding, methyl jasmonate, methyl salicylate, or ethephon, synthetic GmSubPep peptide, when supplied to soybean cultures, induced the expression of known defense-related genes, such as Cyp93A1, Chib-1b, PDR12, and achs. GmSubPep is a unique plant defense peptide signal, cryptically embedded within a plant protein with an independent metabolic role, providing insights into plant defense mechanisms.
Collapse
Affiliation(s)
- Gregory Pearce
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | | | | | |
Collapse
|
24
|
Giraud T, Gladieux P, Gavrilets S. Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol Evol 2010; 25:387-95. [PMID: 20434790 PMCID: PMC2885483 DOI: 10.1016/j.tree.2010.03.006] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/27/2010] [Accepted: 03/30/2010] [Indexed: 11/18/2022]
Abstract
Emerging diseases represent a growing worldwide problem accompanying global environmental changes. There is tremendous interest in identifying the factors controlling the appearance and spread of these diseases. Here, we discuss emerging fungal plant diseases, and argue that they often result from host shift speciation (a particular case of ecological speciation). We consider the factors controlling local adaptation and ecological speciation, and show that certain life-history traits of many fungal plant pathogens are conducive for rapid ecological speciation, thus favoring the emergence of novel pathogen species adapted to new hosts. We argue that placing the problem of emerging fungal diseases of plants within the context of ecological speciation can significantly improve our understanding of the biological mechanisms governing the emergence of such diseases.
Collapse
Affiliation(s)
- Tatiana Giraud
- Ecologie, Systematique et Evolution, Universite Paris-Sud, 92120 Orsay, France
| | | | | |
Collapse
|
25
|
Gaulin E, Bottin A, Dumas B. Sterol biosynthesis in oomycete pathogens. PLANT SIGNALING & BEHAVIOR 2010; 5:258-60. [PMID: 20023385 PMCID: PMC2881271 DOI: 10.4161/psb.5.3.10551] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 05/20/2023]
Abstract
Oomycetes are a diverse group of filamentous eukaryotic microbes comprising devastating animal and plant pathogens. They share many characteristics with fungi, including polarized hyphal extension and production of spores, but phylogenetics studies have clearly placed oomycetes outside the fungal kingdom, in the kingdom Stramenopila which also includes marine organisms such as diatoms and brown algae. Oomycetes display various specific biochemical features, including sterol metabolism. Sterols are essential isoprenoid compounds involved in membrane function and hormone signaling. Oomycetes belonging to Peronosporales, such as Phytophthora sp., are unable to synthesize their own sterols and must acquire them from their plant or animal hosts. In contrast, a combination of biochemical and molecular approaches allowed us to decipher a nearly complete sterol biosynthetic pathway leading to fucosterol in the legume pathogen Aphanomyces euteiches, an oomycete belonging to Saprolegniales. Importantly, sterol demethylase, a key enzyme from this pathway, is susceptible to chemicals widely used in agriculture and medicine as antifungal drugs, suggesting that similar products could be used against plant and animal diseases caused by Saprolegniales.
Collapse
Affiliation(s)
- Elodie Gaulin
- Université de Toulouse, UPS, Surfaces Cellulaires et Signalisation chez les Végétaux, Auzeville, Castanet-Tolosan, France
| | | | | |
Collapse
|
26
|
Wang Y, Liu R, Chen L, Wang Y, Liang Y, Wu X, Li B, Wu J, Liang Y, Wang X, Zhang C, Wang Q, Hong X, Dong H. Nicotiana tabacum TTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes. J Cell Sci 2009; 122:2673-85. [PMID: 19596794 DOI: 10.1242/jcs.049023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Leaf trichomes serve as a physical barrier and can also secrete antimicrobial compounds to protect plants from attacks by insects and pathogens. Besides the use of the physical and chemical mechanisms, leaf trichomes might also support plant responses by communicating the extrinsic cues to plant intrinsic signalling pathways. Here we report a role of leaf trichomes in tobacco (Nicotiana tabacum) hypersensitive cell death (HCD) induced by ParA1, an elicitin protein from a plant-pathogenic oomycete. After localized treatment with ParA1, reactive oxygen species were produced first in the leaf trichomes and then in mesophylls. Reactive oxygen species are a group of intracellular signals that are crucial for HCD to develop and for cells to undergo cell death subsequent to chromatin condensation, a hallmark of HCD. These events were impaired when the production of hydrogen peroxide (H(2)O(2)) was inhibited by catalase or a NADPH-oxidase inhibitor applied to trichomes, suggesting the importance of H(2)O(2) in the pathway of HCD signal transduction from the trichomes to mesophylls. This pathway was no longer activated when leaf trichomes were treated with C51S, a ParA1 mutant protein defective in its interaction with N. tabacum TTG1 (NtTTG1), which is a trichome protein that binds ParA1, rather than C51S, in vitro and in trichome cells. The ParA1-NtTTG1 interaction and the HCD pathway were also abrogated when NtTTG1 was silenced in the trichomes. These observations suggest that NtTTG1 plays an essential role in HCD signal transduction from leaf trichomes to mesophylls.
Collapse
Affiliation(s)
- Yunpeng Wang
- Key Laboratory of Monitoring and Management of Crop Pathogens and Insect Pests, Ministry of Agriculture of P.R. China, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stigmasterol and Cholesterol Regulate the Expression of Elicitin Genes in Phytophthora sojae. J Chem Ecol 2009; 35:824-32. [DOI: 10.1007/s10886-009-9653-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/21/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
|
28
|
Bradeen JM, Iorizzo M, Mollov DS, Raasch J, Kramer LC, Millett BP, Austin-Phillips S, Jiang J, Carputo D. Higher copy numbers of the potato RB transgene correspond to enhanced transcript and late blight resistance levels. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:437-446. [PMID: 19271958 DOI: 10.1094/mpmi-22-4-0437] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Late blight of potato ranks among the costliest of crop diseases worldwide. Host resistance offers the best means for controlling late blight, but previously deployed single resistance genes have been short-lived in their effectiveness. The foliar blight resistance gene RB, previously cloned from the wild potato Solanum bulbocastanum, has proven effective in greenhouse tests of transgenic cultivated potato. In this study, we examined the effects of the RB transgene on foliar late blight resistance in transgenic cultivated potato under field production conditions. In a two-year replicated trial, the RB transgene, under the control of its endogenous promoter, provided effective disease resistance in various genetic backgrounds, including commercially prominent potato cultivars, without fungicides. RB copy numbers and transcript levels were estimated with transgene-specific assays. Disease resistance was enhanced as copy numbers and transcript levels increased. The RB gene, like many other disease resistance genes, is constitutively transcribed at low levels. Transgenic potato lines with an estimated 15 copies of the RB transgene maintain high RB transcript levels and were ranked among the most resistant of 57 lines tested. We conclude that even in these ultra-high copy number lines, innate RNA silencing mechanisms have not been fully activated. Our findings suggest resistance-gene transcript levels may have to surpass a threshold before triggering RNA silencing. Strategies for the deployment of RB are discussed in light of the current research.
Collapse
Affiliation(s)
- James M Bradeen
- University of Minnesota, Department of Plant Pathology, St. Paul, 55108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Millett BP, Mollov DS, Iorizzo M, Carputo D, Bradeen JM. Changes in disease resistance phenotypes associated with plant physiological age are not caused by variation in R gene transcript abundance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:362-368. [PMID: 19245330 DOI: 10.1094/mpmi-22-3-0362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Foliar late blight is one of the most important diseases of potato. Foliar blight resistance has been shown to change as a plant ages. In other pathosystems, resistance (R) gene transcript levels appear to be correlated to disease resistance. The cloning of the broad-spectrum, foliar blight resistance gene RB provided the opportunity to explore how foliar blight resistance and R-gene transcript levels vary with plant age. Plants of Solanum bulbocastanum PT29, from which RB, including the native promoter and other flanking regions, was cloned, and S. tuberosum cv. Dark Red Norland (nontransformed and RB-transformed) representing three different developmental stages were screened for resistance to late blight and RB transcript levels. Preflowering plants of all genotypes exhibited the highest levels of resistance, followed by postflowering and near-senescing plants. The RB transgene significantly affected resistance, enhancing resistance levels of all RB-containing lines, especially in younger plants. RB transgene transcripts were detected at all plant ages, despite weak correlation with disease resistance. Consistent transcript levels in plants of different physiological ages with variable levels of disease resistance demonstrate that changes in disease-resistance phenotypes associated with plant age cannot be attributed to changes in R-gene transcript abundance.
Collapse
Affiliation(s)
- Benjamin P Millett
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
30
|
Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R. NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. PLANTA 2008; 228:977-87. [PMID: 18682978 DOI: 10.1007/s00425-008-0797-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 07/16/2008] [Indexed: 05/24/2023]
Abstract
Phytophthora infestans INF1 elicitin causes the hypersensitive response (HR) in Nicotiana benthamiana (Kamoun et al. in Plant Cell 10:1413-1425, 1998). To identify N. benthamiana proteins that interact with INF1, we carried out a yeast two-hybrid screen. This screen resulted in the isolation of a gene NbLRK1 coding for a novel lectin-like receptor kinase. NbLRK1 interacted with INF1 through its VIb kinase subdomain. Purified INF1 and NbLRK1 proteins also interacted in vitro. INF1 treatment of N. benthamiana leaves induced autophosphorylation of NbLRK1. Most importantly, virus-induced gene silencing (VIGS) of NbLRK1 delayed INF1-mediated HR in N. benthamiana. These data suggest that NbLRK1 is a component of the N. benthamiana protein complex that recognizes INF1 elicitor and transduces the HR signal.
Collapse
|
31
|
Chen HL, Wang YQ, Chu CC, Li P. [Plant non-host resistance: current progress and future prospect]. YI CHUAN = HEREDITAS 2008; 30:977-82. [PMID: 18779145 DOI: 10.3724/sp.j.1005.2008.00977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plant non-host resistance is the most common form of disease resistance exhibited by plant against the majority of potentially pathogenic microorganisms. The broad spectrum and durable resistance of non-host resistance suggests that plant non-host resistance has a significantly agricultural application, however, it's molecular mechanism is still poorly understood. Here we summarized the recent progress on the molecular mechanism of the non-host resistance, plant-pathogen interaction systems, PEN1 encoding SNARE protein mediated non-host disease resistance, and its future prospect.
Collapse
Affiliation(s)
- Hong-Lin Chen
- Institute of Rice Research, Sichuan Agricultural University, Wenjiang 611130, China.
| | | | | | | |
Collapse
|
32
|
Díez-Navajas AM, Wiedemann-Merdinoglu S, Greif C, Merdinoglu D. Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level. PHYTOPATHOLOGY 2008; 98:776-80. [PMID: 18943253 DOI: 10.1094/phyto-98-7-0776] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Following inoculation of host and nonhost plants with Plasmopara viticola, the grapevine downy mildew, a histological survey was undertaken to identify the stage where its development is contained in nonhosts and in resistant host plants. Three herbaceous nonhost species, Beta vulgaris, Lactuca sativa, and Capsicum annuum, and three grapevine species displaying different level of resistance (Vitis vinifera [susceptible], Vitis riparia [partially resistant] and Muscadinia rotundifolia [totally resistant]) where inoculated by P. viticola using a controlled leaf disk inoculation bioassay. During the early steps of infection, defined as encystment of zoospores on stomata, penetration of the germ tube, and production of the vesicle with the primary hypha, there was no evidence of a clear-cut preference to grapevine tissues that could attest to host specificity. The main difference between host grapevine species and nonhosts was observed during the haustorium formation stage. In nonhost tissues, the infection was stopped by cell wall-associated defense responses before any mature haustorium could appear. Defense responses in resistant grapevines were triggered when haustoria were fully visible and corresponded to hypersensitive responses. These observations illustrate that, for P. viticola, haustorium formation is not only a key stage for the establishment of biotrophy but also for the host specificity and the recognition by grapevine resistance factors.
Collapse
Affiliation(s)
- A M Díez-Navajas
- Unité Mixte de Recherche, INRA-ULP Santé de la Vigne et Qualité du Vin, Colmar cedex, France
| | | | | | | |
Collapse
|
33
|
Pajerowska-Mukhtar KM, Mukhtar MS, Guex N, Halim VA, Rosahl S, Somssich IE, Gebhardt C. Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis. PLANTA 2008; 228:293-306. [PMID: 18431595 PMCID: PMC2440949 DOI: 10.1007/s00425-008-0737-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/14/2008] [Indexed: 05/22/2023]
Abstract
Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of 'quantitative resistant' versus 'quantitative susceptible' StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants.
Collapse
Affiliation(s)
- Karolina M. Pajerowska-Mukhtar
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Present Address: Department of Biology, Duke University, 4204 FFSC Bldg, Box 90338, Durham, NC 27708 USA
| | - M. Shahid Mukhtar
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Present Address: Department of Biology, University of North Carolina at Chapel Hill, CB# 3280, 108 Coker Hall, Chapel Hill, NC 27599 USA
| | - Nicolas Guex
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Genopode, 1015 Lausanne, Switzerland
| | - Vincentius A. Halim
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
- Present Address: Mass Spectrometry Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Sabine Rosahl
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Imre E. Somssich
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Christiane Gebhardt
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
34
|
Moroldo M, Paillard S, Marconi R, Fabrice L, Canaguier A, Cruaud C, De Berardinis V, Guichard C, Brunaud V, Le Clainche I, Scalabrin S, Testolin R, Di Gaspero G, Morgante M, Adam-Blondon AF. A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance. BMC PLANT BIOLOGY 2008; 8:66. [PMID: 18554400 PMCID: PMC2442077 DOI: 10.1186/1471-2229-8-66] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 06/13/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed. RESULTS The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32%) were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome. CONCLUSION Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and disease resistance loci in grapevine.
Collapse
Affiliation(s)
- Marco Moroldo
- UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex, France
| | - Sophie Paillard
- UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex, France
- UMR118, INRA-Agrocampus, University of Rennes, Amélioration des Plantes et Biotechnologies Végétales, F-35650 Le Rheu, France
| | - Raffaella Marconi
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, 33100 Udine, Italy
| | - Legeai Fabrice
- Unité de Recherche Génomique-Info, URGI, Tour Evry 2, 523, Place des Terrasses de l'Agora, 91034 Evry Cedex, France
| | - Aurelie Canaguier
- UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex, France
| | - Corinne Cruaud
- Gnoscope, 2, rue Gaston Crémieux, CP5706, 91057 Evry Cedex, France
| | | | - Cecile Guichard
- UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex, France
| | - Veronique Brunaud
- UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex, France
| | - Isabelle Le Clainche
- UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex, France
| | - Simone Scalabrin
- Dipartimento di Scienze Matematiche, University of Udine, via delle Scienze 208, 33100 Udine, Italy
- Istituto di Genomica Applicata, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Raffaele Testolin
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, 33100 Udine, Italy
- Istituto di Genomica Applicata, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Gabriele Di Gaspero
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, 33100 Udine, Italy
- Istituto di Genomica Applicata, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Michele Morgante
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, 33100 Udine, Italy
- Istituto di Genomica Applicata, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100 Udine, Italy
| | | |
Collapse
|
35
|
Chen H, Pan J, Zhao X, Zhou J, Cai R. Reporter-based screen for Arabidopsis mutants compromised in nonhost resistance. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0144-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Kim YC, Kim SY, Choi D, Ryu CM, Park JM. Molecular characterization of a pepper C2 domain-containing SRC2 protein implicated in resistance against host and non-host pathogens and abiotic stresses. PLANTA 2008; 227:1169-79. [PMID: 18204857 DOI: 10.1007/s00425-007-0680-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/05/2007] [Indexed: 05/03/2023]
Abstract
Plants guard themselves against pathogen attack using multi-layered defense mechanism. Calcium represents an important secondary messenger during such defense responses. Upon examination of a pepper cDNA library, we observed that the gene CaSRC2-1 (Capsicum annum SRC2-1) was upregulated significantly in response to infection with the type II non-host pathogen Xanthomonas axonopodis pv. glycines 8 ra, which elicits a hypersensitive response. CaSRC2-1 encodes a protein that contains a C2 domain and it exhibits a high degree of homology to the protein Soybean genes regulated by cold 2 (SRC2). However, little is known about how SRC2 expression is elicited by biotic stresses such as pathogen challenge. Further sequence analysis indicated that the CaSRC2-1 C2 domain is unique and contain certain amino acids that are conserved within the C2 domains of other plants and animals. CaSRC2-1 transcription was up-regulated under both biotic and abiotic stress conditions, including bacterial and viral pathogen infection, CaCl(2) and cold treatment, but unaffected by treatment with plant defense-related chemicals such as salicylic acid, methyl jasmonic acid, ethephone, and abscisic acid. Intriguingly, under steady state conditions, CaSRC2-1 was expressed only in the root system. A CaSRC2-1-GFP fusion protein was used to determine localization to the plasma membrane. A fusion protein lacking the C2 domain failed to target the membrane but remained in the cytoplasm, indicating that the C2 domain plays a critical role in localization. Thus, CaSRC2-1 encodes a novel C2 domain-containing protein that targets the plasma membrane and plays a critical role in the abiotic stress and defense responses of pepper plants.
Collapse
|
37
|
Gaulin E, Madoui MA, Bottin A, Jacquet C, Mathé C, Couloux A, Wincker P, Dumas B. Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenicity factors and metabolic pathways. PLoS One 2008; 3:e1723. [PMID: 18320043 PMCID: PMC2248709 DOI: 10.1371/journal.pone.0001723] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 02/05/2008] [Indexed: 11/18/2022] Open
Abstract
Aphanomyces euteiches is an oomycete pathogen that causes seedling blight and root rot of legumes, such as alfalfa and pea. The genus Aphanomyces is phylogenically distinct from well-studied oomycetes such as Phytophthora sp., and contains species pathogenic on plants and aquatic animals. To provide the first foray into gene diversity of A. euteiches, two cDNA libraries were constructed using mRNA extracted from mycelium grown in an artificial liquid medium or in contact to plant roots. A unigene set of 7,977 sequences was obtained from 18,864 high-quality expressed sequenced tags (ESTs) and characterized for potential functions. Comparisons with oomycete proteomes revealed major differences between the gene content of A. euteiches and those of Phytophthora species, leading to the identification of biosynthetic pathways absent in Phytophthora, of new putative pathogenicity genes and of expansion of gene families encoding extracellular proteins, notably different classes of proteases. Among the genes specific of A. euteiches are members of a new family of extracellular proteins putatively involved in adhesion, containing up to four protein domains similar to fungal cellulose binding domains. Comparison of A. euteiches sequences with proteomes of fully sequenced eukaryotic pathogens, including fungi, apicomplexa and trypanosomatids, allowed the identification of A. euteiches genes with close orthologs in these microorganisms but absent in other oomycetes sequenced so far, notably transporters and non-ribosomal peptide synthetases, and suggests the presence of a defense mechanism against oxidative stress which was initially characterized in the pathogenic trypanosomatids.
Collapse
Affiliation(s)
- Elodie Gaulin
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
- * To whom correspondence should be addressed. E-mail: (EG); (BD)
| | - Mohammed-Amine Madoui
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Arnaud Bottin
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Christophe Jacquet
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Catherine Mathé
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Arnaud Couloux
- Genoscope (CEA), Evry, France
- UMR 8030 Centre National de la Recherche Scientifique (CNRS), Evry, France
- Université d'Evry, Evry, France
| | - Patrick Wincker
- Genoscope (CEA), Evry, France
- UMR 8030 Centre National de la Recherche Scientifique (CNRS), Evry, France
- Université d'Evry, Evry, France
| | - Bernard Dumas
- UMR 5546 Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse III, Université de Toulouse, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
- * To whom correspondence should be addressed. E-mail: (EG); (BD)
| |
Collapse
|
38
|
Bhaskar PB, Raasch JA, Kramer LC, Neumann P, Wielgus SM, Austin-Phillips S, Jiang J. Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC PLANT BIOLOGY 2008; 8:8. [PMID: 18215301 PMCID: PMC2267190 DOI: 10.1186/1471-2229-8-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 01/23/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND Late blight is the most serious potato disease world-wide. The most effective and environmentally sound way for controlling late blight is to incorporate natural resistance into potato cultivars. Several late blight resistance genes have been cloned recently. However, there is almost no information available about the resistance pathways mediated by any of those genes. RESULTS We previously cloned a late blight resistance gene, RB, from a diploid wild potato species Solanum bulbocastanum. Transgenic potato lines containing a single RB gene showed a rate-limiting resistance against all known races of Phytophthora infestans, the late blight pathogen. To better understand the RB-mediated resistance we silenced the potato Rar1 and Sgt1 genes that have been implicated in mediating disease resistance responses against various plant pathogens and pests. The Rar1 and Sgt1 genes of a RB-containing potato clone were silenced using a RNA interference (RNAi)-based approach. All of the silenced potato plants displayed phenotypically normal growth. The late blight resistance of the Rar1 and Sgt1 silenced lines were evaluated by a traditional greenhouse inoculation method and quantified using a GFP-tagged P. infestans strain. The resistance of the Rar1-silenced plants was not affected. However, silencing of the Sgt1 gene abolished the RB-mediated resistance. CONCLUSION Our study shows that silencing of the Sgt1 gene in potato does not result in lethality. However, the Sgt1 gene is essential for the RB-mediated late blight resistance. In contrast, the Rar1 gene is not required for RB-mediated resistance. These results provide additional evidence for the universal role of the Sgt1 gene in various R gene-mediated plant defense responses.
Collapse
Affiliation(s)
- Pudota B Bhaskar
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John A Raasch
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lara C Kramer
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pavel Neumann
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Susan M Wielgus
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
39
|
Madoui MA, Gaulin E, Mathé C, San Clemente H, Couloux A, Wincker P, Dumas B. AphanoDB: a genomic resource for Aphanomyces pathogens. BMC Genomics 2007; 8:471. [PMID: 18096036 PMCID: PMC2228315 DOI: 10.1186/1471-2164-8-471] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/20/2007] [Indexed: 11/25/2022] Open
Abstract
Background The Oomycete genus Aphanomyces comprises devastating plant and animal pathogens. However, little is known about the molecular mechanisms underlying pathogenicity of Aphanomyces species. In this study, we report on the development of a public database called AphanoDB which is dedicated to Aphanomyces genomic data. As a first step, a large collection of Expressed Sequence Tags was obtained from the legume pathogen A. euteiches, which was then processed and collected into AphanoDB. Description Two cDNA libraries of A. euteiches were created: one from mycelium growing on synthetic medium and one from mycelium grown in contact to root tissues of the model legume Medicago truncatula. From these libraries, 18,684 expressed sequence tags were obtained and assembled into 7,977 unigenes which were compared to public databases for annotation. Queries on AphanoDB allow the users to retrieve information for each unigene including similarity to known protein sequences, protein domains and Gene Ontology classification. Statistical analysis of EST frequency from the two different growth conditions was also added to the database. Conclusion AphanoDB is a public database with a user-friendly web interface. The sequence report pages are the main web interface which provides all annotation details for each unigene. These interactive sequence report pages are easily available through text, BLAST, Gene Ontology and expression profile search utilities. AphanoDB is available from URL: .
Collapse
Affiliation(s)
- Mohammed-Amine Madoui
- UMR 5546 CNRS Université Paul Sabatier Toulouse III Pôle de Biotechnologie Végétale 24, Chemin de Borde-Rouge BP 42617, Auzeville 31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Gaulin E, Jacquet C, Bottin A, Dumas B. Root rot disease of legumes caused by Aphanomyces euteiches. MOLECULAR PLANT PATHOLOGY 2007; 8:539-48. [PMID: 20507520 DOI: 10.1111/j.1364-3703.2007.00413.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED The Oomycete genus Aphanomyces houses plant and animal pathogens found in both terrestrial and aquatic habitats. Aphanomyces euteiches Drechs. causes seedling damping off and root rot diseases on many legumes. It is the most devastating pea (Pisum sativum) disease in several countries, causing up to 80% losses each year. This strictly soil-borne pathogen may survive many years in soil and no efficient chemical control is currently available. The only way to control the disease is to avoid cultivating legumes in infested fields for up to 10 years. Although huge research effort has been devoted to the Oomycete genus Phytophthora during the last decade, A. euteiches has received little attention and mechanisms by which it infects its hosts are still unclear. A. euteiches is nevertheless an interesting parasite to study plant-oomycete interactions as it is pathogenic on the model legume Medicago truncatula. This review summarizes knowledge about the main characteristics of A. euteiches and presents research currently developed to find new strategies to control this pathogen and to gain insight into its pathogenicity. TAXONOMY Aphanomyces euteiches Drechs belongs to a kingdom of diverse eukaryotic protists named Chromista or Straminipila. It is a member of the class Oomycetes (syn. Peronosporomycetes), which gathers organisms resembling fungi through morphological and physiological traits, but are phylogenically related to diatoms, chromophyte algae and other heterokont protists. The genus Aphanomyces is classified within the order Saprolegniales, family Saprolegniaceae s.l. or Leptolegniaceae. HOST RANGE Several legumes were found to be hosts for A. euteiches and this pathogen was isolated from field-grown pea, alfalfa, snap bean, vetch, clover, sweet clover and several weed species. DISEASE SYMPTOMS The disease begins with the yellowing of root tissue. At a later stage, infected roots become brown and the hypocotyl darkens at the soil line. The pathogen infects the cortex of primary and lateral roots and oospores are formed within the root tissues. USEFUL WEBSITES http://www.indexfungorum.org/Names/Names.asp (links to taxonomy data), http://www.eugrainlegumes.org/; http://www.medicago.org/ (links to the European Union 'Grain Legume' Integrated Project).
Collapse
Affiliation(s)
- Elodie Gaulin
- UMR 5546 CNRS-Université Paul Sabatier Toulouse III, Pôle de Biotechnologie Végétale, 24 Chemin de Borde-Rouge, Castanet-Tolosan, France.
| | | | | | | |
Collapse
|
41
|
Cai XZ, Zhou X, Xu YP, Joosten MHAJ, de Wit PJGM. Cladosporium fulvum CfHNNI1 induces hypersensitive necrosis, defence gene expression and disease resistance in both host and nonhost plants. PLANT MOLECULAR BIOLOGY 2007; 64:89-101. [PMID: 17273821 DOI: 10.1007/s11103-007-9136-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Accepted: 01/08/2007] [Indexed: 05/13/2023]
Abstract
Nonhost resistance as a durable and broad-spectrum defence strategy is of great potential for agricultural applications. We have previously isolated a cDNA showing homology with genes encoding bZIP transcription factors from tomato leaf mould pathogen Cladosporium fulvum. Upon expression, the cDNA results in necrosis in C. fulvum host tomato and nonhost tobacco plants and is thus named CfHNNI1 (for C . f ulvum host and nonhost plant necrosis inducer 1). In the present study we report the induction of necrosis in a variety of nonhost plant species belonging to three families by the transient in planta expression of CfHNNI1 using virus-based vectors. Additionally, transient expression of CfHNNI1 also induced expression of the HR marker gene LeHSR203 and greatly reduced the accumulation of recombinant Potato virus X. Stable CfHNNI1 transgenic tobacco plants were generated in which the expression of CfHNNI1 is under the control of the pathogen-inducible hsr203J promoter. When infected with the oomycetes pathogen Phytophthora parasitica var. nicotianae, these transgenic plants manifested enhanced expression of CfHNNI1 and subsequent accumulation of CfHNNI1 protein, resulting in high expression of the HSR203J and PR genes, and strong resistance to the pathogen. The CfHNNI1 transgenic plants also exhibited induced resistance to Pseudomonas syringae pv. tabaci and Tobacco mosaic virus. Furthermore, CfHNNI1 was highly expressed and the protein was translocated into plant cells during the incompatible interactions between C. fulvum and host and nonhost plants. Our results demonstrate that CfHNNI1 is a potential general elicitor of hypersensitive response and nonhost resistance.
Collapse
Affiliation(s)
- Xin-Zhong Cai
- Institute of Biotechnology, and Department of Plant Protection, Zhejiang University, 268 Kai Xuan Road, Hangzhou 310029, P.R. China.
| | | | | | | | | |
Collapse
|
42
|
Millett BP, Bradeen JM. Development of allele-specific PCR and RT-PCR assays for clustered resistance genes using a potato late blight resistance transgene as a model. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:501-13. [PMID: 17177064 DOI: 10.1007/s00122-006-0449-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Accepted: 10/25/2006] [Indexed: 05/13/2023]
Abstract
Members of the NBS-LRR gene family impart resistance to a wide variety of pathogens and are often found clustered within a plant genome. This clustering of homologous sequences can complicate PCR-based characterizations, especially the study of transgenes. We have developed allele-specific PCR and RT-PCR assays for the potato late blight resistance gene RB. Our assay utilizes two approaches toward primer design, allowing discrimination between the RB transgene and both the endogenous RB gene and numerous RB homeologs. First, a reverse primer was designed to take advantage of an indel present in the RB transgene but absent in rb susceptibility alleles, enhancing specificity for the transgene, though not fully discriminating against RB homeologs. Second, a forward primer was designed according to the principles of mismatch amplification mutation assay (MAMA) PCR, targeting SNPs introduced during the cloning of RB. Together, the indel reverse primer and the MAMA forward primer provide an assay that is highly specific for the RB transgene, being capable of distinguishing the transgene from all RB endogenous gene copies and from all RB paralogs in a diverse collection of wild and cultivated potato genotypes. These primers have been successfully multiplexed with primers of an internal control. The multiplexed assay is useful for both PCR and RT-PCR applications. Double MAMA-PCR, in which both PCR primers target separate transgene-specific SNPs, was also tested and shown to be equally specific for the RB transgene. We propose extending the use of MAMA for the characterization of resistance transgenes.
Collapse
Affiliation(s)
- B P Millett
- Department of Plant Pathology, University of Minnesota, 495 Borlaug, 1991 Upper Buford Cir., St. Paul, MN 55108, USA
| | | |
Collapse
|
43
|
Cloning of genes encoding nonhost hypersensitive response-inducing elicitors from Phytophthora boehmeriae. CHINESE SCIENCE BULLETIN-CHINESE 2007. [DOI: 10.1007/s11434-007-0030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Bos JIB, Kanneganti TD, Young C, Cakir C, Huitema E, Win J, Armstrong MR, Birch PRJ, Kamoun S. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:165-76. [PMID: 16965554 DOI: 10.1111/j.1365-313x.2006.02866.x] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The RXLR cytoplasmic effector AVR3a of Phytophthora infestans confers avirulence on potato plants carrying the R3a gene. Two alleles of Avr3a encode secreted proteins that differ in only three amino acid residues, two of which are in the mature protein. Avirulent isolates carry the Avr3a allele, which encodes AVR3aKI (containing amino acids C19, K80 and I103), whereas virulent isolates express only the virulence allele avr3a, encoding AVR3aEM (S19, E80 and M103). Only the AVR3aKI protein is recognized inside the plant cytoplasm where it triggers R3a-mediated hypersensitivity. Similar to other oomycete avirulence proteins, AVR3aKI carries a signal peptide followed by a conserved motif centered on the consensus RXLR sequence that is functionally similar to a host cell-targeting signal of malaria parasites. The interaction between Avr3a and R3a can be reconstructed by their transient co-expression in Nicotiana benthamiana. We exploited the N. benthamiana experimental system to further characterize the Avr3a-R3a interaction. R3a activation by AVR3aKI is dependent on the ubiquitin ligase-associated protein SGT1 and heat-shock protein HSP90. The AVR3aKI and AVR3aEM proteins are equally stable in planta, suggesting that the difference in R3a-mediated death cannot be attributed to AVR3aEM protein instability. AVR3aKI is able to suppress cell death induced by the elicitin INF1 of P. infestans, suggesting a possible virulence function for this protein. Structure-function experiments indicated that the 75-amino acid C-terminal half of AVR3aKI, which excludes the RXLR region, is sufficient for avirulence and suppression functions, consistent with the view that the N-terminal region of AVR3aKI and other RXLR effectors is involved in secretion and targeting but is not required for effector activity. We also found that both polymorphic amino acids, K80 and I103, of mature AVR3a contribute to the effector functions.
Collapse
Affiliation(s)
- Jorunn I B Bos
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yamaguchi Y, Pearce G, Ryan CA. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci U S A 2006; 103:10104-9. [PMID: 16785433 PMCID: PMC1502513 DOI: 10.1073/pnas.0603729103] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AtPep1 is a 23-aa endogenous peptide elicitor from Arabidopsis leaves that signals the activation of components of the innate immune response against pathogens. Here, we report the isolation of an AtPep1 receptor from the surface of Arabidopsis suspension-cultured cells. An (125)I-labeled AtPep1 analog interacted with suspension-cultured Arabidopsis with a K(d) of 0.25 nM, and an (125)I-labeled azido-Cys-AtPep1 photoaffinity analog specifically labeled a membrane-associated protein of approximately 170 kDa. The labeled protein was purified to homogeneity, and its tryptic peptides were identified as gene At1g73080, which encodes a leucine-rich repeat receptor kinase, here called PEPR1. Verification of the binding protein as the receptor for AtPep1 was established by demonstrating the loss of function of microsomal membranes of two SALK insertional mutants and by a gain in function of the alkalinization response to AtPep1 by tobacco suspension-cultured cells expressing the At1g73080 transgene. Synthetic homologs of AtPep1, deduced from the C termini of six known paralogs of PROPEP1, were biologically active and were competitors of the interaction of an AtPep1 radiolabeled analog with the receptor. The data are consistent with a role for PEPR1 as the receptor for AtPep1 to amplify innate immunity in response to pathogen attacks.
Collapse
Affiliation(s)
- Yube Yamaguchi
- Institute of Biological Chemistry, Washingston State University, Pullman, WA 99164-6340
| | - Gregory Pearce
- Institute of Biological Chemistry, Washingston State University, Pullman, WA 99164-6340
| | - Clarence A. Ryan
- Institute of Biological Chemistry, Washingston State University, Pullman, WA 99164-6340
| |
Collapse
|
46
|
Huffaker A, Pearce G, Ryan CA. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 2006; 103:10098-103. [PMID: 16785434 PMCID: PMC1502512 DOI: 10.1073/pnas.0603727103] [Citation(s) in RCA: 413] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Innate immunity is initiated in animals and plants through the recognition of a variety of pathogen-associated molecules that in animals are called pathogen-associated molecular patterns and in plants are called elicitors. Some plant pathogen-derived elicitors have been identified as peptides, but peptide elicitors derived from the plant itself that activate defensive genes against pathogens have not been previously identified. Here, we report the isolation and characterization of a 23-aa peptide from Arabidopsis, called AtPep1, which activates transcription of the defensive gene defensin (PDF1.2) and activates the synthesis of H(2)O(2), both being components of the innate immune response. The peptide is derived from a 92-aa precursor encoded within a small gene that is inducible by wounding, methyl jasmonate, and ethylene. Constitutive expression of the AtPep1 precursor gene PROPEP1 in transgenic Arabidopsis plants causes a constitutive transcription of PDF1.2. When grown in soil, the transgenic plants exhibited an increased root development compared with WT plants and an enhanced resistance toward the root pathogen Pythium irregulare. Six paralogs of PROPEP1 are present in Arabidopsis, and orthologs have been identified in species of several agriculturally important plant families, where they are of interest for their possible use in crop improvement.
Collapse
Affiliation(s)
- Alisa Huffaker
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340
| | - Gregory Pearce
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340
| | - Clarence A. Ryan
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340
| |
Collapse
|
47
|
Oh SK, Lee S, Chung E, Park JM, Yu SH, Ryu CM, Choi D. Insight into Types I and II nonhost resistance using expression patterns of defense-related genes in tobacco. PLANTA 2006; 223:1101-7. [PMID: 16482435 DOI: 10.1007/s00425-006-0232-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/21/2006] [Indexed: 05/06/2023]
Abstract
Plants protect themselves against pathogens using a range of response mechanisms. There are two categories of nonhost resistance: Type I, which does not result in visible cell death; and Type II, which entails localized programmed cell death (or hypersensitive response) in response to nonhost pathogens. The genes responsible for these two systems have not yet been intensively investigated at the molecular level. Using tobacco plants (Nicotiana tabacum), we compared expression of 12 defense-related genes between a Type I (Xanthomonas axonopodis pv. glycines 8ra) nonhost interaction, and two Type II (Pseudomonas syringae pv. syringae 61 and P. syringae pv. phaseolicola NPS3121) nonhost interactions, as well as those expressed during R gene-mediated resistance to Tobacco mosaic virus. In general, expression of most defense-related genes during R gene-mediated resistance was activated 48 h after challenge by TMV; the same genes were upregulated as early as 9 h after infiltration by nonhost pathogens. Surprisingly, X. axonopodis pv. glycines (Type I) elicited the same set of defense-related genes as did two pathovars of P. syringae, despite the absence of visible cell death. In two examples of Type II nonhost interactions, P. syringae pv. phaseolicola NPS3121 produced an expression profile more closely resembling that of X. axonopodis pv. glycines 8ra, than that of P. syringae pv. syringae 61. These results suggest that Type I nonhost resistance may act as a mechanism providing a more specific and active defense response against a broad range of potential pathogens.
Collapse
Affiliation(s)
- Sang-Keun Oh
- Plant Genomics Laboratory, Korea Research Institute of Bioscience and Biotechnology, 305-600 Daejeon, South Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Rodrigues ML, Archer M, Martel P, Miranda S, Thomaz M, Enguita FJ, Baptista RP, Pinho e Melo E, Sousa N, Cravador A, Carrondo MA. Crystal structures of the free and sterol-bound forms of beta-cinnamomin. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1764:110-21. [PMID: 16249127 DOI: 10.1016/j.bbapap.2005.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/19/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
The crystal structure of the elicitin beta-cinnamomin (beta-CIN) was determined in complex with ergosterol at 1.1 A resolution. beta-CIN/ergosterol complex crystallized in the monoclinic space group P2(1), with unit cell parameters of a = 31.0, b = 62.8, c = 50.0 A and beta = 93.4 degrees and two molecules in the asymmetric unit. Ligand extraction with chloroform followed by crystallographic analysis yielded a 1.35 A structure of beta-CIN (P4(3)2(1)2 space group) where the characteristic elicitin fold was kept. After incubation with cholesterol, a new complex structure was obtained, showing that the protein retains, after the extraction procedure, its ability to complex sterols. The necrotic effect of beta-CIN on tobacco was also shown to remain unchanged. Theoretical docking studies of the triterpene lupeol to beta-CIN provided an explanation for the apparent inability of beta-CIN to bind this ligand, as observed experimentally.
Collapse
Affiliation(s)
- Maria Luisa Rodrigues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Reignault P, Sancholle M. Plant–pathogen interactions: will the understanding of common mechanisms lead to the unification of concepts? C R Biol 2005; 328:821-33. [PMID: 16168363 DOI: 10.1016/j.crvi.2005.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 07/01/2005] [Accepted: 07/18/2005] [Indexed: 01/17/2023]
Abstract
Plant-pathogen interactions are still classically described using concepts that make a distinction between qualitative and quantitative aspects linked to these concepts. This article first describes these aspects, using the terminology associated with them. It then presents some recent experimental observations that demonstrate that such concepts share either common or closely related mechanisms at the cellular and molecular levels. The emergence of a more global vision and understanding of the interactions between plants and their parasites is discussed.
Collapse
Affiliation(s)
- Philippe Reignault
- Mycologie-Phytopathologie-Environnement, université du Littoral-Côte d'Opale, BP 699, 62228 Calais cedex, France.
| | | |
Collapse
|
50
|
Kamoun S, Smart CD. Late Blight of Potato and Tomato in the Genomics Era. PLANT DISEASE 2005; 89:692-699. [PMID: 30791237 DOI: 10.1094/pd-89-0692] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|