1
|
Wilcken S, Koutsandrea PH, Bakker T, Kulik A, Orthwein T, Franz-Wachtel M, Harbig T, Nieselt KK, Forchhammer K, Brötz-Oesterhelt H, Macek B, Mordhorst S, Kaysser L, Gust B. The TetR-like regulator Sco4385 and Crp-like regulator Sco3571 modulate heterologous production of antibiotics in Streptomyces coelicolor M512. Appl Environ Microbiol 2025; 91:e0231524. [PMID: 40183567 DOI: 10.1128/aem.02315-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025] Open
Abstract
Heterologous expression in well-studied model strains is a routinely applied method to investigate biosynthetic pathways. Here, we pursue a comparative approach of large-scale DNA-affinity-capturing assays (DACAs) coupled with semi-quantitative mass spectrometry (MS) to identify putative regulatory proteins from Streptomyces coelicolor M512, which bind to the heterologously expressed biosynthetic gene clusters (BGCs) of the liponucleoside antibiotics caprazamycin and liposidomycin. Both gene clusters share an almost identical genetic arrangement, including the location of promoter regions, as detected by RNA sequencing. A total of 2,214 proteins were trapped at the predicted promoter regions, with only three binding to corresponding promoters in both gene clusters. Among these, the overexpression of a yet uncharacterized TetR-family regulator (TFR), Sco4385, increased caprazamycin but not liposidomycin production. Protein-DNA interaction experiments using biolayer interferometry confirmed the binding of Sco4385 to Pcpz10 and PlpmH at different locations within both promoter regions, which might explain its functional variance. Sequence alignment allowed the determination of a consensus sequence present in both promoter regions, to which Sco4385 was experimentally shown to bind. Furthermore, we found that the overexpression of the Crp regulator, Sco3571, leads to a threefold increase in caprazamycin and liposidomycin production yields, possibly due to an increased expression of a precursor pathway.IMPORTANCEStreptomycetes are well-studied model organisms for the biosynthesis of pharmaceutically, industrially, and biotechnologically valuable metabolites. Their naturally broad repertoire of natural products can be further exploited by heterologous expression of biosynthetic gene clusters (BGCs) in non-native host strains. This approach forces the host to adapt to a new regulatory and metabolic environment. In our study, we demonstrate that a host regulator not only interacts with newly incorporated gene clusters but also regulates precursor supply for the produced compounds. We present a comprehensive study of regulatory proteins that interact with two genetically similar gene clusters for the biosynthesis of liponucleoside antibiotics. Thereby, we identified regulators of the heterologous host that influence the production of the corresponding antibiotic. Surprisingly, the regulatory interaction is highly specific for each biosynthetic gene cluster, even though they encode largely structurally similar metabolites.
Collapse
Affiliation(s)
- Sarah Wilcken
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Partner Site Tübingen, German Centre for Infection Research (DZIF), Tübingen, Germany
| | | | - Tomke Bakker
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Andreas Kulik
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Tim Orthwein
- Department of Microbiology and Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Institute of Cell Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Theresa Harbig
- Interfaculty Institute for Bioinformatics and Medical Informatics, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Kay Katja Nieselt
- Interfaculty Institute for Bioinformatics and Medical Informatics, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Department of Microbiology and Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Partner Site Tübingen, German Centre for Infection Research (DZIF), Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Cluster of Excellence Controlling Microbes to Fight Infections, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Institute of Cell Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Silja Mordhorst
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Leonard Kaysser
- Institute for Drug Discovery, Department of Pharmaceutical Biology, Leipzig University, Leipzig, Germany
| | - Bertolt Gust
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Partner Site Tübingen, German Centre for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|
2
|
Wen Y, Li Z, Ye J, Wang X, Jiang M, Deng Z, Cao C, He X. Discovery and Characterization of Actinosynnelassin: An Anti- Pseudomonas fluorescens Lasso Peptide Derived from a Large Precursor Open Reading Frame. JOURNAL OF NATURAL PRODUCTS 2025. [PMID: 40387067 DOI: 10.1021/acs.jnatprod.5c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Lasso peptides, a unique class of ribosomally synthesized and post-translationally modified peptide (RiPP), are challenging to synthesize chemically, making the discovery of new peptides and their biosynthetic pathways essential. This study reports the discovery and characterization of a novel lasso peptide, actinosynnelassin, from Actinosynnema pretiosum subsp. auranticum DSM 44131. By overexpressing an endogenous TetR/AcrR family regulator and employing OSMAC (One Strain Many Compounds)-guided fermentation screening, several endogenous secondary metabolite biosynthetic gene clusters (BGCs) were activated, resulting in the isolation of actinosynnelassin. The 3D structure of actinosynnelassin, confirmed by nuclear magnetic resonance (NMR) NOE-derived distance constraints, features a 9-aa macrolactam ring, a 6-aa loop, and a 2-aa tail, with the ring encircling the tail between three aromatic bulkier residues. The minimal inhibitory concentration (MIC) tests indicate that actinosynnelassin inhibits several Gram-positive bacteria and Pseudomonas fluorescens, making it the first reported lasso peptide to inhibit P. fluorescens. The predicted open reading frame (ORF) of the precursor peptide may be translated into a 331-aa fusion protein featuring an N-terminal AraC/XylS family transcriptional regulator, making it longer than typical lasso precursors. Thus, discovering this large precursor ORF enhances our understanding of lasso peptide BGCs with unusual architectures and enables the finding of other unique lasso peptides.
Collapse
Affiliation(s)
- Yu Wen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhiyu Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiacai Ye
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chunyang Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
3
|
Trigg AE, Sharma P, Grainger DC. Coordination of cell envelope biology by Escherichia coli MarA protein potentiates intrinsic antibiotic resistance. PLoS Genet 2025; 21:e1011639. [PMID: 40324004 PMCID: PMC12052159 DOI: 10.1371/journal.pgen.1011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/26/2025] [Indexed: 05/07/2025] Open
Abstract
The multiple antibiotic resistance activator (MarA) protein is a transcription factor implicated in control of intrinsic antibiotic resistance in enteric bacterial pathogens. In this work, we screened the Escherichia coli genome computationally for MarA binding sites. By incorporating global maps of transcription initiation, and clustering predicted targets according to gene function, we were able to avoid widespread misidentification of MarA sites, which has hindered prior studies. Subsequent genetic and biochemical analyses identified direct activation of genes for lipopolysaccharide (LPS) biosynthesis and repression of a cell wall remodelling endopeptidase. Rewiring of the MarA regulon, by mutating subsets of MarA binding sites, reveals synergistic interactions between regulatory targets of MarA. Specifically, we show that uncoupling LPS production, or cell wall remodelling, from regulation by MarA, renders cells hypersensitive to mutations altering lipid trafficking by the MlaFEDCB system. Together, our findings demonstrate how MarA co-regulates different aspects of cell envelope biology to maximise antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra E. Trigg
- School of Biosciences, University if Birmingham, Edgbaston, Birmingham, England
| | - Prateek Sharma
- School of Biosciences, University if Birmingham, Edgbaston, Birmingham, England
| | - David C. Grainger
- School of Biosciences, University if Birmingham, Edgbaston, Birmingham, England
| |
Collapse
|
4
|
Chen S, Dedkova LM, Hecht SM. Biological Regulation Studied in Vitro and in Cellulo with Modified Proteins. Acc Chem Res 2025; 58:1109-1119. [PMID: 40072328 PMCID: PMC11964198 DOI: 10.1021/acs.accounts.5c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
ConspectusProteins and peptides occur ubiquitously in organisms and play key functional roles, as structural elements and catalysts. Their major natural source is ribosomal synthesis, which produces polypeptides from 20 amino acid building blocks. Peptides containing noncanonical amino acids have long been prepared by chemical synthesis, which has provided a wealth of physiologically active compounds. Comparatively, preparing modified proteins has been more challenging. Site-directed mutagenesis provided an important advance but was initially limited to canonical amino acids. New techniques for tRNA activation with noncanonical amino acids subsequently increased the scope of site-directed mutagenesis.Our report in 2012 demonstrated that modification of bacterial ribosomes at key positions enabled the selection of ribosomes capable of introducing β-amino acids into proteins in vitro. The generality of the selection procedure was tested further. Ribosomes capable of incorporating dipeptides, conformationally constrained dipeptides, dipeptidometics with embedded fluorophores, contiguous nucleobase amino acids, and phosphorylated amino acids were successfully identified.In this Account, we focus on the application of the new technology to dramatically alter protein structure in ways that enable new strategies for understanding and altering protein function. To illustrate the robustness of the technology we have provided examples studied in vitro and in cellulo. The first category involves the introduction of nucleobase amino acids into proteins in support of specific interactions with RNA and DNA. The energetic differences between potential protein-nucleic acid complexes formed from two binding partners are often quite small. It seems logical to think that selective binding can be achieved by using a nucleobase moiety in each of the binding partners by utilizing known interactions between nucleic acid bases (located in the protein and nucleic acid) to achieve energetically favorable interactions. We do so both in vitro and in cellulo. A second focus has involved the design of small fluorescent probes not much larger than amino acids that are genetically encodable and which can be incorporated during protein biosynthesis, serving as detectable probes of protein trafficking and interaction with other macromolecules. We provide an in vitro example of strongly fluorescent tryptophan analogues positioned at single sites within dihydrofolate reductase, permitting selective communication with a FRET acceptor at a known position, even in the presence of several tryptophans. An oxazole amino acid, weakly fluorescent in aqueous solution, fluoresced more strongly following incorporation into MreB, a scaffold protein produced in cellulo. Finally, we describe the introduction of a single phosphorylated tyrosine into the p50 subunit of NF-κB. When present at either of two key positions, the resulting NF-κB significantly enhanced binding in vitro to the promoter DNA as well as subsequent mRNA transcription of its client protein CD40 in cellulo. In a separate expression in activated Jurkat cells, an increased production of CD40 protein was observed.
Collapse
Affiliation(s)
- Shengxi Chen
- Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M. Dedkova
- Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
5
|
Zhao X, Zhang Y, Ju M, Yang Y, Liu H, Qin X, Xu Q, Hao M. RamA upregulates the ATP-binding cassette transporter mlaFEDCB to mediate resistance to tetracycline-class antibiotics and the stability of membranes in Klebsiella pneumoniae. Microbiol Spectr 2025; 13:e0172824. [PMID: 39745369 PMCID: PMC11792452 DOI: 10.1128/spectrum.01728-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
RamA is an intrinsic regulator in Klebsiella pneumoniae, belonging to the AraC family of transcription factors and conferring a multidrug resistance phenotype, especially for tetracycline-class antibiotics. The ATP-binding cassette transporters MlaFEDCB in bacteria play essential roles in functions essential for cell survival and intrinsic resistance to many antibiotics. We found deletion of ramA resulted in a fivefold decrease in the transcriptional levels of the mlaFEDCB operon. After complementation with ramA, the transcriptional levels were comparable to those of wild-type strain. Furthermore, an electrophoretic mobility shift assay showed that RamA could bind to the promoter region of mlaEFDCB operon, which confirmed RamA is an activator of mlaEFDCB operon. The mlaEFDCB operon could mildly mediate resistance to the tetracycline family of antibiotics under RamA regulation. The MIC (minimum inhibitory concentration) of tigecycline decreased fourfold, and the MIC of doxycycline, minocycline, and eravacycline decreased twofold after mlaE-knockout. The ramA- and mlaE-knockout strains exhibited greater sensitivity to sodium dodecyl sulfate (SDS)-EDTA than the wild-type. Growth of ΔramA cells was severely compromised in 0.25/0.5% SDS and 0.55 mM EDTA, and this sensitivity was restored by complementation with ramA and mlaE. This study demonstrates that RamA can directly regulate the malEFEDCB operon, thereby mediating resistance to tetracycline-class antibiotics, contributing to the stability of bacterial membranes in K. pneumoniae. We identified a novel signal pathway in which RamA mediates multidrug resistance of K. pneumoniae, leading to new ideas for the development of novel antimicrobial therapeutics, therefore deserving further comprehensive study. IMPORTANCE Multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae have emerged as significant global health concerns resulting in high mortality rates. Although previous research has investigated the maintenance of lipid asymmetry (Mla) pathway, the extent to which it mediates antimicrobial resistance in K. pneumoniae and the underlying upstream regulatory mechanisms remain unclear. In this study, we sought to determine at the molecular level how the AraC-type global regulator RamA directly regulates mlaFEDCB, which mediates resistance to tetracycline-class antibiotics and the stability of bacterial membranes in K. pneumoniae.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
- Institute of Microbes and Infections, Huashan Hospital, Fudan University, Shanghai, China
| | - Yixin Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Mohan Ju
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Haoqi Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
- Institute of Microbes and Infections, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohua Qin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Qingqing Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Min Hao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| |
Collapse
|
6
|
Corbella M, Moreira C, Bello‐Madruga R, Torrent Burgas M, Kamerlin SCL, Blair JMA, Sancho‐Vaello E. Targeting MarA N-terminal domain dynamics to prevent DNA binding. Protein Sci 2025; 34:e5258. [PMID: 39660948 PMCID: PMC11633057 DOI: 10.1002/pro.5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/14/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
Efflux is one of the mechanisms employed by Gram-negative bacteria to become resistant to routinely used antibiotics. The inhibition of efflux by targeting their regulators is a promising strategy to re-sensitize bacterial pathogens to antibiotics. AcrAB-TolC is the main resistance-nodulation-division efflux pump in Enterobacteriaceae. MarA is an AraC/XylS family global regulator that regulates more than 40 genes related to the antimicrobial resistance phenotype, including acrAB. The aim of this work was to understand the role of the N-terminal helix of MarA in the mechanism of DNA binding. An N-terminal deletion of MarA showed that the N-terminal helix is critical for recognition of the functional marboxes. By engineering two double cysteine variants of MarA that form a disulfide bond between the N-terminal helix and the hydrophobic core of one of the helices in direct DNA contact, and combining in vitro electrophoretic mobility assays, in vivo measurements of acrAB transcription using a GFP reporter system, and molecular dynamic simulations, it was shown that the immobilization of the N-terminal helix of MarA prevents binding to DNA. This inhibited conformation seems to be universal for the monomeric members of the AraC/XylS family, as suggested by additional molecular dynamics simulations of the two-domain protein Rob. These results point to the N-terminal helix of the AraC/XylS family monomeric regulators as a promising target for the development of inhibitors.
Collapse
Affiliation(s)
- Marina Corbella
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
| | - Cátia Moreira
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
| | - Roberto Bello‐Madruga
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Shina C. L. Kamerlin
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Jessica M. A. Blair
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| | - Enea Sancho‐Vaello
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| |
Collapse
|
7
|
Żebracki K, Koper P, Wójcik M, Marczak M, Mazur A. Transcriptomic Response of Rhizobium leguminosarum to Acidic Stress and Nutrient Limitation Is Versatile and Substantially Influenced by Extrachromosomal Gene Pool. Int J Mol Sci 2024; 25:11734. [PMID: 39519284 PMCID: PMC11547076 DOI: 10.3390/ijms252111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Multipartite genomes are thought to confer evolutionary advantages to bacteria by providing greater metabolic flexibility in fluctuating environments and enabling rapid adaptation to new ecological niches and stress conditions. This genome architecture is commonly found in plant symbionts, including nitrogen-fixing rhizobia, such as Rhizobium leguminosarum bv. trifolii TA1 (RtTA1), whose genome comprises a chromosome and four extrachromosomal replicons (ECRs). In this study, the transcriptomic responses of RtTA1 to partial nutrient limitation and low acidic pH were analyzed using high-throughput RNA sequencing. RtTA1 growth under these conditions resulted in the differential expression of 1035 to 1700 genes (DEGs), which were assigned to functional categories primarily related to amino acid and carbohydrate metabolism, ribosome and cell envelope biogenesis, signal transduction, and transcription. These results highlight the complexity of the bacterial response to stress. Notably, the distribution of DEGs among the replicons indicated that ECRs played a significant role in the stress response. The transcriptomic data align with the Rhizobium pangenome analysis, which revealed an over-representation of functional categories related to transport, metabolism, and regulatory functions on ECRs. These findings confirm that ECRs contribute substantially to the ability of rhizobia to adapt to challenging environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.Ż.); (P.K.); (M.W.); (M.M.)
| |
Collapse
|
8
|
Hiron A, Melet M, Guerry C, Dubois I, Rong V, Gilot P. Characterization of galactose catabolic pathways in Streptococcus agalactiae and identification of a major galactose: phosphotransferase importer. J Bacteriol 2024; 206:e0015524. [PMID: 39297619 PMCID: PMC11500514 DOI: 10.1128/jb.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
We identified and characterized genomic regions of Streptococcus agalactiae that are involved in the Leloir and the tagatose-6-phosphate pathways for D-galactose catabolism. The accumulation of mutations in genes coding the Leloir pathway and the absence of these genes in a significant proportion of the strains suggest that this pathway may no longer be necessary for S. agalactiae and is heading toward extinction. In contrast, a genomic region containing genes coding for intermediates of the tagatose-6-phosphate pathway, a Gat family PTS transporter, and a DeoR/GlpR family regulator is present in the vast majority of strains. By deleting genes that code for intermediates of each of these two pathways in three selected strains, we demonstrated that the tagatose-6-phosphate pathway is their sole route for galactose catabolism. Furthermore, we showed that the Gat family PTS transporter acts as the primary importer of galactose in S. agalactiae. Finally, we proved that the DeoR/GlpR family regulator is a repressor of the tagatose-6-phosphate pathway and that galactose triggers the induction of this biochemical mechanism.IMPORTANCES. agalactiae, a significant pathogen for both humans and animals, encounters galactose and galactosylated components within its various ecological niches. We highlighted the capability of this bacterium to metabolize D-galactose and showed the role of the tagatose-6-phosphate pathway and of a PTS importer in this biochemical process. Since S. agalactiae relies on carbohydrate fermentation for energy production, its ability to uptake and metabolize D-galactose could enhance its persistence and its competitiveness within the microbiome.
Collapse
Affiliation(s)
- Aurelia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Morgane Melet
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Capucine Guerry
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Ilona Dubois
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Vanessa Rong
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| |
Collapse
|
9
|
Ham H, Oh GR, Lee YH, Lee YH. Comparison of Resistance Acquisition and Mechanisms in Erwinia amylovora against Agrochemicals Used for Fire Blight Control. THE PLANT PATHOLOGY JOURNAL 2024; 40:525-536. [PMID: 39397306 PMCID: PMC11471933 DOI: 10.5423/ppj.oa.07.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Agrochemicals containing antibiotics are authorized to manage fire blight that has been occurring in Korea since 2015. The minimum inhibitory concentration (MIC) of each antibiotic against Erwinia amylovora, the causal pathogen of fire blight, has increased over the years due to the pathogen's frequent exposure to antibiotics, indicating the necessity to prepare for the emergence of antibiotic resistance. In this study, E. amylovora was exposed to stepwise increasing concentrations of eight different agrochemicals, each containing single or mixed antibiotics, and gene mutation and changes in MIC were assessed. Streptomycin and oxolinic acid induced an amino acid substitution in RpsL and GyrA, respectively, resulting in a rapid increase in MIC. Oxytetracycline initially induced amino acid substitutions or frameshifts in AcrR, followed by substitutions of 30S small ribosomal protein subunit S10 or AcrB, further increasing MIC. E. amylovora acquired resistance in the order of oxolinic acid, streptomycin, and oxytetracycline at varying exposure frequencies. Resistance acquisition was slower against agrochemicals containing mixed antibiotics than those with single antibiotics. However, gene mutations conferring antibiotic resistance emerged sequentially to both antibiotics in the mixed formulations. Results suggested that frequent application of mixed antibiotics could lead to the emergence of multidrug-resistant E. amylovora isolates. This study provided essential insights into preventing the emergence of antibiotic-resistant E. amylovora and understanding the underlying mechanisms of resistance acquisition.
Collapse
Affiliation(s)
- Hyeonheui Ham
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Korea
| | - Ga-Ram Oh
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Yong Hwan Lee
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Yong Hoon Lee
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Korea
| |
Collapse
|
10
|
Bruger EL, Hying ZT, Singla D, Márquez Reyes NL, Pandey SK, Patel JS, Bazurto JV. Enhanced catabolism of glycine betaine and derivatives provides improved osmotic stress protection in Methylorubrum extorquens PA1. Appl Environ Microbiol 2024; 90:e0031024. [PMID: 38934615 PMCID: PMC11323934 DOI: 10.1128/aem.00310-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Integration of metabolites into the overall metabolic network of a cell requires careful coordination dependent upon the ultimate usage of the metabolite. Different stoichiometric needs, and thus pathway fluxes, must exist for compounds destined for diverse uses, such as carbon sources, nitrogen sources, or stress-protective agents. Herein, we expand upon our previous work that highlighted the nature of glycine betaine (GB) metabolism in Methylobacteria to examine the utilization of GB-derivative compounds dimethylglycine (DMG) and sarcosine into Methylorubrum extorquens in different metabolic capacities, including as sole nitrogen and/or carbon sources. We isolated gain-of-function mutations that allowed M. extorquens PA1 to utilize dimethylglycine as a carbon source and dimethylglycine and sarcosine as nitrogen source. Characterization of mutants demonstrated selection for variants of the AraC-like regulator Mext_3735 that confer constitutive expression of the GB metabolic gene cluster, allowing direct utilization of the downstream GB derivatives. Finally, among the distinct isolates examined, we found that catabolism of the osmoprotectant used for selection (GB or dimethylglycine) enhanced osmotic stress resistance provided in the presence of that particular osmolyte. Thus, access to the carbon and nitrogen and osmoprotective effects of GB and DMG are made readily accessible through adaptive mutations. In M. extorquens PA1, the limitations to exploiting this group of compounds appear to exist predominantly at the levels of gene regulation and functional activity, rather than being constrained by transport or toxicity.IMPORTANCEOsmotic stress is a common challenge for bacteria colonizing the phyllosphere, where glycine betaine (GB) can be found as a prevalent osmoprotectant. Though Methylorubrum extorquens PA1 cannot use GB or its demethylation products, dimethylglycine (DMG) and sarcosine, as a sole carbon source, utilization is highly selectable via single nucleotide changes for both GB and DMG growth. The innate inability to use these compounds is due to limited flux through steps in the pathway and regulatory constraints. Herein, the characterization of the transcriptional regulator, Mext_3735 (GbdR), expands our understanding of the various roles in which GB derivatives can be used in M. extorquens PA1. Interestingly, increased catabolism of GB and derivatives does not interfere with, but rather improves, the ability of cells to thrive under increased salt stress conditions, suggesting that metabolic flux improves stress tolerance rather than providing a distinct tension between uses.
Collapse
Affiliation(s)
- Eric L. Bruger
- Department of Plant
and Microbial Biology, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
- Biotechnology
Institute, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
| | - Zachary T. Hying
- Department of Plant
and Microbial Biology, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
- Biotechnology
Institute, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
| | - Deepanshu Singla
- Department of Plant
and Microbial Biology, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
- Biotechnology
Institute, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
| | - Nicole L. Márquez Reyes
- Department of Plant
and Microbial Biology, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
- Biotechnology
Institute, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
| | - Shubham Kumar Pandey
- Department of Chemical
and Biological Engineering, University of
Idaho, Moscow,
Idaho, USA
| | - Jagdish Suresh Patel
- Department of Chemical
and Biological Engineering, University of
Idaho, Moscow,
Idaho, USA
| | - Jannell V. Bazurto
- Department of Plant
and Microbial Biology, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
- Biotechnology
Institute, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
| |
Collapse
|
11
|
Shestakova A, Fatkulin A, Surkova D, Osmolovskiy A, Popova E. First Insight into the Degradome of Aspergillus ochraceus: Novel Secreted Peptidases and Their Inhibitors. Int J Mol Sci 2024; 25:7121. [PMID: 39000228 PMCID: PMC11241649 DOI: 10.3390/ijms25137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism's proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction with the surrounding environment. Using techniques such as genome and transcriptome sequencing, alongside protein prediction methodologies, we identified putative extracellular peptidases within Aspergillus ochraceus VKM-F4104D. Following manual annotation procedures, a total of 11 aspartic, 2 cysteine, 2 glutamic, 21 serine, 1 threonine, and 21 metallopeptidases were attributed to the extracellular degradome of A. ochraceus VKM-F4104D. Among them are enzymes with promising applications in biotechnology, potential targets and agents for antifungal therapy, and microbial antagonism factors. Thus, additional functionalities of the extracellular degradome, extending beyond mere protein substrate digestion for nutritional purposes, were demonstrated.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | - Artem Fatkulin
- Laboratory of Molecular Physiology, HSE University, Moscow 101000, Russia
| | - Daria Surkova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | | | - Elizaveta Popova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| |
Collapse
|
12
|
Kaur J, Verma H, Kaur J, Lata P, Dhingra GG, Lal R. In Silico Analysis of the Phylogenetic and Physiological Characteristics of Sphingobium indicum B90A: A Hexachlorocyclohexane-Degrading Bacterium. Curr Microbiol 2024; 81:233. [PMID: 38904756 DOI: 10.1007/s00284-024-03762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
The study focuses on the in silico genomic characterization of Sphingobium indicum B90A, revealing a wealth of genes involved in stress response, carbon monoxide oxidation, β-carotene biosynthesis, heavy metal resistance, and aromatic compound degradation, suggesting its potential as a bioremediation agent. Furthermore, genomic adaptations among nine Sphingomonad strains were explored, highlighting shared core genes via pangenome analysis, including those related to the shikimate pathway and heavy metal resistance. The majority of genes associated with aromatic compound degradation, heavy metal resistance, and stress response were found within genomic islands across all strains. Sphingobium indicum UT26S exhibited the highest number of genomic islands, while Sphingopyxis alaskensis RB2256 had the maximum fraction of its genome covered by genomic islands. The distribution of lin genes varied among the strains, indicating diverse genetic responses to environmental pressures. Additionally, in silico evidence of horizontal gene transfer (HGT) between plasmids pSRL3 and pISP3 of the Sphingobium and Sphingomonas genera, respectively, has been provided. The manuscript offers novel insights into strain B90A, highlighting its role in horizontal gene transfer and refining evolutionary relationships among Sphingomonad strains. The discovery of stress response genes and the czcABCD operon emphasizes the potential of Sphingomonads in consortia development, supported by genomic island analysis.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Department of Zoology, Gargi College, Siri Fort Road, New Delhi, 110049, India.
| | - Helianthous Verma
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, 110007, India
| | - Jaspreet Kaur
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, 110021, India
| | - Pushp Lata
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Gauri Garg Dhingra
- Department of Zoology, Kirori Mal College, University of Delhi, New Delhi, 110007, India
| | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi, 110019, India.
| |
Collapse
|
13
|
Abstract
Environments inhabited by Enterobacteriaceae are diverse and often stressful. This is particularly true for Escherichia coli and Salmonella during host association in the gastrointestinal systems of animals. There, E. coli and Salmonella must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the Enterobacteriaceae. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the mar-sox-rob regulon. This review will provide an overview of the mar-sox-rob regulon and molecular architecture of the Mar, Sox, and Rob systems.
Collapse
Affiliation(s)
- Lon M. Chubiz
- Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri, USA
- Biochemistry and Biotechnology Program, University of Missouri–St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Haidar-Ahmad N, Manigat FO, Silué N, Pontier SM, Campbell-Valois FX. A Tale about Shigella: Evolution, Plasmid, and Virulence. Microorganisms 2023; 11:1709. [PMID: 37512882 PMCID: PMC10383432 DOI: 10.3390/microorganisms11071709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Shigella spp. cause hundreds of millions of intestinal infections each year. They target the mucosa of the human colon and are an important model of intracellular bacterial pathogenesis. Shigella is a pathovar of Escherichia coli that is characterized by the presence of a large invasion plasmid, pINV, which encodes the characteristic type III secretion system and icsA used for cytosol invasion and cell-to-cell spread, respectively. First, we review recent advances in the genetic aspects of Shigella, shedding light on its evolutionary history within the E. coli lineage and its relationship to the acquisition of pINV. We then discuss recent insights into the processes that allow for the maintenance of pINV. Finally, we describe the role of the transcription activators VirF, VirB, and MxiE in the major virulence gene regulatory cascades that control the expression of the type III secretion system and icsA. This provides an opportunity to examine the interplay between these pINV-encoded transcriptional activators and numerous chromosome-encoded factors that modulate their activity. Finally, we discuss novel chromosomal genes icaR, icaT, and yccE that are regulated by MxiE. This review emphasizes the notion that Shigella and E. coli have walked the fine line between commensalism and pathogenesis for much of their history.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphanie M Pontier
- Centre de Recherche Santé Environnementale et Biodiversité de l'Outaouais (SEBO), CEGEP de l'Outaouais, Gatineau, QC J8Y 6M4, Canada
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
15
|
Zhang L, Sun L, Srinivasan R, Lin M, Gong L, Lin X. Unveiling a Virulence-Regulating Mechanism in Aeromonas hydrophila: a Quantitative Exoproteomic Analysis of an AraC-Like Protein. Front Immunol 2023; 14:1191209. [PMID: 37228602 PMCID: PMC10203433 DOI: 10.3389/fimmu.2023.1191209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Bacterial AraC is a transcription factor family that initiates transcription by recruiting RNA polymerase to the promoter and directly regulating various bacterial phenotypes. It also directly regulates various bacterial phenotypes. However, how this transcription factor regulates bacterial virulence and affects host immunity is still largely unknown. In this study, deleting the orf02889 (AraC-like transcription factor) gene in virulent Aeromonas hydrophila LP-2 affected several important phenotypes, such as increasing biofilm formation and siderophore production abilities. Moreover, Δorf02889 also significantly decreased the virulence of A. hydrophila and has promising attenuated vaccine potential. To better understand the effects of orf02889 on biological functions, a data independent acquisition (DIA)-based quantitative proteomics method was performed to compare the differentially expressed proteins between Δorf02889 and the wild-type strain in extracellular fractions. The following bioinformatics analysis suggested that ORF02889 may regulate various metabolic pathways, such as quorum sensing and ATP binding cassette (ABC) transporter metabolism. Moreover, 10 selected genes from the top 10 decreasing abundances in proteomics data were deleted, and their virulence to zebrafish was evaluated, respectively. The results showed that ΔcorC, Δorf00906, and Δorf04042 significantly reduced bacterial virulence. Finally, the following chromatin immunoprecipitation and polymerase chain reaction (ChIP-PCR) assay validated that the promoter of corC was directly regulated by ORF02889. Overall, these results provide insight into the biological function of ORF02889 and demonstrate its inherent regulatory mechanism for the virulence of A. hydrophila.
Collapse
Affiliation(s)
- Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Centre for Research, Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, India
| | - Meizhen Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Lanqing Gong
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| |
Collapse
|
16
|
Dow GT, Young AM, Garcia GA. Elucidation of the DNA-Binding Activity of VirF from Shigella flexneri for the icsA and rnaG Promoters and Characterization of the N-Terminal Domain To Identify Residues Crucial for Dimerization. J Bacteriol 2023; 205:e0001523. [PMID: 36920216 PMCID: PMC10127635 DOI: 10.1128/jb.00015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
A novel approach to treat the highly virulent and infectious enteric pathogen Shigella flexneri, with the potential for reduced resistance development, is to target virulence pathways. One promising such target is the AraC-family transcription factor VirF, which activates downstream virulence factors. VirF harbors a conserved C-terminal DNA-binding domain (DBD) and an N-terminal dimerization domain (NTD). Previously, we studied the wild type (WT) and seven alanine DBD mutants of VirF binding to the virB promoter (N. J. Ragazzone, G. T. Dow, and A. Garcia, J Bacteriol 204:e00143-22, 2022, https://doi.org/10.1128/jb.00143-22). Here, we report studies of VirF binding to the icsA and rnaG promoters. Gel shift assays (electrophoretic mobility shift assays [EMSAs]) of WT VirF binding to these promoters revealed multiple bands at higher apparent molecular weights, indicating the likelihood of VirF dimerization when bound to DNA. For three of the mutants, we observed consistent effects on binding to the three promoters. For the four other mutants, we observed differential effects on promoter binding. Results of a cell-based, LexA monohybrid β-galactosidase reporter assay [D. A. Daines, M. Granger-Schnarr, M. Dimitrova, and R. P. Silver, Methods Enzymol 358:153-161, 2002, https://doi.org/10.1016/s0076-6879(02)58087-3] indicated that WT VirF dimerizes in vivo and that alanine mutations to Y132, L137, and L147 significantly reduced dimerization. However, these mutations negatively impacted protein stability. We did purify enough of the Y132A mutant to determine that it binds in vitro to the virB and rnaG promoters, albeit with weaker affinities. Full-length VirF model structures, generated with I-TASSER, predict that these three amino acids are in a "dimerization" helix in the NTD, consistent with our results. IMPORTANCE Antimicrobial-resistant (AMR) infections continue to rise dramatically, and the lack of new approved antibiotics is not ameliorating this crisis. A promising route to reduce AMR is by targeting virulence. The Shigella flexneri virulence pathway is a valuable source for potential therapeutic targets useful to treat this infection. VirF, an AraC-family virulence transcription factor, is responsible for activating necessary downstream virulence genes that allow the bacteria to invade and spread within the human colon. Previous studies have identified how VirF interacts with the virB promoter and have even developed a lead DNA-binding inhibitor, but not much is known about VirF dimerization or binding to the icsA and rnaG promoters. Fully characterizing VirF can be a valuable resource for inhibitor discovery/design.
Collapse
Affiliation(s)
- Garrett T. Dow
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna M. Young
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - George A. Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Derdouri N, Ginet N, Denis Y, Ansaldi M, Battesti A. The prophage-encoded transcriptional regulator AppY has pleiotropic effects on E. coli physiology. PLoS Genet 2023; 19:e1010672. [PMID: 36930675 PMCID: PMC10057817 DOI: 10.1371/journal.pgen.1010672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2023] [Accepted: 02/18/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial genome diversity is influenced by prophages, which are viral genomes integrated into the bacterial chromosome. Most prophage genes are silent but those that are expressed can provide unexpected properties to their host. Using as a model E. coli K-12 that carries 9 defective prophages in its genome, we aimed at highlighting the impact of genes encoded by prophages on host physiology. We focused our work on AppY, a transcriptional regulator encoded on the DLP12 prophage. By performing RNA-Seq experiments, we showed that AppY production modulates the expression of more than 200 genes. Among them, 11 were identified by ChIP-Seq as direct AppY targets. AppY directly and positively regulates several genes involved in the acid stress response including the master regulator gene gadE but also nhaR and gadY, two genes important for biofilm formation. Moreover, AppY indirectly and negatively impacts bacterial motility by favoring the degradation of FlhDC, the master regulator of the flagella biosynthesis. As a consequence of these regulatory effects, AppY increases acid stress resistance and biofilm formation while also causing a strong defect in motility. Our research shed light on the importance to consider the genetic interactions occurring between prophages and bacteria to fully understand bacterial physiology. It also highlights how a prophage-encoded transcriptional regulator integrates in a complex manner into the host regulatory network and how it benefits its host, allowing it to cope with changing environmental conditions.
Collapse
Affiliation(s)
- Naoual Derdouri
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Nicolas Ginet
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yann Denis
- Aix Marseille Université, Centre National de la Recherche Scientifique, Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée-, Marseille, France
| | - Mireille Ansaldi
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Aurélia Battesti
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
18
|
Liu F, Zhou J, Hu M, Chen Y, Han J, Pan X, You J, Xu M, Yang T, Shao M, Zhang X, Rao Z. Efficient biosynthesis of (R)-mandelic acid from styrene oxide by an adaptive evolutionary Gluconobacter oxydans STA. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:8. [PMID: 36639820 PMCID: PMC9838050 DOI: 10.1186/s13068-023-02258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND (R)-mandelic acid (R-MA) is a highly valuable hydroxyl acid in the pharmaceutical industry. However, biosynthesis of optically pure R-MA remains significant challenges, including the lack of suitable catalysts and high toxicity to host strains. Adaptive laboratory evolution (ALE) was a promising and powerful strategy to obtain specially evolved strains. RESULTS Herein, we report a new cell factory of the Gluconobacter oxydans to biocatalytic styrene oxide into R-MA by utilizing the G. oxydans endogenous efficiently incomplete oxidization and the epoxide hydrolase (SpEH) heterologous expressed in G. oxydans. With a new screened strong endogenous promoter P12780, the production of R-MA was improved to 10.26 g/L compared to 7.36 g/L of using Plac. As R-MA showed great inhibition for the reaction and toxicity to cell growth, adaptive laboratory evolution (ALE) strategy was introduced to improve the cellular R-MA tolerance. The adapted strain that can tolerate 6 g/L R-MA was isolated (named G. oxydans STA), while the wild-type strain cannot grow under this stress. The conversion rate was increased from 0.366 g/L/h of wild type to 0.703 g/L/h by the recombinant STA, and the final R-MA titer reached 14.06 g/L. Whole-genome sequencing revealed multiple gene-mutations in STA, in combination with transcriptome analysis under R-MA stress condition, we identified five critical genes that were associated with R-MA tolerance, among which AcrA overexpression could further improve R-MA titer to 15.70 g/L, the highest titer reported from bulk styrene oxide substrate. CONCLUSIONS The microbial engineering with systematic combination of static regulation, ALE, and transcriptome analysis strategy provides valuable solutions for high-efficient chemical biosynthesis, and our evolved G. oxydans would be better to serve as a chassis cell for hydroxyl acid production.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Junping Zhou
- School of Biotechnology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengkai Hu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yan Chen
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jin Han
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Minglong Shao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
19
|
Type IV Pili Are a Critical Virulence Factor in Clinical Isolates of Paenibacillus thiaminolyticus. mBio 2022; 13:e0268822. [PMID: 36374038 PMCID: PMC9765702 DOI: 10.1128/mbio.02688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrocephalus, the leading indication for childhood neurosurgery worldwide, is particularly prevalent in low- and middle-income countries. Hydrocephalus preceded by an infection, or postinfectious hydrocephalus, accounts for up to 60% of hydrocephalus in these areas. Since many children with hydrocephalus suffer poor long-term outcomes despite surgical intervention, prevention of hydrocephalus remains paramount. Our previous studies implicated a novel bacterial pathogen, Paenibacillus thiaminolyticus, as a causal agent of neonatal sepsis and postinfectious hydrocephalus in Uganda. Here, we report the isolation of three P. thiaminolyticus strains, Mbale, Mbale2, and Mbale3, from patients with postinfectious hydrocephalus. We constructed complete genome assemblies of the clinical isolates as well as the nonpathogenic P. thiaminolyticus reference strain and performed comparative genomic and proteomic analyses to identify potential virulence factors. All three isolates carry a unique beta-lactamase gene, and two of the three isolates exhibit resistance in culture to the beta-lactam antibiotics penicillin and ampicillin. In addition, a cluster of genes carried on a mobile genetic element that encodes a putative type IV pilus operon is present in all three clinical isolates but absent in the reference strain. CRISPR-mediated deletion of the gene cluster substantially reduced the virulence of the Mbale strain in mice. Comparative proteogenomic analysis identified various additional potential virulence factors likely acquired on mobile genetic elements in the virulent strains. These results provide insight into the emergence of virulence in P. thiaminolyticus and suggest avenues for the diagnosis and treatment of this novel bacterial pathogen. IMPORTANCE Postinfectious hydrocephalus, a devastating sequela of neonatal infection, is associated with increased childhood mortality and morbidity. A novel bacterial pathogen, Paenibacillus thiaminolyticus, is highly associated with postinfectious hydrocephalus in an African cohort. Whole-genome sequencing, RNA sequencing, and proteomics of clinical isolates and a reference strain in combination with CRISPR editing identified type IV pili as a critical virulence factor for P. thiaminolyticus infection. Acquisition of a type IV pilus-encoding mobile genetic element critically contributed to converting a nonpathogenic strain of P. thiaminolyticus into a pathogen capable of causing devastating diseases. Given the widespread presence of type IV pilus in pathogens, the presence of the type IV pilus operon could serve as a diagnostic and therapeutic target in P. thiaminolyticus and related bacteria.
Collapse
|
20
|
Wu J, Liu Y, Li W, Li F, Liu R, Sun H, Qin J, Feng X, Huang D, Liu B. MlrA, a MerR family regulator in Vibrio cholerae, senses the anaerobic signal in the small intestine of the host to promote bacterial intestinal colonization. Gut Microbes 2022; 14:2143216. [PMID: 36369865 PMCID: PMC9662190 DOI: 10.1080/19490976.2022.2143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrio cholerae (V. cholerae), one of the most important bacterial pathogens in history, is a gram-negative motile bacterium that causes fatal pandemic disease in humans via oral ingestion of contaminated water or food. This process involves the coordinated actions of numerous regulatory factors. The MerR family regulators, which are widespread in prokaryotes, have been reported to be associated with pathogenicity. However, the role of the MerR family regulators in V. cholerae virulence remains unknown. Our study systematically investigated the influence of MerR family regulators on intestinal colonization of V. cholerae within the host. Among the five MerR family regulators, MlrA was found to significantly promote the colonization capacity of V. cholerae in infant mice. Furthermore, we revealed that MlrA increases bacterial intestinal colonization by directly enhancing the expression of tcpA, which encodes one of the most important virulence factors in V. cholerae, by binding to its promoter region. In addition, we revealed that during infection, mlrA is activated by anaerobic signals in the small intestine of the host through Fnr. In summary, our findings reveal a MlrA-mediated virulence regulation pathway that enables V. cholerae to sense environmental signals at the infection site to precisely activate virulence gene expression, thus providing useful insights into the pathogenic mechanisms of V. cholerae.
Collapse
Affiliation(s)
- Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Fan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,Di Huang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,CONTACT Bin Liu TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| |
Collapse
|
21
|
Elucidation of Key Interactions between VirF and the virB Promoter in Shigella flexneri Using E. coli MarA- and GadX-Based Homology Models and In Vitro Analysis of the DNA-Binding Domains of VirF and MarA. J Bacteriol 2022; 204:e0014322. [PMID: 36040161 PMCID: PMC9487632 DOI: 10.1128/jb.00143-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Shigella, the organism responsible for the diarrheal disease shigellosis, leads to approximately 200,000 deaths globally annually. Virulence of this pathogen is primarily controlled by the DNA-binding transcriptional activator VirF. This AraC family protein activates transcription of two major virulence genes, virB and icsA, which lead to the pathogen's ability to invade and spread within colonic epithelial cells. While several AraC proteins have been studied, few studies of VirF's binding to its DNA promoters have been reported, and VirF's three-dimensional structure remains unsolved. Here, we used structures of two E. coli VirF homologs, GadX and MarA-marRAB, to generate homology models of the VirF DNA-binding domain in free and DNA-bound conformations. We conducted alanine scanning mutagenesis on seven residues within MarA that make base-specific interactions with its promoter, marRAB, and the corresponding residues within VirF (identified by sequence and structural homologies). In vitro DNA-binding assays studying both wild-type and mutant MarA and VirF proteins identified residues important for binding to the marRAB and virB promoters, respectively. Comparison of the effects of these DNA-binding domain mutants validated our MarA-based homology model, allowing us to identify crucial interactions between VirF and the virB promoter. Proteins with mutations to helix 3 within both MarA(W42A, R46A) and MalE-VirF(R192A, K193A) exhibited significant reductions in DNA binding, while the effects of mutations in helix 6 varied. This suggests the shared importance of helix 3 in the binding to these promoters, while helix 6 is transcription factor specific. These results can inform further development of virulence-targeting inhibitors as an alternative to traditional antimicrobial drug design. IMPORTANCE Globally, infection with Shigella flexneri is a leading cause of bacterial dysentery, particularly affecting children under the age of 5 years. The virulence of this pathogen makes it highly infectious, allowing it to spread easily within areas lacking proper sanitation or access to clean drinking water. VirF is a DNA-binding transcription factor that activates S. flexneri virulence once the bacteria infect the human colon. Development of drugs that target VirF's DNA-binding activity can be an effective treatment to combat shigellosis as an alternative or addition to traditional antibiotics. Due to the lack of structural data, analysis of VirF's DNA-binding activity is critical to the development of potent VirF inhibitors.
Collapse
|
22
|
Lee HY, Yoon CK, Cho YJ, Lee JW, Lee KA, Lee WJ, Seok YJ. A mannose-sensing AraC-type transcriptional activator regulates cell-cell aggregation of Vibrio cholerae. NPJ Biofilms Microbiomes 2022; 8:65. [PMID: 35987769 PMCID: PMC9392796 DOI: 10.1038/s41522-022-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to catalyzing coupled transport and phosphorylation of carbohydrates, the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulates various physiological processes in most bacteria. Therefore, the transcription of genes encoding the PTS is precisely regulated by transcriptional regulators depending on substrate availability. As the distribution of the mannose-specific PTS (PTSMan) is limited to animal-associated bacteria, it has been suggested to play an important role in host-bacteria interactions. In Vibrio cholerae, mannose is known to inhibit biofilm formation. During host infection, the transcription level of the V. cholerae gene encoding the putative PTSMan (hereafter referred to as manP) significantly increases, and mutations in this gene increase host survival rate. Herein, we show that an AraC-type transcriptional regulator (hereafter referred to as ManR) acts as a transcriptional activator of the mannose operon and is responsible for V. cholerae growth and biofilm inhibition on a mannose or fructose-supplemented medium. ManR activates mannose operon transcription by facilitating RNA polymerase binding to the promoter in response to mannose 6-phosphate and, to a lesser extent, to fructose 1-phosphate. When manP or manR is impaired, the mannose-induced inhibition of biofilm formation was reversed and intestinal colonization was significantly reduced in a Drosophila melanogaster infection model. Our results show that ManR recognizes mannose and fructose in the environment and facilitates V. cholerae survival in the host.
Collapse
Affiliation(s)
- Hye-Young Lee
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong-Jae Seok
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
23
|
Complete Genome Report of a Hydrocarbon-Degrading Sphingobium yanoikuyae S72. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingobium yanoikuyae S72 was isolated from the rhizosphere of sorghum plant in Mexico and we evaluated its survival and role in the degradation of some selected monoaromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) using minimal medium (Bushnell Hass medium (BH)) in which each of the hydrocarbons (naphthalene, phenanthrene, xylene, toluene, and biphenyl) served as sole carbon source. Gas column chromatography–mass spectrometry analysis was used to evaluate the effect of S72’s growth in the medium with the hydrocarbons. The genome of the S72 was sequenced to determine the genetic basis for the degradation of the selected hydrocarbon in S72. The genome was assembled de novo with Spades assembler and Velvet assembler and the obtained contigs were reduced to 1 manually using Consed software. Genome annotation was carried out Prokka version 1.12, and gene calling and further annotation was carried out with NCBI PGAAP. Pangenome analysis and COG annotation were done with bacteria pangenome analysis tool (BPGA) and with PATRIC online server, respectively. S72 grew effectively in the culture medium with the hydrocarbon with concentration ranging from 20–100 mg/mL for each hydrocarbon tested. S72 degraded biphenyl by 85%, phenanthrene by 93%, naphthalene by 81%, xylene by 19%, and toluene by 30%. The sequenced S72 genome was reduced to 1 contig and genome analysis revealed the presence of genes essential for the degradation of hydrocarbons in S72. A total of 126 unique genes in S72 are associated with the degradation of hydrocarbons and xenobiotics. S72 grew effectively in the tested hydrocarbon and shows good degradation efficiency. S72 will therefore be a good candidate for bioremediation of hydrocarbon contaminated soil.
Collapse
|
24
|
The AraC/XylS Protein MxiE and Its Coregulator IpgC Control a Negative Feedback Loop in the Transcriptional Cascade That Regulates Type III Secretion in Shigella flexneri. J Bacteriol 2022; 204:e0013722. [PMID: 35703565 DOI: 10.1128/jb.00137-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the AraC family of transcriptional regulators (AFTRs) control the expression of many genes important to cellular processes, including virulence. In Shigella species, the type III secretion system (T3SS), a key determinant for host cell invasion, is regulated by the three-tiered VirF/VirB/MxiE transcriptional cascade. Both VirF and MxiE belong to the AFTRs and are characterized as positive transcriptional regulators. Here, we identify a novel regulatory activity for MxiE and its coregulator IpgC, which manifests as a negative feedback loop in the VirF/VirB/MxiE transcriptional cascade. Our findings show that MxiE and IpgC downregulate the virB promoter and, hence, VirB protein production, thus decreasing VirB-dependent promoter activity at ospD1, one of the nearly 50 VirB-dependent genes. At the virB promoter, regions required for negative MxiE- and IpgC-dependent regulation were mapped and found to be coincident with regions required for positive VirF-dependent regulation. In tandem, negative MxiE- and IpgC-dependent regulation of the virB promoter only occurred in the presence of VirF, suggesting that MxiE and IpgC can function to counter VirF activation of the virB promoter. Lastly, MxiE and IpgC do not downregulate another VirF-activated promoter, icsA, demonstrating that this negative feedback loop targets the virB promoter. Our study provides insight into a mechanism that may reprogram Shigella virulence gene expression following type III secretion and provides the impetus to examine if MxiE and IpgC homologs in other important bacterial pathogens, such as Burkholderia pseudomallei and Salmonella enterica serovars Typhimurium and Typhi, coordinate similar negative feedback loops. IMPORTANCE The large AraC family of transcriptional regulators (AFTRs) control virulence gene expression in many bacterial pathogens. In Shigella species, the AraC/XylS protein MxiE and its coregulator IpgC positively regulate the expression of type III secretion system genes within the three-tiered VirF/VirB/MxiE transcriptional cascade. Our findings suggest a negative feedback loop in the VirF/VirB/MxiE cascade, in which MxiE and IpgC counter VirF-dependent activation of the virB promoter, thus making this the first characterization of negative MxiE- and IpgC-dependent regulation. Our study provides insight into a mechanism that likely reprograms Shigella virulence gene expression following type III secretion, which has implications for other important bacterial pathogens with functional homologs of MxiE and IpgC.
Collapse
|
25
|
Shi J, Wang F, Li F, Wang L, Xiong Y, Wen A, Jin Y, Jin S, Gao F, Feng Z, Li J, Zhang Y, Shang Z, Wang S, Feng Y, Lin W. Structural basis of transcription activation by Rob, a pleiotropic AraC/XylS family regulator. Nucleic Acids Res 2022; 50:5974-5987. [PMID: 35641097 PMCID: PMC9178005 DOI: 10.1093/nar/gkac433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Rob, which serves as a paradigm of the large AraC/XylS family transcription activators, regulates diverse subsets of genes involved in multidrug resistance and stress response. However, the underlying mechanism of how it engages bacterial RNA polymerase and promoter DNA to finely respond to environmental stimuli is still elusive. Here, we present two cryo-EM structures of Rob-dependent transcription activation complex (Rob-TAC) comprising of Escherichia coli RNA polymerase (RNAP), Rob-regulated promoter and Rob in alternative conformations. The structures show that a single Rob engages RNAP by interacting with RNAP αCTD and σ70R4, revealing their generally important regulatory roles. Notably, by occluding σ70R4 from binding to -35 element, Rob specifically binds to the conserved Rob binding box through its consensus HTH motifs, and retains DNA bending by aid of the accessory acidic loop. More strikingly, our ligand docking and biochemical analysis demonstrate that the large Rob C-terminal domain (Rob CTD) shares great structural similarity with the global Gyrl-like domains in effector binding and allosteric regulation, and coordinately promotes formation of competent Rob-TAC. Altogether, our structural and biochemical data highlight the detailed molecular mechanism of Rob-dependent transcription activation, and provide favorable evidences for understanding the physiological roles of the other AraC/XylS-family transcription factors.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Xiong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sha Jin
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fei Gao
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenzhen Feng
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiacong Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Zhang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuo Shang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuang Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210023, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Sengupta K, Hivarkar SS, Palevich N, Chaudhary PP, Dhakephalkar PK, Dagar SS. Genomic architecture of three newly isolated unclassified Butyrivibrio species elucidate their potential role in the rumen ecosystem. Genomics 2022; 114:110281. [DOI: 10.1016/j.ygeno.2022.110281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
|
27
|
Hao M, Ye F, Jovanovic M, Kotta‐Loizou I, Xu Q, Qin X, Buck M, Zhang X, Wang M. Structures of Class I and Class II Transcription Complexes Reveal the Molecular Basis of RamA-Dependent Transcription Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103669. [PMID: 34761556 PMCID: PMC8811837 DOI: 10.1002/advs.202103669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Transcription activator RamA is linked to multidrug resistance of Klebsiella pneumoniae through controlling genes that encode efflux pumps (acrA) and porin-regulating antisense RNA (micF). In bacteria, σ70 , together with activators, controls the majority of genes by recruiting RNA polymerase (RNAP) to the promoter regions. RNAP and σ70 form a holoenzyme that recognizes -35 and -10 promoter DNA consensus sites. Many activators bind upstream from the holoenzyme and can be broadly divided into two classes. RamA acts as a class I activator on acrA and class II activator on micF, respectively. The authors present biochemical and structural data on RamA in complex with RNAP-σ70 at the two promoters and the data reveal the molecular basis for how RamA assembles and interacts with core RNAP and activates transcription that contributes to antibiotic resistance. Further, comparing with CAP/TAP complexes reveals common and activator-specific features in activator binding and uncovers distinct roles of the two C-terminal domains of RNAP α subunit.
Collapse
Affiliation(s)
- Min Hao
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Fuzhou Ye
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Milija Jovanovic
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | | | - Qingqing Xu
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| | - Xiaohua Qin
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| | - Martin Buck
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | - Xiaodong Zhang
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Minggui Wang
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| |
Collapse
|
28
|
Permsirivisarn P, Yuenyao A, Pramanpol N, Charoenwattanasatien R, Suginta W, Chaiyen P, Pakotiprapha D. Mechanism of transcription regulation by Acinetobacter baumannii HpaR in the catabolism of p-hydroxyphenylacetate. FEBS J 2021; 289:3217-3240. [PMID: 34967505 DOI: 10.1111/febs.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
HpaR is a transcription regulator in the MarR family that controls the expression of the gene cluster responsible for conversion of p-hydroxyphenylacetate to pyruvate and succinate for cellular metabolism. Here, we report the biochemical and structural characterization of Acinetobacter baumannii HpaR (AbHpaR) and its complex with cognate DNA. Our study revealed that AbHpaR binds upstream of the divergently transcribed hpaA gene and the meta-cleavage operon, as well as the hpaR gene, thereby repressing their transcription by blocking access of RNA polymerase. Structural analysis of AbHpaR-DNA complex revealed that the DNA binding specificity can be achieved via a combination of both direct and indirect DNA sequence readouts. DNA binding of AbHpaR is weakened by 3,4-dihydroxyphenylacetate (DHPA), which is the substrate of the meta-cleavage reactions; this likely leads to expression of the target genes. Based on our findings, we propose a model for how A. baumannii controls transcription of HPA-metabolizing genes, which highlights the independence of global catabolite repression and could be beneficial for metabolic engineering towards bioremediation applications.
Collapse
Affiliation(s)
- Permkun Permsirivisarn
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anan Yuenyao
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nuttawan Pramanpol
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | | | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
29
|
Genomic characterization of a dehalogenase-producing bacterium (Bacillus megaterium H2) isolated from hypersaline Lake Tuz (Turkey). GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Control of Escherichia coli O157:H7 Motility and Biofilm Formation by Salicylate and Decanoate: MarA/SoxS/Rob and pchE Interactions. Appl Environ Microbiol 2021; 88:e0189121. [PMID: 34788062 DOI: 10.1128/aem.01891-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prophage-encoded Escherichia coli O157:H7 transcription factor (TF), PchE, inhibits biofilm formation and attachment to cultured epithelial cells by reducing curli fimbriae expression and increasing flagella expression. To identify pchE regulators that might be used in intervention strategies to reduce environmental persistence or host infections, we performed a computational search of O157:H7 strain PA20 pchE promoter sequences for binding sites used by known TFs. A common site shared by MarA/SoxS/Rob TFs was identified and the typical MarA/Rob inducers, salicylate and decanoate, were tested for biofilm and motility effects. Sodium salicylate, a proven biofilm inhibitor, but not sodium decanoate, strongly reduced O157:H7 biofilms by a pchE-independent mechanism. Both salicylate and decanoate enhanced O157:H7 motility dependent on pchE using media and incubation temperatures optimum for culturing human epithelial cells. However, induction of pchE by salicylate did not activate the SOS response. MarA/SoxS/Rob inducers provide new potential agents for controlling O157:H7 interactions with the host and its persistence in the environment. IMPORTANCE There is a need to develop E. coli serotype O157:H7 non-antibiotic interventions that do not precipitate the release and activation of virulence factor-encoded prophage and transferrable genetic elements. One method is to stimulate existing regulatory pathways that repress bacterial persistence and virulence genes. Here we show that certain inducers of MarA and Rob have that ability, working through both pchE-dependent and -independent pathways.
Collapse
|
31
|
Sahebi M, Tarighi S, Taheri P. The Arac-like transcriptional regulator YqhC is involved in pathogenicity of Erwinia amylovora. J Appl Microbiol 2021; 132:1319-1329. [PMID: 34480830 DOI: 10.1111/jam.15286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to identify virulence-associated genes and functions that affect disease development on pear caused by Erwinia amylovora EaUMG3 isolated from Iran. METHODS AND RESULTS A mini-Tn5 transposon library was generated in EaUMG3. An E. amylovora mutant that had lost its ability to cause lesions on immature pear fruits, was selected for further analysis. This mutant was shown to have a transposon insertion in yqhC, a gene belongs to the AraC family of transcriptional regulators. A mutant of the wild-type EaUMG3 carrying an unmarked deletion of the yqhC gene was created using pDMS197. The Ea∆yqhC mutant showed reduced disease progression on immature pear fruits and pear plants, reduced motility and significantly lower levels of the virulence factors siderophore and amylovoran. Complementation with yqhC cloned in pBBR1MCS restored disease progression and the level of virulence factors to near wild type. CONCLUSION YqhC transcriptional regulator is necessary for full virulence of E. amylovora. In addition, this regulator affects virulence factors such as siderophore production, amylovoran production, and motility. SIGNIFICANCE AND IMPACT OF STUDY The identification of a novel transcriptional regulator with strong impact in the pathogenesis of E. amylovora, an organism causing significant economic losses in fruit production.
Collapse
Affiliation(s)
- Masood Sahebi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Tarighi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
32
|
Argandoña M, Piubeli F, Reina‐Bueno M, Nieto JJ, Vargas C. New insights into hydroxyectoine synthesis and its transcriptional regulation in the broad-salt growing halophilic bacterium Chromohalobacter salexigens. Microb Biotechnol 2021; 14:1472-1493. [PMID: 33955667 PMCID: PMC8313267 DOI: 10.1111/1751-7915.13799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022] Open
Abstract
Elucidating the mechanisms controlling the synthesis of hydroxyectoine is important to design novel genetic engineering strategies for optimizing the production of this biotechnologically relevant compatible solute. The genome of the halophilic bacterium Chromohalobacter salexigens carries two ectoine hydroxylase genes, namely ectD and ectE, whose encoded proteins share the characteristic consensus motif of ectoine hydroxylases but showed only a 51.9% identity between them. In this work, we have shown that ectE encodes a secondary functional ectoine hydroxylase and that the hydroxyectoine synthesis mediated by this enzyme contributes to C.␣salexigens thermoprotection. The evolutionary pattern of EctD and EctE and related proteins suggests that they may have arisen from duplication of an ancestral gene preceding the directional divergence that gave origin to the orders Oceanospirillales and Alteromonadales. Osmoregulated expression of ectD at exponential phase, as well as the thermoregulated expression of ectD at the stationary phase, seemed to be dependent on the general stress factor RpoS. In contrast, expression of ectE was always RpoS-dependent regardless of the growth phase and osmotic or heat stress conditions tested. The data presented here suggest that the AraC-GlxA-like EctZ transcriptional regulator, whose encoding gene lies upstream of ectD, plays a dual function under exponential growth as both a transcriptional activator of osmoregulated ectD expression and a repressor of ectE transcription, privileging the synthesis of the main ectoine hydroxylase EctD. Inactivation of ectZ resulted in a higher amount of the total ectoines pool at the expenses of a higher accumulation of ectoine, with maintenance of the hydroxyectoine levels. In addition to the transcriptional control, our results suggest a strong post-transcriptional regulation of hydroxyectoine synthesis. Data on the accumulation of ectoine and hydroxyectoine in rpoS and ectZ strains pave the way for using these genetic backgrounds for metabolic engineering for hydroxyectoine production.
Collapse
Affiliation(s)
- Montserrat Argandoña
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Francine Piubeli
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Mercedes Reina‐Bueno
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Joaquín J. Nieto
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Carmen Vargas
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| |
Collapse
|
33
|
Essential gene analysis in Acinetobacter baumannii by high-density transposon mutagenesis and CRISPR interference. J Bacteriol 2021; 203:e0056520. [PMID: 33782056 DOI: 10.1128/jb.00565-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is a poorly understood bacterium capable of life-threatening infections in hospitals. Few antibiotics remain effective against this highly resistant pathogen. Developing rationally-designed antimicrobials that can target A. baumannii requires improved knowledge of the proteins that carry out essential processes allowing growth of the organism. Unfortunately, studying essential genes has been challenging using traditional techniques, which usually require time-consuming recombination-based genetic manipulations. Here, we performed saturating mutagenesis with dual transposon systems to identify essential genes in A. baumannii and we developed a CRISPR-interference (CRISPRi) system for facile analysis of these genes. We show that the CRISPRi system enables efficient transcriptional silencing in A. baumannii Using these tools, we confirmed the essentiality of the novel cell division protein AdvA and discovered a previously uncharacterized AraC-family transcription factor (ACX60_RS03245) that is necessary for growth. In addition, we show that capsule biosynthesis is a conditionally essential process, with mutations in late-acting steps causing toxicity in strain ATCC 17978 that can be bypassed by blocking early-acting steps or activating the BfmRS stress response. These results open new avenues for analysis of essential pathways in A. baumannii ImportanceNew approaches are urgently needed to control A. baumannii, one of the most drug resistant pathogens known. To facilitate the development of novel targets that allow inhibition of the pathogen, we performed a large-scale identification of genes whose products the bacterium needs for growth. We also developed a CRISPR-based gene knockdown tool that operates efficiently in A. baumannii, allowing rapid analysis of these essential genes. We used these methods to define multiple processes vital to the bacterium, including a previously uncharacterized gene-regulatory factor and export of a protective polymeric capsule. These tools will enhance our ability to investigate processes critical for the essential biology of this challenging hospital-acquired pathogen.
Collapse
|
34
|
The HrpG/HrpX Regulon of Xanthomonads-An Insight to the Complexity of Regulation of Virulence Traits in Phytopathogenic Bacteria. Microorganisms 2021; 9:microorganisms9010187. [PMID: 33467109 PMCID: PMC7831014 DOI: 10.3390/microorganisms9010187] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/05/2022] Open
Abstract
Bacteria of the genus Xanthomonas cause a wide variety of economically important diseases in most crops. The virulence of the majority of Xanthomonas spp. is dependent on secretion and translocation of effectors by the type 3 secretion system (T3SS) that is controlled by two master transcriptional regulators HrpG and HrpX. Since their discovery in the 1990s, the two regulators were the focal point of many studies aiming to decipher the regulatory network that controls pathogenicity in Xanthomonas bacteria. HrpG controls the expression of HrpX, which subsequently controls the expression of T3SS apparatus genes and effectors. The HrpG/HrpX regulon is activated in planta and subjected to tight metabolic and genetic regulation. In this review, we cover the advances made in understanding the regulatory networks that control and are controlled by the HrpG/HrpX regulon and their conservation between different Xanthomonas spp.
Collapse
|
35
|
Cho JY, Liu R, Macbeth JC, Hsiao A. The Interface of Vibrio cholerae and the Gut Microbiome. Gut Microbes 2021; 13:1937015. [PMID: 34180341 PMCID: PMC8244777 DOI: 10.1080/19490976.2021.1937015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
The bacterium Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. The gut microbiome, or the native community of microorganisms found in the human gastrointestinal tract, is increasingly being recognized as a factor in driving susceptibility to infection, in vivo fitness, and host interactions of this pathogen. Here, we review a subset of the emerging studies in how gut microbiome structure and microbial function are able to drive V. cholerae virulence gene regulation, metabolism, and modulate host immune responses to cholera infection and vaccination. Improved mechanistic understanding of commensal-pathogen interactions offers new perspectives in the design of prophylactic and therapeutic approaches for cholera control.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California, USA
| | - John C. Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
36
|
A Novel Two-Component System, XygS/XygR, Positively Regulates Xyloglucan Degradation, Import, and Catabolism in Ruminiclostridium cellulolyticum. Appl Environ Microbiol 2020; 86:AEM.01357-20. [PMID: 32769189 DOI: 10.1128/aem.01357-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022] Open
Abstract
Cellulolytic microorganisms play a key role in the global carbon cycle by decomposing structurally diverse plant biopolymers from dead plant matter. These microorganisms, in particular anaerobes such as Ruminiclostridium cellulolyticum that are capable of degrading and catabolizing several different polysaccharides, require a fine-tuned regulation of the biosynthesis of their polysaccharide-degrading enzymes. In this study, we present a bacterial regulatory system involved in the regulation of genes enabling the metabolism of the ubiquitous plant polysaccharide xyloglucan. The characterization of R. cellulolyticum knockout mutants suggests that the response regulator XygR and its cognate histidine kinase XygS are essential for growth on xyloglucan. Using in vitro and in vivo analyses, we show that XygR binds to the intergenic region and activates the expression of two polycistronic transcriptional units encoding an ABC transporter dedicated to the uptake of xyloglucan oligosaccharides and the two-component system itself together with three intracellular glycoside hydrolases responsible for the sequential intracellular degradation of the imported oligosaccharides into mono- and disaccharides. Interestingly, XygR also upregulates the expression of a distant gene coding for the most active extracellular cellulosomal xyloglucanase of R. cellulolyticum by binding to the upstream intergenic region.IMPORTANCE Ruminiclostridium cellulolyticum is a Gram-positive, mesophilic, anaerobic, cellulolytic, and hemicellulolytic bacterium. The last property qualifies this species as a model species for the study of hemicellulose degradation, import of degradation products, and overall regulation of these phenomena. In this study, we focus on the regulation of xyloglucan dextrin import and intracellular degradation and show that the two components of the two-component regulation system XygSR are essential for growth on xyloglucan and that the response regulator XygR regulates the transcription of genes involved in the extracellular degradation of the polysaccharide, the import of degradation products, and their intracellular degradation.
Collapse
|
37
|
Jia S, Hong H, Yang Q, Liu X, Zhuang S, Li Y, Liu J, Luo Y. TMT-based proteomic analysis of the fish-borne spoiler Pseudomonas psychrophila subjected to chitosan oligosaccharides in fish juice system. Food Microbiol 2020; 90:103494. [DOI: 10.1016/j.fm.2020.103494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 01/16/2023]
|
38
|
Phenotypes, transcriptome, and novel biofilm formation associated with the ydcI gene. Antonie Van Leeuwenhoek 2020; 113:1109-1122. [PMID: 32419108 DOI: 10.1007/s10482-020-01412-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
The ydcI gene has previously been shown to encode a DNA-binding protein involved with acid stress resistance and induced biofilm formation in a strain of Salmonella enterica serovar Typhimurium. In addition, characterisation of the ydcI gene in Escherichia coli and other bacteria demonstrated strikingly different tolerance for induced ydcI expression across Gram negative species. In this report, we investigated the conservation of these phenotypes across multiple strains of S. Typhimurium and E. coli, and we used RNA Seq to identify the transcriptome of the ΔydcI mutant compared to WT in S. Typhimurium and E. coli (to establish the YdcI regulon in each species). We constructed deletion mutants in each species based on the RNA Seq results and tested these mutants for the relevant ydcI-related phenotypes. Though no evidence for a role in these phenotypes was found via the RNA Seq deletion mutants, we found that the ydcI-induced biofilm in S. Typhimurium is formed independently of the major biofilm genes csgA and bcsA indicating a potentially novel type of biofilm formation.
Collapse
|
39
|
Effects of Lmo2672 Deficiency on Environmental Adaptability, Biofilm Formation, and Motility of Listeria monocytogenes. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.95758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
40
|
HilD, HilC, and RtsA Form Homodimers and Heterodimers To Regulate Expression of the Salmonella Pathogenicity Island I Type III Secretion System. J Bacteriol 2020; 202:JB.00012-20. [PMID: 32041797 DOI: 10.1128/jb.00012-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium colonizes and invades host intestinal epithelial cells using the type three secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). The level of SPI1 T3SS gene expression is controlled by the transcriptional activator HilA, encoded on SPI1. Expression of hilA is positively regulated by three homologous transcriptional regulators, HilD, HilC, and RtsA, belonging to the AraC/XylS family. These regulators also activate the hilD, hilC, and rtsA genes by binding to the same DNA sequences upstream of these promoters, forming a complex feed-forward loop to control SPI1 expression. Despite the apparent redundancy in function, HilD has a unique role in SPI1 regulation because the majority of external regulatory inputs act exclusively through HilD. To better understand SPI1 regulation, the nature of interaction between HilD, HilC, and RtsA has been characterized using biochemical and genetic techniques. Our results showed that HilD, HilC, and RtsA can form heterodimers as well as homodimers in solution. Comparison with other AraC family members identified a putative α-helix in the N-terminal domain, which acts as the dimerization domain. Alanine substitution in this region results in reduced dimerization of HilD and HilC and also affects their ability to activate hilA expression. The dimer interactions of HilD, HilC, and RtsA add another layer of complexity to the SPI1 regulatory circuit, providing a more comprehensive understanding of SPI1 T3SS regulation and Salmonella pathogenesis.IMPORTANCE The SPI1 type three secretion system is a key virulence factor required for Salmonella to both cause gastroenteritis and initiate serious systemic disease. The system responds to numerous environmental signals in the intestine, integrating this information via a complex regulatory network. Here, we show that the primary regulatory proteins in the network function as both homodimers and heterodimers, providing information regarding both regulation of virulence in this important pathogen and general signal integration to control gene expression.
Collapse
|
41
|
Chetri S, Das BJ, Bhowmik D, Chanda DD, Chakravarty A, Bhattacharjee A. Transcriptional response of mar, sox and rob regulon against concentration gradient carbapenem stress within Escherichia coli isolated from hospital acquired infection. BMC Res Notes 2020; 13:168. [PMID: 32192538 PMCID: PMC7083032 DOI: 10.1186/s13104-020-04999-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/10/2020] [Indexed: 12/01/2022] Open
Abstract
Objective The present study was carried out to investigate the transcriptional response of marA (Multiple antibiotic resistance A gene), soxS (Superoxide S gene) and rob (Right-origin-binding gene) under carbapenem stress. Results 12 isolates were found over-expressing AcrAB-TolC efflux pump system and showed reduced expression of OmpF (Outer membrane porin) gene were selected for further study. Among them, over expression of marA and rob was observed in 7 isolates. Increasing pattern of expression of marA and rob against meropenem was observed. The clones of marA and rob showed reduced susceptibility towards carbapenems.
Collapse
|
42
|
Zhang C, Chen S, Bai X, Dedkova LM, Hecht SM. Alteration of Transcriptional Regulator Rob In Vivo: Enhancement of Promoter DNA Binding and Antibiotic Resistance in the Presence of Nucleobase Amino Acids. Biochemistry 2020; 59:1217-1220. [PMID: 32157864 DOI: 10.1021/acs.biochem.0c00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of proteins that bind selectively to nucleic acid sequences is an ongoing challenge. We previously synthesized nucleobase amino acids designed to replace proteinogenic amino acids; these were incorporated into proteins to bind specific nucleic acids predictably. An early example involved selective cell free binding of the hnRNP LL RRM1 domain to its i-motif DNA target via Watson-Crick-like H-bonding interactions. In this study, we employ the X-ray crystal structure of transcriptional regulator Rob bound to its micF promoter, which occurred without DNA distortion. Rob proteins modified in vivo with nucleobase amino acids at position 40 exhibited altered DNA promoter binding, as predicted on the basis of their Watson-Crick-like H-bonding interactions with promoter DNA A-box residue Gua-6. Rob protein expression ultimately controls phenotypic changes, including resistance to antibiotics. Although Rob proteins with nucleobase amino acids were expressed in Escherichia coli at levels estimated to be only a fraction of that of the wild-type Rob protein, those modified proteins that bound to the micF promoter more avidly than the wild type in vitro also produced greater resistance to macrolide antibiotics roxithromycin and clarithromycin in vivo, as well as the β-lactam antibiotic ampicillin. Also demonstrated is the statistical significance of altered DNA binding and antibiotic resistance for key Rob analogues. These preliminary findings suggest the ultimate utility of nucleobase amino acids in altering and controlling preferred nucleic acid target sequences by proteins, for probing molecular interactions critical to protein function, and for enhancing phenotypic changes in vivo by regulatory protein analogues.
Collapse
Affiliation(s)
- Chao Zhang
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
43
|
Baek Y, Kim J, Ahn J, Jo I, Hong S, Ryu S, Ha NC. Structure and function of the hypochlorous acid-induced flavoprotein RclA from Escherichia coli. J Biol Chem 2020; 295:3202-3212. [PMID: 31988242 DOI: 10.1074/jbc.ra119.011530] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
In response to microbial invasion, the animal immune system generates hypochlorous acid (HOCl) that kills microorganisms in the oxidative burst. HOCl toxicity is amplified in the phagosome through import of the copper cation (Cu2+). In Escherichia coli and Salmonella, the transcriptional regulator RclR senses HOCl stress and induces expression of the RclA, -B, and -C proteins involved in bacterial defenses against oxidative stress. However, the structures and biochemical roles of the Rcl proteins remain to be elucidated. In this study, we first examined the role of the flavoprotein disulfide reductase (FDR) RclA in the survival of Salmonella in macrophage phagosomes, finding that RclA promotes Salmonella survival in macrophage vacuoles containing sublethal HOCl levels. To clarify the molecular mechanism, we determined the crystal structure of RclA from E. coli at 2.9 Å resolution. This analysis revealed that the structure of homodimeric RclA is similar to those of typical FDRs, exhibiting two conserved cysteine residues near the flavin ring of the cofactor flavin adenine dinucleotide (FAD). Of note, we observed that Cu2+ accelerated RclA-mediated oxidation of NADH, leading to a lowering of oxygen levels in vitro Compared with the RclA WT enzyme, substitution of the conserved cysteine residues lowered the specificity to Cu2+ or substantially increased the production of superoxide anion in the absence of Cu2+ We conclude that RclA-mediated lowering of oxygen levels could contribute to the inhibition of oxidative bursts in phagosomes. Our study sheds light on the molecular basis for how bacteria can survive HOCl stress in macrophages.
Collapse
Affiliation(s)
- Yeongjin Baek
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwoo Kim
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinsook Ahn
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Inseong Jo
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokho Hong
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
44
|
Yasir M, Icke C, Abdelwahab R, Haycocks JR, Godfrey RE, Sazinas P, Pallen MJ, Henderson IR, Busby SJW, Browning DF. Organization and architecture of AggR-dependent promoters from enteroaggregative Escherichia coli. Mol Microbiol 2018; 111:534-551. [PMID: 30485564 PMCID: PMC6392122 DOI: 10.1111/mmi.14172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 11/27/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC), is a diarrhoeagenic human pathogen commonly isolated from patients in both developing and industrialized countries. Pathogenic EAEC strains possess many virulence determinants, which are thought to be involved in causing disease, though, the exact mechanism by which EAEC causes diarrhoea is unclear. Typical EAEC strains possess the transcriptional regulator, AggR, which controls the expression of many virulence determinants, including the attachment adherence fimbriae (AAF) that are necessary for adherence to human gut epithelial cells. Here, using RNA‐sequencing, we have investigated the AggR regulon from EAEC strain 042 and show that AggR regulates the transcription of genes on both the bacterial chromosome and the large virulence plasmid, pAA2. Due to the importance of fimbriae, we focused on the two AAF/II fimbrial gene clusters in EAEC 042 (afaB‐aafCB and aafDA) and identified the promoter elements and AggR‐binding sites required for fimbrial expression. In addition, we examined the organization of the fimbrial operon promoters from other important EAEC strains to understand the rules of AggR‐dependent activation. Finally, we generated a series of semi‐synthetic promoters to define the minimal sequence required for AggR‐mediated activation and show that the correct positioning of a single AggR‐binding site is sufficient to confer AggR‐dependence.
Collapse
Affiliation(s)
- Muhammad Yasir
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Christopher Icke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Radwa Abdelwahab
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - James R Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pavelas Sazinas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
45
|
Abhishek S, Saikia UN, Gupta A, Bansal R, Gupta V, Singh N, Laal S, Verma I. Transcriptional Profile of Mycobacterium tuberculosis in an in vitro Model of Intraocular Tuberculosis. Front Cell Infect Microbiol 2018; 8:330. [PMID: 30333960 PMCID: PMC6175983 DOI: 10.3389/fcimb.2018.00330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Intraocular tuberculosis (IOTB), an extrapulmonary manifestation of tuberculosis of the eye, has unique and varied clinical presentations with poorly understood pathogenesis. As it is a significant cause of inflammation and visual morbidity, particularly in TB endemic countries, it is essential to study the pathogenesis of IOTB. Clinical and histopathologic studies suggest the presence of Mycobacterium tuberculosis in retinal pigment epithelium (RPE) cells. Methods: A human retinal pigment epithelium (ARPE-19) cell line was infected with a virulent strain of M. tuberculosis (H37Rv). Electron microscopy and colony forming units (CFU) assay were performed to monitor the M. tuberculosis adherence, invasion, and intracellular replication, whereas confocal microscopy was done to study its intracellular fate in the RPE cells. To understand the pathogenesis, the transcriptional profile of M. tuberculosis in ARPE-19 cells was studied by whole genome microarray. Three upregulated M. tuberculosis transcripts were also examined in human IOTB vitreous samples. Results: Scanning electron micrographs of the infected ARPE-19 cells indicated adherence of bacilli, which were further observed to be internalized as monitored by transmission electron microscopy. The CFU assay showed that 22.7 and 8.4% of the initial inoculum of bacilli adhered and invaded the ARPE-19 cells, respectively, with an increase in fold CFU from 1 dpi (0.84) to 5dpi (6.58). The intracellular bacilli were co-localized with lysosomal-associated membrane protein-1 (LAMP-1) and LAMP-2 in ARPE-19 cells. The transcriptome study of intracellular bacilli showed that most of the upregulated transcripts correspond to the genes encoding the proteins involved in the processes such as adherence (e.g., Rv1759c and Rv1026), invasion (e.g., Rv1971 and Rv0169), virulence (e.g., Rv2844 and Rv0775), and intracellular survival (e.g., Rv1884c and Rv2450c) as well as regulators of various metabolic pathways. Two of the upregulated transcripts (Rv1971, Rv1230c) were also present in the vitreous samples of the IOTB patients. Conclusions:M. tuberculosis is phagocytosed by RPE cells and utilizes these cells for intracellular multiplication with the involvement of late endosomal/lysosomal compartments and alters its transcriptional profile plausibly for its intracellular adaptation and survival. The findings of the present study could be important to understanding the molecular pathogenesis of IOTB with a potential role in the development of diagnostics and therapeutics for IOTB.
Collapse
Affiliation(s)
- Sudhanshu Abhishek
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amod Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reema Bansal
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishali Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nirbhai Singh
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suman Laal
- Department of Pathology, New York University Langone Medical Center, New York, NY, United States
- Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
46
|
Housseini B Issa K, Phan G, Broutin I. Functional Mechanism of the Efflux Pumps Transcription Regulators From Pseudomonas aeruginosa Based on 3D Structures. Front Mol Biosci 2018; 5:57. [PMID: 29971236 PMCID: PMC6018408 DOI: 10.3389/fmolb.2018.00057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
Bacterial antibiotic resistance is a worldwide health problem that deserves important research attention in order to develop new therapeutic strategies. Recently, the World Health Organization (WHO) classified Pseudomonas aeruginosa as one of the priority bacteria for which new antibiotics are urgently needed. In this opportunistic pathogen, antibiotics efflux is one of the most prevalent mechanisms where the drug is efficiently expulsed through the cell-wall. This resistance mechanism is highly correlated to the expression level of efflux pumps of the resistance-nodulation-cell division (RND) family, which is finely tuned by gene regulators. Thus, it is worthwhile considering the efflux pump regulators of P. aeruginosa as promising therapeutical targets alternative. Several families of regulators have been identified, including activators and repressors that control the genetic expression of the pumps in response to an extracellular signal, such as the presence of the antibiotic or other environmental modifications. In this review, based on different crystallographic structures solved from archetypal bacteria, we will first focus on the molecular mechanism of the regulator families involved in the RND efflux pump expression in P. aeruginosa, which are TetR, LysR, MarR, AraC, and the two-components system (TCS). Finally, the regulators of known structure from P. aeruginosa will be presented.
Collapse
Affiliation(s)
- Karim Housseini B Issa
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
47
|
Transcriptional Regulation of Carnitine Catabolism in Pseudomonas aeruginosa by CdhR. mSphere 2018; 3:mSphere00480-17. [PMID: 29435492 PMCID: PMC5806209 DOI: 10.1128/msphere.00480-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/16/2018] [Indexed: 01/26/2023] Open
Abstract
Pathogens must metabolize host-derived compounds during infection and properly regulate the responsible pathways. Carnitine is a common eukaryotic-associated quaternary amine compound that can be catabolized by Pseudomonas aeruginosa. Here we expand on our understanding of how this metabolic pathway is regulated and provide details on how carnitine catabolism is intertwined with glycine betaine catabolism at the level of transcriptional control. The common environmental bacterium and opportunistic pathogen Pseudomonas aeruginosa encodes diverse metabolic pathways and associated regulatory networks allowing it to thrive in these different environments. In an effort to understand P. aeruginosa metabolism and detection of host-derived compounds, we previously identified CdhR and GbdR as members of the AraC transcription factor family that regulate catabolism of the quaternary amine compounds carnitine and glycine betaine, respectively. In this study, our goal was to further characterize regulation of carnitine catabolism by the transcription factor CdhR. CdhR binds in a concentration-dependent manner upstream of the carnitine catabolism operon promoter (PcaiXcdhCABhocS). We identified the CdhR binding site and determined that it overlaps with the GbdR binding site in the caiX-cdhR intergenic region. Carnitine catabolism is repressed by glucose and glycine betaine, and here we show this happens at the transcriptional level. Furthermore, we show that CdhR enhances its own expression and that GbdR contributes to cdhR expression by enhancing the level of basal expression. The intertwined regulation of caiX and cdhR transcription by GbdR and CdhR suggests that carnitine catabolism is under tight but tuneable control. IMPORTANCE Pathogens must metabolize host-derived compounds during infection and properly regulate the responsible pathways. Carnitine is a common eukaryotic-associated quaternary amine compound that can be catabolized by Pseudomonas aeruginosa. Here we expand on our understanding of how this metabolic pathway is regulated and provide details on how carnitine catabolism is intertwined with glycine betaine catabolism at the level of transcriptional control.
Collapse
|
48
|
Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc Natl Acad Sci U S A 2017; 114:E11121-E11130. [PMID: 29229817 DOI: 10.1073/pnas.1714381115] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial natural products remain an important source of new medicines. DNA sequencing has revealed that a majority of natural product biosynthetic gene clusters (BGCs) maintained in bacterial genomes have yet to be linked to the small molecules whose biosynthesis they encode. Efforts to discover the products of these orphan BGCs are driving the development of genome mining techniques based on the premise that many are transcriptionally silent during normal laboratory cultivation. Here, we employ comparative transcriptomics to assess BGC expression among four closely related strains of marine bacteria belonging to the genus Salinispora The results reveal that slightly more than half of the BGCs are expressed at levels that should facilitate product detection. By comparing the expression profiles of similar gene clusters in different strains, we identified regulatory genes whose inactivation appears linked to cluster silencing. The significance of these subtle differences between expressed and silent BGCs could not have been predicted a priori and was only revealed by comparative transcriptomics. Evidence for the conservation of silent clusters among a larger number of strains for which genome sequences are available suggests they may be under different regulatory control from the expressed forms or that silencing may represent an underappreciated mechanism of gene cluster evolution. Coupling gene expression and metabolomics data established a bioinformatic link between the salinipostins and their associated BGC, while genetic manipulation established the genetic basis for this series of compounds, which were previously unknown from Salinispora pacifica.
Collapse
|
49
|
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2017; 169:425-431. [PMID: 29128373 DOI: 10.1016/j.resmic.2017.10.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.
Collapse
Affiliation(s)
- Natasha Weston
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
50
|
Pal S, Kundu A, Banerjee TD, Mohapatra B, Roy A, Manna R, Sar P, Kazy SK. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment. Genomics 2017. [DOI: 10.1016/j.ygeno.2017.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|