1
|
Nadeem M, Chen A, Hong H, Li D, Li J, Zhao D, Wang W, Wang X, Qiu L. GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1054-1064. [PMID: 33963661 DOI: 10.1111/jipb.13110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 05/27/2023]
Abstract
The application of heterosis is a promising approach for greatly increasing yield in soybean (Glycine max L.). Nuclear male sterility is essential for hybrid seed production and the utilization of heterosis. Here we report the cloning of the gene underlying the soybean male-sterile mutant ms-1, which has been widely used for recurrent selection in soybean breeding programs. We initially delimited the ms1 locus to a 16.15 kb region on chromosome 13, based on SLAF_BSA sequencing followed by genotyping of an F2 population segregating for the locus. Compared with the same region in fertile plants, the mutant region lacks a sequence of approximately 38.7 kb containing five protein-coding genes, including an ortholog of the kinesin-like protein gene NACK2, named GmMs1. The GmMs1 knockout plants generated via CRISPR/Cas-mediated gene editing displayed a complete male-sterile phenotype. Metabolic profiling showed that fertile anthers accumulated starch and sucrose normally, whereas sterile anthers had higher anthocyanin levels and lower flavonoid levels and lower antioxidant enzyme activities. These results provide insights into the molecular mechanisms governing male sterility and demonstrate that GmMs1 could be used to create male-sterile lines through targeted mutagenesis. These findings pave the way for designing seed production technology and an intelligent male-sterile line system to utilize heterosis in soybean.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Andong Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dongdong Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Duo Zhao
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
2
|
Niu L, Wu Z, Liu H, Wu X, Wang W. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays. BMC Genomics 2019; 20:758. [PMID: 31640549 PMCID: PMC6805590 DOI: 10.1186/s12864-019-6109-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background The mesocotyl connects the coleoptilar node and the basal part of the seminal root of maize (Zea mays) seedling. The mesocotyl pushes the shoot of the seedling out of the soil during seed germination; thus, its growth is highly related to deep-sowing tolerance. Although many studies on the maize mesocotyl have been carried out at physiological and molecular levels, the proteomic changes associated with cellular and physiological activities during mesocotyl growth are still unknown. Results In the present study, the maize hybrid Zhengdan 958 was used to study mesocotyl growth and accompanying protein changes. The dark-grown etiolated mesocotyls exhibited a slow-fast-slow feature, with significant changes in the levels of indole-3-acetic acid (IAA) and cellulose and the activity of peroxidase (POD). In particular, POD activity increased with mesocotyl growth, showing higher activity at the mature (lower) end of the mesocotyl. For the proteomic analysis, soluble proteins were extracted from etiolated mesocotyls dark-grown for 48 h, 84 h, and 132 h, corresponding to the initial, rapid, and slow growth periods, respectively, and subjected to separation by two-dimensional gel electrophoresis (2-DE). As a result, 88 differentially abundant proteins (DAPs) were identified using MALDI-TOF-TOF analysis. At 48 h, most DAPs were stress proteins, heat shock proteins and storage proteins; at 84 h, oxidation/reduction proteins, carbohydrate biogenesis-related proteins and cytoskeleton-related proteins were highly accumulated; at 132 h, the most striking DAPs were those involved in the synthesis and modification of the cell wall and the biogenesis of carbohydrates. Gene ontology (GO) analysis showed that changes in the abundance and proportion of DAPs were consistent with cellular and physiological activities and biological processes during mesocotyl growth. The accumulation of nine DAPs of interest was verified by immunoblotting and RT-qPCR. Conclusions The present study revealed that the protein patterns in 2-D gels differed greatly with mesocotyl growth. At different growth periods, a specific set of DAPs participate in various biological processes and underlie the cellular and physiological activities of the mesocotyl. These results contributed to the understanding of mesocotyl growth and the cultivation of maize lines with deep-sowing tolerance.
Collapse
Affiliation(s)
- Liangjie Niu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhaokun Wu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hui Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaolin Wu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Różańska E, Czarnocka W, Baranowski Ł, Mielecki J, de Almeida Engler J, Sobczak M. Expression of both Arabidopsis γ-tubulin genes is essential for development of a functional syncytium induced by Heterodera schachtii. PLANT CELL REPORTS 2018; 37:1279-1292. [PMID: 29947953 PMCID: PMC6096582 DOI: 10.1007/s00299-018-2312-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 05/23/2023]
Abstract
After initial up-regulation, expression of TUBG1 and TUBG2 is significantly down-regulated in mature syncytia, but lack of expression of either of γ-tubulin genes reduces numbers of nematode infections and developing females. Infective second stage juveniles of sedentary plant parasitic nematode Heterodera schachtii invade the root vascular tissue and induce a feeding site, named syncytium, formed as a result of cell hypertrophy and partial cell wall dissolution leading to a multinucleate state. Syncytium formation and maintenance involves a molecular interplay between the plant host and the developing juveniles leading to rearrangements and fragmentation of the plant cytoskeleton. In this study, we investigated the role of two Arabidopsis γ-tubulin genes (TUBG1 and TUBG2), involved in MTs nucleation during syncytium development. Expression analysis revealed that both γ-tubulin's transcript levels changed during syncytium development and after initial up-regulation (1-3 dpi) they were significantly down-regulated in 7, 10 and 15 dpi syncytia. Moreover, TUBG1 and TUBG2 showed distinct immunolocalization patterns in uninfected roots and syncytia. Although no severe changes in syncytium anatomy and ultrastructure in tubg1-1 and tubg2-1 mutants were observed compared to syncytia induced in wild-type plants, nematode infection assays revealed reduced numbers of infecting juveniles and developed female nematodes in mutant lines. Our results indicate that the expression of both TUBG1 and TUBG2 genes, although generally down-regulated in mature syncytia, is essential for successful root infection, development of functional syncytium and nematode maturation.
Collapse
Affiliation(s)
- Elżbieta Różańska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Łukasz Baranowski
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Jakub Mielecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | | | - Mirosław Sobczak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
4
|
Stires JC, Latz MI. Contribution of the cytoskeleton to mechanosensitivity reported by dinoflagellate bioluminescence. Cytoskeleton (Hoboken) 2017; 75:12-21. [PMID: 28771965 DOI: 10.1002/cm.21392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023]
Abstract
The cytoskeleton is crucial to cell mechanics and sensing the extracellular physical environment. The objective of this study was to examine the role of the cortical cytoskeleton in mechanosensitivity in a unicellular protist, the marine dinoflagellate Lingulodinium polyedra, using its intrinsic bioluminescence as a rapid reporter of mechanotransduction. Pharmacological treatments resolved effects due to immediate cytoskeleton disruption from those due to cytoskeletal remodeling during the light to dark phase transition. The cytoskeleton was visualized by confocal laser scanning microscopy of immunohistochemically labeled microtubules and phalloidin labeled F-actin, and mechanosensitivity assessed based on the bioluminescence response to mechanical stimulation measured during the dark phase. Latrunculin B treatment after the transition from the light to dark phase resulted in some disruption of cortical F-actin, no observed effect on the cortical microtubules, and partial inhibition of the bioluminescence response. Treatment with oryzalin, which depolarizes microtubules, completely disrupted the microtubule network and cortical F-actin, and partially inhibited bioluminescence. These results demonstrate that cells retain some mechanosensitivity despite a disrupted cytoskeleton; link mechanosensitivity to intact F-actin; show a close connection between F-actin and microtubules comprising the cortical cytoskeleton; confirm a strong contribution of the actin cytoskeleton to the translocation of scintillons, vesicles containing the luminescent chemistry; and support the role of the actin cytoskeleton in the association of scintillons with the vacuole membrane.
Collapse
Affiliation(s)
- J C Stires
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92039
| | - M I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92039
| |
Collapse
|
5
|
Yu T, Li G, Liu P, Dong S, Zhang J, Zhao B. Proteomics analysis of maize (Zea mays L.) grain based on iTRAQ reveals molecular mechanisms of poor grain filling in inferior grains. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:83-96. [PMID: 28340398 DOI: 10.1016/j.plaphy.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
In maize, inferior grains (IG) located on the upper part of the ear have poor grain filling process compared to superior grains (SG) located on the middle and lower parts of the ear. This difference limits satisfactory yield and quality; however, the underlying molecular mechanisms remain unknown. Here, using the isobaric tag for relative and absolute quantification (iTRAQ) technology, the proteomes of IG and SG during early and middle grain filling stages were investigated. In total, 4720 proteins were identified in maize grain and 305 differentially accumulated proteins (DiAPs) were detected between IG and SG. These DiAPs were involved in diverse cellular and metabolic processes with preferred distribution in protein synthesis/destination and metabolism. Compared to SG, DiAPs related to cell growth/division and starch synthesis were lag-accumulated and down-regulated in IG, respectively, resulting in smaller sink sizes and lower sink activities in IG. Meanwhile, impediment of the glycolysis pathway in IG may lead to reduce energy supply and building materials for substance synthesis. Additionally, reactive oxygen species (ROS) homeostasis and the defense system were disturbed in IG, which might lead to reduce protection against various environmental stresses. The present study provides new information on the proteomic differences between IG and SG, and explains possible molecular mechanisms for poor grain filling in IG.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China
| | - Geng Li
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China
| | - Peng Liu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China.
| | - Shuting Dong
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China.
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China
| | - Bin Zhao
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China
| |
Collapse
|
6
|
Yu T, Li G, Dong S, Liu P, Zhang J, Zhao B. Proteomic analysis of maize grain development using iTRAQ reveals temporal programs of diverse metabolic processes. BMC PLANT BIOLOGY 2016; 16:241. [PMID: 27809771 PMCID: PMC5095984 DOI: 10.1186/s12870-016-0878-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/18/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grain development in maize is an essential process in the plant's life cycle and is vital for use of the plant as a crop for animals and humans. However, little is known regarding the protein regulatory networks that control grain development. Here, isobaric tag for relative and absolute quantification (iTRAQ) technology was used to analyze temporal changes in protein expression during maize grain development. RESULTS Maize grain proteins and changes in protein expression at eight developmental stages from 3 to 50 d after pollination (DAP) were performed using iTRAQ-based proteomics. Overall, 4751 proteins were identified; 2639 of these were quantified and 1235 showed at least 1.5-fold changes in expression levels at different developmental stages and were identified as differentially expressed proteins (DEPs). The DEPs were involved in different cellular and metabolic processes with a preferential distribution to protein synthesis/destination and metabolism categories. A K-means clustering analysis revealed coordinated protein expression associated with different functional categories/subcategories at different development stages. CONCLUSIONS Our results revealed developing maize grain display different proteomic characteristics at distinct stages, such as numerous DEPs for cell growth/division were highly expressed during early stages, whereas those for starch biosynthesis and defense/stress accumulated in middle and late stages, respectively. We also observed coordinated expression of multiple proteins of the antioxidant system, which are essential for the maintenance of reactive oxygen species (ROS) homeostasis during grain development. Particularly, some DEPs, such as zinc metallothionein class II, pyruvate orthophosphate dikinase (PPDK) and 14-3-3 proteins, undergo major changes in expression at specific developmental stages, suggesting their roles in maize grain development. These results provide a valuable resource for analyzing protein function on a global scale and also provide new insights into the potential protein regulatory networks that control grain yield and quality.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Geng Li
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| |
Collapse
|
7
|
Plant cytokinesis-No ring, no constriction but centrifugal construction of the partitioning membrane. Semin Cell Dev Biol 2015; 53:10-8. [PMID: 26529278 DOI: 10.1016/j.semcdb.2015.10.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022]
Abstract
Plants have evolved a unique way of partitioning the cytoplasm of dividing cells: Instead of forming a contractile ring that constricts the plasma membrane, plant cells target membrane vesicles to the plane of division where the vesicles fuse with one another to form the partitioning membrane. Plant cytokinesis starts in the centre and progresses towards the periphery, culminating in the fusion of the partitioning membrane with the parental plasma membrane. This membrane dynamics is orchestrated by a specific cytoskeletal array named phragmoplast that originates from interzone spindle remnants. Here we review the properties of the process as well as molecules that play specific roles in that process.
Collapse
|
8
|
Wang WQ, Liu SJ, Song SQ, Møller IM. Proteomics of seed development, desiccation tolerance, germination and vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:1-15. [PMID: 25461695 DOI: 10.1016/j.plaphy.2014.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 05/19/2023]
Abstract
Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark.
| |
Collapse
|
9
|
Molino D, Van der Giessen E, Gissot L, Hématy K, Marion J, Barthelemy J, Bellec Y, Vernhettes S, Satiat-Jeunemaître B, Galli T, Tareste D, Faure JD. Inhibition of very long acyl chain sphingolipid synthesis modifies membrane dynamics during plant cytokinesis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1422-30. [DOI: 10.1016/j.bbalip.2014.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/23/2014] [Accepted: 06/24/2014] [Indexed: 01/08/2023]
|
10
|
Zhang Z, Zhao H, Tang J, Li Z, Li Z, Chen D, Lin W. A proteomic study on molecular mechanism of poor grain-filling of rice (Oryza sativa L.) inferior spikelets. PLoS One 2014; 9:e89140. [PMID: 24586550 PMCID: PMC3931721 DOI: 10.1371/journal.pone.0089140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/15/2014] [Indexed: 12/19/2022] Open
Abstract
Cultivars of rice (Oryza sativa L.), especially of the type with large spikelets, often fail to reach the yield potential as expected due to the poor grain-filling on the later flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). The present study showed that the size and grain weight of superior spikelets (SS) was greater than those of inferior spikelets (IS), and the carbohydrate supply should not be the major problem for the poor grain-filling because there was adequate amount of sucrose in IS at the initial grain-filling stage. High resolution two-dimensional gel electrophoresis (2-DE) in combination with Coomassie-brilliant blue (CBB) and Pro-Q Diamond phosphoprotein fluorescence stain revealed that 123 proteins in abundance and 43 phosphoproteins generated from phosphorylation were significantly different between SS and IS. These proteins and phosphoproteins were involved in different cellular and metabolic processes with a prominently functional skew toward metabolism and protein synthesis/destination. Expression analyses of the proteins and phosphoproteins associated with different functional categories/subcategories indicated that the starch synthesis, central carbon metabolism, N metabolism and cell growth/division were closely related to the poor grain-filling of IS. Functional and expression pattern studies also suggested that 14-3-3 proteins played important roles in IS poor grain-filling by regulating the activity of starch synthesis enzymes. The proteome and phosphoproteome obtained from this study provided a better understanding of the molecular mechanism of the IS poor grain-filling. They were also expected to be highly useful for improving the grain filling of rice.
Collapse
Affiliation(s)
- Zhixing Zhang
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hong Zhao
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jun Tang
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhong Li
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhou Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dongmei Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenxiong Lin
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Miro B, Ismail AM. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2013; 4:269. [PMID: 23888162 PMCID: PMC3719019 DOI: 10.3389/fpls.2013.00269] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/02/2013] [Indexed: 05/20/2023]
Abstract
Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops.
Collapse
Affiliation(s)
| | - Abdelbagi M. Ismail
- Crop and Environmental Sciences Division, International Rice Research InstituteManila, Philippines
| |
Collapse
|
12
|
Liu C, Qi X, Zhao Q, Yu J. Characterization and functional analysis of the potato pollen-specific microtubule-associated protein SBgLR in tobacco. PLoS One 2013; 8:e60543. [PMID: 23536914 PMCID: PMC3607588 DOI: 10.1371/journal.pone.0060543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/26/2013] [Indexed: 01/16/2023] Open
Abstract
Microtubule-associated proteins play a crucial role in the regulation of microtubule dynamics, and are very important for plant cell and organ development. SBgLR is a potato pollen-specific protein, with five imperfect V-V-E-K-K-N/E-E repetitive motifs that are responsible for microtubule binding activity. In present study, SBgLR showed typical microtubule-associated protein characteristics; it bound tubulin and microtubules, and colocalized with microtubules in vitro. We also found that SBgLR could form oligomers, and that both the SBgLR monomers and oligomers bundle microtubules in vitro. Constitutive expression of SBgLR in tobacco caused curving and right-handed twisting root growth, abnormal directional cell expansion and cell layer arrangement, and pollen abortion. Immunofluorescence staining assays revealed that microtubule organization is altered in root epidermal cells in SBgLR-overexpressing lines. These suggest that SBgLR functions as a microtubule-associated protein in pollen development. Our results indicate that normal organization of MTs may be crucial for pollen development.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Qi
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qian Zhao
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Xu C, Liu Z, Zhang L, Zhao C, Yuan S, Zhang F. Organization of actin cytoskeleton during meiosis I in a wheat thermo-sensitive genic male sterile line. PROTOPLASMA 2013; 250:415-422. [PMID: 22350736 DOI: 10.1007/s00709-012-0386-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/30/2012] [Indexed: 05/31/2023]
Abstract
BS366 is a thermo-sensitive male sterile line of wheat (Triticum aestivum L.) for two-line hybrid breeding, which exhibits aberrant meiotic cytokinesis under low temperature. Through transcriptome analysis, a possible regulatory role for plant actin cytoskeleton was suggested. However, the organization of actin cytoskeleton in meiosis has been poorly understood so far. Here, fixed microsporocytes during meiosis were labeled with tetramethylrhodamine isothiocyanate-phalloidin and 4',6-diamidino-2-phenylindole. Quantities of fluorescent micrographs were captured using a confocal microscope, including the transient state from metaphase to telophase. We observed that actin filaments were abundant in typical kariokinetic spindle, central spindle (parallel microtubules or actin fibers between two separated chromosomes in anaphase), and phragmoplast. Interestingly, we identified the Chinese lantern-shaped actin phragmoplast in wheat meiosis for the first time. Under low temperature, phragmoplast actin filaments were chaotic and normal cell plate failed to form. These data provide new insights into the organization of actin filaments during male meiosis of plant and support a role of actin cytoskeleton in bringing about thermo-sensitive male sterility in wheat.
Collapse
Affiliation(s)
- Chenguang Xu
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | | | | | | | | | | |
Collapse
|
14
|
Yang Z, Wu H, Li Y. Toxic effect on tissues and differentially expressed genes in hepatopancreas identified by suppression subtractive hybridization of freshwater pearl mussel (Hyriopsis cumingii) following microcystin-LR challenge. ENVIRONMENTAL TOXICOLOGY 2012; 27:393-403. [PMID: 20957730 DOI: 10.1002/tox.20652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/08/2010] [Accepted: 08/10/2010] [Indexed: 05/30/2023]
Abstract
Microcystins are a family of potent hepatotoxins produced by freshwater cyanobacteria and can cause animal intoxications and human diseases. In this study, the effect of microcystin-LR (MC-LR) on the tissues of freshwater pearl mussel (Hyriopsis cumingii) was evaluated and differentially expressed genes in the hepatopancreas of the mussel exposed to MC-LR were identified. HPLC analysis of cell extracts from various tissues of the mussel indicated that the hepatopancreas had the highest MC-LR levels (55.78 ± 6.73 μg g⁻¹ DW) after 15-day exposure. The MC-LR concentration in gill or muscle was an order of magnitude less than in hepatopancreas or gonad. Subtractive cDNA library was constructed by suppression subtractive hybridization (SSH), and ∼400 positive clones were sequenced, from which 98 high quality sequences were obtained by BLAST analysis. The screening identified numerous genes involved in apoptosis, signal transduction, cytoskeletal remodel, innate immunity, material and energy metabolism, translation and transcription which were extensively discussed. The results of this study add large amount of information to the mussel genome data, and for the first time present the basic data on toxicity effect of MC-LR on mussel.
Collapse
Affiliation(s)
- Ziyan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | | | | |
Collapse
|
15
|
Tasleem-Tahir A, Nadaud I, Chambon C, Branlard G. Expression Profiling of Starchy Endosperm Metabolic Proteins at 21 Stages of Wheat Grain Development. J Proteome Res 2012; 11:2754-73. [DOI: 10.1021/pr201110d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Isabelle Nadaud
- INRA, UMR 1095 GDEC-UBP, 234 avenue du
Brézet, F-63100 Clermont-Ferrand,
France
| | - Christophe Chambon
- INRA, QPA, Proteomic Plateforme, F-63122 Saint-Genès Champanelle,
France
| | - Gérard Branlard
- INRA, UMR 1095 GDEC-UBP, 234 avenue du
Brézet, F-63100 Clermont-Ferrand,
France
| |
Collapse
|
16
|
Sheremet YA, Yemets AI, Blume YB. Inhibitors of tyrosine kinases and phosphatases as a tool for the investigation of microtubule role in plant cold response. CYTOL GENET+ 2012. [DOI: 10.3103/s0095452712010112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Sadiq I, Fanucchi F, Paparelli E, Alpi E, Bachi A, Alpi A, Perata P. Proteomic identification of differentially expressed proteins in the anoxic rice coleoptile. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2234-43. [PMID: 21920630 DOI: 10.1016/j.jplph.2011.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 05/22/2023]
Abstract
Rice is the staple food for more than fifty percent of the world's population, and is therefore an important crop. However, its production is hindered by several biotic and abiotic stresses. Although rice is the only crop that can germinate even in the complete absence of oxygen (i.e. anoxia), flooding (low oxygen) is one of the major causes of reduced rice production. Rice germination under anoxia is characterized by the elongation of the coleoptile, but leaf growth is hampered. In this work, a comparative proteomic approach was used to detect and identify differentially expressed proteins in the anoxic rice coleoptile compared to the aerobic coleoptile. Thirty-one spots were successfully identified by MALDI-TOF MS analysis. The majority of the identified proteins were related to stress responses and redox metabolism. The expression levels of twenty-three proteins and their respective mRNAs were analyzed in a time course experiment.
Collapse
Affiliation(s)
- Irfan Sadiq
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu H, Yang Z, Yang M, Shen S. The differential proteome of endosperm and embryo from mature seed of Jatropha curcas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:660-6. [PMID: 21958708 DOI: 10.1016/j.plantsci.2011.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 01/24/2011] [Accepted: 03/18/2011] [Indexed: 05/23/2023]
Abstract
Jatrpha curcas L., a non-model woody plant belonging to Euphorbiaceae family, is a promising economic plant due to the high oil content in seed and high tolerance to drought and salt stress. The embryo and endosperm of J. curcas seed differ in morphology, function and ploidy. To characterize the protein profiles of these two tissues, we have performed proteomic analysis with the dry mature J. curcas seeds. The data showed that the 2-DE profiles of endosperm and embryo were similar to each other. There are 66 differential proteins between the two seed tissues, in which 28 proteins distributed in 9 distinct functional classes, have been identified successfully in endosperm or embryo. The major groups of differential proteins are associated with metabolism (25%) and disease/defence (18%). Our results demonstrated that in the dry mature J. curcas seeds, the proteins involved in oil mobilization, signal transduction, transcription, protein synthesis, and cell cycle which are essential for the seed germination have occurred in endosperm and embryo, reflecting the fact that proteins required for germination are already present in the dry mature seed.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Research and Development for Resource Plant, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
19
|
Unifying themes in microbial associations with animal and plant hosts described using the gene ontology. Microbiol Mol Biol Rev 2011; 74:479-503. [PMID: 21119014 DOI: 10.1128/mmbr.00017-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbes form intimate relationships with hosts (symbioses) that range from mutualism to parasitism. Common microbial mechanisms involved in a successful host association include adhesion, entry of the microbe or its effector proteins into the host cell, mitigation of host defenses, and nutrient acquisition. Genes associated with these microbial mechanisms are known for a broad range of symbioses, revealing both divergent and convergent strategies. Effective comparisons among these symbioses, however, are hampered by inconsistent descriptive terms in the literature for functionally similar genes. Bioinformatic approaches that use homology-based tools are limited to identifying functionally similar genes based on similarities in their sequences. An effective solution to these limitations is provided by the Gene Ontology (GO), which provides a standardized language to describe gene products from all organisms. The GO comprises three ontologies that enable one to describe the molecular function(s) of gene products, the biological processes to which they contribute, and their cellular locations. Beginning in 2004, the Plant-Associated Microbe Gene Ontology (PAMGO) interest group collaborated with the GO consortium to extend the GO to accommodate terms for describing gene products associated with microbe-host interactions. Currently, over 900 terms that describe biological processes common to diverse plant- and animal-associated microbes are incorporated into the GO database. Here we review some unifying themes common to diverse host-microbe associations and illustrate how the new GO terms facilitate a standardized description of the gene products involved. We also highlight areas where new terms need to be developed, an ongoing process that should involve the whole community.
Collapse
|
20
|
Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pè ME, Benvenuto E, Delledonne M, Pezzotti M. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. PLANT PHYSIOLOGY 2010; 154:1439-59. [PMID: 20826702 PMCID: PMC2971619 DOI: 10.1104/pp.110.160275] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/08/2010] [Indexed: 05/19/2023]
Abstract
The analysis of grapevine (Vitis vinifera) berries at the transcriptomic, proteomic, and metabolomic levels can provide great insight into the molecular events underlying berry development and postharvest drying (withering). However, the large and very different data sets produced by such investigations are difficult to integrate. Here, we report the identification of putative stage-specific biomarkers for berry development and withering and, to our knowledge, the first integrated systems-level study of these processes. Transcriptomic, proteomic, and metabolomic data were integrated using two different strategies, one hypothesis free and the other hypothesis driven. A multistep hypothesis-free approach was applied to data from four developmental stages and three withering intervals, with integration achieved using a hierarchical clustering strategy based on the multivariate bidirectional orthogonal projections to latent structures technique. This identified stage-specific functional networks of linked transcripts, proteins, and metabolites, providing important insights into the key molecular processes that determine the quality characteristics of wine. The hypothesis-driven approach was used to integrate data from three withering intervals, starting with subdata sets of transcripts, proteins, and metabolites. We identified transcripts and proteins that were modulated during withering as well as specific classes of metabolites that accumulated at the same time and used these to select subdata sets of variables. The multivariate bidirectional orthogonal projections to latent structures technique was then used to integrate the subdata sets, identifying variables representing selected molecular processes that take place specifically during berry withering. The impact of this holistic approach on our knowledge of grapevine berry development and withering is discussed.
Collapse
|
21
|
Garavaglia BS, Thomas L, Zimaro T, Gottig N, Daurelio LD, Ndimba B, Orellano EG, Ottado J, Gehring C. A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host. BMC PLANT BIOLOGY 2010; 10:51. [PMID: 20302677 PMCID: PMC2923525 DOI: 10.1186/1471-2229-10-51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 03/21/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival. RESULTS Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 alpha subunit, maturase K, and alpha- and beta-tubulin. CONCLUSIONS We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.
Collapse
Affiliation(s)
- Betiana S Garavaglia
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
- Consejo de Investigaciones de la Universidad Nacional de Rosario, Rosario, Argentina
| | - Ludivine Thomas
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Tamara Zimaro
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Natalia Gottig
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Lucas D Daurelio
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Bongani Ndimba
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Elena G Orellano
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Jorgelina Ottado
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Chris Gehring
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- CBRC, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Yu Y, Li Y, Li L, Lin J, Zheng C, Zhang L. Overexpression of PwTUA1, a pollen-specific tubulin gene, increases pollen tube elongation by altering the distribution of alpha-tubulin and promoting vesicle transport. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2737-49. [PMID: 19454597 PMCID: PMC2692020 DOI: 10.1093/jxb/erp143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 05/19/2023]
Abstract
Tubulin genes are intimately associated with cell division and cell elongation, which are central to plant secondary cell wall development. However, their roles in pollen tube polar growth remain elusive. Here, a TUA1 gene from Picea wilsonii, which is specifically expressed in pollen, was isolated. Semi-quantitative RT-PCR analysis showed that the amount of PwTUA1 transcript varied at each stage of growth of the pollen tube and was induced by calcium ions and boron. Transient expression analysis in P. wilsonii pollen indicated that PwTUA1 improved pollen germination and pollen tube growth. The pollen of transgenic Arabidopsis overexpressing PwTUA1 also showed a higher percentage of germination and faster growth than wild-type plants not only in optimal germination medium, but also in medium supplemented with elevated levels of exogenous calcium ions or boron. Immunofluorescence and electron microscopy showed alpha-tubulin to be enriched and more vesicles accumulated in the apex region in germinating transgenic Arabidopsis pollen compared with wild-type plants. These results demonstrate that PwTUA1 up-regulated by calcium ions and boron contributes to pollen tube elongation by altering the distribution of alpha-tubulin and regulating the deposition of pollen cell wall components during the process of tube growth. The possible role of PwTUA1 in microtubule dynamics and organization was discussed.
Collapse
Affiliation(s)
- YanLi Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - YanZe Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - LingLi Li
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - JinXing Lin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
- To whom correspondence should be addressed. E-mail: or
| | - LingYun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
23
|
Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T. Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. PLANT PHYSIOLOGY 2008; 148:908-25. [PMID: 18753281 PMCID: PMC2556828 DOI: 10.1104/pp.108.125633] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 08/25/2008] [Indexed: 05/20/2023]
Abstract
Accumulation of reserve materials in filling grains involves the coordination of different metabolic and cellular processes, and understanding the molecular mechanisms underlying the interconnections remains a major challenge for proteomics. Rice (Oryza sativa) is an excellent model for studying grain filling because of its importance as a staple food and the available genome sequence database. Our observations showed that embryo differentiation and endosperm cellularization in developing rice seeds were completed approximately 6 d after flowering (DAF); thereafter, the immature seeds mainly underwent cell enlargement and reached the size of mature seeds at 12 DAF. Grain filling began at 6 DAF and lasted until 20 DAF. Dynamic proteomic analyses revealed 396 protein spots differentially expressed throughout eight sequential developmental stages from 6 to 20 DAF and determined 345 identities. These proteins were involved in different cellular and metabolic processes with a prominently functional skew toward metabolism (45%) and protein synthesis/destination (20%). Expression analyses of protein groups associated with different functional categories/subcategories showed that substantially up-regulated proteins were involved in starch synthesis and alcoholic fermentation, whereas the down-regulated proteins in the process were involved in central carbon metabolism and most of the other functional categories/subcategories such as cell growth/division, protein synthesis, proteolysis, and signal transduction. The coordinated changes were consistent with the transition from cell growth and differentiation to starch synthesis and clearly indicated that a switch from central carbon metabolism to alcoholic fermentation may be important for starch synthesis and accumulation in the developmental process.
Collapse
Affiliation(s)
- Sheng Bao Xu
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
24
|
Miles JR, Blomberg LA, Krisher RL, Everts RE, Sonstegard TS, Van Tassell CP, Zuelke KA. Comparative transcriptome analysis of in vivo- and in vitro-produced porcine blastocysts by small amplified RNA-serial analysis of gene expression (SAR-SAGE). Mol Reprod Dev 2008; 75:976-88. [PMID: 18357560 DOI: 10.1002/mrd.20844] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Production of embryos in vitro has enormous potential for research and commercial applications. Unfortunately, in vitro production of porcine embryos is extremely inefficient. Despite the characterization of distinct phenotypes, little is known about the molecular mechanisms and altered physiological processes of in vitro-produced embryos. The objective of this study was to compare global gene expression patterns from in vivo- (IVO) and in vitro-produced (IVP) porcine embryos using small amplified RNA-serial analysis of gene expression (SAR-SAGE). Whole-cell RNA from pools of Day 6 IVO and IVP blastocysts was used to construct SAR-SAGE libraries. Sequence analysis of the IVO and IVP libraries yielded 98,771 and 98,408 tags, respectively. A total of 20,029 and 23,453 putative transcripts were detected in the IVO and IVP libraries, respectively. Statistical analyses of SAGE tag frequencies between the IVO and IVP libraries indicated that 938 and 193 tags were differentially expressed at a P < 0.05 and P < 0.001 level of significance, respectively, suggesting significant deviations in transcriptome profiles from IVO and IVP embryos. Categorization of differentially expressed transcripts into functional groupings indicated a significant deviation in gene expression from IVP blastocysts compared with IVO blastocysts for a number of biological processes including cellular metabolism, organization, and response to stress. Real-time PCR confirmed differential expression for several transcripts from independent IVO and IVP blastocysts. These results demonstrate compromised gene expression in IVP blastocysts compared with IVO blastocysts for a number of biological processes, particularly processes involved in mitochondrial function; thereby providing potential target pathways for improvement of IVP methods.
Collapse
Affiliation(s)
- Jeremy R Miles
- USDA-ARS, Biotechnology and Germplasm Laboratory, Beltsville, Maryland 20705, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Radchuk VV, Sreenivasulu N, Blume Y, Weschke W. Distinct tubulin genes are differentially expressed during barley grain development. PHYSIOLOGIA PLANTARUM 2007; 131:571-80. [PMID: 18251848 DOI: 10.1111/j.1399-3054.2007.00976.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tubulins, as major components involved in the organization of microtubules, play an important role in plant development. We describe here the expression profiles of all known alpha-tubulin (TUA), beta-tubulin (TUB) and gamma-tubulin (TUG) genes of barley (Hordeum vulgare), involving eight newly identified TUB sequences, five established TUA genes and one TUG gene. Macroarray and Northern blot-based expression patterns in the pericarp, endosperm and embryo were obtained over the course of the development of the grain between anthesis and maturation. These revealed that the various tubulin genes differed in their levels of expression, and to some extent were tissue specific. Two expression peaks were detected in the developing endosperm. The first and more prominent peak, at 2 days after flowering, included expression of almost all the tubulin genes. These tubulins are thought to be involved in mitoses during the formation of the syncytial endosperm. The second, less pronounced but more extended, peak included only some of the tubulin genes (HvTUA3, HvTUB1 and HvTUG) and might be associated with the cell wall organization in aleurone and starchy endosperm. The HvTUA5 gene is expressed only in embryo of the developing grain and may be associated with shoot establishment. The expression profiles of the tubulin folding cofactors HvTFC A and HvTFC B as well as small G-protein HvArl2 genes were almost perfectly correlated with the global levels of tubulin mRNA, implying that they have a role in the control of the polymerization of alpha/beta-tubulin heterodimers.
Collapse
Affiliation(s)
- Volodymyr V Radchuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany.
| | | | | | | |
Collapse
|
26
|
Guo F, Yu L, Watkins S, Han Y. Orientation of microtubules suggests a role in mRNA transportation in fertilized eggs of Chinese pine (Pinus tabulaeformis). PROTOPLASMA 2007; 231:239-243. [PMID: 17922266 DOI: 10.1007/s00709-007-0266-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/03/2007] [Indexed: 05/25/2023]
Abstract
Polysomes become associated with microtubules (MTs) in egg cells of Chinese pine upon fertilization, providing direct evidence for MT-based intracellular mRNA and polysome localization. We have investigated by immunoelectron microscopy the orientation and spatial distribution of MTs and their association with polysomes in the fertilized egg cells. There is a perinuclear accumulation of MTs and polysomes in the zygote soon after fertilization. At this time, some of the MTs are perpendicular to the nuclear envelope and directly connected to the outer membrane or nuclear-pore complexes (NPC) at one end, and the other ends reach to the outer tier or cortical MTs that are parallel to the long axis of the zygote. The polysomes in the perinuclear region show the same spatial and temporal pattern as the MTs. Immunolocalization of the mRNA-binding protein hnRNP indicates that the mRNAs are loaded onto the nucleus-associated MTs immediately after their export from the nuclear-pore complexes. The polysomes and mRNAs are then transported from these MTs to the outer tier and/or cortical MTs, where they further localize to the polar region of the cell.
Collapse
Affiliation(s)
- Fengli Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, China.
| | | | | | | |
Collapse
|
27
|
Lahmy S, Guilleminot J, Schmit AC, Pelletier G, Chaboute ME, Devic M. QQT proteins colocalize with microtubules and are essential for early embryo development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:615-26. [PMID: 17419841 DOI: 10.1111/j.1365-313x.2007.03072.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
During Arabidopsis embryogenesis, the control of division between daughter cells is critical for pattern formation. Two embryo-defective (emb) mutant lines named quatre-quart (qqt) were characterized by forward and reverse genetics. The terminal arrest of qqt1 and qqt2 embryos was at the octant stage, just prior to the round of periclinal divisions that establishes the dermatogen stage . Homozygous embryos of a weaker allele of qqt1 were able to divide further, resulting in aberrant periclinal divisions. These phenotypic analyses support an essential role of the QQT proteins in the correct formation of the tangential divisions. That an important proportion of qqt1 embryos were arrested prior to the octant stage indicated a more general role in cell division. The analysis of QQT1 and QQT2 genes revealed that they belong to a small subgroup of the large family encoding ATP/GTP binding proteins, and are widely conserved among plants, vertebrates and Archaea. We showed that QQT1 and QQT2 proteins interact with each other in a yeast two-hybrid system, and that QQT1 and QQT2 tagged by distinct fluorescent probes colocalize with microtubules during mitosis, in agreement with their potential role in cell division and their mutant phenotype. We propose that QQT1 and QQT2 proteins participate in the organization of microtubules during cell division, and that this function is essential for the correct development of the early embryo.
Collapse
Affiliation(s)
- Sylvie Lahmy
- Laboratoire Génome et Développement des Plantes, UMRCNRS 5096, Université de Perpignan, Avenue Paul Alduy, 66860 Perpignan-cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Méchin V, Thévenot C, Le Guilloux M, Prioul JL, Damerval C. Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. PLANT PHYSIOLOGY 2007; 143:1203-19. [PMID: 17237188 PMCID: PMC1820922 DOI: 10.1104/pp.106.092148] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 01/09/2007] [Indexed: 05/13/2023]
Abstract
Although the morphological steps of maize (Zea mays) endosperm development are well described, very little is known concerning the coordinated accumulation of the numerous proteins involved. Here, we present a proteomic study of maize endosperm development. The accumulation pattern of 409 proteins at seven developmental stages was examined. Hierarchical clustering analysis allowed four main developmental profiles to be recognized. Comprehensive investigation of the functions associated with clusters resulted in a consistent picture of the developmental coordination of cellular processes. Early stages, devoted to cellularization, cell division, and cell wall deposition, corresponded to maximal expression of actin, tubulins, and cell organization proteins, of respiration metabolism (glycolysis and tricarboxylic acid cycle), and of protection against reactive oxygen species. An important protein turnover, which is likely associated with the switch from growth and differentiation to storage, was also suggested from the high amount of proteases. A relative increase of abundance of the glycolytic enzymes compared to tricarboxylic acid enzymes is consistent with the recent demonstration of anoxic conditions during starch accumulation in the endosperm. The specific late-stage accumulation of the pyruvate orthophosphate dikinase may suggest a critical role of this enzyme in the starch-protein balance through inorganic pyrophosphate-dependent restriction of ADP-glucose synthesis in addition to its usually reported influence on the alanine-aromatic amino acid synthesis balance.
Collapse
Affiliation(s)
- Valérie Méchin
- Unité Mixte de Recherche 206, Chimie Biologique, Institut National de la Recherche Agronomique, Institut National Agronomique Paris-Grignon, F-78850 Thiverval Grignon, France.
| | | | | | | | | |
Collapse
|
29
|
Zaffryar S, Zimerman B, Abu-Abied M, Belausov E, Lurya G, Vainstein A, Kamenetsky R, Sadot E. Development-specific association of amyloplasts with microtubules in scale cells of Narcissus tazetta. PROTOPLASMA 2007; 230:153-63. [PMID: 17458630 DOI: 10.1007/s00709-006-0238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 10/24/2005] [Indexed: 05/15/2023]
Abstract
Narcissus tazetta is one of the major geophyte crops worldwide, but little is known about its cell biology. The narcissus storage organ was studied by monitoring scale cell biology during the growth stage and dormancy, and it was found that amyloplasts gradually increased in size and reached a maximum at dormancy. In parallel, microtubules changed their organisation: during the growth phase (February to March) they were oblique; during April and May, microtubules formed a network with round "holes"; by late June and the beginning of July, when dormancy started, they were organised in parallel arrays. The holes formed in the microtubule array corresponded to amyloplasts. A closer look showed that during a short time window, while the plants were preparing for dormancy, the microtubules surrounded the amyloplasts. In vitro reconfirmation of this phenomenon was obtained when fluorescent bovine brain microtubules enwrapped isolated amyloplasts that had been purified between April and July but not those purified between January and March. Interestingly, protease treatment of amyloplasts did not completely prevent binding of microtubules, which suggests the existence of a protease-resistant factor that docks microtubules to the outer membrane of amyloplasts.
Collapse
Affiliation(s)
- S Zaffryar
- Department of Ornamental Horticulture, Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cosentino Lagomarsino M, Tanase C, Vos JW, Emons AMC, Mulder BM, Dogterom M. Microtubule organization in three-dimensional confined geometries: evaluating the role of elasticity through a combined in vitro and modeling approach. Biophys J 2006; 92:1046-57. [PMID: 17098802 PMCID: PMC1779979 DOI: 10.1529/biophysj.105.076893] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microtubules or microtubule bundles in cells often grow longer than the size of the cell, which causes their shape and organization to adapt to constraints imposed by the cell geometry. We test the reciprocal role of elasticity and confinement in the organization of growing microtubules in a confining box-like geometry, in the absence of other (active) microtubule organizing processes. This is inspired, for example, by the cortical microtubule array of elongating plant cells, where microtubules are typically organized in an aligned array transverse to the cell elongation axis. The method we adopt is a combination of analytical calculations, in which the polymers are modeled as inextensible filaments with bending elasticity confined to a two-dimensional surface that defines the limits of a three-dimensional space, and in vitro experiments, in which microtubules are polymerized from nucleation seeds in microfabricated chambers. We show that these features are sufficient to organize the polymers in aligned, coiling configurations as for example observed in plant cells. Though elasticity can account for the regularity of these arrays, it cannot account for a transverse orientation of microtubules to the cell's long axis. We therefore conclude that an additional active, force-generating process is necessary to create a coiling configuration perpendicular to the long axis of the cell.
Collapse
|
31
|
Agrawal GK, Thelen JJ. Large Scale Identification and Quantitative Profiling of Phosphoproteins Expressed during Seed Filling in Oilseed Rape. Mol Cell Proteomics 2006; 5:2044-59. [PMID: 16825184 DOI: 10.1074/mcp.m600084-mcp200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Seed filling is a dynamic, temporally regulated phase of seed development that determines the composition of storage reserves in mature seeds. Although the metabolic pathways responsible for storage reserve synthesis such as carbohydrates, oils, and proteins are known, little is known about their regulation. Protein phosphorylation is a ubiquitous form of regulation that influences many aspects of dynamic cellular behavior in plant biology. Here a systematic study has been conducted on five sequential stages (2, 3, 4, 5, and 6 weeks after flowering) of seed development in oilseed rape (Brassica napus L. Reston) to survey the presence and dynamics of phosphoproteins. High resolution two-dimensional gel electrophoresis in combination with a phosphoprotein-specific Pro-Q Diamond phosphoprotein fluorescence stain revealed approximately 300 phosphoprotein spots. Of these, quantitative expression profiles for 234 high quality spots were established, and hierarchical cluster analyses revealed the occurrence of six principal expression trends during seed filling. The identity of 103 spots was determined using LC-MS/MS. The identified spots represented 70 non-redundant phosphoproteins belonging to 10 major functional categories including energy, metabolism, protein destination, and signal transduction. Furthermore phosphorylation within 16 non-redundant phosphoproteins was verified by mapping the phosphorylation sites by LC-MS/MS. Although one of these sites was postulated previously, the remaining sites have not yet been reported in plants. Phosphoprotein data were assembled into a web database. Together this study provides evidence for the presence of a large number of functionally diverse phosphoproteins, including global regulatory factors like 14-3-3 proteins, within developing B. napus seed.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Biochemistry Department, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| | | |
Collapse
|
32
|
Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule JJ, Blein JP, Simon-Plas F. Proteomics of plant detergent-resistant membranes. Mol Cell Proteomics 2006; 5:1396-411. [PMID: 16648627 DOI: 10.1074/mcp.m600044-mcp200] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains that play important roles in protein sorting, signal transduction, or infection by pathogens. Recent reports demonstrated the presence, in plants, of detergent-resistant fractions isolated from plasma membrane. Analysis of the lipidic composition of this fraction revealed its enrichment in sphingolipids and sterols and depletion in phospho- and glycerolipids as previously observed for animal microdomains. One-dimensional gel electrophoresis experiments indicated that these detergent-resistant fractions are able to recruit a specific set of plasma membrane proteins and exclude others. In the present study, we used mass spectrometry to give an extensive description of a tobacco plasma membrane fraction resistant to solubilization with Triton X-100. This led to the identification of 145 proteins whose functional and physicochemical characteristics were analyzed in silico. Parameters such as isoelectric point, molecular weight, number and length of transmembrane segments, or global hydrophobicity were analyzed and compared with the data available concerning plant plasma membrane proteins. Post-translational modifications, such as myristoylation, palmitoylation, or presence of a glycosylphosphatidylinositol anchor, were examined in relation to the presence of the corresponding proteins in these microdomains. From a functional point of view, this analysis indicated that if a primary function of the plasma membrane, such as transport, seems under-represented in the detergent-resistant fraction, others undergo a significant increase of their relative importance. Among these are signaling and response to biotic and abiotic stress, cellular trafficking, and cell wall metabolism. This suggests that these domains are likely to constitute, as in animal cells, signaling platforms involved in these physiological functions.
Collapse
Affiliation(s)
- Johanne Morel
- Laboratoire de Phytopharmacie, Unité Mixte de Recherche (UMR) 692 Institut National de la Recherche Agronomique (INRA)/Ecole Nationale d'Enseignement Supérieur Agronomique de Dijon (ENESAD)/Université de Bourgogne, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 2005; 9:1199-211. [PMID: 15569152 DOI: 10.1111/j.1365-2443.2004.00798.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytokinesis is the critical step during which daughter cells are separated. We showed previously that a protein complex that consists of NACK1 (and NACK2) kinesin-like protein and NPK1 MAPKKK and its substrate NQK1 MAPKK are required for progression of cytokinesis in Nicotiana tabacum. The genome of Arabidopsis thaliana encodes homologues of NACK1 and NACK2, namely, AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2, respectively. Loss-of-function mutations in AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 result in the occasional failure of somatic and male-meiotic cytokinesis, respectively. However, it is likely that these genes function redundantly to some extent in somatic tissues and female gametogenesis. We describe the phenotypes of Arabidopsis plants that have mutations in both the AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes. These phenotypes suggest that the two genes are essential during both male and female gametogenesis. Female gametes with atnack1 atnack2 double mutations failed to cellularize and to generate a central cell, synergids and the egg cells. Male gametes with atnack1 atnack2 mutations were also not transmitted to the next generation. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes for kinesin-like proteins have overlapping functions that are essential for gametogenetic cytokinesis. They appear to be essential components of a MAP kinase cascade that promotes cytokinesis of plant cells in both gametophytic (haploid) and sporophytic (diploid) proliferation.
Collapse
Affiliation(s)
- Hirokazu Tanaka
- College of Bioscience and Biotechnology, Chubu University and CREST, Japan Science and Technology Corporation, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Giavalisco P, Nordhoff E, Kreitler T, Klöppel KD, Lehrach H, Klose J, Gobom J. Proteome analysis ofArabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics 2005; 5:1902-13. [PMID: 15815986 DOI: 10.1002/pmic.200401062] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present study we show results of a large-scale proteome analysis of the recently sequenced plant Arabidopsis thaliana. On the basis of a previously published sequential protein extraction protocol, we prepared protein extracts from eight different A. thaliana tissues (primary leaf, leaf, stem, silique, seedling, seed, root, and inflorescence) and analysed these by two-dimensional gel electrophoresis. A total of 6000 protein spots, from three of these tissues, namely primary leaf, silique and seedling, were excised and the contained proteins were analysed by matrix assisted laser desorption/ionisation time of flight mass spectrometry peptide mass fingerprinting. This resulted in the identification of the proteins contained in 2943 spots, which were found to be products of 663 different genes. In this report we present and discuss the methodological and biological results of our plant proteome analysis.
Collapse
|
35
|
Laitinen RAE, Immanen J, Auvinen P, Rudd S, Alatalo E, Paulin L, Ainasoja M, Kotilainen M, Koskela S, Teeri TH, Elomaa P. Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Res 2005; 15:475-86. [PMID: 15781570 PMCID: PMC1074362 DOI: 10.1101/gr.3043705] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 01/04/2005] [Indexed: 11/25/2022]
Abstract
Development of composite inflorescences in the plant family Asteraceae has features that cannot be studied in the traditional model plants for flower development. In Gerbera hybrida, inflorescences are composed of morphologically different types of flowers tightly packed into a flower head (capitulum). Individual floral organs such as pappus bristles (sepals) are developmentally specialized, stamens are aborted in marginal flowers, petals and anthers are fused structures, and ovaries are located inferior to other floral organs. These specific features have made gerbera a rewarding target of comparative studies. Here we report the analysis of a gerbera EST database containing 16,994 cDNA sequences. Comparison of the sequences with all plant peptide sequences revealed 1656 unique sequences for gerbera not identified elsewhere within the plant kingdom. Based on the EST database, we constructed a cDNA microarray containing 9000 probes and have utilized it in identification of flower-specific genes and abundantly expressed marker genes for flower scape, pappus, stamen, and petal development. Our analysis revealed several regulatory genes with putative functions in flower-organ development. We were also able to associate a number of abundantly and specifically expressed genes with flower-organ differentiation. Gerbera is an outcrossing species, for which genetic approaches to gene discovery are not readily amenable. However, reverse genetics with the help of gene transfer has been very informative. We demonstrate here the usability of the gerbera microarray as a reliable new tool for identifying novel genes related to specific biological questions and for large-scale gene expression analysis.
Collapse
Affiliation(s)
- Roosa A E Laitinen
- Department of Applied Biology, FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ingouff M, Fitz Gerald JN, Guérin C, Robert H, Sørensen MB, Van Damme D, Geelen D, Blanchoin L, Berger F. Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol 2005; 7:374-80. [PMID: 15765105 DOI: 10.1038/ncb1238] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 01/15/2005] [Indexed: 11/08/2022]
Abstract
Formins are actin-organizing proteins that are involved in cytokinesis and cell polarity. In the plant Arabidopsis thaliana, there are more than 20 formin homologues, all of which have unknown roles. In this study, we characterize specific cellular and molecular functions of the Arabidopsis formin AtFH5. Despite the low identity of AtFH5 to yeast and mammalian formins, the AtFH5 protein interacts with the barbed end of actin filaments and nucleates actin-filament polymerization in vitro, as is the case in yeast and mammals. In vivo, the AtFH5-GFP fusion protein localizes to the cell plate, a plant-specific membranous component that is assembled at the plane of cell division. Consistent with these data, loss of function of atfh5 compromises cytokinesis in the seed endosperm. Furthermore, endogenous AtFH5 transcripts accumulate in the posterior pole of the endosperm and loss of function of atfh5 perturbs proper morphogenesis of the endosperm posterior pole. Although cytokinesis in animals, yeast and plants occurs through morphologically distinct mechanisms, our study finds that formin recruitment to sites of actin assembly is a common feature of cell division among eukaryotes.
Collapse
Affiliation(s)
- Mathieu Ingouff
- EMBO YIP team, Unité Mixte de Recherche 5667, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bey M, Stüber K, Fellenberg K, Schwarz-Sommer Z, Sommer H, Saedler H, Zachgo S. Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. THE PLANT CELL 2004; 16:3197-215. [PMID: 15539471 PMCID: PMC535868 DOI: 10.1105/tpc.104.026724] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The class B MADS box transcription factors DEFICIENS (DEF) and GLOBOSA (GLO) of Antirrhinum majus together control the organogenesis of petals and stamens. Toward an understanding of how the downstream molecular mechanisms controlled by DEF contribute to petal organogenesis, we conducted expression profiling experiments using macroarrays comprising >11,600 annotated Antirrhinum unigenes. First, four late petal developmental stages were compared with sepals. More than 500 ESTs were identified that comprise a large number of stage-specifically regulated genes and reveal a highly dynamic transcriptional regulation. For identification of DEF target genes that might be directly controlled by DEF, we took advantage of the temperature-sensitive def-101 mutant. To enhance the sensitivity of the profiling experiments, one petal developmental stage was selected, characterized by increased transcriptome changes that reflect the onset of cell elongation processes replacing cell division processes. Upon reduction of the DEF function, 49 upregulated and 52 downregulated petal target genes were recovered. Eight target genes were further characterized in detail by RT-PCR and in situ studies. Expression of genes responding rapidly toward an altered DEF activity is confined to different petal tissues, demonstrating the complexity of the DEF function regulating diverse basic processes throughout petal morphogenesis.
Collapse
Affiliation(s)
- Melanie Bey
- Department for Molecular Plant Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Sauer M, Friml J. In vitro culture of Arabidopsis embryos within their ovules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:835-43. [PMID: 15546365 DOI: 10.1111/j.1365-313x.2004.02248.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Embryogenesis of flowering plants establishes a basic body plan with apical-basal, radial and bilateral patterns from the single-celled zygote. Arabidopsis embryogenesis exhibits a nearly invariant cell division pattern and therefore is an ideal system for studies of early plant development. However, plant embryos are difficult to access for experimental manipulation, as they develop deeply inside maternal tissues. Here we present a method for the culture of zygotic Arabidopsis embryos in vitro. The technique omits excision of the embryo by culturing the entire ovule, thus greatly facilitating the time and effort involved. It enables external manipulation of embryo development and culture from the earliest developmental stages up to maturity. Administration of various chemical treatments as well as the use of different molecular markers is demonstrated together with standard techniques for visualizing gene expression and protein localization in in vitro cultivated embryos. The presented set of techniques allows for so far unavailable molecular physiology approaches in the study of early plant development.
Collapse
Affiliation(s)
- Michael Sauer
- Zentrum für Molekularbiologie der Pflanzen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | | |
Collapse
|
39
|
Abstract
The shape of a plant cell has long been the cornerstone of diverse areas of plant research but it is only recently that molecular-genetic and cell-biological tools have been effectively combined for dissecting plant cell morphogenesis. Increased understanding of the polar growth characteristics of model cell types, the availability of many morphological mutants and significant advances in fluorescent-protein-aided live-cell visualization have provided the major impetus for these analyses. The cytoskeleton and its regulators have emerged as essential components of the scaffold involved in fabricating plant cell shape. In this article, I collate information from recent discoveries to derive a simple cytoskeleton-based operational framework for plant cell morphogenesis.
Collapse
Affiliation(s)
- Jaideep Mathur
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E., Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
40
|
Van Bruaene N, Joss G, Van Oostveldt P. Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development. PLANT PHYSIOLOGY 2004; 136:3905-19. [PMID: 15557102 PMCID: PMC535824 DOI: 10.1104/pp.103.031591] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 06/30/2004] [Accepted: 07/21/2004] [Indexed: 05/17/2023]
Abstract
Root hairs emerge from epidermal root cells (trichoblasts) and differentiate by highly localized tip growth. Microtubules (MTs) are essential for establishing and maintaining the growth polarity of root hairs. The current knowledge about the configuration of the MT cytoskeleton during root hair development is largely based on experiments on fixed material, and reorganization and in vivo dynamics of MTs during root hair development is at present unclear. This in vivo study provides new insights into the mechanisms of MT (re)organization during root hair development in Arabidopsis (Arabidopsis thaliana). Expression of a binding site of the MT-associated protein-4 tagged with green fluorescent protein enabled imaging of MT nucleation, growth, and shortening and revealed distinct MT configurations. Depending on the dynamics of the different MT populations during root hair development, either repeated two-dimensional (x, y, t) or repeated three-dimensional (x, y, z, t) scanning was performed. Furthermore, a new image evaluation tool was developed to reveal important data on MT instability. The data show how MTs reorient after apparent contact with other MTs and support a model for MT alignment based on repeated reorientation of dynamic MT growth.
Collapse
Affiliation(s)
- Nathalie Van Bruaene
- Laboratory for Biochemistry and Molecular Cytology, Ghent University, 9000 Gent, Belgium.
| | | | | |
Collapse
|
41
|
Waters DLE, Holton TA, Ablett EM, Lee LS, Henry RJ. cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics 2004; 5:40-58. [PMID: 15480888 DOI: 10.1007/s10142-004-0124-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 08/24/2004] [Accepted: 09/12/2004] [Indexed: 12/01/2022]
Abstract
Microarray analysis of Vitis vinifera cv. Shiraz developing berries has revealed the expression patterns of several categories of genes. Microarray slides were constructed from 4,608 PCR-amplified cDNA clones derived from a ripening grape berry cDNA library. The mRNA expression levels of the genes represented by these cDNAs were measured in flowers, week 2 post-flowering whole berries, week 5, week 8, week 10 (véraison, green berries), week 12 and week 13 berry skin. In addition, a comparison of RNA expression in pigmented and unpigmented berry skin at véraison (week 10) was undertaken. Image and statistical analysis revealed four sets of genes with distinctive and similar expression profiles over the course of berry development. The first set was composed of genes which had maximum RNA expression in flowers, followed by a steady decrease in expression. The most prominent group within this set were genes which have a role in photosynthesis. The second set of cDNAs was dominated by genes involved in flavonoid biosynthesis and had a peak of expression week 2 post-flowering. The data indicate co-ordinate regulation of flavonoid biosynthetic genes which code for the enzymes 4-coumarate-CoA ligase, chalcone synthase, chalcone isomerase, flavonone hydroxylase, anthocyanidin reductase and cytochrome b5. The third set of cDNAs exhibited maximum expression week 5 post-flowering, midway between flowering and véraison, a period of rapid berry growth. This set of cDNAs is dominated by genes which code for structural cell wall proteins. The fourth set of genes was dramatically up-regulated at véraison and remained up-regulated until 13 weeks post-flowering. This set of genes was composed of a diverse range of genes, a reflection of the complexity of ripening, most with no known function.
Collapse
Affiliation(s)
- Daniel L E Waters
- Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW, 2480, Australia.
| | | | | | | | | |
Collapse
|
42
|
Tian GW, Smith D, Glück S, Baskin TI. Higher plant cortical microtubule array analyzed in vitro in the presence of the cell wall. ACTA ACUST UNITED AC 2004; 57:26-36. [PMID: 14648555 DOI: 10.1002/cm.10153] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plant morphogenesis depends on an array of microtubules in the cell cortex, the cortical array. Although the cortical array is known to be essential for morphogenesis, it is not known how the array becomes organized or how it functions mechanistically. Here, we report the development of an in vitro model that provides good access to the cortical array while preserving the array's organization and, importantly, its association with the cell wall. Primary roots of maize (Zea mays) are sectioned, without fixation, in a drop of buffer and then incubated as desired before eventual fixation. Sectioning removes cytoplasm except for a residuum comprising cortical microtubules, vesicles, and fragments of plasma membrane underlying the microtubules. The majority of the cortical microtubules remain in the cut-open cells for more than 1 h, fully accessible to the incubation solution. The growth zone or more mature tissue can be sectioned, providing access to cortical arrays that are oriented either transversely or obliquely to the long axis of the root. Using this assay, we report, first, that cortical microtubule stability is regulated by protein phosphorylation; second, that cortical microtubule stability is a function of orientation, with divergent microtubules within the array depolymerizing within minutes of sectioning; and third, that the polarity of microtubules in the cortical array is not uniform. These results suggest that the organization of the cortical array involves random nucleation followed by selective stabilization of microtubules formed at the appropriate orientation, and that the signal specifying alignment must treat orientations of +/- 180 degrees as equivalent.
Collapse
Affiliation(s)
- Guo-Wei Tian
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
43
|
Abe T, Thitamadee S, Hashimoto T. Microtubule Defects and Cell Morphogenesis in the lefty1lefty2 Tubulin Mutant of Arabidopsis thaliana. ACTA ACUST UNITED AC 2004; 45:211-20. [PMID: 14988491 DOI: 10.1093/pcp/pch026] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
lefty1 and lefty2 are semi-dominant left-handed helical growth mutants of Arabidopsis thaliana, which result from identical dominant-negative amino acid substitutions in alpha-tubulin 6 and alpha-tubulin 4, respectively. Here we characterized the expression patterns of the affected tubulin genes and the phenotypes of the lefty double mutant to address increasing effects of microtubule defects on cell morphogenesis. Both tubulin genes were expressed ubiquitously in examined tissue and cell types, and the alpha-tubulin 2/4/6 subfamily transcripts predominated over other alpha-tubulin transcripts in Arabidopsis seedlings. The lefty double mutant seedlings showed helical growth in hypocotyls and radial cell expansion in the root elongation zone where mutant cortical microtubule arrays were more fragmented and less well aligned than wild-type arrays. Branching of leaf trichomes was highly reduced. In adult mutant plants, anisotropic growth of anther filament cells was severely impaired. These results suggest that left-handed twisted elongation is an intermediate state that leads to full isotropic expansion as the cortical microtubules are increasingly destabilized.
Collapse
Affiliation(s)
- Tatsuya Abe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | | | | |
Collapse
|
44
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|