1
|
Wang YB, Shi YN, Bao QX, Mu XR, Yu FH, Zou YL, Meng LS. The Different Concentrations of Applied Exogenous Sugars Widely Influence the Specificity, Significance and Physiological Relevance of Study Outcomings. PLANT, CELL & ENVIRONMENT 2025; 48:1107-1114. [PMID: 39403855 DOI: 10.1111/pce.15191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 01/04/2025]
Abstract
Plant growth and development are governed via signal networks that connect inputs from nutrient status, hormone signals, and environmental cues. Substantial researches have indicated a pivotal role of sugars as signalling molecules in plants that integrate external environmental cues and other nutrients with intrinsic developmental programmes regulated via multiple plant hormones. Therefore, plant growth and development are controlled through complication signalling networks. However, in many studies, to obtain more obviously experimental findings, excess concentrations of applied exogenous sugars have aggravated the complexity of this signalling networks. Once researchers underestimate this complexity, a series of contradictory or contrasting findings will be generated. More importantly, in terms of these contradictory findings, more contradictory study outcomings are derived. In this review, we carefully analyze some reports, and find that these reports have confused or neglected that the sugar-antagonism of ethylene signalling is specific or conditional. As a result, many contradictory conclusions are generated, which will in turn misdirect the scientific community.
Collapse
Affiliation(s)
- Yi-Bo Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China
| | - Ya-Na Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin-Xin Bao
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xin-Rong Mu
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Fu-Huan Yu
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ya-Li Zou
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China
| | - Lai-Sheng Meng
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
2
|
Xue C, Huang X, Zhao Y. CsWRKY29, a key transcription factor in tea plant for freezing tolerance, ABA sensitivity, and sugar metabolism. Sci Rep 2024; 14:28620. [PMID: 39562785 PMCID: PMC11576853 DOI: 10.1038/s41598-024-80143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Tea plants (Camellia sinensis L.) are prone to spring frosts, leading to substantial economic damage. WRKY transcription factors are key in plant abiotic stress responses, yet the role of CsWRKY29 in freezing tolerance is unclear. In this study, quantitative real-time PCR (qRT-PCR) and transient green fluorescent protein assay revealed that CsWRKY29 localizes to the nucleus and its expression is induced by cold and abscisic acid (ABA). CsWRKY29 overexpression in Arabidopsis enhanced freezing tolerance, reduced electrolyte leakage, increased soluble sugars, and boosted superoxide dismutase activity, with upregulated COR genes. These lines also showed heightened ABA and glucose sensitivity. Cold treatment of CsWRKY29-overexpressing lines upregulated AtABI5, AtHXK1, and AtSUS4 compared to wild type, and yeast one-hybrid assays confirmed CsWRKY29 binding to the W-box in the CsABI5 promoter. Furthermore, the application of virus-induced gene silencing (VIGS) technology to reduce CsWRKY29 expression in tea plants revealed a significant decrease in the transcript levels of CsCBFs, CsABI5, CsHXK1, and CsSUS4 in the silenced plants. In summary, our findings indicate that CsWRKY29 may serve as a critical transcription factor that contributes to freezing tolerance, ABA responsiveness, and sugar metabolism within tea plants.
Collapse
Affiliation(s)
- Chengjin Xue
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Xiaozhen Huang
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| | - Yichen Zhao
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Liu M, Bian Z, Shao M, Feng Y, Ma W, Liang G, Mao J. Expression analysis of the apple HSP70 gene family in abiotic stress and phytohormones and expression validation of candidate MdHSP70 genes. Sci Rep 2024; 14:23975. [PMID: 39402100 PMCID: PMC11473515 DOI: 10.1038/s41598-024-73368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/17/2024] [Indexed: 10/17/2024] Open
Abstract
Heat shock protein 70 (HSP70) is one kind of molecular chaperones which are widely found in organisms, and its members are highly conserved among each other, with important roles in plant growth and development. In this study, 56 HSP70 genes were identified from the apple genome database. Analysis of gene duplication events showed that tandem and segmental duplication events play an important role in promoting the amplification of the MdHSP70 gene family. Collinearity analysis showed that HSP70 family members of apple were more closely related to HSP70 family members of Arabidopsis, tomato and soybean. The promoter region of the apple HSP70 genes contains a large number of cis-acting elements in response to hormones and stress. Tissue-specific expression analysis showed that some of the genes were associated with various stages of the apple growth process. Codon preference analysis showed small differences between codon bases 1 and 3 in the apple HSP70 genome, and the codon base composition had a small effect on codon usage preference. The multiple expression patterns of the MdHSP70 gene suggested that MdHSP70 gene members play important roles in growth and development and in response to hormonal and abiotic stresses. The yeast two-hybrid (Y2H) demonstrated that MdHSP70-53 interacts with MdDVH24_032563. The qRT-PCR analysis showed that most MdHSP70 members' hormonal and abiotic stresses (MdHSP70-6, MdHSP70-26 and MdHSP70-45) appeared to be highly expressed. To further elucidate the function of MdHSP70 (6, 26, 45), we introduced them into tobacco to confirm subcellular locations and noted that these genes are located in the cytoplasm and cell membrane. This study serves as a theoretical basis for further studies of the MdHSP70 gene and helps to further investigate the functional characterization of MdHSP70 gene.
Collapse
Affiliation(s)
- Ming Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiyuan Bian
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Miao Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongqing Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Hu Z, Li Y, Yang J, Song S, Li X, Xiong C, Yi P, Liu C, Hu R, Huang X. The positive impact of the NtTAS14-like1 gene on osmotic stress response in Nicotiana tabacum. PLANT CELL REPORTS 2023; 43:25. [PMID: 38155260 DOI: 10.1007/s00299-023-03118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/30/2023]
Abstract
KEY MESSAGE NtTAS14-like1 enhances osmotic tolerance through coordinately activating the expression of osmotic- and ABA-related genes. Osmotic stress is one of the most important limiting factors for tobacco (Nicotiana tabacum) growth and development. Dehydrin proteins are widely involved in plant adaptation to osmotic stress, but few of these proteins have been functionally characterized in tobacco. Here, to identify genes required for osmotic stress response in tobacco, an encoding dehydrin protein gene NtTAS14-like1 was isolated based on RNA sequence data. The expression of NtTAS14-like1 was obviously induced by mannitol and abscisic acid (ABA) treatments. Knock down of NtTAS14-like1 expression reduced osmotic tolerance, while overexpression of NtTAS14-like1 conferred tolerance to osmotic stress in transgenic tobacco plants, as determined by physiological analysis of the relative electrolyte leakage and malonaldehyde accumulation. Further expression analysis by quantitative real-time PCR indicated that NtTAS14-like1 participates in osmotic stress response possibly through coordinately activating osmotic- and ABA-related genes expression, such as late embryogenesis abundant (NtLEA5), early responsive to dehydration 10C (NtERD10C), calcium-dependent protein kinase 2 (NtCDPK2), ABA-responsive element-binding protein (NtAREB), ABA-responsive element-binding factor 1 (NtABF1), dehydration-responsive element-binding genes (NtDREB2A), xanthoxin dehydrogenase/reductase (NtABA2), ABA-aldehyde oxidase 3 (NtAAO3), 9-cis-epoxycarotenoid dioxygenase (NtNCED3). Together, this study will facilitate to improve our understandings of molecular and functional properties of plant TAS14 proteins and to improve genetic evidence on the involvement of the NtTAS14-like1 in osmotic stress response of tobacco.
Collapse
Affiliation(s)
- Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China
| | - Jiashuo Yang
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China
| | - Shurui Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, Hunan, China
| | | | - Pengfei Yi
- Changde Tobacco Company, Changde, 415000, Hunan, China
| | - Canhui Liu
- Changsha Tobacco Company, Changsha, 410019, Hunan, China
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China.
| | - Xuebing Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
5
|
Bhuyan SJ, Kumar M, Ramrao Devde P, Rai AC, Mishra AK, Singh PK, Siddique KHM. Progress in gene editing tools, implications and success in plants: a review. Front Genome Ed 2023; 5:1272678. [PMID: 38144710 PMCID: PMC10744593 DOI: 10.3389/fgeed.2023.1272678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Genetic modifications are made through diverse mutagenesis techniques for crop improvement programs. Among these mutagenesis tools, the traditional methods involve chemical and radiation-induced mutagenesis, resulting in off-target and unintended mutations in the genome. However, recent advances have introduced site-directed nucleases (SDNs) for gene editing, significantly reducing off-target changes in the genome compared to induced mutagenesis and naturally occurring mutations in breeding populations. SDNs have revolutionized genetic engineering, enabling precise gene editing in recent decades. One widely used method, homology-directed repair (HDR), has been effective for accurate base substitution and gene alterations in some plant species. However, its application has been limited due to the inefficiency of HDR in plant cells and the prevalence of the error-prone repair pathway known as non-homologous end joining (NHEJ). The discovery of CRISPR-Cas has been a game-changer in this field. This system induces mutations by creating double-strand breaks (DSBs) in the genome and repairing them through associated repair pathways like NHEJ. As a result, the CRISPR-Cas system has been extensively used to transform plants for gene function analysis and to enhance desirable traits. Researchers have made significant progress in genetic engineering in recent years, particularly in understanding the CRISPR-Cas mechanism. This has led to various CRISPR-Cas variants, including CRISPR-Cas13, CRISPR interference, CRISPR activation, base editors, primes editors, and CRASPASE, a new CRISPR-Cas system for genetic engineering that cleaves proteins. Moreover, gene editing technologies like the prime editor and base editor approaches offer excellent opportunities for plant genome engineering. These cutting-edge tools have opened up new avenues for rapidly manipulating plant genomes. This review article provides a comprehensive overview of the current state of plant genetic engineering, focusing on recently developed tools for gene alteration and their potential applications in plant research.
Collapse
Affiliation(s)
- Suman Jyoti Bhuyan
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Pandurang Ramrao Devde
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Avinash Chandra Rai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | | | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | | |
Collapse
|
6
|
Song Z, Zhao L, Ma W, Peng Z, Shi J, Pan F, Gao Y, Sui X, Rengel Z, Chen Q, Wang B. Ethylene inhibits ABA-induced stomatal closure via regulating NtMYB184-mediated flavonol biosynthesis in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6735-6748. [PMID: 37531314 DOI: 10.1093/jxb/erad308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Stomatal movement can be regulated by ABA signaling through synthesis of reactive oxygen species (ROS) in guard cells. By contrast, ethylene triggers the biosynthesis of antioxidant flavonols to suppress ROS accumulation and prevent ABA-induced stomatal closure; however, the underlying mechanism remains largely unknown. In this study, we isolated and characterized the tobacco (Nicotiana tabacum) R2R3-MYB transcription factor NtMYB184, which belongs to the flavonol-specific SG7 subgroup. RNAi suppression and CRISPR/Cas9 mutation (myb184) of NtMYB184 in tobacco caused down-regulation of flavonol biosynthetic genes and decreased the concentration of flavonols in the leaves. Yeast one-hybrid assays, transactivation assays, EMSAs, and ChIP-qPCR demonstrated that NtMYB184 specifically binds to the promoters of flavonol biosynthetic genes via MYBPLANT motifs. NtMYB184 regulated flavonol biosynthesis in guard cells to modulate ROS homeostasis and stomatal aperture. ABA-induced ROS production was accompanied by the suppression of NtMYB184 and flavonol biosynthesis, which may accelerate ABA-induced stomatal closure. Furthermore, ethylene stimulated NtMYB184 expression and flavonol biosynthesis to suppress ROS accumulation and curb ABA-induced stomatal closure. In myb184, however, neither the flavonol and ROS concentrations nor the stomatal aperture varied between the ABA and ABA+ethylene treatments, indicating that NtMYB184 was indispensable for the antagonism between ethylene and ABA via regulating flavonol and ROS concentrations in the guard cells.
Collapse
Affiliation(s)
- Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Wenna Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Zhongping Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Junli Shi
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Feng Pan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Yulong Gao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Xueyi Sui
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| |
Collapse
|
7
|
Wang T, Cao Y, Zhang W, Luo X, Feng W, Wang R, Yi C, Ai Z, Zhang H. Physicochemical Properties of the Rice Flour and Structural Features of the Isolated Starches from Saline-Tolerant Rice Grown at Different Levels of Soil Salinity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37871972 DOI: 10.1021/acs.jafc.3c05449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Three varieties of saline-tolerant indica rice were grown in soils with salinities of 0.0-0.6% (w/w). The rice grown at salinities of 0.3 and 0.6% had a smaller grain dimension than its counterpart. Salinity stress altered the physiology of plants, leading to changes in the basic chemical compositions for all rice varieties, e.g., increasing the soil salinity improved the content of rice protein (RP). The pasting and rheological properties of the rice flour highly depended on its chemical compositions. An increase of RP inhibited the swelling of starch granules and accordingly decreased the peak viscosity of rice flour, while the aggregation of RP weakened the gel structure of the cooked rice flour. The isolated starches showed polyhedral granules, and they all had an A-type crystalline structure with relative crystallinity varying from 34.16 to 45.40%. Moreover, increasing the soil salinity enhanced the lamellar order and periodic length of the isolated starches.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yijun Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Wenyan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaohu Luo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Wei Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ren Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Cuiping Yi
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Zhiyong Ai
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, People's Republic of China
- Hunan Hybrid Rice Research Center, Changsha 410125, People's Republic of China
| | - Hao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
8
|
Klajn N, Kapczyńska K, Pasikowski P, Glazińska P, Kugiel H, Kęsy J, Wojciechowski W. Regulatory Effects of ABA and GA on the Expression of Conglutin Genes and LAFL Network Genes in Yellow Lupine ( Lupinus luteus L.) Seeds. Int J Mol Sci 2023; 24:12380. [PMID: 37569754 PMCID: PMC10418516 DOI: 10.3390/ijms241512380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The maturation of seeds is a process of particular importance both for the plant itself by assuring the survival of the species and for the human population for nutritional and economic reasons. Controlling this process requires a strict coordination of many factors at different levels of the functioning of genetic and hormonal changes as well as cellular organization. One of the most important examples is the transcriptional activity of the LAFL gene regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2), as well as hormonal homeostasis-of abscisic acid (ABA) and gibberellins (GA) in particular. From the nutritional point of view, the key to seed development is the ability of seeds to accumulate large amounts of proteins with different structures and properties. The world's food deficit is mainly related to shortages of protein, and taking into consideration the environmental changes occurring on Earth, it is becoming necessary to search for a way to obtain large amounts of plant-derived protein while maintaining the diversity of its origin. Yellow lupin, whose storage proteins are conglutins, is one of the plant species native to Europe that accumulates large amounts of this nutrient in its seeds. In this article we have shown the key changes occurring in the developing seeds of the yellow-lupin cultivar Taper by means of modern molecular biology techniques, including RNA-seq, chromatographic techniques and quantitative PCR analysis. We identified regulatory genes fundamental to the seed-filling process, as well as genes encoding conglutins. We also investigated how exogenous application of ABA and GA3 affects the expression of LlLEC2, LlABI3, LlFUS3, and genes encoding β- and δ-conglutins and whether it results in the amount of accumulated seed storage proteins. The research shows that for each species, even related plants, very specific changes can be identified. Thus the analysis and possibility of using such an approach to improve and stabilize yields requires even more detailed and extended research.
Collapse
Affiliation(s)
- Natalia Klajn
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Katarzyna Kapczyńska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland;
| | - Paweł Pasikowski
- Life Sciences and Biotechnology Center, Łukasiewicz Research Network–PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland;
- Captor Therapeutics S.A., Duńska 11, 54-427 Wroclaw, Poland
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Hubert Kugiel
- LABcenter Life Agro Biotechnology Ltd., Gliniana 14, 97-300 Piotrków Trybunalski, Poland; (H.K.); (W.W.)
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Waldemar Wojciechowski
- LABcenter Life Agro Biotechnology Ltd., Gliniana 14, 97-300 Piotrków Trybunalski, Poland; (H.K.); (W.W.)
| |
Collapse
|
9
|
Chu J, Wang L, Cho J. PopRice extrachromosomal DNA sponges ABSCISIC ACID-INSENSITIVE 5 in rice seed-to-seedling transition. PLANT PHYSIOLOGY 2023; 192:56-59. [PMID: 36733191 PMCID: PMC10152647 DOI: 10.1093/plphys/kiad071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Extrachromosomal DNA produced by a retrotransposon PopRice mediates gibberellin-abscisic acid antagonism in seed-to-seedling transition of rice by sponging the transcription factor OsABI5.
Collapse
Affiliation(s)
- Jie Chu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Science, Beijing 100049, China
- CAS-JIC Centre for Excellence in Plant and Microbial Science, Shanghai 200032, China
| |
Collapse
|
10
|
Hertig C, Rutten T, Melzer M, Schippers JHM, Thiel J. Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley. PLANTS (BASEL, SWITZERLAND) 2023; 12:1594. [PMID: 37111818 PMCID: PMC10142620 DOI: 10.3390/plants12081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Endosperm development in barley starts with the formation of a multinucleate syncytium, followed by cellularization in the ventral part of the syncytium generating endosperm transfer cells (ETCs) as first differentiating subdomain, whereas aleurone (AL) cells will originate from the periphery of the enclosing syncytium. Positional signaling in the syncytial stage determines cell identity in the cereal endosperm. Here, we performed a morphological analysis and employed laser capture microdissection (LCM)-based RNA-seq of the ETC region and the peripheral syncytium at the onset of cellularization to dissect developmental and regulatory programs directing cell specification in the early endosperm. Transcriptome data revealed domain-specific characteristics and identified two-component signaling (TCS) and hormone activities (auxin, ABA, ethylene) with associated transcription factors (TFs) as the main regulatory links for ETC specification. On the contrary, differential hormone signaling (canonical auxin, gibberellins, cytokinin) and interacting TFs control the duration of the syncytial phase and timing of cellularization of AL initials. Domain-specific expression of candidate genes was validated by in situ hybridization and putative protein-protein interactions were confirmed by split-YFP assays. This is the first transcriptome analysis dissecting syncytial subdomains of cereal seeds and provides an essential framework for initial endosperm differentiation in barley, which is likely also valuable for comparative studies with other cereal crops.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Jos H. M. Schippers
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| |
Collapse
|
11
|
Wang L, Jian Z, Wang P, Zhao L, Chen K. Combined physiological responses and differential expression of drought-responsive genes preliminarily explain the drought resistance mechanism of Lotus corniculatus. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:46-57. [PMID: 36031596 DOI: 10.1071/fp22051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Lotus corniculatus L. is a perennial high-quality legume forage species but is vulnerable to drought, and water deficit reduces productivity. To understand the drought response mechanism of L. corniculatus , we investigated physiological responses under drought stress and constructed suppression subtractive hybridisation (SSH) cDNA libraries to isolate drought-inducible genes and quantitatively study the expression levels of candidate drought- responsive genes. Genes encoding calmodulin-like protein, mitogen-activated protein kinase, indole-3-acetic acid-induced protein, ser/thr-protein phosphatase homolog-related proteins, and β -galactosidase-related protein with hydrolysis activity were isolated and considered the main factors that explained the resistance of L. corniculatus to drought. Approximately 632 expressed sequence tags (ESTs) were identified and confirmed in the constructed SSH library. The Gene Ontology (GO) analysis revealed that these genes were involved mainly in transcription processes, protein synthesis, material metabolism, catalytic reactions, sugar metabolism, and photosynthesis. The interaction between the functions of these drought-related genes and the physiological responses preliminarily explains the drought resistance mechanisms of L. corniculatus .
Collapse
Affiliation(s)
- Leiting Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhongling Jian
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Puchang Wang
- Guizhou Institute of Prataculture, Guiyang 550006, China
| | - Lili Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, China; and State Engineering Technology Institute for Karst Rocky Desertification Control, Guiyang 550025, China
| | - Keke Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Yang Y, Kong Q, Lim ARQ, Lu S, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100328. [PMID: 35605194 PMCID: PMC9482985 DOI: 10.1016/j.xplc.2022.100328] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Plants produce and accumulate triacylglycerol (TAG) in their seeds as an energy reservoir to support the processes of seed germination and seedling development. Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use. TAG biosynthesis consists of two major steps: de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum. The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis. We summarize recent progress in understanding the regulatory mechanisms of well-characterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis. The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors, which in turn fine-tune the spatiotemporal regulation of the pathway genes.
Collapse
Affiliation(s)
- Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R Q Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
13
|
Bai SN, Rao GY, Yang J. Origins of the seed: The "golden-trio hypothesis". FRONTIERS IN PLANT SCIENCE 2022; 13:965000. [PMID: 36105705 PMCID: PMC9465013 DOI: 10.3389/fpls.2022.965000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The seed is an evolutionary innovation in the plant kingdom. While human civilization depends heavily on seed production, how the seed trait emerged remains elusive. In this opinion article, a "golden-trio hypothesis" is proposed based on our investigations of LEC1 gene functions in Adiantum capillus-veneris. This hypothesis posits that a "seed program" arose from spatiotemporal integration of three key components: assimilate flow, ABA-mediated stress responses, and stress-induced LEC1 expression. Thus, the evolutionary innovation of seeds should be considered not a simple event resulting from new genes; rather, it represents the outcome of a series of physiological and morphological innovations that emerged prior to and regardless of the origin of the seed program. This new perspective could help us tackle some long-standing questions around the puzzling origin of seeds.
Collapse
Affiliation(s)
- Shu-Nong Bai
- College of Life Sciences, Peking University, Beijing, China
| | - Guang-Yuan Rao
- College of Life Sciences, Peking University, Beijing, China
| | - Ji Yang
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Transcriptome Analysis and Gene Expression Profiling of the Peanut Small Seed Mutant Identified Genes Involved in Seed Size Control. Int J Mol Sci 2022; 23:ijms23179726. [PMID: 36077124 PMCID: PMC9456316 DOI: 10.3390/ijms23179726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Seed size is a key factor affecting crop yield and a major agronomic trait concerned in peanut (Arachis hypogaea L.) breeding. However, little is known about the regulation mechanism of peanut seed size. In the present study, a peanut small seed mutant1 (ssm1) was identified through irradiating peanut cultivar Luhua11 (LH11) using 60Coγ ray. Since the globular embryo stage, the embryo size of ssm1 was significantly smaller than that of LH11. The dry seed weight of ssm1 was only 39.69% of the wild type LH14. The seeds were wrinkled with darker seed coat. The oil content of ssm1 seeds were also decreased significantly. Seeds of ssm1 and LH11 were sampled 10, 20, and 40 days after pegging (DAP) and were used for RNA-seq. The results revealed that genes involved in plant hormones and several transcription factors related to seed development were differentially expressed at all three stages, especially at DAP10 and DAP20. Genes of fatty acid biosynthesis and late embryogenesis abundant protein were significantly decreased to compare with LH11. Interestingly, the gene profiling data suggested that PKp2 and/or LEC1 could be the key candidate genes leading to the small seed phenotype of the mutant. Our results provide valuable clues for further understanding the mechanisms underlying seed size control in peanut.
Collapse
|
15
|
Parrilla J, Medici A, Gaillard C, Verbeke J, Gibon Y, Rolin D, Laloi M, Finkelstein RR, Atanassova R. Grape ASR Regulates Glucose Transport, Metabolism and Signaling. Int J Mol Sci 2022; 23:ijms23116194. [PMID: 35682874 PMCID: PMC9181829 DOI: 10.3390/ijms23116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
To decipher the mediator role of the grape Abscisic acid, Stress, Ripening (ASR) protein, VvMSA, in the pathways of glucose signaling through the regulation of its target, the promoter of hexose transporter VvHT1, we overexpressed and repressed VvMSA in embryogenic and non-embryogenic grapevine cells. The embryogenic cells with organized cell proliferation were chosen as an appropriate model for high sensitivity to the glucose signal, due to their very low intracellular glucose content and low glycolysis flux. In contrast, the non-embryogenic cells displaying anarchic cell proliferation, supported by high glycolysis flux and a partial switch to fermentation, appeared particularly sensitive to inhibitors of glucose metabolism. By using different glucose analogs to discriminate between distinct pathways of glucose signal transduction, we revealed VvMSA positioning as a transcriptional regulator of the glucose transporter gene VvHT1 in glycolysis-dependent glucose signaling. The effects of both the overexpression and repression of VvMSA on glucose transport and metabolism via glycolysis were analyzed, and the results demonstrated its role as a mediator in the interplay of glucose metabolism, transport and signaling. The overexpression of VvMSA in the Arabidopsis mutant abi8 provided evidence for its partial functional complementation by improving glucose absorption activity.
Collapse
Affiliation(s)
- Jonathan Parrilla
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Anna Medici
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Institut des Sciences des Plantes de Montpellier (IPSiM), UMR CNRS/INRAE/Institut Agro/Université de Montpellier, 2 Place Pierre Viala, 34000 Montpellier, France
| | - Cécile Gaillard
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Jérémy Verbeke
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- GReD-UMR CNRS 6293/INSERM U1103, CRBC, Faculté de Médecine, Université Clermont-Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Dominique Rolin
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Maryse Laloi
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Ruth R. Finkelstein
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA;
| | - Rossitza Atanassova
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Correspondence:
| |
Collapse
|
16
|
Sathee L, Jain V. Interaction of elevated CO 2 and form of nitrogen nutrition alters leaf abaxial and adaxial epidermal and stomatal anatomy of wheat seedlings. PROTOPLASMA 2022; 259:703-716. [PMID: 34374877 DOI: 10.1007/s00709-021-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plant's stomatal physiology and anatomical features are highly plastic and are influenced by diverse environmental signals including the concentration of atmospheric CO2 and nutrient availability. Recent reports suggest that the form of nitrogen (N) is a determinant of plant growth and nutrient nitrogen use efficiency (NUE) under elevated CO2 (EC). Previously, we found that high nitrate availability resulted in early senescence, enhanced reactive oxygen species (ROS), and reactive nitrogen species (RNS) production and also that mixed nutrition of nitrate and ammonium ions were beneficial than sole nitrate nutrition in wheat. In this study, the interactive effects of different N forms (nitrate, ammonium, mixed nutrition of nitrate, and ammonium) and EC on epidermal and stomatal morphology were analyzed. Wheat seedlings were grown at two different CO2 levels and supplied with media devoid of N (N0) or with nitrate-N (NN), mixed nutrition of ammonium and nitrate (MN), or only ammonium-N (AN). The stoma length increased significantly in nitrate nutrition with a consistent reduction in stoma width. Guard cell length was higher in EC treatment as compared to AC. The guard cell width was maximum in AN-grown plants at EC. Epidermal cell density and stomatal density were lower at EC. Nitrate nutrition increased the stomatal area at EC while the reverse was true for MN and AN. Wheat plants fertilized with AN showed a higher accumulation of superoxide radical (SOR) at EC, while in NN treatment, the accumulation of hydrogen peroxide (H2O2) was higher at EC. Reactive oxygen species, particularly H2O2, can trigger mitogen-activated protein kinase (MAPK) mediated signaling and its crosstalk with abscisic acid (ABA) signaling to regulate stomatal anatomy in nitrate-fed plants. The SOR accumulation in ammonium- and ammonium nitrate-fed plants and H2O2 in NN-fed plants might finely regulate the sensitivity of stomata to alter water/nutrient use efficiency and productivity under EC. The data reveals that the variation in anatomical attributes viz. cell length, number of cells, etc. affected the leaf growth responses to EC and forms of N nutrition. These attributes are fine targets for effective manipulation of growth responses to EC.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Vanita Jain
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
- Agricultural Education Division, ICAR, KAB-II, New Delhi, India.
| |
Collapse
|
17
|
Yin X, Bai YL, Gong C, Song W, Wu Y, Ye T, Feng YQ. The phytomelatonin receptor PMTR1 regulates seed development and germination by modulating abscisic acid homeostasis in Arabidopsis thaliana. J Pineal Res 2022; 72:e12797. [PMID: 35319134 DOI: 10.1111/jpi.12797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Melatonin is known to involve multiple physiological actions in plants. Herein, we found that exogenous melatonin inhibited the Arabidopsis seedling growth through the elevated abscisic acid (ABA) levels, and the elevated ABA was ascribed to the upregulation of 9-cis-epoxycarotenoid dioxygenase genes (NCEDs) in the ABA biosynthesis pathway. We also found that the overexpression lines of the melatonin receptor gene PMTR1 (also known as Cand2) yielded smaller seeds and germinated slower than the wild type, whereas PMTR1-knockout mutants produced larger seeds and germinated faster than the wild type. During the seed development, the accumulation peak of ABA was higher in the PMTR1-knockout mutant, while it was lower in the PMTR1-overexpression line than that in the wild type. In the dry seeds and imbibed seeds, the PMTR1-overexpression line accumulated higher ABA levels, while the PMTR1-knockout contained less ABA than the wild type. In summary, our findings suggest that PMTR1 is involved in ABA-mediated seed development and germination in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoming Yin
- Department of Chemistry, Wuhan University, Wuhan, People's Republic of China
| | - Ya-Li Bai
- Department of Chemistry, Wuhan University, Wuhan, People's Republic of China
| | - Chunyan Gong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Wenli Song
- Department of Chemistry, Wuhan University, Wuhan, People's Republic of China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Tiantian Ye
- Department of Chemistry, Wuhan University, Wuhan, People's Republic of China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, People's Republic of China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
18
|
Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, Lv H, Wang Y. Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions. Biomolecules 2022; 12:biom12020205. [PMID: 35204707 PMCID: PMC8961523 DOI: 10.3390/biom12020205] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The SWEET (sugars will eventually be exported transporter) family was identified as a new class of sugar transporters that function as bidirectional uniporters/facilitators and facilitate the diffusion of sugars across cell membranes along a concentration gradient. SWEETs are found widely in plants and play central roles in many biochemical processes, including the phloem loading of sugar for long-distance transport, pollen nutrition, nectar secretion, seed filling, fruit development, plant–pathogen interactions and responses to abiotic stress. This review focuses on advances of the plant SWEETs, including details about their discovery, characteristics of protein structure, evolution and physiological functions. In addition, we discuss the applications of SWEET in plant breeding. This review provides more in-depth and comprehensive information to help elucidate the molecular basis of the function of SWEETs in plants.
Collapse
Affiliation(s)
- Jialei Ji
- Correspondence: ; Tel.: +86-10-82108756
| | | | | | | | | | | | | |
Collapse
|
19
|
Li X, Cheng Y, Wang M, Cui S, Guan J. Weighted gene coexpression correlation network analysis reveals a potential molecular regulatory mechanism of anthocyanin accumulation under different storage temperatures in 'Friar' plum. BMC PLANT BIOLOGY 2021; 21:576. [PMID: 34872513 PMCID: PMC8647467 DOI: 10.1186/s12870-021-03354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Flesh is prone to accumulate more anthocyanin in postharvest 'Friar' plum (Prunus salicina Lindl.) fruit stored at an intermediate temperature. However, little is known about the molecular mechanism of anthocyanin accumulation regulated by storage temperature in postharvest plum fruit. RESULTS To reveal the potential molecular regulation mechanism of anthocyanin accumulation in postharvest 'Friar' plum fruit stored at different temperatures (0 °C, 10 °C and 25 °C), the fruit quality, metabolite profile and transcriptome of its flesh were investigated. Compared to the plum fruit stored at 0 °C and 25 °C, the fruit stored at 10 °C showed lower fruit firmness after 14 days and reduced the soluble solids content after 21 days of storage. The metabolite analysis indicated that the fruit stored at 10 °C had higher contents of anthocyanins (pelargonidin-3-O-glucoside, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside and quercetin-3-O-rutinose), quercetin and sucrose in the flesh. According to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise module was positively correlated with the content of anthocyanin components, and flavanone 3-hydroxylase (F3H) and chalcone synthase (CHS) were considered hub genes. Moreover, MYB family transcription factor APL (APL), MYB10 transcription factor (MYB10), ethylene-responsive transcription factor WIN1 (WIN1), basic leucine zipper 43-like (bZIP43) and transcription factor bHLH111-like isoform X2 (bHLH111) were closely related to these hub genes. Further qRT-PCR analysis verified that these transcription factors were specifically more highly expressed in plum flesh stored at 10 °C, and their expression profiles were significantly positively correlated with the structural genes of anthocyanin synthesis as well as the content of anthocyanin components. In addition, the sucrose biosynthesis-associated gene sucrose synthase (SS) was upregulated at 10 °C, which was also closely related to the anthocyanin content of plum fruit stored at 10 °C. CONCLUSIONS The present results suggest that the transcription factors APL, MYB10, WIN1, bZIP43 and bHLH111 may participate in the accumulation of anthocyanin in 'Friar' plum flesh during intermediate storage temperatures by regulating the expression of anthocyanin biosynthetic structural genes. In addition, the SS gene may play a role in anthocyanin accumulation in plum flesh by regulating sucrose biosynthesis.
Collapse
Affiliation(s)
- Xueling Li
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, People's Republic of China
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050051, People's Republic of China
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei Province, 050051, People's Republic of China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050051, People's Republic of China
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei Province, 050051, People's Republic of China
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People's Republic of China
| | - Sujuan Cui
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, 050024, People's Republic of China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050051, People's Republic of China.
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei Province, 050051, People's Republic of China.
| |
Collapse
|
20
|
Hunt L, Fuksa M, Klem K, Lhotáková Z, Oravec M, Urban O, Albrechtová J. Barley Genotypes Vary in Stomatal Responsiveness to Light and CO 2 Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112533. [PMID: 34834896 PMCID: PMC8625854 DOI: 10.3390/plants10112533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Changes in stomatal conductance and density allow plants to acclimate to changing environmental conditions. In the present paper, the influence of atmospheric CO2 concentration and light intensity on stomata were investigated for two barley genotypes-Barke and Bojos, differing in their sensitivity to oxidative stress and phenolic acid profiles. A novel approach for stomatal density analysis was used-a pair of convolution neural networks were developed to automatically identify and count stomata on epidermal micrographs. Stomatal density in barley was influenced by genotype, as well as by light and CO2 conditions. Low CO2 conditions resulted in increased stomatal density, although differences between ambient and elevated CO2 were not significant. High light intensity increased stomatal density compared to low light intensity in both barley varieties and all CO2 treatments. Changes in stomatal conductance were also measured alongside the accumulation of pentoses, hexoses, disaccharides, and abscisic acid detected by liquid chromatography coupled with mass spectrometry. High light increased the accumulation of all sugars and reduced abscisic acid levels. Abscisic acid was influenced by all factors-light, CO2, and genotype-in combination. Differences were discovered between the two barley varieties: oxidative stress sensitive Barke demonstrated higher stomatal density, but lower conductance and better water use efficiency (WUE) than oxidative stress resistant Bojos at saturating light intensity. Barke also showed greater variability between treatments in measurements of stomatal density, sugar accumulation, and abscisic levels, implying that it may be more responsive to environmental drivers influencing water relations in the plant.
Collapse
Affiliation(s)
- Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
| | - Michal Fuksa
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.)
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.)
| | - Jana Albrechtová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
- Correspondence: ; Tel.: +420-221-95-1959
| |
Collapse
|
21
|
Abstract
Due to climate change, we are forced to face new abiotic stress challenges like cold and heat waves that currently result from global warming. Losses due to frost and low temperatures force us to better understand the physiological, hormonal, and molecular mechanisms of response to such stress to face losses, especially in tropical and subtropical crops like citrus fruit, which are well adapted to certain weather conditions. Many of the responses to cold stress that are found are also conserved in citrus. Hence, this review also intends to show the latest work on citrus. In addition to basic research, there is a great need to employ and cultivate new citrus rootstocks to better adapt to environmental conditions.
Collapse
|
22
|
Tu M, Wang W, Yao N, Cai C, Liu Y, Lin C, Zuo Z, Zhu Q. The transcriptional dynamics during de novo shoot organogenesis of Ma bamboo (Dendrocalamus latiflorus Munro): implication of the contributions of the abiotic stress response in this process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1513-1532. [PMID: 34181801 DOI: 10.1111/tpj.15398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
De novo shoot organogenesis is an important biotechnological tool for fundamental studies in plant. However, it is difficult in most bamboo species, and the genetic control of this highly dynamic and complicated regeneration process remains unclear. In this study, based on an in-depth analysis at the cellular level, the shoot organogenesis from calli of Ma bamboo (Dendrocalamus latiflorus Munro) was divided into five stages. Subsequently, single-molecule long-read isoform sequencing of tissue samples pooled from all five stages was performed to generate a full-length transcript landscape. A total of 83 971 transcripts, including 73 209 high-quality full-length transcripts, were captured, which served as an annotation reference for the subsequent RNA sequencing analysis. Time-course transcriptome analysis of samples at the abovementioned five stages was conducted to investigate the global gene expression atlas showing genome-wide expression of transcripts during the course of bamboo shoot organogenesis. K-means clustering analysis and stage-specific transcript identification revealed important dynamically expressed transcription regulators that function in bamboo shoot organogenesis. The majority of abiotic stress-responsive genes altered their expression levels during this process, and further experiments demonstrated that exogenous application of moderate but not severe abiotic stress increased the shoot regeneration efficiency. In summary, our study provides an overview of the genetic flow dynamics during bamboo shoot organogenesis. Full-length cDNA sequences generated in this study can serve as a valuable resource for fundamental and applied research in bamboo in the future.
Collapse
Affiliation(s)
- Min Tu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wenjia Wang
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Nan Yao
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Changyang Cai
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuanyuan Liu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
23
|
Iqbal N, Umar S, Khan NA, Corpas FJ. Crosstalk between abscisic acid and nitric oxide under heat stress: exploring new vantage points. PLANT CELL REPORTS 2021; 40:1429-1450. [PMID: 33909122 DOI: 10.1007/s00299-021-02695-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/05/2021] [Indexed: 05/22/2023]
Abstract
Heat stress adversely affects plants growth potential. Global warming is reported to increase in the intensity, frequency, and duration of heatwaves, eventually affecting ecology, agriculture and economy. With an expected increase in average temperature by 2-3 °C over the next 30-50 years, crop production is facing a severe threat to sub-optimum growth conditions. Abscisic acid (ABA) and nitric oxide (NO) are growth regulators that are involved in the adaptation to heat stress by affecting each other and changing the adaptation process. The interaction between these molecules has been discussed in various studies in general or under stress conditions; however, regarding high temperature, their interaction has little been worked out. In the present review, the focus is shifted on the role of these molecules under heat stress emphasizing the different possible interactions between ABA and NO as both regulate stomatal closure and other molecules including hydrogen peroxide (H2O2), hydrogen sulfide (H2S), antioxidants, proline, glycine betaine, calcium (Ca2+) and heat shock protein (HSP). Exploring the crosstalk between ABA and NO with other molecules under heat stress will provide us with a comprehensive knowledge of plants mechanism of heat tolerance which could be useful to develop heat stress-resistant varieties.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080, Granada, Spain.
| |
Collapse
|
24
|
Sami F, Siddiqui H, Alam P, Hayat S. Glucose-induced response on photosynthetic efficiency, ROS homeostasis, and antioxidative defense system in maintaining carbohydrate and ion metabolism in Indian mustard (Brassica juncea L.) under salt-mediated oxidative stress. PROTOPLASMA 2021; 258:601-620. [PMID: 33392740 DOI: 10.1007/s00709-020-01600-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
In plants, glucose (Glc) acts as a crucial signaling molecule in mediating metabolism, growth, stress tolerance mechanism, etc. However, little is known about Glc supplementation in salinity tolerance. This experiment was designed to study the ameliorative effect of Glc in mustard under salt stress. The seeds were soaked in three concentrations of NaCl (0, 50, or 100 mM) for 8 h and then treated with four concentrations of Glc (0, 2, 4, or 8%) as foliar spray for 5 days at 25-day stage. The plants were harvested at three growth stages (30, 45, and 60) for examining morpho-physiological and proteomic studies. Glc application as foliar spray increases growth, photosynthesis, and antioxidative enzyme activities in NaCl-treated plants. Glc applied in plants also showed reduction in superoxide anion, hydrogen peroxide, and malondialdehyde content under salt stress. Amongst all doses of Glc, spray of 4% Glc proved best in alleviating the harmful effects of salinity.
Collapse
Affiliation(s)
- Fareen Sami
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Husna Siddiqui
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
25
|
Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nat Commun 2021; 12:2456. [PMID: 33911084 PMCID: PMC8080645 DOI: 10.1038/s41467-021-22812-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 02/02/2023] Open
Abstract
The phytohormone abscisic acid (ABA) is crucial for plant responses to environmental challenges. The SNF1-regulated protein kinase 2s (SnRK2s) are key components in ABA-receptor coupled core signaling, and are rapidly phosphorylated and activated by ABA. Recent studies have suggested that Raf-like protein kinases (RAFs) participate in ABA-triggered SnRK2 activation. In vitro kinase assays also suggest the existence of autophosphorylation of SnRK2s. Thus, how SnRK2 kinases are quickly activated during ABA signaling still needs to be clarified. Here, we show that both B2 and B3 RAFs directly phosphorylate SnRK2.6 in the kinase activation loop. This transphosphorylation by RAFs is essential for SnRK2 activation. The activated SnRK2s then intermolecularly trans-phosphorylate other SnRK2s that are not yet activated to amplify the response. High-order Arabidopsis mutants lacking multiple B2 and B3 RAFs show ABA hyposensitivity. Our findings reveal a unique initiation and amplification mechanism of SnRK2 activation in ABA signaling in higher plants.
Collapse
|
26
|
Banerjee S, Palit D, Banerjee A. Variation of tree biochemical and physiological characters under different air pollution stresses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17960-17980. [PMID: 33410032 DOI: 10.1007/s11356-020-11674-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The present work was undertaken in order to detect some pollution responsive variables such as ascorbic acid, pH, total chlorophyll, relative water content, total soluble sugar, amino acid and protein of four selected plant species, namely Ficus religiosa, Anthocephalus cadamba, Lagerstroemia speciosa and Cassia siamea, at nine different sites of Durgapur, West Bengal, India. The spatial variability analyses of Air Pollution Tolerance Index (APTI) along with Anticipated Performance Index (API) were also examined on each plant species. In this study, the highest APTI was recorded in L. speciosa (183.54 mg/g) during 2015 at site S5 (CCR), whereas the lowest APTI was reported in C. siamea (11.25 mg/g) during 2014 at site S3 (DGC). The API gradation revealed that L. speciosa was categorised as a best performer followed by A. cadamba and F. religiosa; in contrast, C. siamea showed poor performance among all the sites. One-way ANOVA (at p < 0.05, with Dunnett's post hoc) was conducted for spatial variability analysis both on biochemical parameters and air pollutants (SO2, NOx and SPM) with respect to control site, while two-way ANOVA also operated for the detection of spatio-temporal interaction on concerned biochemical parameters of each tree species. A significant positive correlation was observed both in ascorbic acid and APTI of A. cadamba and L. speciosa with the air pollutants. So it would be said that, for varied environmental situations, different biochemical responses have been reflected by vegetation of the same species. Thus, the present study has tremendous potentiality to screening out tree species on the basis of APTI with pooling their API assessment category and spatial variability detection of biochemical parameters. Biochemical plasticity and adaptability were better revealed on L. speciosa, F. religiosa and A. cadamba which will be suitable for green belt development in air pollution-affected areas.
Collapse
Affiliation(s)
- Shiboram Banerjee
- Department of Conservation Biology, Durgapur Govt. College, Durgapur, West Bengal, 713214, India.
| | - Debnath Palit
- Department of Botany, Durgapur Govt. College, Durgapur, West Bengal, 713214, India
| | - Arnab Banerjee
- U.T.D, Department of Environmental Science, Sarguja Vishwavidyalaya, Ambikapur, Chhattisgarh, 497001, India
| |
Collapse
|
27
|
Kaur H, Manna M, Thakur T, Gautam V, Salvi P. Imperative role of sugar signaling and transport during drought stress responses in plants. PHYSIOLOGIA PLANTARUM 2021; 171:833-848. [PMID: 33583052 DOI: 10.1111/ppl.13364] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 05/27/2023]
Abstract
Cellular sugar status is essentially maintained during normal growth conditions but is impacted negatively during various environmental perturbations. Drought presents one such unfavorable environmental cue that hampers the photosynthetic fixation of carbon into sugars and affects their transport by lowering the cellular osmotic potential. The transport of cellular sugar is facilitated by a specific set of proteins known as sugar transporters. These transporter proteins are the key determinant of influx/ efflux of various sugars and their metabolite intermediates that support the plant growth and developmental process. Abiotic stress and especially drought stress-mediated injury results in reprogramming of sugar distribution across the cellular and subcellular compartments. Here, we have reviewed the imperative role of sugar accumulation, signaling, and transport under typical and atypical stressful environments. We have discussed the physiological effects of drought on sugar accumulation and transport through different transporter proteins involved in monosaccharide and disaccharide sugar transport. Further, we have illustrated sugar-mediated signaling and regulation of sugar transporter proteins along with the overall crosstalk of this signaling with the phytohormone module of abiotic stress response under osmotic stress. Overall, the present review highlights the critical role of sugar transport, distribution and signaling in plants under drought stress conditions.
Collapse
Affiliation(s)
- Harmeet Kaur
- Plant Molecular Biology, ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Mrinalini Manna
- Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Tanika Thakur
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
28
|
Janda T, Tajti J, Hamow KÁ, Marček T, Ivanovska B, Szalai G, Pál M, Zalewska ED, Darkó É. Acclimation of photosynthetic processes and metabolic responses to elevated temperatures in cereals. PHYSIOLOGIA PLANTARUM 2021; 171:217-231. [PMID: 32909668 DOI: 10.1111/ppl.13207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 05/14/2023]
Abstract
The aim of the present work was to better understand the molecular mechanisms of heat acclimation processes in cereals. A large number of winter and spring wheat, barley and oat varieties were grown under either control conditions (22/20°C) or under a mild heat stress (30°C) that induce the acclimation processes. The temperature dependence of chlorophyll a fluorescence induction and gas exchange parameters showed that heat acclimation increased the thermotolerance of the photosynthetic apparatus, but these changes did not differ sharply in the winter-spring type cereals. Similarly, to wheat, elevated temperature also led to increasing transpiration rate and reduced water use efficiency in barley and oat plants. A non-targeted metabolomic analysis focusing on polar metabolites in two selected barley (winter type Mv Initium and spring type Conchita) and in two oat varieties (winter type Mv Hópehely and spring type Mv Pehely) revealed substantial differences between both the two species and between the acclimated and non-acclimated plants. Several compounds, including sugars, organic acids, amino acids and alcohols could be separated and detected. The expression level of the CYP707, HSP90, galactinol synthase, raffinose synthase and α-galactosidase genes showed genotype-dependent changes after 1 day; however, the CYP707 was the only one, which was still upregulated in at least some of the genotypes. Results suggest that heat acclimation itself does not require general induction of primary metabolites. However, induction of specific routes, e.g. the induction of the raffinose family oligosaccharides, especially the synthesis of galactinol, may also contribute the improved heat tolerance in cereals.
Collapse
Affiliation(s)
- Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Judit Tajti
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Kamirán Á Hamow
- Institute of Plant Protection, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Tihana Marček
- Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Beti Ivanovska
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Ewa D Zalewska
- Department of Vegetable and Herbs, University of Life Sciences in Lublin, Lublin, Poland
| | - Éva Darkó
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| |
Collapse
|
29
|
Alferez F, de Carvalho DU, Boakye D. Interplay between Abscisic Acid and Gibberellins, as Related to Ethylene and Sugars, in Regulating Maturation of Non-Climacteric Fruit. Int J Mol Sci 2021; 22:ijms22020669. [PMID: 33445409 PMCID: PMC7826998 DOI: 10.3390/ijms22020669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
In this review, we address the interaction between abscisic acid (ABA) and gibberellins (GAs) in regulating non-climacteric fruit development and maturation at the molecular level. We review the interplay of both plant growth regulators in regulating these processes in several fruit of economic importance such as grape berries, strawberry, and citrus, and show how understanding this interaction has resulted in useful agronomic management techniques. We then relate the interplay of both hormones with ethylene and other endogenous factors, such as sugar signaling. We finally review the growing knowledge related to abscisic acid, gibberellins, and the genus Citrus. We illustrate why this woody genus can be considered as an emerging model plant for understanding hormonal circuits in regulating different processes, as most of the finest work on this matter in recent years has been performed by using different Citrus species.
Collapse
Affiliation(s)
- Fernando Alferez
- Southwest Florida Research and Education Center, Department of Horticulture, University of Florida–Institute of Food and Agricultural Sciences (UF–IFAS), Immokalee, FL 34142, USA; (D.U.d.C.); (D.B.)
- Correspondence: ; Tel.: +239-658-3426; Fax: +239-658-3403
| | - Deived Uilian de Carvalho
- Southwest Florida Research and Education Center, Department of Horticulture, University of Florida–Institute of Food and Agricultural Sciences (UF–IFAS), Immokalee, FL 34142, USA; (D.U.d.C.); (D.B.)
- AC Jardim Bandeirante, Centro de Ciências Agrárias, Universidade Estadual de Londrina, Jardim Portal de Versalhes 1 86057970, Londrina/PR 10011, Brazil
| | - Daniel Boakye
- Southwest Florida Research and Education Center, Department of Horticulture, University of Florida–Institute of Food and Agricultural Sciences (UF–IFAS), Immokalee, FL 34142, USA; (D.U.d.C.); (D.B.)
| |
Collapse
|
30
|
Chong L, Guo P, Zhu Y. Mediator Complex: A Pivotal Regulator of ABA Signaling Pathway and Abiotic Stress Response in Plants. Int J Mol Sci 2020; 21:ijms21207755. [PMID: 33092161 PMCID: PMC7588972 DOI: 10.3390/ijms21207755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
As an evolutionarily conserved multi-protein complex, the Mediator complex modulates the association between transcription factors and RNA polymerase II to precisely regulate gene transcription. Although numerous studies have shown the diverse functions of Mediator complex in plant development, flowering, hormone signaling, and biotic stress response, its roles in the Abscisic acid (ABA) signaling pathway and abiotic stress response remain largely unclear. It has been recognized that the phytohormone, ABA, plays a predominant role in regulating plant adaption to various abiotic stresses as ABA can trigger extensive changes in the transcriptome to help the plants respond to environmental stimuli. Over the past decade, the Mediator complex has been revealed to play key roles in not only regulating the ABA signaling transduction but also in the abiotic stress responses. In this review, we will summarize current knowledge of the Mediator complex in regulating the plants’ response to ABA as well as to the abiotic stresses of cold, drought and high salinity. We will particularly emphasize the involvement of multi-functional subunits of MED25, MED18, MED16, and CDK8 in response to ABA and environmental perturbation. Additionally, we will discuss potential research directions available for further deciphering the role of Mediator complex in regulating ABA and other abiotic stress responses.
Collapse
|
31
|
Ruibal C, Castro A, Fleitas AL, Quezada J, Quero G, Vidal S. A Chloroplast COR413 Protein From Physcomitrella patens Is Required for Growth Regulation Under High Light and ABA Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:845. [PMID: 32636864 PMCID: PMC7317016 DOI: 10.3389/fpls.2020.00845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
COR413 genes belong to a poorly characterized group of plant-specific cold-regulated genes initially identified as part of the transcriptional activation machinery of plants during cold acclimation. They encode multispanning transmembrane proteins predicted to target the plasma membrane or the chloroplast inner membrane. Despite being ubiquitous throughout the plant kingdom, little is known about their biological function. In this study, we used reverse genetics to investigate the relevance of a predicted chloroplast localized COR413 protein (PpCOR413im) from the moss Physcomitrella patens in developmental and abiotic stress responses. Expression of PpCOR413im was strongly induced by abscisic acid (ABA) and by various environmental stimuli, including low temperature, hyperosmosis, salinity and high light. In vivo subcellular localization of PpCOR413im-GFP fusion protein revealed that this protein is localized in chloroplasts, confirming the in silico predictions. Loss-of-function mutants of PpCOR413im exhibited growth and developmental alterations such as growth retardation, reduced caulonema formation and hypersensitivity to ABA. Mutants also displayed altered photochemistry under various abiotic stresses, including dehydration and low temperature, and exhibited a dramatic growth inhibition upon exposure to high light. Disruption of PpCOR413im also caused altered chloroplast ultrastructure, increased ROS accumulation, and enhanced starch and sucrose levels under high light or after ABA treatment. In addition, loss of PpCOR413im affected both nuclear and chloroplast gene expression in response to ABA and high light, suggesting a role for this gene downstream of ABA in the regulation of growth and environmental stress responses. Developmental alterations exhibited by PpCOR413im knockout mutants had remarkable similarities to those exhibited by hxk1, a mutant lacking a major chloroplastic hexokinase, an enzyme involved in energy homeostasis. Based on these findings, we propose that PpCOR413im is involved in coordinating energy metabolism with ABA-mediated growth and developmental responses.
Collapse
Affiliation(s)
- Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrea L. Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jorge Quezada
- Unidad de Biotecnología Vegetal, Instituto de Biología Molecular y Biotecnología, Carrera de Biología – Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Gastón Quero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
32
|
Biofilms Positively Contribute to Bacillus amyloliquefaciens 54-induced Drought Tolerance in Tomato Plants. Int J Mol Sci 2019; 20:ijms20246271. [PMID: 31842360 PMCID: PMC6940783 DOI: 10.3390/ijms20246271] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022] Open
Abstract
Drought stress is a major obstacle to agriculture. Although many studies have reported on plant drought tolerance achieved via genetic modification, application of plant growth-promoting rhizobacteria (PGPR) to achieve tolerance has rarely been studied. In this study, the ability of three isolates, including Bacillus amyloliquefaciens 54, from 30 potential PGPR to induce drought tolerance in tomato plants was examined via greenhouse screening. The results indicated that B. amyloliquefaciens 54 significantly enhanced drought tolerance by increasing survival rate, relative water content and root vigor. Coordinated changes were also observed in cellular defense responses, including decreased concentration of malondialdehyde and elevated concentration of antioxidant enzyme activities. Moreover, expression levels of stress-responsive genes, such as lea, tdi65, and ltpg2, increased in B. amyloliquefaciens 54-treated plants. In addition, B. amyloliquefaciens 54 induced stomatal closure through an abscisic acid-regulated pathway. Furthermore, we constructed biofilm formation mutants and determined the role of biofilm formation in B. amyloliquefaciens 54-induced drought tolerance. The results showed that biofilm-forming ability was positively correlated with plant root colonization. Moreover, plants inoculated with hyper-robust biofilm (ΔabrB and ΔywcC) mutants were better able to resist drought stress, while defective biofilm (ΔepsA-O and ΔtasA) mutants were more vulnerable to drought stress. Taken altogether, these results suggest that biofilm formation is crucial to B. amyloliquefaciens 54 root colonization and drought tolerance in tomato plants.
Collapse
|
33
|
Influence of Different Photoperiod and Temperature Regimes on Growth and Bulb Quality of Garlic (Allium sativum L.) Cultivars. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growth and bulb development in garlic is affected considerably by variations in photoperiod and temperature thereby influencing its morphology, physiology, and nutritive quality. Varied combinations of photoperiods and temperatures may influence the bulb development and quality, and can determine the suitability of a cultivar for a particular region. Experiments were conducted to study the impact of different photoperiod and temperature combinations on the growth, morpho-physiology, and nutritive quality of garlic bulb. Three garlic cultivars viz; G103, G024, and G2011-5 were exposed to different combinations of photoperiod (8 h/16 h, 10 h/14 h, 12 h/12 h, 14 h/10 h, 16 h/8 h (light/dark)) and temperature (20 °C/15 °C, 25 °C/18 °C, and 30 °C/20 °C). Results revealed that longer photoperiod (14 h or 16 h) and higher temperature (25 °C or 30 °C) treatments significantly improved the garlic bulbing imparting maximum bulb diameter, height, bulbing index, and the shortest growth period. Whereas, 12-h photoperiod had maximum bulb weight. In addition, total soluble solid (TSS), content of soluble protein, soluble sugar, total sugar, glucose, sucrose, fructose, starch, total phenols, and total flavonoids increased significantly because of 14-h photoperiod and 30 °C temperature condition, however exhibited decline with 8 h photoperiod and lowest temperature (20 °C). These alterations were related to bulb characteristics and bulbing index. Maximum plant standing height and pseudostem diameter of the garlic plant were observed at 20 °C. Additionally, plants under the combination of 14 h–30 °C had maximum fresh weight, bulb diameter, shortest growth period, maximum physiological and nutritive quality traits of the bulb, while as 12 h–30 °C combinations resulted in maximum bulb weight and 16 h–30 °C had maximum bulb height. Among cultivars cv. G103 showed best response to tested photoperiod and temperature combinations in terms of morpho-physiological and biochemical attributes studied, except for bulbing index which was maximum in cv. G024. Present study concludes the influence of photoperiod and temperature combinations on garlic growth and bulbing characteristics through the modulations induced in soluble protein, sugars, and phenolic compounds.
Collapse
|
34
|
ABA and sucrose co-regulate strawberry fruit ripening and show inhibition of glycolysis. Mol Genet Genomics 2019; 295:421-438. [PMID: 31807909 DOI: 10.1007/s00438-019-01629-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
Abscisic acid (ABA) and sucrose play an important role in strawberry fruit ripening, but how ABA and sucrose co-regulate this ripening progress remains unclear. The intention of this study was to examine the effect of ABA and sucrose on strawberry fruit ripening and to evaluate the ABA/sucrose interaction mechanism on the strawberry fruit ripening process. Here, we report that there is an acute synergistic effect between ABA and sucrose in accelerating strawberry fruit ripening. The time frame of fruit development and ripening was shortened after the application of ABA, sucrose, and ABA + sucrose, but most of the major quality parameters in treated-ripe fruit, including fruit weight, total soluble solids, anthocyanin, ascorbic acid, the total phenolic content, lightness (L*), chroma (C*), and hue angle (h°) values were not affected. Meanwhile, the endogenous ABA and sucrose levels, and the expression of ABA and sucrose signaling genes and ripening-related genes, such as NCED1, NCED2, SnRK2.2, SuSy, MYB5, CEL1, and CEL2, was all significantly enhanced by ABA or sucrose treatment alone, but in particular, by the ABA + sucrose treatment. Therefore, improving the ripening regulation efficiency is one synergetic action of ABA/sucrose. Another synergetic action of ABA/sucrose shows that a short inhibition of glycolysis occurs during accelerated strawberry ripening. ABA and sucrose can induce higher accumulation of H2O2, leading to a transient decrease in glycolysis. Conversely, lower endogenous H2O2 levels caused by reduced glutathione (GSH) treatment resulted in a transient increase in glycolysis while delaying strawberry fruit ripening. Collectively, this study demonstrates that the ABA/sucrose interaction affects the ripening regulation efficiency and shows inhibition of glycolysis.
Collapse
|
35
|
Chen T, Li G, Islam MR, Fu W, Feng B, Tao L, Fu G. Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship. BMC PLANT BIOLOGY 2019; 19:525. [PMID: 31775620 PMCID: PMC6882056 DOI: 10.1186/s12870-019-2126-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/08/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Abscisic acid (ABA) and sucrose act as molecular signals in response to abiotic stress. However, how their synergy regulates the source-sink relationship has rarely been studied. This study aimed to reveal the mechanism underlying the synergy between ABA and sucrose on assimilates allocation to improve grain yield and quality of rice. The early indica rice cultivar Zhefu802 was selected and planted in an artificial climate chamber at 32/24 °C (day/night) under natural sunlight conditions. Sucrose and ABA were exogenously sprayed (either alone or in combination) onto rice plants at flowering and 10 days after flowering. RESULTS ABA plus sucrose significantly improved both the grain yield and quality of rice, which was mainly a result of the higher proportion of dry matter accumulation and non-structural carbohydrates in panicles. These results were mainly ascribed to the large improvement in sucrose transport in the sheath-stems in response to the ABA plus sucrose treatment. In this process, ABA plus sucrose significantly enhanced the contents of starch, gibberellic acids, and zeatin ribosides as well as the activities and gene expression of enzymes involved in starch synthesis in grains. Additionally, remarkable increases in trehalose content and expression levels of trehalose-6-phosphate synthase1, trehalose-6-phosphate phosphatase7, and sucrose non-fermenting related protein kinase 1A were also found in grains treated with ABA plus sucrose. CONCLUSION The synergy between ABA and sucrose increased grain yield and quality by improving the source-sink relationship through sucrose and trehalose metabolism in grains.
Collapse
Affiliation(s)
- Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Mohammad Rezaul Islam
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
- Department of Agricultural Extension, Ministry of Agriculture, Dhaka, 1215 Bangladesh
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| |
Collapse
|
36
|
Brunetti C, Gori A, Marino G, Latini P, Sobolev AP, Nardini A, Haworth M, Giovannelli A, Capitani D, Loreto F, Taylor G, Mugnozza GS, Harfouche A, Centritto M. Dynamic changes in ABA content in water-stressed Populus nigra: effects on carbon fixation and soluble carbohydrates. ANNALS OF BOTANY 2019; 124:627-644. [PMID: 30715123 PMCID: PMC6821382 DOI: 10.1093/aob/mcz005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 01/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Hydraulic and chemical signals operate in tandem to regulate systemic plant responses to drought. Transport of abscisic acid (ABA) through the xylem and phloem from the root to shoot has been suggested to serve as the main signal of water deficit. There is evidence that ABA and its ABA-glycosyl-ester (ABA-GE) are also formed in leaves and stems through the chloroplastic 2-C-methylerythritol-5-phosphate (MEP) pathway. This study aimed to evaluate how hormonal and hydraulic signals contribute to optimize stomatal (gs), mesophyll (gm) and leaf hydraulic (Kleaf) conductance under well-watered and water-stressed conditions in Populus nigra (black poplar) plants. In addition, we assessed possible relationships between ABA and soluble carbohydrates within the leaf and stem. METHODS Plants were subjected to three water treatments: well-watered (WW), moderate stress (WS1) and severe stress (WS2). This experimental set-up enabled a time-course analysis of the response to water deficit at the physiological [leaf gas exchange, plant water relations, (Kleaf)], biochemical (ABA and its metabolite/catabolite quantification in xylem sap, leaves, wood, bark and roots) and molecular (gene expression of ABA biosynthesis) levels. KEY RESULTS Our results showed strong coordination between gs, gm and Kleaf under water stress, which reduced transpiration and increased intrinsic water use efficiency (WUEint). Analysis of gene expression of 9-cis-epoxycarotenoid dioxygenase (NCED) and ABA content in different tissues showed a general up-regulation of the biosynthesis of this hormone and its finely-tuned catabolism in response to water stress. Significant linear relationships were found between soluble carbohydrates and ABA contents in both leaves and stems, suggesting a putative function for this hormone in carbohydrate mobilization under severe water stress. CONCLUSIONS This study demonstrates the tight regulation of the photosynthetic machinery by levels of ABA in different plants organs on a daily basis in both well-watered and water stress conditions to optimize WUEint and coordinate whole plant acclimation responses to drought.
Collapse
Affiliation(s)
- Cecilia Brunetti
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino (FI), Italy
| | - Antonella Gori
- University of Florence, Department of Agri-Food Production and Environmental Sciences, Florence, Italy
| | - Giovanni Marino
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino (FI), Italy
| | - Paolo Latini
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Anatoly P Sobolev
- Istituto di Metodologie Chimiche, Consiglio Nazionale delle Ricerche, Monterotondo (Roma), Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Matthew Haworth
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino (FI), Italy
| | - Alessio Giovannelli
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino (FI), Italy
| | - Donatella Capitani
- Istituto di Metodologie Chimiche, Consiglio Nazionale delle Ricerche, Monterotondo (Roma), Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Gail Taylor
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, UK
- Department of Plant Sciences, University of California-Davis, CA, USA
| | - Giuseppe Scarascia Mugnozza
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Antoine Harfouche
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Mauro Centritto
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino (FI), Italy
| |
Collapse
|
37
|
Yi J, Zhao D, Chu J, Yan J, Liu J, Wu M, Cheng J, Jiang H, Zeng Y, Liu D. AtDPG1 is involved in the salt stress response of Arabidopsis seedling through ABI4. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110180. [PMID: 31481194 DOI: 10.1016/j.plantsci.2019.110180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
Although the genes controlling chloroplast development play important roles in plant responses to environmental stresses, the molecular mechanisms remain largely unclear. In this study, an Arabidopsis mutant dpg1 (delayed pale-greening1) with a chloroplast development defect was studied. By using quantitative RT-PCR and histochemical GUS assays, we demonstrated that AtDPG1 was mainly expressed in the green tissues of Arabidopsis seedlings and could be induced by salt stress. Phenotypic analysis showed that mutation in AtDPG1 lead to an enhanced sensitivity to salt stress in Arabidopsis seedlings. Further studies demonstrated that disruption of the AtDPG1 in Arabidopsis increases its sensitivity to salt stress in an ABA-dependent manner. Moreover, expression levels of various stress-responsive and ABA signal-related genes were remarkably altered in the dpg1 plants under NaCl treatment. Notably, the transcript levels of ABI4 in dpg1 mutant increased more significantly than that in wild type plants under salt conditions. The seedlings of dpg1/abi4 double mutant exhibited stronger resistance to salt stress after salt treatment compared with the dpg1 single mutant, suggesting that the salt-hypersensitive phenotype of dpg1 seedlings could be rescued via loss of ABI4 function. These results reveal that AtDPG1 is involved in the salt stress response of Arabidopsis seedling through ABI4.
Collapse
Affiliation(s)
- Jian Yi
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dongming Zhao
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meijia Wu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianfeng Cheng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haiyan Jiang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
38
|
Diray-Arce J, Knowles A, Suvorov A, O’Brien J, Hansen C, Bybee SM, Gul B, Khan MA, Nielsen BL. Identification and evolutionary characterization of salt-responsive transcription factors in the succulent halophyte Suaeda fruticosa. PLoS One 2019; 14:e0222940. [PMID: 31545841 PMCID: PMC6756544 DOI: 10.1371/journal.pone.0222940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023] Open
Abstract
Transcription factors are key regulatory elements that affect gene expression in response to specific signals, including environmental stresses such as salinity. Halophytes are specialized plants that have the ability to complete their life cycle in saline environments. In this study we have identified and characterized the evolutionary relationships of putative transcription factors (TF) in an obligate succulent halophyte, Suaeda fruticosa, that are involved in conferring salt tolerance. Using RNA-seq data we have analyzed the expression patterns of certain TF families, predicted protein-protein interactions, and analyzed evolutionary trajectories to elucidate their possible roles in salt tolerance. We have detected the top differentially expressed (DE) transcription factor families (MYB, CAMTA, MADS-box and bZIP) that show the most pronounced response to salinity. The majority of DE genes in the four aforementioned TF families cluster together on TF phylogenetic trees, which suggests common evolutionary origins and trajectories. This research represents the first comprehensive TF study of a leaf succulent halophyte including their evolutionary relationships with TFs in other halophyte and salt-senstive plants. These findings provide a foundation for understanding the function of salt-responsive transcription factors in salt tolerance and associated gene regulation in plants.
Collapse
Affiliation(s)
- Joann Diray-Arce
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Alisa Knowles
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Anton Suvorov
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jacob O’Brien
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Collin Hansen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Seth M. Bybee
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Bilquees Gul
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - M. Ajmal Khan
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
- * E-mail:
| |
Collapse
|
39
|
Effects of Exogenous Trehalose on the Metabolism of Sugar and Abscisic Acid in Tomato Seedlings Under Salt Stress. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12209-019-00214-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Min JH, Park CR, Jang YH, Ju HW, Lee KH, Lee S, Kim CS. A basic helix-loop-helix 104 (bHLH104) protein functions as a transcriptional repressor for glucose and abscisic acid signaling in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:34-42. [PMID: 30639920 DOI: 10.1016/j.plaphy.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Transduction of glucose (Glc) signaling is critical for plant development, metabolism, and stress responses. However, identifying initial Glc sensing and response stimulating mechanisms in plants has been difficult due to dual functions of glucose as energy sources and signaling component. A basic Helix-Loop-Helix 104 (bHLH104) protein is a homolog of bHLH34 previously isolated from Arabidopsis that functions as a transcriptional activator of Glc and abscisic acid (ABA) responses. In this study, we characterized bHLH104 as a transcription factor that binds to the regulatory region of Arabidopsis Plasma membrane Glc-responsive Regulator (AtPGR) gene. The bHLH104 binds to 5'-AANA-3' element of the promoter region of AtPGR in vitro and represses beta-glucuronidase (GUS) activity in AtPGR promoter-GUS transgenic plants. Genetic approaches show that bHLH104 positively regulates Glc and abscisic acid (ABA) response. These results suggest that bHLH104 is involved in Glc- and ABA-mediated signaling pathway. Taken together, these findings provide evidence that bHLH104 is an important transcription regulator in plant-sensitivity to Glc and ABA signaling.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Cho-Rong Park
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yun-Ha Jang
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Woo Ju
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Rural and Biosystems Engineering, Agricultural Robotics and Automation Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sungbeom Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Cheol Soo Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
41
|
Rezaul IM, Baohua F, Tingting C, Weimeng F, Caixia Z, Longxing T, Guanfu F. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. PHYSIOLOGIA PLANTARUM 2019; 165:644-663. [PMID: 29766507 DOI: 10.1111/ppl.12759] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/22/2018] [Accepted: 05/11/2018] [Indexed: 05/20/2023]
Abstract
Heat stress at the pollen mother cell (PMC) meiotic stage leads to pollen sterility in rice, in which the reactive oxygen species (ROS) and sugar homeostasis are always adversely affected. This damage is reversed by abscisic acid (ABA), but the mechanisms underlying the interactions among the ABA, sugar metabolism, ROS and heat shock proteins in rice spikelets under heat stress are unclear. Two rice genotypes, Zhefu802 (a recurrent parent) and fgl (its near-isogenic line) were subjected to heat stress of 40°C after pre-foliage sprayed with ABA and its biosynthetic inhibitor fluridone at the meiotic stage of PMC. The results revealed that exogenous application of ABA reduced pollen sterility caused by heat stress. This was achieved through various means, including: increased levels of soluble sugars, starch and non-structural carbohydrates, markedly higher relative expression levels of heat shock proteins (HSP24.1 and HSP71.1) and genes related to sugar metabolism and transport, such as sucrose transporters (SUT) genes, sucrose synthase (SUS) genes and invertase (INV) genes as well as increased antioxidant activities and increased content of adenosine triphosphate and endogenous ABA in spikelets. In short, exogenous application of ABA prior to heat stress enhanced sucrose transport and accelerated sucrose metabolism to maintain the carbon balance and energy homeostasis, thus ABA contributed to heat tolerance in rice.
Collapse
Affiliation(s)
- Islam Md Rezaul
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh
| | - Feng Baohua
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Chen Tingting
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Fu Weimeng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhang Caixia
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Tao Longxing
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Fu Guanfu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
42
|
Waadt R, Jawurek E, Hashimoto K, Li Y, Scholz M, Krebs M, Czap G, Hong-Hermesdorf A, Hippler M, Grill E, Kudla J, Schumacher K. Modulation of ABA responses by the protein kinase WNK8. FEBS Lett 2019; 593:339-351. [PMID: 30556127 DOI: 10.1002/1873-3468.13315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022]
Abstract
Abscisic acid (ABA) regulates growth and developmental processes in response to limiting water conditions. ABA functions through a core signaling pathway consisting of PYR1/PYL/RCAR ABA receptors, type 2C protein phosphatases (PP2Cs), and SnRK2-type protein kinases. Other signaling modules might converge with ABA signals through the modulation of core ABA signaling components. We have investigated the role of the protein kinase WNK8 in ABA signaling. WNK8 interacted with PP2CA and PYR1, phosphorylated PYR1 in vitro, and was dephosphorylated by PP2CA. A hypermorphic wnk8-ct Arabidopsis mutant allele suppressed ABA and glucose hypersensitivities of pp2ca-1 mutants during young seedling development, and WNK8 expression in protoplasts suppressed ABA-induced reporter gene expression. We conclude that WNK8 functions as a negative modulator of ABA signaling.
Collapse
Affiliation(s)
- Rainer Waadt
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Esther Jawurek
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische-Wilhelms-Universität Münster, Germany
| | - Yan Li
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Martin Scholz
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische-Wilhelms-Universität Münster, Germany
| | - Melanie Krebs
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Gereon Czap
- Lehrstuhl für Botanik, Technische Universität München, Freising, Germany
| | - Anne Hong-Hermesdorf
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische-Wilhelms-Universität Münster, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Freising, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische-Wilhelms-Universität Münster, Germany
| | - Karin Schumacher
- Department of Cell Biology, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Germany
| |
Collapse
|
43
|
Liu Y, Wang J, Yin H, Zhang A, Huang S, Wang TJ, Meng Q, Nan N, Wu Y, Guo P, Ahmad R, Liu B, Xu ZY. Trithorax-group protein ATX5 mediates the glucose response via impacting the HY1-ABI4 signaling module. PLANT MOLECULAR BIOLOGY 2018; 98:495-506. [PMID: 30406469 DOI: 10.1007/s11103-018-0791-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/22/2018] [Indexed: 05/29/2023]
Abstract
Trithorax-group Protein ARABIDOPSIS TRITHORAX5 modulates the glucose response. Glucose is an evolutionarily conserved modulator from unicellular microorganisms to multicellular animals and plants. Extensive studies have shown that the Trithorax-group proteins (TrxGs) play essential roles in different biological processes by affecting histone modifications and chromatin structures. However, whether TrxGs function in the glucose response and how they achieve the control of target genes in response to glucose signaling in plants remain unknown. Here, we show that the Trithorax-group Protein ARABIDOPSIS TRITHORAX5 (ATX5) affects the glucose response and signaling. atx5 loss-of-function mutants display glucose-oversensitive phenotypes compared to the wild-type (WT). Genome-wide RNA-sequencing analyses have revealed that ATX5 impacts the expression of a subset of glucose signaling responsive genes. Intriguingly, we have established that ATX5 directly controls the expression of HY1 by trimethylating H3 lysine 4 of the Arabidopsis Heme Oxygenase1 (HY1) locus. Glucose signaling causes the suppression of ATX5 activity and subsequently reduces the H3K4me3 levels at the HY1 locus, thereby leading to the increased expression of ABSCISIC ACID-INSENSITIVE4 (ABI4). This result suggests that an important ATX5-HY1-ABI4 regulatory module governs the glucose response. This idea is further supported by genetic evidence showing that an atx5 hy1-100 abi4 triple mutant showed a similar glucose-insensitive phenotype as compared to that of the abi4 single mutant. Our findings show that a novel ATX5-HY1-ABI4 module controls the glucose response in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Hao Yin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Qingxiang Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yifan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Rafiq Ahmad
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
44
|
Cai Q, Liang C, Wang S, Hou Y, Gao L, Liu L, He W, Ma W, Mo B, Chen X. The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nat Commun 2018; 9:5080. [PMID: 30498229 PMCID: PMC6265325 DOI: 10.1038/s41467-018-07516-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022] Open
Abstract
Plants evolved an array of disease resistance genes (R genes) to fight pathogens. In the absence of pathogen infection, NBS-LRR genes, which comprise a major subfamily of R genes, are suppressed by a small RNA cascade involving microRNAs (miRNAs) that trigger the biogenesis of phased siRNAs (phasiRNAs) from R gene transcripts. However, whether or how R genes influence small RNA biogenesis is unknown. In this study, we isolate a mutant with global defects in the biogenesis of miRNAs and phasiRNAs in Arabidopsis thaliana and trace the defects to the over accumulation and nuclear localization of an R protein SNC1. We show that nuclear SNC1 represses the transcription of miRNA and phasiRNA loci, probably through the transcriptional corepressor TPR1. Intriguingly, nuclear SNC1 reduces the accumulation of phasiRNAs from three source R genes and concomitantly, the expression of a majority of the ~170R genes is up-regulated. Taken together, this study suggests an R gene-miRNA-phasiRNA regulatory module that amplifies plant immune responses. A small RNA-based signaling cascade prevents the induction of plant resistance genes (R-genes) in the absence of pathogen challenge. Here Cai et al. show that nuclear accumulation of the R protein SNC1 can activate immunity by suppressing small RNA production and releasing R-gene repression.
Collapse
Affiliation(s)
- Qiang Cai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Suikang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Li Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Wenrong He
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
45
|
Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proc Natl Acad Sci U S A 2018; 115:E11178-E11187. [PMID: 30397148 DOI: 10.1073/pnas.1811491115] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant hormone abscisic acid (ABA) is accumulated after drought stress and plays critical roles in the responses to drought stress in plants, such as gene regulation, stomatal closure, seed maturation, and dormancy. Although previous reports revealed detailed molecular roles of ABA in stress responses, the factors that contribute to the drought-stress responses-in particular, regulation of ABA accumulation-remain unclear. The enzyme NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) is essential for ABA biosynthesis during drought stress, and the NCED3 gene is highly induced by drought stress. In the present study, we isolated NGATHAs (NGAs) as candidate transcriptional regulators of NCED3 through a screen of a plant library harboring the transcription factors fused to a chimeric repressor domain, SRDX. The NGA proteins were directly bound to a cis-element NGA-binding element (NBE) in the 5' untranslated region (5' UTR) of the NCED3 promoter and were suggested to be transcriptional activators of NCED3 Among the single-knockout mutants of four NGA family genes, we found that the NGATHA1 (NGA1) knockout mutant was drought-stress-sensitive with a decreased expression level of NCED3 during dehydration stress. These results suggested that NGA1 essentially functions as a transcriptional activator of NCED3 among the NGA family proteins. Moreover, the NGA1 protein was degraded under nonstressed conditions, and dehydration stress enhanced the accumulation of NGA1 proteins, even in ABA-deficient mutant plants, indicating that there should be ABA-independent posttranslational regulations. These findings emphasize the regulatory mechanisms of ABA biosynthesis during early drought stress.
Collapse
|
46
|
Li S, Yang Y, Zhang Q, Liu N, Xu Q, Hu L. Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude. PLoS One 2018; 13:e0198885. [PMID: 29889884 PMCID: PMC5995380 DOI: 10.1371/journal.pone.0198885] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/25/2018] [Indexed: 12/28/2022] Open
Abstract
Low temperature is one of the important limiting factors for growing season and geographical distribution of plants. Zoysiagrass (Zoysia Willd) is one of the widely used warm-season turfgrass that is distribute in many parts of the world. Zoysaigrass native to high latitude may have evolved higher cold tolerance than the ones native to low latitude. The objective of this study was to investigate the cold stress response in zoysiagrass native to diverse latitude at phenotypic, physiological and metabolic levels. Two zoysiagrass (Z. japonica) genotypes, Latitude-40 (higher latitude) and Latitude-22 (lower latitude) were subjected to four temperature treatments (optimum, 30/25°C, day/night; suboptimum, 18/12°C; chilling, 8/2°C; freezing, 2/-4°C) progressively in growth chambers. Low temperature (chilling and freezing) increased leaf electrolyte leakage (EL) and reduced plant growth, turf quality, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm) and photosynthesis (Pn, net photosynthetic rate; gs, stomatal conductance; intercellular CO2; Tr, transpiration rate) in two genotypes, with more rapid changes in Latitude-22. Leaf carbohydrates content (glucose, fructose, sucrose, trehalose, fructan, starch) increased with the decreasing of temperature, to a great extend in Latitude-40. Leaf abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) content increased, while indole-3-acetic acid (IAA), gibberellic acid (GA3) and trans-zeatin ribside (t-ZR) content decreased with the reduction of temperature, with higher content in Latitude-40 than in Latitude-22. Chilling and freezing induced the up-regulation of C-repeat binding factor (ZjCBF), late embryogenesis abundant (ZjLEA3) and dehydration-responsive element binding (ZjDREB1) transcription factors in two genotypes, whereas those genes exhibited higher expression levels in Latitude-40, particularly under freezing temperature. These results suggested that zoysiagrass native to higher latitude exhibited higher freezing tolerance may attribute to the higher carbohydrates serving as energy reserves and stress protectants that stabilize cellular membranes. The phytohormones may serve signals in regulating plant growth, development and adaptation to low temperature as well as inducing the up-regulated ZjCBF, ZjLEA3 and ZjDREB1 expressions thus result in a higher cold tolerance.
Collapse
Affiliation(s)
- Shuangming Li
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Yong Yang
- Golf College, Hunan International Economics University, Changsha, Hunan, China
| | - Qiang Zhang
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Ningfang Liu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Qingguo Xu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
47
|
Han CS, Kim S, Lee SE, Choi S, Kim SH, Yoon IS, Hwang YS. Cross-talk between ABA and sugar signaling is mediated by the ACGT core and CE1 element reciprocally in OsTIP3;1 promoter. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:103-111. [PMID: 29614396 DOI: 10.1016/j.jplph.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 05/11/2023]
Abstract
Recently, much effort has been made to determine the molecular links and cross-talk between sugar and abscisic acid (ABA) signaling pathways. ABA-inducible expression of OsTIP3;1, encoding a rice tonoplast intrinsic protein, was enhanced by sugar depletion. Such a stimulatory increase in OsTIP3;1 expression under sugar-starvation is possibly not owing to changes in endogenous ABA content. The transient expression assay indicated that the 5' flanking region of OsTIP3;1 delivered similar collaborative responsiveness to starvation and ABA, suggesting that this gene promoter could be a good molecular probe to examine the interaction between sugar and ABA signaling pathways. Targeted mutagenesis demonstrated that disruption of ACGT cores decreased the induction of OsTIP3;1 promoter activity under either starvation or ABA, whereas mutation of coupling element 1 (CE1), which is an ABI4 binding site, reversely increased it, suggesting that those two distinct cis-regulatory elements reciprocally regulate the responsiveness of this promoter to both sugar and ABA. Consistent with this result, antisense inhibition of ABI4 increased the OsTIP3;1 promoter activity. ABI4 expression was also enhanced by sugars and repressed by ABA, suggesting that reduced ABI4 binding to CE1 in the absence of sugar and presence of ABA could increase ABA-induction of the OsTIP3;1 promoter activity.
Collapse
Affiliation(s)
- Chae-Seong Han
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Sol Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Sung-Eun Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Siyoung Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-710, Republic of Korea
| | - In Sun Yoon
- Molecular Breeding Division, Natural Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
48
|
Wang M, Lee J, Choi B, Park Y, Sim HJ, Kim H, Hwang I. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment. FRONTIERS IN PLANT SCIENCE 2018; 9:176. [PMID: 29515601 PMCID: PMC5826348 DOI: 10.3389/fpls.2018.00176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/30/2018] [Indexed: 05/27/2023]
Abstract
Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT), and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Juhun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Bongsoo Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Youngmin Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
- Environmental Toxicology Research Center, Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, South Korea
| | - Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
49
|
Min JH, Ju HW, Yoon D, Lee KH, Lee S, Kim CS. Arabidopsis Basic Helix-Loop-Helix 34 (bHLH34) Is Involved in Glucose Signaling through Binding to a GAGA Cis-Element. FRONTIERS IN PLANT SCIENCE 2017; 8:2100. [PMID: 29321786 PMCID: PMC5732184 DOI: 10.3389/fpls.2017.02100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/27/2017] [Indexed: 05/25/2023]
Abstract
The modulation of glucose (Glc) homeostasis and signaling is crucial for plant growth and development. Nevertheless, the molecular signaling mechanism by which a plant senses a cellular Glc level and coordinates the expression of Glc-responsive genes is still incompletely understood. Previous studies have shown that Arabidopsis thaliana plasma membrane Glc-responsive regulator (AtPGR) is a component of the Glc-responsive pathway. Here, we demonstrated that a transcription factor bHLH34 binds to 5'-GAGA-3' element of the promoter region of AtPGR in vitro, and activates beta-glucuronidase (GUS) activity upon Glc treatment in AtPGR promoter-GUS transgenic plants. Gain- and loss-of-function analyses suggested that the bHLH34 involved in the responses to not only Glc, but also abscisic acid (ABA) and salinity. These results suggest that bHLH34 functions as a transcription factor in the Glc-mediated stress responsive pathway as well as an activator of AtPGR transcription. Furthermore, genetic experiments revealed that in Glc response, the functions of bHLH34 are different from that of a bHLH104, a homolog of bHLH34. Collectively, our findings indicate that bHLH34 is a positive regulator of Glc, and may affect ABA or salinity response, whereas bHLH104 is a negative regulator and epistatic to bHLH34 in the Glc response.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Hyun-Woo Ju
- Department of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Dayoung Yoon
- Department of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Kyeong-Hwan Lee
- Department of Rural and Biosystems Engineering, Agricultural Robotics and Automation Research Center, Chonnam National University, Gwangju, South Korea
| | - Sungbeom Lee
- Korea Atomic Energy Research Institute, Daejeon, South Korea
| | - Cheol S. Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
50
|
Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiß HH, Sreenivasulu N, Weschke W, Weber H. Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4595-4612. [PMID: 28981782 PMCID: PMC5853522 DOI: 10.1093/jxb/erx266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/03/2017] [Indexed: 05/05/2023]
Abstract
Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - David Riewe
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Manuela Peukert
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Marc Strickert
- Computational Intelligence—FB12 Informatik, Philipps University, Marburg, Germany
| | - Ruslana Radchuk
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Diana Weier
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | | | - Nese Sreenivasulu
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Winfriede Weschke
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Hans Weber
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|