1
|
Ran R, Chen X, Yang J, Xu B. Immunotherapy in breast cancer: current landscape and emerging trends. Exp Hematol Oncol 2025; 14:77. [PMID: 40405250 PMCID: PMC12096519 DOI: 10.1186/s40164-025-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
Breast cancer remains one of the most prevalent malignancies worldwide, underscoring an urgent need for innovative therapeutic strategies. Immunotherapy has emerged as a transformative frontier in this context. In triple-negative breast cancer (TNBC), the combination of immunotherapy based on PD-1/PD-L1 immune checkpoint inhibitors (ICIs) with chemotherapy has proven efficacious in both early and advanced clinical trials. These encouraging results have led to the approval of ICIs for TNBC, opening up new therapeutic avenues for challenging-to-treat patient populations. Furthermore, a multitude of ongoing trials are actively investigating the efficacy of immunotherapy-based combinations, including ICIs in conjunction with chemotherapy, targeted therapy and radiation therapy, as well as other novel strategies such as bispecific antibodies, CAR-T cells and cancer vaccines across all breast cancer subtypes, including HR-positive/HER2-negative and HER2-positive disease. This review provides a comprehensive overview of current immunotherapeutic approaches in breast cancer, highlighting pivotal findings from recent clinical trials and the potential impact of these advancements on patient outcomes.
Collapse
Affiliation(s)
- Ran Ran
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Chen
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Yang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Binghe Xu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Taurelli Salimbeni B, Giudici F, Pescia C, Berton Giachetti PPM, Scafetta R, Zagami P, Marra A, Trapani D, Esposito A, Scagnoli S, Cerbelli B, Botticelli A, Munzone E, Fusco N, Criscitiello C, Curigliano G. Prognostic impact of tumor-infiltrating lymphocytes in HER2+ metastatic breast cancer receiving first-line treatment. NPJ Breast Cancer 2025; 11:41. [PMID: 40346114 PMCID: PMC12064824 DOI: 10.1038/s41523-025-00760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Breast cancer (BC) is a leading cause of death among women, with approximately 30% HER2-positive (HER2+). Although HER2-targeted therapies have improved outcomes for patients with HER2+ metastatic breast cancer (mBC), clinical challenges and prognostic variability remain. Tumor-infiltrating lymphocytes (TILs) have emerged as prognostic and predictive biomarkers in various tumors, including BC, but their role in HER2+ mBC is poorly understood. This multicentric retrospective cohort study evaluated the prognostic significance of TILs in 110 patients with HER2+ mBC treated with pertuzumab, trastuzumab, and taxane-based chemotherapy at two Italian institutes from June 2013 to May 2024. TILs were assessed on metastatic or primary tumor samples. High TILs levels (>5%) were independently associated with longer PFS and OS. TILs levels were higher in primary tumours than in metastases (p = 0.009), with significant variation by metastatic site. These findings underscore the potential of TILs as prognostic biomarkers in HER2+ mBC, necessitating further prospective studies.
Collapse
Affiliation(s)
- Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.
| | - Fabiola Giudici
- Cancer Epidemiology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Carlo Pescia
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Division of Pathology, ASST Santi Paolo e Carlo, Milan, Italy
| | - Pier Paolo Maria Berton Giachetti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Roberta Scafetta
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Angela Esposito
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Simone Scagnoli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruna Cerbelli
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza, University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology IRCCS, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Cartwright D, Kidd AC, Ansel S, Ascierto ML, Spiliopoulou P. Oncogenic Signalling Pathways in Cancer Immunotherapy: Leader or Follower in This Delicate Dance? Int J Mol Sci 2025; 26:4393. [PMID: 40362630 PMCID: PMC12072740 DOI: 10.3390/ijms26094393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Immune checkpoint inhibitors have become a mainstay of treatment in many solid organ malignancies. Alongside this has been the rapid development in the identification and targeting of oncogenic drivers. The presence of alterations in oncogenic drivers not only predicts response to target therapy but can modulate the immune microenvironment and influence response to immunotherapy. Combining immune checkpoint inhibitors with targeted agents is an attractive therapeutic option but overlapping toxicity profiles may limit the clinical use of some combinations. In addition, there is growing evidence of shared resistance mechanisms that alter the response to immunotherapy when it is used after targeted therapy. Understanding this complex interaction between oncogenic drivers, targeted therapy and response to immune checkpoint inhibitors is vital for selecting the right treatment, at the right time for the right patient. In this review, we summarise the preclinical and clinical evidence of the influence of four common oncogenic alterations on immune checkpoint inhibitor response, combination therapies, and the presence of shared resistance mechanisms. We highlight the common resistance mechanisms and the need for more randomised trials investigating both combination and sequential therapy.
Collapse
Affiliation(s)
- Douglas Cartwright
- School of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK; (D.C.); (A.C.K.); (S.A.); (M.L.A.)
- Beatson West of Scotland Cancer Centre,1053 Great Western Road, Glasgow G12 0YN, UK
| | - Andrew C. Kidd
- School of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK; (D.C.); (A.C.K.); (S.A.); (M.L.A.)
- Beatson West of Scotland Cancer Centre,1053 Great Western Road, Glasgow G12 0YN, UK
| | - Sonam Ansel
- School of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK; (D.C.); (A.C.K.); (S.A.); (M.L.A.)
- Beatson West of Scotland Cancer Centre,1053 Great Western Road, Glasgow G12 0YN, UK
| | - Maria Libera Ascierto
- School of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK; (D.C.); (A.C.K.); (S.A.); (M.L.A.)
| | - Pavlina Spiliopoulou
- School of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK; (D.C.); (A.C.K.); (S.A.); (M.L.A.)
- Beatson West of Scotland Cancer Centre,1053 Great Western Road, Glasgow G12 0YN, UK
| |
Collapse
|
4
|
Lv Y, Cui X, Li T, Liu C, Wang A, Wang T, Zhou X, Li R, Zhang F, Hu Y, Zhang T, Liu Z. Mechanism of action and future perspectives of ADCs in combination with immune checkpoint inhibitors for solid tumors. Clin Exp Med 2025; 25:139. [PMID: 40319436 PMCID: PMC12050234 DOI: 10.1007/s10238-025-01655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 05/07/2025]
Abstract
Antibody-drug conjugates (ADCs) are a promising cancer therapy for targeted delivery of drugs to tumor cells. However, resistance to ADCs remains a challenge, necessitating the exploration of combination therapies. A strong biological theory suggests that ADCs interact with cancer cells and immune cells by triggering mechanisms such as immunogenic cell death, dendritic cell activation, and memory T-cell activation, resulting in long-term anti-tumor immunity and ultimately potential synergistic effects with immunotherapy. Based on extensive and reliable preclinical data, several clinical trials are currently combining ADCs with immune checkpoint inhibitors (ICIs) for the treatment of various cancers, including breast, gastric, and non-small-cell lung cancers, to evaluate the safety and anti-tumor activity of the combination therapy. Preliminary evidence from early clinical trials has reported more effective efficacy data. This paper reviews the combination of ADCs and immunotherapy, highlights the key mechanisms by which the two act synergistically, and summarizes the available clinical evidence against different ADCs targets. The paper also explores the re-challenges used for combination therapies and optimized design options for ADCs drugs.
Collapse
Affiliation(s)
- Yahui Lv
- Senior Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education, China), Beijing, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiaoran Cui
- Medical School of Chinese PLA, Beijing, 100853, China
- Senior Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tao Li
- Senior Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing, 100853, China
- Changchun Veterinary Research Institute, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, ChangchunJilin, 130122, China
| | - Chang Liu
- Senior Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- School of Medicine, Nankai University, TianJin, 30071, China
| | - An Wang
- Senior Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ting Wang
- Senior Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- School of Medicine, Nankai University, TianJin, 30071, China
| | - Xin Zhou
- Senior Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ruixin Li
- Senior Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Fan Zhang
- Senior Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yi Hu
- Senior Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| | - Tong Zhang
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Zhefeng Liu
- Senior Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
- Senior Department of Oncology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Zhang SH, Li W, Chen XY, Nie LL. Combining immune checkpoint inhibitors with standard treatment regimens in advanced human epidermal growth factor receptor-2 positive gastric cancer patients. World J Gastrointest Oncol 2025; 17:103855. [PMID: 40235908 PMCID: PMC11995313 DOI: 10.4251/wjgo.v17.i4.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/12/2025] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors worldwide, with its incidence and mortality rates ranking among the highest in gastrointestinal cancers. The overexpression or gene amplification of human epidermal growth factor receptor 2 (HER-2) occurs in approximately 15%-20% of gastric cancers and serves as a critical molecular target influencing prognosis and treatment outcomes. For patients with HER-2-positive gastric cancer, trastuzumab combined with platinum-based chemotherapy has been established as the standard first-line treatment. However, despite the demonstrated clinical benefits in prolonging survival, the overall efficacy remains limited. In recent years, with the successful application of immune checkpoint inhibitors (ICIs) in various malignant tumors, combining ICIs with existing standard treatment regimens has emerged as a promising approach to enhance the therapeutic efficacy of HER-2-positive gastric cancer. Nevertheless, the efficacy and prognostic factors of ICIs combined with trastuzumab and chemotherapy in HER-2-positive gastric cancer remain unclear. AIM To analyze the efficacy of ICIs combined with standard treatment regimens and the prognostic factors in patients with advanced HER-2-positive gastric cancer. METHODS Clinical data from 104 patients with advanced HER-2-positive gastric cancer who were treated at our hospital between March 2021 and May 2023 were retrospectively analyzed. Patients were divided into a control group (n = 54, treated with trastuzumab combined with platinum-based chemotherapy as the standard regimen) and an observation group (n = 50, treated with ICIs in addition to the standard regimen). The therapeutic efficacy, survival outcomes, and adverse reactions were compared between the two groups. Univariate and Cox multivariate analyses were performed to identify factors influencing patient prognosis. RESULTS With a median follow-up time of 14.6 months, there were no significant differences between the two groups in terms of objective response rate or disease control rate (P > 0.05). The median progression-free survival (mPFS) and mPFS for patients with immunohistochemistry 3 + in the observation group were significantly higher than those in the control group (P < 0.05). Among patients in the observation group, those with positive programmed death-ligand 1 (PD-L1) expression had a significantly higher mPFS than those with negative PD-L1 expression (P < 0.05). Regarding adverse events, significant differences were observed between the two groups in hypothyroidism and neutropenia (P < 0.05). Cox multivariate analysis showed that Eastern Cooperative Oncology Group (ECOG) performance status, peritoneal metastasis, positive programmed death-1 expression, and treatment regimen were independent factors influencing PFS (hazard ratio > 1, P < 0.05). CONCLUSION ICIs combined with standard treatment regimens for patients with advanced HER-2-positive gastric cancer demonstrate favorable clinical efficacy, significantly prolonging PFS with manageable safety. ECOG performance status, peritoneal metastasis, positive PD-L1 expression, and treatment regimen are independent factors influencing PFS, warranting increased clinical attention to patients exhibiting these factors.
Collapse
Affiliation(s)
- Sheng-Hu Zhang
- Department of Oncology, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze university, Jingzhou 434020, Hubei Province, China
| | - Wan Li
- Department of Ultrasound Medicine, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze university, Jingzhou 434020, Hubei Province, China
| | - Xi-Yan Chen
- Department of Medicine Imaging, The First People’s Hospital of Fuzhou City, Fuzhou 344000, Jiangxi Province, China
| | - Le-Le Nie
- Department of General Surgery, The First People’s Hospital of Fuzhou City, Fuzhou 344000, Jiangxi Province, China
| |
Collapse
|
6
|
Ye Y, Zhang Z, Zhao H, Zhao B. A system review of neoadjuvant immune checkpoint blockade for breast cancer. Front Immunol 2025; 16:1537926. [PMID: 40213551 PMCID: PMC11983617 DOI: 10.3389/fimmu.2025.1537926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/27/2025] [Indexed: 04/19/2025] Open
Abstract
Background The clinical application of immune checkpoint blockade (ICB)-based neoadjuvant therapy has been approved in breast cancer since 2021. However, no studies have evaluated its efficacy and safety in randomized and non-randomized settings. Additionally, there exists controversy about which specific subpopulation can benefit from this management strategy. Methods We searched MEDLINE and EMBASE databases for prospective clinical trials of ICB-based neoadjuvant therapy in breast cancer. Information regarding pathological complete response (pCR), event-free survival (EFS), overall survival (OS), and treatment-related adverse event (TRAE) were pooled to estimate the efficacy and safety. Hazard ratio, relative risk (RR) and their 95% confidence intervals (CIs) were calculated. Results Among 22 eligible trials including 6134 women with resectable breast cancer, there were 11 randomized studies with 5574 patients. Pooled analysis on pCR (RR, 1.38; 95% CI, 1.20-1.58; P<0.001), EFS (hazard ratio, 0.67; 95% CI, 0.54-0.81; P<0.001), and OS (hazard ratio, 0.56; 95% CI, 0.35-0.91; P=0.01) revealed that ICB-based neoadjuvant therapy was associated with favorable outcomes over conventional treatment. Moreover, the benefits of EFS were independent of PD-L1 expression (Pinteraction =0.57) and pCR (Pinteraction =0.37) in neoadjuvant immunotherapy. However, combining ICB with conventional neoadjuvant treatment significantly increased the risk of high-grade TRAE (RR, 1.06; 95% CI, 1.01-1.12; P=0.03), serious TRAE (RR, 1.57; 95% CI, 1.26-1.94; P<0.001), treatment discontinuation due to TRAE (RR, 1.47; 95% CI, 1.14-1.90; P=0.003), and potentially fatal adverse event (RR, 2.25; 95% CI, 0.80-6.31; P=0.12). Conclusion The combination of ICB with conventional neoadjuvant treatment is associated with favorable clinical outcomes and importantly, increased grade 3+ toxicities. Clinicians should meticulously monitor patients to minimize the risk of treatment discontinuation in individuals with potentially curable breast cancer.
Collapse
Affiliation(s)
- Yanle Ye
- Central Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhishan Zhang
- Central Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Hong Zhao
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Bin Zhao
- Central Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
7
|
Li J, Zhou X, Wu L, Ma J, Tan Y, Wu S, Zhu J, Wang Q, Shi Q. Optimal early endpoint for second-line or subsequent immune checkpoint inhibitors in previously treated advanced solid cancers: a systematic review. BMC Cancer 2025; 25:293. [PMID: 39966752 PMCID: PMC11837729 DOI: 10.1186/s12885-025-13712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The administration of second-line or subsequent immune checkpoint inhibitors (ICIs) in previously treated patients with advanced solid cancers has been clinically investigated. However, previous clinical trials lacked an appropriate primary endpoint for efficacy assessment. This systematic review aimed to explore the most optimal early efficacy endpoint for such trials. METHODS Phase 2 or 3 clinical trials involving patients with advanced solid cancers with disease progression following standard first-line therapy receiving second-line or subsequent ICI administration, with adequate survival outcome data, were included from PubMed, Embase, Web of Science, and Cochrane Library databases before February 2023. Quality assessment was conducted using the Cochrane tool and Newcastle-Ottawa Quality Assessment Scale for Cohort Studies for randomized controlled trials (RCTs) and non-randomized trials, respectively. Objective response rate (ORR) and progression-free survival (PFS) at 3, 6, and 9 months were investigated as potential early efficacy endpoint candidates for 12-month overall survival (OS), with a strong correlation defined as Pearson's correlation coefficient r ≥ 0.8. RESULTS A total of 64 RCTs comprising 22,725 patients and 106 non-randomized prospective trials involving 10,608 participants were eligible for modeling and external validation, respectively. RCTs examined 15 different cancer types, predominantly non-small-cell lung cancer (NSCLC) (17, 28%), melanoma (9, 14%), and esophageal squamous cell carcinoma (5, 8%). The median sample size of RCTs was 124 patients, and the median follow-up time was 3.2-57.7 months. The ORR (r = 0.38; 95% confidence interval [CI], 0.18-0.54) and PFS (r = 0.42; 95% CI, 0.14-0.64) exhibited weak trial-level correlations with OS. Within ICI treatment arms, the r values of ORR and 3-, 6-, and 9-month PFS with 12-month OS were 0.61 (95% CI, 0.37-0.79), 0.78 (95% CI, 0.62-0.88), 0.84 (95% CI, 0.77-0.90), and 0.86 (95% CI, 0.79-0.90), respectively. External validation of 6-month PFS indicated an acceptable discrepancy between actual and predicted 12-month OS. CONCLUSIONS In non-randomized phase 2 trials on second-line or subsequent ICI therapy in patients with advanced solid cancers, 6-month PFS could serve as an early efficacy endpoint. However, early efficacy endpoints are not recommended in RCTs to replace OS.
Collapse
Affiliation(s)
- Jingqiu Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoding Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Wu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiabao Ma
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Tan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Songke Wu
- Department of Oncology, People'S Hospital of Cangxi County, Guangyuan, China.
| | - Jie Zhu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qifeng Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuling Shi
- Center for Cancer Prevention Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Schlam I, Loi S, Salgado R, Swain SM. Tumor-infiltrating lymphocytes in HER2-positive breast cancer: potential impact and challenges. ESMO Open 2025; 10:104120. [PMID: 39826475 PMCID: PMC11786075 DOI: 10.1016/j.esmoop.2024.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION In this review, we evaluate the role of stromal tumor-infiltrating lymphocytes (sTILs) as a biomarker in human epidermal growth factor receptor 2 (HER2)-positive breast cancer, exploring the prognostic and predictive potential in various treatment settings. METHODS Data from multiple clinical trials in the early and metastatic settings, focusing on TILs' correlation with pathologic complete response (pCR), progression-free survival (PFS), and overall survival across early and metastatic HER2-positive breast cancer were summarized. This review also discusses TILs' assessment methods, interobserver variability, and emerging technologies to assess TILs. RESULTS TILs have been identified as a highly reproducible biomarker that predicts pCR in patients receiving neoadjuvant therapy and serves as a prognostic indicator for long-term outcomes in several breast cancer subtypes, including HER2-positive. Studies indicate that higher TIL levels correlate with better recurrence-free survival rates. Despite these findings, there is no consensus on the optimal TIL threshold for clinical decision making, and further research is required on how to incorporate TILs into routine clinical practice. CONCLUSIONS TILs represent a promising biomarker in HER2-positive breast cancer, particularly in early disease settings. This assessment could guide treatment de-escalation or intensification, tailoring therapies to individual patient profiles. Due to their prognostic importance, TILs can be added to pathology reports. However, further validation in clinical trials is essential for the widespread adoption of TILs in clinical practice.
Collapse
Affiliation(s)
- I Schlam
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, USA; Harvard Medical School, Boston, USA. https://twitter.com/ilanaschlam
| | - S Loi
- Peter Mac Callum Cancer Centre, Melbourne, Victoria, Australia. https://twitter.com/LoiSher
| | - R Salgado
- Peter Mac Callum Cancer Centre, Melbourne, Victoria, Australia; ZAS-Hospitals, Antwerp, Belgium. https://twitter.com/TILsWorkGroup
| | - S M Swain
- Georgetown Lombardi Comprehensive Cancer Center, Washington, USA; MedStar Health, Columbia, Maryland, USA.
| |
Collapse
|
9
|
Caltavituro A, Buonaiuto R, Salomone F, Pecoraro G, Martorana F, Lauro VD, Barchiesi G, Puglisi F, Del Mastro L, Montemurro F, Giuliano M, Arpino G, De Laurentiis M. Warming-up the immune cell engagers (ICEs) era in breast cancer: state of the art and future directions. Crit Rev Oncol Hematol 2025; 206:104577. [PMID: 39613237 DOI: 10.1016/j.critrevonc.2024.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has deeply reshaped the therapeutic algorithm of triple-negative breast cancer (TNBC). However, there is considerable scope for better engagement of the immune system in other BC subtypes. ICIs have paved the way for investigations into emerging immunotherapeutic strategies, such as immune cell engagers (ICEs) that work by promoting efficient tumor cell killing through the redirection of immune system against cancer cells. Most ICEs are bispecific antibodies that simultaneously recognize and bind to both cancer and immune cells generating an artificial synapse. Major side effects are cytokine release syndrome, hepatotoxicity, and neurotoxicity related to inappropriate immune system activation. Here, we provide a comprehensive overview of this compounds, the available preclinical and clinical evidence supporting their investigation and development in BC also highlighting the challenges that have prevented their widespread use in oncology. Finally, major strategies are explored to broaden their use in BC.
Collapse
Affiliation(s)
- Aldo Caltavituro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy
| | - Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy
| | - Fabio Salomone
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Giovanna Pecoraro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Vincenzo Di Lauro
- Department of Breast & Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale,' Naples, Italy.
| | - Giacomo Barchiesi
- Azienda Ospedaliera Universitaria Policlinico Umberto I, UOC Oncologia, Roma, Italy
| | - Fabio Puglisi
- Department of Medicine, University of Udine, Via Palladio 8, Udine 33100, Italy; Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Via Franco Gallini 2, Aviano, Pordenone 33081, Italy
| | - Lucia Del Mastro
- Department of Medical Oncology, UO Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, Genova 16132, Italy
| | - Filippo Montemurro
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 -KM 3.95, Candiolo, Torino 10060, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Michelino De Laurentiis
- Department of Breast & Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale,' Naples, Italy
| |
Collapse
|
10
|
Scalambra L, Ruzzi F, Pittino OM, Semprini MS, Cappello C, Angelicola S, Palladini A, Nanni P, Goksøyr L, Fougeroux C, Penichet ML, Sander AF, Lollini PL. Targeting PCSK9, through an innovative cVLP-based vaccine, enhanced the therapeutic activity of a cVLP-HER2 vaccine in a preclinical model of HER2-positive mammary carcinoma. J Transl Med 2025; 23:136. [PMID: 39885551 PMCID: PMC11784117 DOI: 10.1186/s12967-025-06126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells. We present an innovative immunization approach combining capsid virus-like particle (cVLP)-based vaccines against HER2 and PCSK9. METHODS The therapeutic activity of the combined vaccine was evaluated in female mice challenged with HER2-positive mammary carcinoma cells. Controls included untreated mice and mice treated with cVLP-PCSK9 and cVLP-HER2 as standalone therapies. Antibodies elicited by vaccinations were detected through ELISA immunoassay. The functional activity of the antibodies was tested in 3D-soft agar assay on human HER2 + + + trastuzumab sensitive and resistant cells. RESULTS Mice vaccinated with cVLP-HER2 + cVLP-PCSK9 displayed tumor regression from the 40th day after cell challenge in 100% of mice remaining tumor-free even 4 months later. In contrast, 83% of mice treated with cVLP-HER2 vaccine alone experienced an initial tumor regression, followed by tumor relapse in 60% of subjects. Untreated mice and mice treated with the cVLP-PCSK9 vaccine alone developed progressive tumors within 1-2 months after cell injection. The combined vaccine approach elicited strong anti-human HER2 antibody responses (reaching 1-2 mg/ml range) comprising multiple immunoglobulins isotypes. cVLP-PCSK9 vaccine elicited anti-PCSK9 antibody responses, resulting in a marked reduction in PCSK9 serum levels. Although the anti-PCSK9 response was reduced when co-administered with cVLP-HER2, it remained significant. Moreover, both cVLP-HER2 + cVLP-PCSK9 and cVLP-HER2 alone induced anti-HER2 antibodies able to inhibit the 3D growth of human HER2 + + + BT-474 and trastuzumab-resistant BT-474 C5 cells. Strikingly, antibodies elicited by the combined vaccination were more effective than those elicited by the cVLP-HER2 vaccine alone in the inhibition of trastuzumab-resistant C5 cells. CONCLUSIONS The results indicate that cVLP-PCSK9 vaccination shows adjuvant activity when combined with cVLP-HER2 vaccine, enhancing its therapeutic efficacy against HER2-positive breast cancer and holding promise in overcoming the challenges posed by resistance and incomplete responses to HER2-targeted therapy.
Collapse
Affiliation(s)
- Laura Scalambra
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Olga Maria Pittino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Chiara Cappello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Stefania Angelicola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Policlinico Di Sant'Orsola University Hospital, Bologna, Italy
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Oncology Division, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Nanni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | | | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery and Department of Microbiology, Immunology and Molecular GeneticsThe Molecular Biology InstituteJonsson Comprehensive Cancer Centre, University of California, Los Angeles (UCLA), CA, USA
| | - Adam Frederik Sander
- AdaptVac Aps, Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pier-Luigi Lollini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Policlinico Di Sant'Orsola University Hospital, Bologna, Italy.
| |
Collapse
|
11
|
Pierini S, Gabbasov R, Oliveira-Nunes MC, Qureshi R, Worth A, Huang S, Nagar K, Griffin C, Lian L, Yashiro-Ohtani Y, Ross K, Sloas C, Ball M, Schott B, Sonawane P, Cornell L, Blumenthal D, Chhum S, Minutolo N, Ciccaglione K, Shaw L, Zentner I, Levitsky H, Shestova O, Gill S, Varghese B, Cushing D, Ceeraz DeLong S, Abramson S, Condamine T, Klichinsky M. Chimeric antigen receptor macrophages (CAR-M) sensitize HER2+ solid tumors to PD1 blockade in pre-clinical models. Nat Commun 2025; 16:706. [PMID: 39814734 PMCID: PMC11735936 DOI: 10.1038/s41467-024-55770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
We previously developed human CAR macrophages (CAR-M) and demonstrated redirection of macrophage anti-tumor function leading to tumor control in immunodeficient xenograft models. Here, we develop clinically relevant fully immunocompetent syngeneic models to evaluate the potential for CAR-M to remodel the tumor microenvironment (TME), induce T cell anti-tumor immunity, and sensitize solid tumors to PD1/PDL1 checkpoint inhibition. In vivo, anti-HER2 CAR-M significantly reduce tumor burden, prolong survival, remodel the TME, increase intratumoral T cell and natural killer (NK) cell infiltration, and induce antigen spreading. CAR-M therapy protects against antigen-negative relapses in a T cell dependent fashion, confirming long-term anti-tumor immunity. In HER2+ solid tumors with limited sensitivity to anti-PD1 (aPD1) monotherapy, the combination of CAR-M and aPD1 significantly improves tumor growth control, survival, and remodeling of the TME in pre-clinical models. These results demonstrate synergy between CAR-M and T cell checkpoint blockade and provide a strategy to potentially enhance response to aPD1 therapy for patients with non-responsive tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuo Huang
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | - Karan Nagar
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | - Lurong Lian
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Lauren Shaw
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | | | - Olga Shestova
- Center for Cellular Immunotherapies, Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Panda VK, Mishra B, Mahapatra S, Swain B, Malhotra D, Saha S, Khanra S, Mishra P, Majhi S, Kumari K, Nath AN, Saha S, Jena S, Kundu GC. Molecular Insights on Signaling Cascades in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2025; 17:234. [PMID: 39858015 PMCID: PMC11763662 DOI: 10.3390/cancers17020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure. These receptors mediate various downstream signaling pathways such as MAPK, including MEK/ERK signaling pathways that promote common pro-oncogenic signaling, whereas dysregulation of PI3K/Akt, Wnt/β-catenin, and JAK/STAT activates key oncogenic events such as drug resistance, CSC enrichment, and metabolic reprogramming. Additionally, these cascades orchestrate an intricate interplay between stromal cells, immune cells, and tumor cells. Metabolic reprogramming and adaptations contribute to aggressive breast cancer and are unresponsive to therapy. Herein, recent insights into the novel signaling pathways operating within the breast TME that aid in their advancement are emphasized and current developments in practices targeting the breast TME to enhance treatment efficacy are reviewed.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Swarnali Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sarmistha Jena
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
13
|
Wang Z, Bi Z, Bo H, Xu J, Sha R, Yin Z, Yu C, Xu Y, Shi X, Song W, Chen B, Wang Y, Zhang Q, Chen J. PRAF2 as a novel biomarker for breast cancer with machine learning and experimentation validation. BMC Cancer 2025; 25:32. [PMID: 39773456 PMCID: PMC11708060 DOI: 10.1186/s12885-024-13258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/26/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent malignancy in women. Potential therapeutic targets for BC are of great significance. In our previous study, we found that prenylated rab acceptor 1 domain family member 2 (PRAF2) is an oncogene in BC. However, the exact mechanism of PRAF2 in BC cancer promotion is still not fully understood. METHODS Pan-cancer analysis of PRAF2 was performed in the TIMER, Kaplan‒Meier, UALCAN and GEPIA databases.The prognostic value of PRAF2 in BC was investigated in the GEPIA database. The influence of PRAF2 on immune infiltration in BC was analyzed in the TISIDE and TIMER databases. Finally, we validated the expression of PRAF2 in our institutional samples. After downregulating PRAF2 in two BC cell lines, we tested cell proliferation by CCK-8 and Wound healing assays. RESULTS PRAF2 was highly expressed in various cancers, including BC, and in most BC cell lines. Higher expression of PRAF2 indicated poorer overall survival (OS) but not disease-free survival (DFS). Higher expression of PRAF2 is an independent prognostic factor in BC.PRAF2 is more highly expressed in BC than in the corresponding normal tissues. Downregulation of PRAF2 in BC can significantly inhibit viability and migration. CONCLUSIONS PRAF2 is highly expressed in various cancers, including BC. The expression of PRAF2 is related to Liquid-Liquid Phase Separation in BC. Finally, PRAF2 is upregulated in BC based on our institutional data. Downregulation of PRAF2 significantly inhibits cellular viability、migration in BC. PRAF2 may be a potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Zilin Bi
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Hongguang Bo
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Junyi Xu
- School of Basic Medical Science, Capital Medical University, No. 10 Right Outside the Western Headlines, Beijing, 100069, China
| | - Rui Sha
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Zhaocai Yin
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Changsheng Yu
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Yufa Xu
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Xiaomeng Shi
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Wenbo Song
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, 9 Dongfanghong Road, Jiangdu District, Jiangsu Province, Yangzhou, 225299, China
| | - Bin Chen
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Yabing Wang
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China.
| | - Qian Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, University Town, Xue Yuan Road 1, Fujian Province, Fuzhou, 350122, China.
| | - Jianping Chen
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China.
| |
Collapse
|
14
|
Veeraraghavan J, De Angelis C, Gutierrez C, Liao FT, Sabotta C, Rimawi MF, Osborne CK, Schiff R. HER2-Positive Breast Cancer Treatment and Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:495-525. [PMID: 39821040 DOI: 10.1007/978-3-031-70875-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
HER2-positive (+) breast cancer is an aggressive disease with poor prognosis, a narrative that changed drastically with the advent and approval of trastuzumab, the first humanized monoclonal antibody targeting HER2. In addition to another monoclonal antibody, more classes of HER2-targeted agents, including tyrosine kinase inhibitors, and antibody-drug conjugates were developed in the years that followed. While these potent therapies have substantially improved the outcome of patients with HER2+ breast cancer, resistance has prevailed as a clinical challenge ever since the arrival of targeted agents. Efforts to develop new treatment regimens to treat/overcome resistance is futile without a primary understanding of the mechanistic underpinnings of resistance. Resistance could be attributed to mechanisms that are either specific to the tumor epithelial cells or those that emerge through changes in the tumor microenvironment. Reactivation of the HER receptor layer due to incomplete blockade of the HER receptor layer or due to alterations in the HER receptors is one of the major mechanisms. In other instances, resistance may occur due to deregulations in key downstream signaling such as the PI3K/AKT or RAS/MEK/ERK pathways or due to the emergence of compensatory pathways such as ER, other RTKs, or metabolic pathways. Potent new targeted agents and approaches to target key actionable drivers of resistance have already been identified, many of which are in early clinical development or under preclinical evaluation. Ongoing and future translational research will continue to uncover additional therapeutic vulnerabilities, as well as new targeted agents and approaches to treat and/or overcome anti-HER2 treatment resistance.
Collapse
Affiliation(s)
- Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Fu-Tien Liao
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline Sabotta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mothaffar F Rimawi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - C Kent Osborne
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Heater NK, Warrior S, Lu J. Current and future immunotherapy for breast cancer. J Hematol Oncol 2024; 17:131. [PMID: 39722028 PMCID: PMC11670461 DOI: 10.1186/s13045-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Substantial therapeutic advancement has been made in the field of immunotherapy in breast cancer. The immune checkpoint inhibitor pembrolizumab in combination with chemotherapy received FDA approval for both PD-L1 positive metastatic and early-stage triple-negative breast cancer, while ongoing clinical trials seek to expand the current treatment landscape for immune checkpoint inhibitors in hormone receptor positive and HER2 positive breast cancer. Antibody drug conjugates are FDA approved for triple negative and HER2+ disease, and are being studied in combination with immune checkpoint inhibitors. Vaccines and bispecific antibodies are areas of active research. Studies of cellular therapies such as tumor infiltrating lymphocytes, chimeric antigen receptor-T cells and T cell receptor engineered cells are promising and ongoing. This review provides an update of recent major clinical trials of immunotherapy in breast cancer and discusses future directions in the treatment of breast cancer.
Collapse
Affiliation(s)
- Natalie K Heater
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, 60611, USA
| | - Surbhi Warrior
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676 N St. Clair, Suite 850, Chicago, IL, 60611, USA
| | - Janice Lu
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676 N St. Clair, Suite 850, Chicago, IL, 60611, USA.
| |
Collapse
|
16
|
Sasaki A, Nakajima S, Motomura Y. Exceptional Response to Pembrolizumab in HER2-Positive Gallbladder Carcinoma with High Tumor Mutational Burden. J Gastrointest Cancer 2024; 55:1628-1633. [PMID: 39254819 DOI: 10.1007/s12029-024-01112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE Patients with advanced cholangiocarcinoma, including gallbladder cancer, typically have a poor prognosis owing to limited effective chemotherapy options. The field of genotype-directed therapy in patients with cholangiocarcinoma is advancing. However, limited clinical data are currently available to evaluate the efficacy of molecularly targeted therapy. METHODS Herein, we report the case of a 67-year-old man diagnosed with human epidermal growth factor receptor-2 (HER2)-positive and tumor mutation burden-high (TMB-H) cholangiocarcinoma. The HER2-positive and TMB-H characteristics were identified using comprehensive genomic profiling after showing resistance to gemcitabine and S-1 therapy. In the absence of clinical trials for HER2-positive cancer at that time, the patient was treated with pembrolizumab, which is used for TMB-H solid tumors in clinical practice. RESULTS After receiving pembrolizumab, the patient experienced significant shrinkage in the primary tumor and liver metastases. Thus far, the patient has been receiving pembrolizumab for approximately 10 months. CONCLUSION To our knowledge, this is the first report showing the efficacy of pembrolizumab in a patient with cholangiocarcinoma harboring both HER2-positive and TMB-H.
Collapse
Affiliation(s)
- Akinori Sasaki
- Department of Gastroenterology, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Toudaijima, Urayasu, Chiba, 279-0001, Japan.
- Department of Oncology, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Toudaijima, Urayasu, Chiba, Japan.
| | - Satoru Nakajima
- Department of Gastroenterology, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Toudaijima, Urayasu, Chiba, 279-0001, Japan
| | - Yasuaki Motomura
- Department of Gastroenterology, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Toudaijima, Urayasu, Chiba, 279-0001, Japan
| |
Collapse
|
17
|
Chen X, Huang J, Xie X, Chen L, Lan X, Song L, Bai X, Du C. Apatinib and trastuzumab-based chemotherapy for heavily treated primary trastuzumab-resistant metastatic breast cancer. J Cancer Res Ther 2024; 20:1991-1996. [PMID: 39792408 DOI: 10.4103/jcrt.jcrt_979_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The low incidence and poor prognosis primary trastuzumab resistance (PTR) in HER2-positive breast cancer has limited research into possible treatments. Thus, it remains unclear whether this group of patients could benefit from nontargeting HER2 antiangiogenic therapy. PATIENTS AND METHODS We collected the medical data for HER2-positive patients with PTR who received apatinib 250 mg and trastuzumab-based chemotherapy (ATBC) between March 18, 2017, and March 31, 2022. All patients had progressed on ≥2 anti-HER2 treatments, including trastuzumab and small molecular tyrosine kinase inhibitors. We evaluated tumor response and safety profiles to ATBC over a median follow-up time of 34.5 months. RESULTS A total of 198 consecutively HER2-positive metastatic breast cancer patients were reviewed; 20 were PTR and received ATBC. The clinical benefit rate of the total cohort was 55.0%. No patient showed a complete response. The median PFS and overall survival (OS) of the entire cohort was 5.7 months (95% CI 2.9-8.5) and 24.6 months (95% CI 6.9-42.4), respectively. The estimated 2-year survival rate was 46.7% (95% CI 38.4-81.6%). The most common nonhematologic adverse events were hypertension (70.0%), hand-foot skin reaction (55.0%), proteinuria (40.0%), and cardiovascular decrease of LVEF (20.0%). No new toxicities were observed. CONCLUSION ATBC had favorable effects for PTR breast cancer patients in later line treatment. The toxicity of the triple-combination regimen was tolerable; thus, further research should focus on identifying PTR patients who could benefit from ATBC.
Collapse
Affiliation(s)
- Xuelian Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mortaheb S, Pezeshki PS, Rezaei N. Bispecific therapeutics: a state-of-the-art review on the combination of immune checkpoint inhibition with costimulatory and non-checkpoint targeted therapy. Expert Opin Biol Ther 2024; 24:1335-1351. [PMID: 39503381 DOI: 10.1080/14712598.2024.2426636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer immunotherapy and have enhanced the survival of patients with malignant tumors. However, the overall efficacy of ICIs remains unsatisfactory and is faced with two major concerns of resistance development and occurrence of immune-related adverse events (irAEs). Bispecific antibodies (bsAbs) have emerged as promising strategies with unique mechanisms of action to achieve a better efficacy and safety than monoclonal antibodies (mAbs) or even their combination. BsAbs along with other bispecific platforms such as bispecific fusion proteins, nanobodies, and CAR-T cells may help to avoid development of resistance and reduce irAEs caused by on-target/off-tumor binding effects of mAbs. AREAS COVERED A literature search was performed using PubMed for English-language articles to provide a comprehensive overview of preclinical and clinical studies on bsAbs specified for both immune checkpoints and non-checkpoint molecules as a well-enhanced class of therapeutics. EXPERT OPINION Identifying suitable targets and selecting effective engineering platforms enhance the potential of bsAbs to address the challenges associated with conventional therapies such as ICIs, positioning them as a promising class of therapeutics in the landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Samin Mortaheb
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Jin M, Fang J, Peng J, Wang X, Xing P, Jia K, Hu J, Wang D, Ding Y, Wang X, Li W, Chen Z. PD-1/PD-L1 immune checkpoint blockade in breast cancer: research insights and sensitization strategies. Mol Cancer 2024; 23:266. [PMID: 39614285 PMCID: PMC11605969 DOI: 10.1186/s12943-024-02176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Immunotherapy targeting programmed cell death-1 (PD-1) and PD-L1 immune checkpoints has reshaped treatment paradigms across several cancers, including breast cancer. Combining PD-1/PD-L1 immune checkpoint blockade (ICB) with chemotherapy has shown promising efficacy in both early and metastatic triple-negative breast cancer, although only a subset of patients experiences durable responses. Identifying responders and optimizing immune drug selection are therefore critical. The effectiveness of PD-1/PD-L1 immunotherapy depends on both tumor-intrinsic factors and the extrinsic cell-cell interactions within the tumor microenvironment (TME). This review systematically summarizes the key findings from clinical trials of ICBs in breast cancer and examines the mechanisms underlying PD-L1 expression regulation. We also highlight recent advances in identifying potential biomarkers for PD-1/PD-L1 therapy and emerging evidence of TME alterations following treatment. Among these, the quantity, immunophenotype, and spatial distribution of tumor-infiltrating lymphocytes stand out as promising biomarkers. Additionally, we explore strategies to enhance the effectiveness of ICBs in breast cancer, aiming to support the development of personalized treatment approaches tailored to the unique characteristics of each patient's tumor.
Collapse
Affiliation(s)
- Menglei Jin
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jun Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Junwen Peng
- Department of General Surgery, The First People's Hospital of Jiande, Hangzhou, China
| | - Xintian Wang
- Department of General Surgery, The Second People's Hospital of Tongxiang, Jiaxing, Zhejiang, China
| | - Ping Xing
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Kunpeng Jia
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Danting Wang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Yuxin Ding
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Xinyu Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wenlu Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
20
|
Cortesi M, Bravaccini S, Ravaioli S, Petracci E, Angeli D, Tumedei MM, Balzi W, Pirini F, Zanoni M, Possanzini P, Rocca A, Palleschi M, Ulivi P, Martinelli G, Maltoni R. HDAC6 as a Prognostic Factor and Druggable Target in HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:3752. [PMID: 39594707 PMCID: PMC11591923 DOI: 10.3390/cancers16223752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Adjuvant trastuzumab is the standard of care for HER2+ breast cancer (BC) patients. However, >50% of patients become resistant. This study aimed at the identification of the molecular factors associated with disease relapse and their further investigation as therapeutically exploitable targets. METHODS Analyses were conducted on formalin-fixed paraffin-embedded tissues of the primary tumors of relapsed (cases) and not relapsed (controls) HER2+ BC patients treated with adjuvant trastuzumab. The nCounter Human Breast Cancer Panel 360 was used. Logistic regression and partitioning around medoids were employed to identify the genes associated with disease recurrence. Cytotoxicity experiments using trastuzumab-resistant cell lines and a network pharmacology approach were carried out to investigate drug efficacy. RESULTS A total of 52 patients (26 relapsed and 26 not relapsed) were analyzed. We found that a higher expression of HDAC6 was significantly associated with an increased risk of recurrence, with an adjusted OR of 3.20 (95% CI 1.38-9.91, p = 0.016). Then, we investigated the cytotoxic activity of the selective HDAC6 inhibitor Nexturastat A (NextA) on HER2+ cell lines, which were both sensitive and trastuzumab-resistant. A sub-cytotoxic concentration of NextA, combined with trastuzumab, showed a synergistic effect on BC cell lines. Finally, using a network pharmacology approach, we identified HSP90AA1 as the putative molecular candidate responsible for the synergism observed in vitro. CONCLUSIONS Our findings encourage the exploration of the role of HDAC6 as a prognostic factor and the combinatorial use of HDAC6 selective inhibitors combined with trastuzumab in HER2+ BC, in particular for those patients experiencing drug resistance.
Collapse
Affiliation(s)
- Michela Cortesi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Elisabetta Petracci
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Davide Angeli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Maria Maddalena Tumedei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - William Balzi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Paola Possanzini
- Pathology Unit, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
| | - Andrea Rocca
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michela Palleschi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Paola Ulivi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Giovanni Martinelli
- Department of Hematology and Sciences Oncology, Institute of Haematology “L. and A. Seràgnoli”, S. Orsola University Hospital, 40138 Bologna, Italy
| | - Roberta Maltoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| |
Collapse
|
21
|
Liu W, Zhang J, Li Y, Nakajima A, Lee D, Xu J, Guo Y. Structure, anti-cancer properties, and potential mechanism of a biological active polysaccharide from Platycodon grandiflorum. Int J Biol Macromol 2024; 281:136153. [PMID: 39362438 DOI: 10.1016/j.ijbiomac.2024.136153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/29/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Polysaccharides serve as a source of energy for organisms and play a crucial role in various life activities, exhibiting a wide array of biological functions. To develop bioactive polysaccharides for combating cancer, PGP40-2B, a homogeneous polysaccharide with a molecular weight of 7.05 × 103 g/mol, has been isolated from Platycodon grandiflorum, which is a traditional medicinal and edible plant with multiple functions. PGP40-2B was found to be mainly formed from several fragments including →2)-α-l-Araf-(1→, →5)-α-l-Araf-(1→, →3,4)-α-l-Rhap-(1→, →4)-α-d-GalpA-(1→, →6)-α-d-Glcp-(1→, and α-d-Galp-(1→. In addition to the structural characteristics characterized by various techniques, PGP40-2B was biologically assessed using zebrafish models and was found to exhibit in vivo antitumor effects. Subsequent mechanism studies suggested that the antitumor activity in vivo of PGP40-2B was not caused by cytotoxic mechanisms but was related to its targeting of vascular endothelial growth factor (VEGF) and programmed cell death protein 1 (PD-1) to inhibit angiogenesis and activate immunity.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
22
|
Rebaudi F, De Franco F, Goda R, Obino V, Vita G, Baronti C, Iannone E, Pitto F, Massa B, Fenoglio D, Jandus C, Poggio F, Fregatti P, Melaiu O, Bozzo M, Candiani S, Papaccio F, Greppi M, Pesce S, Marcenaro E. The landscape of combining immune checkpoint inhibitors with novel Therapies: Secret alliances against breast cancer. Cancer Treat Rev 2024; 130:102831. [PMID: 39342797 DOI: 10.1016/j.ctrv.2024.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
This review focuses on the immune checkpoint inhibitors (ICIs) in the context of breast cancer (BC) management. These innovative treatments, by targeting proteins expressed on both tumor and immune cells, aim to overcome tumor-induced immune suppression and reactivate the immune system. The potential of this approach is the subject of numerous clinical studies. Here, we explore the key studies and emerging therapies related to ICIs providing a detailed analysis of their specific and combined use in BC treatment.
Collapse
Affiliation(s)
- Federico Rebaudi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Fabiana De Franco
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Giorgio Vita
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Camilla Baronti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Eleonora Iannone
- Breast Surgery Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Pitto
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Massa
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Fenoglio
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland; Geneva Center for Inflammation Research, Geneva, Switzerland
| | - Francesca Poggio
- Department of Medical Oncology, Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Piero Fregatti
- Breast Surgery Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
23
|
Shi J, Pan L, Ma F, Zhang G, Duan Y. Thematic trends and knowledge-map of tumor-infiltrating lymphocytes in breast cancer: a scientometric analysis. Front Oncol 2024; 14:1438091. [PMID: 39555450 PMCID: PMC11564181 DOI: 10.3389/fonc.2024.1438091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs), essential for the anti-tumor response, are now recognized as promising and cost-effective biomarkers with both prognostic and predictive value. They are crucial in the precision treatment of breast cancer, particularly for predicting clinical outcomes and identifying candidates for immunotherapy. This study aims to encapsulate the current knowledge of TILs in breast cancer research while evaluating research trends both qualitatively and quantitatively. Methods Publications on TILs in breast cancer studies from January 1, 2004, to December 31, 2023, were extracted from the Web of Science Core Collection. Co-occurrence and collaboration analyses among countries/regions, institutions, authors, and keywords were performed with Bibliometrix R packages and VOSviewer software. CiteSpace was used for reference and keyword burst detection, while high-frequency keyword layouts were generated using BICOMB. gCLUTO was employed for biclustering analysis of the binary co-keyword matrix. Results A total of 2,066 articles on TILs in breast cancer were identified. Between 2004 and 2023, the USA and Milan University led productivity in terms of country/region and institution, respectively. The journals "CANCERS," "Breast Cancer Research and Treatment," and "Frontiers in Oncology" published the most articles on this topic. Loi S was the leading author, with the highest number of publications and co-citations. Co-keyword analysis revealed six research hotspots related to TILs in breast cancer. The pathological assessment of TILs using artificial intelligence (AI) remains in its early stages but is a key focus. Burst detection of keywords indicated significant activity in "immune cell infiltration", "immune checkpoint inhibitors", and "hormone receptor" over the past three years. Conclusion This study reviews recent advancements and trends in TILs research in breast cancer using scientometric analysis. The findings offer valuable insights for funding decisions and developing innovative strategies in TILs research, highlighting current research frontiers and trends.
Collapse
Affiliation(s)
- Jinan Shi
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Lei Pan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Feixia Ma
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ganlu Zhang
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Nandi D, Sharma D. Integrating immunotherapy with conventional treatment regime for breast cancer patients- an amalgamation of armamentarium. Front Immunol 2024; 15:1477980. [PMID: 39555066 PMCID: PMC11563812 DOI: 10.3389/fimmu.2024.1477980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Immunotherapy stands as the frontrunner in treatment strategies imparting efficient remission in various types of cancer. In fact, emerging breakthroughs with immune checkpoint inhibitors (ICI) in a spectrum of cancers have evoked interest in research related to the potential effects of immunotherapy in breast cancer patients. A major challenge with breast cancer is the molecular heterogeneity that limits the efficacy of many therapeutic regimes. Clinical trials have shown favorable clinical outcomes with immunotherapeutic options in some subtypes of breast cancer. However, ICI monotherapy may not be sufficient for all breast cancer patients, emphasizing the need for combinatorial approaches. Ongoing research is focused on untangling the interplay of ICI with established as well as novel anticancer therapeutic regimens in preclinical models of breast cancer. Our review will analyze the existing research regarding the mechanisms and clinical impact of immunotherapy for the treatment of breast cancer. We shall evaluate the role of immune cell modulation for improved therapeutic response in breast cancer patients. This review will provide collated evidences about the current clinical trials that are testing out the implications of immunotherapy in conjunction with traditional treatment modalities in breast cancer and summarize the potential future research directions in the field. In addition, we shall underline the recent findings related to microbiota modulation as a key regulator of immune therapy response in cancer patients and its plausible applications in breast cancer.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| |
Collapse
|
25
|
Stroes CI, Meijer SL, Creemers GJ, Hooijer GKJ, Mohammad NH, Los M, Slingerland M, Hospers GAP, Cats A, Beerepoot LV, Bijlsma MF, van Laarhoven HWM. Tumor immune microenvironmental characteristics in Human Epidermal Growth Factor-2 (HER2) positive esophageal adenocarcinoma: A comparative analysis and biomarker study. Transl Oncol 2024; 49:102079. [PMID: 39151279 PMCID: PMC11375138 DOI: 10.1016/j.tranon.2024.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND HER2 targeting in esophageal adenocarcinoma (EAC) has shown potential, but often fails to show durable response. Given the contributions of the tumor immune microenvironment (TIME) to therapeutic responses, we aimed to chart the TIME characteristics of HER2 positive tumors. METHODS 84 biopsies were taken from the TRAP cohort (neoadjuvant chemoradiotherapy (nCRT) according to CROSS with trastuzumab and pertuzumab; n = 40; HER2+n = 40) and a control cohort with nCRT only (n = 44; HER2- n = 40, HER2+n = 4) before treatment. Biopsies were analysed using targeted gene expression analysis (Nanostring immune-oncology panel, 750 genes). Differential gene expression was assessed between HER2 positive (n = 44) vs. negative biopsies (n = 40), and non-responders (n = 17) vs. responders (n = 23) to anti-HER2 treatment. Statistical significance was determined as p-value <0.05, adjusted for multiple testing correction. RESULTS 83 biopsies were eligible for analyses following quality control (TRAP cohort n = 40; control cohort n = 43); there were no significant differences in clinical characteristics between the TRAP vs. control the cohort or HER2 positive vs. HER2 negative biopsies. HER2 expression was found to associate with epithelial markers (EPCAM p < 0.001; E-cadherin p < 0.001). Moreover, HER2 expression was associated with a lower expression of immune cell infiltration, such as NK-cells (p < 0.001) and CD8 T-cells (p < 0.001), but also lower expression of immune exhaustion markers (PDCD1LG2, CTLA4; p < 0.001). In non-responders to anti-HER2 treatment, baseline biopsies showed increased expression of immune exhaustion markers, as well as hypoxia and VEGF signalling. DISCUSSION HER2 expression was associated with epithelial tumor characteristics. The HER2 positive TIME showed reduced immune cell infiltration but also lower expression of inhibitory signals associated with immune exhaustion, questioning the mechanism behind potential clinical benefit of co-administration of anti-HER2 agents and checkpoint inhibitors. As limited response was associated with increased VEGF signalling, studies could investigate potential synergism of targeting VEGF and HER2.
Collapse
Affiliation(s)
- Charlotte I Stroes
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Amsterdam UMC, Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.
| | - Sybren L Meijer
- Amsterdam UMC, Location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Geert-Jan Creemers
- Catharina Hospital, Department of Medical Oncology, Eindhoven, the Netherlands
| | - Gerrit K J Hooijer
- Amsterdam UMC, Location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Nadia Haj Mohammad
- Universtiy Medical Center Utrecht, Department of Medical Oncology, Utrecht University, Utrecht, the Netherlands
| | - Maartje Los
- Sint Antonius Hospital, Department of Medical Oncology, Nieuwegein, the Netherlands
| | - Marije Slingerland
- Leiden University Medical Center, Department of Medical Oncology, Leiden, the Netherlands
| | - Geke A P Hospers
- Universtiy Medical Center Groningen, Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Annemieke Cats
- Netherlands Cancer Institute, Department of Gastrointestinal Oncology, Amsterdam, the Netherlands
| | - Laurens V Beerepoot
- Elisabeth-TweeSteden Hospital, Department of Medical Oncology, Tilburg, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Amsterdam UMC, Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Giordano A, Kumthekar PU, Jin Q, Binboga Kurt B, Ren S, Li T, Leone JP, Mittendorf EA, Pereslete AM, Sharp L, Davis R, DiLullo M, Tayob N, Mayer EL, Winer EP, Tolaney SM, Lin NU. A Phase II Study of Atezolizumab, Pertuzumab, and High-Dose Trastuzumab for Central Nervous System Metastases in Patients with HER2-Positive Breast Cancer. Clin Cancer Res 2024; 30:4856-4865. [PMID: 39226397 PMCID: PMC11528201 DOI: 10.1158/1078-0432.ccr-24-1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Patients with HER2-positive breast cancer brain metastases have few effective systemic therapy options. In a prior study, pertuzumab with high-dose trastuzumab demonstrated a high clinical benefit rate (CBR) in the central nervous system (CNS) in patients with brain metastases. The current trial evaluated whether the addition of atezolizumab to this regimen would produce further improvements in CNS response. PATIENTS AND METHODS This was a single-arm, multicenter, phase II trial of atezolizumab, pertuzumab, and high-dose trastuzumab for patients with HER2-positive breast cancer brain metastases. Participants received atezolizumab 1,200 mg i.v. every 3 weeks, pertuzumab (loading dosage 840 mg i.v., then 420 mg i.v. every 3 weeks), and high-dose trastuzumab (6 mg/kg i.v. weekly for 24 weeks, then 6 mg/kg i.v. every 3 weeks). The primary endpoint was CNS overall response rate per Response Assessment in Neuro-Oncology Brain Metastases criteria. Key secondary endpoints included CBR, overall survival, and safety and tolerability of the combination. RESULTS Among 19 enrolled participants, two had a confirmed intracranial partial response for a CNS overall response rate of 10.5% (90% confidence interval, 1.9%-29.6%). The study did not meet the prespecified efficacy threshold and was terminated early. The CBR was 42.1% at 18 weeks and 31.6% at 24 weeks. Seven patients (36.8%) required a dose delay or hold, and the most frequent any-grade adverse events were diarrhea (26.3%) and fatigue (26.3%). CONCLUSIONS The addition of atezolizumab to pertuzumab plus high-dose trastuzumab does not result in improved CNS responses in patients with HER2-positive breast cancer brain metastases.
Collapse
Affiliation(s)
- Antonio Giordano
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Qingchun Jin
- Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Busem Binboga Kurt
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Siyang Ren
- Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tianyu Li
- Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jose Pablo Leone
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Elizabeth A Mittendorf
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alyssa M Pereslete
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Laura Sharp
- Northwestern Memorial Hospital, Chicago, Illinois
| | - Raechel Davis
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Molly DiLullo
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Nabihah Tayob
- Harvard Medical School, Boston, Massachusetts
- Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Erica L Mayer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Eric P Winer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Sara M Tolaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nancy U Lin
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Wen Z, Ye D, Hu Q, Gou H. The addition of PD-1 inhibitor overcame trastuzumab resistance in patients with HER2 positive, PD-L1 negative metastatic gastric cancer: Case report and review of literature. Front Pharmacol 2024; 15:1447140. [PMID: 39512834 PMCID: PMC11540996 DOI: 10.3389/fphar.2024.1447140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Gastric cancer (GC) is a malignancy with poor prognosis and high heterogeneity. For HER2-positive, PD-L1 negative metastatic GC patients, chemotherapy plus trastuzumab is the first-line therapy. However, such patients soon acquired resistance to treatment, especially to trastuzumab during the treatment. Improving the therapeutic resistance of HER2-positive, PD-L1 negative metastatic GC is still a dilemma. We present the case of a metastatic GC patient with HER2-positive and PD-L1-negative expression who suffered progression after a short remission with trastuzumab plus chemotherapy. The patient exhibited strong heterogeneity in the primary and metastatic lesions. His resistance to trastuzumab was overcome after the addition of a PD-1 inhibitor, after which he received a durable response for more than 8 months. In HER2-positive, PD-L1-negative metastatic GC, the addition of PD-1 inhibitors after first-line chemotherapy and trastuzumab treatment resistance may be an option.
Collapse
Affiliation(s)
- Zhenpeng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Daoli Ye
- Gastric Cancer Center, West China Hospital/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qiancheng Hu
- Department of Medical Oncology, Cancer Center, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongfeng Gou
- Department of Medical Oncology, Cancer Center, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Pandey P, Chaudhary R, Tripathi D, Lavudi K, Dua K, Weinfeld M, Lavasanifar A, Rajinikanth PS. Personalized treatment approach for HER2-positive metastatic breast cancer. Med Oncol 2024; 41:252. [PMID: 39320608 DOI: 10.1007/s12032-024-02504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Breast cancer (BC) is a leading global concern for women, with 30% being HER2-positive cases linked to poorer outcomes. Targeted therapies like trastuzumab deruxtecan (T-DXd), trastuzumab, pertuzumab, and T-DM1 have revolutionized HER2-positive metastatic breast cancer (MBC) treatment. Although these therapies have improved MBC management and patient outcomes, resistance can develop, reducing effectiveness. Personalized strategies based on tumor characteristics offer hope for better responses and longer outcomes. This review outlines insights into MBC patients responding well to anti-HER2 treatments, even across multiple treatment regimen. Recent immunotherapy, locoregional therapy, and liquid biopsy breakthroughs are covered, suggesting ways to increase long-term responders. Personalized approaches have boosted HER2-positive MBC outcomes, and ongoing research is crucial to uncover new treatments and biomarkers, potentially elevating long-term response rates and prognoses. This may aid in providing new direction to breast cancer clinics.
Collapse
Affiliation(s)
- Prashant Pandey
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Michael Weinfeld
- Cross Cancer Institute and Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
29
|
Maimaitijiang A, He D, Li D, Li W, Su Z, Fan Z, Li J. Progress in Research of Nanotherapeutics for Overcoming Multidrug Resistance in Cancer. Int J Mol Sci 2024; 25:9973. [PMID: 39337463 PMCID: PMC11432649 DOI: 10.3390/ijms25189973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Chemotherapy has been widely applied in oncotherapy. However, the development of multidrug resistance (MDR) has diminished the effectiveness of anticancer drugs against tumor cells. Such resistance often results in tumor recurrence, metastasis, and patient death. Fortunately, nanoparticle-based drug delivery systems provide a promising strategy by codelivery of multiple drugs and MDR reversal agents and the skillful, flexible, smart modification of drug targets. Such systems have demonstrated the ability to bypass the ABC transporter biological efflux mechanisms due to drug resistance. Hence, how to deliver drugs and exert potential antitumor effects have been successfully explored, applied, and developed. Furthermore, to overcome multidrug resistance, nanoparticle-based systems have been developed due to their good therapeutic effect, low side effects, and high tumor metastasis inhibition. In view of this, we systematically discuss the molecular mechanisms and therapeutic strategies of MDR from nanotherapeutics. Finally, we summarize intriguing ideas and future trends for further research in overcoming MDR.
Collapse
Affiliation(s)
- Ayitila Maimaitijiang
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Dongze He
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Dingyang Li
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Wenfang Li
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zhongxiong Fan
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
30
|
Wang L, Lin Y, Yao Z, Babu N, Lin W, Chen C, Du L, Cai S, Pan Y, Xiong X, Ye Q, Ren H, Zhang D, Chen Y, Yeung SCJ, Bremer E, Zhang H. Targeting undruggable phosphatase overcomes trastuzumab resistance by inhibiting multi-oncogenic kinases. Drug Resist Updat 2024; 76:101118. [PMID: 39094301 DOI: 10.1016/j.drup.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
AIMS Resistance to targeted therapy is one of the critical obstacles in cancer management. Resistance to trastuzumab frequently develops in the treatment for HER2+ cancers. The role of protein tyrosine phosphatases (PTPs) in trastuzumab resistance is not well understood. In this study, we aim to identify pivotal PTPs affecting trastuzumab resistance and devise a novel counteracting strategy. METHODS Four public datasets were used to screen PTP candidates in relation to trastuzumab responsiveness in HER2+ breast cancer. Tyrosine kinase (TK) arrays were used to identify kinases that linked to protein tyrosine phosphate receptor type O (PTPRO)-enhanced trastuzumab sensitivity. The efficacy of small activating RNA (saRNA) in trastuzumab-conjugated silica nanoparticles was tested for PTPRO upregulation and resistance mitigation in cell models, a transgenic mouse model, and human cancer cell line-derived xenograft models. RESULTS PTPRO was identified as the key PTP which influences trastuzumab responsiveness and patient survival. PTPRO de-phosphorated several TKs, including the previously overlooked substrate ERBB3, thereby inhibiting multiple oncogenic pathways associated with drug resistance. Notably, PTPRO, previously deemed "undruggable," was effectively upregulated by saRNA-loaded nanoparticles. The upregulated PTPRO simultaneously inhibited ERBB3, ERBB2, and downstream SRC signaling pathways, thereby counteracting trastuzumab resistance. CONCLUSIONS Antibody-conjugated saRNA represents an innovative approach for targeting "undruggable" PTPs.
Collapse
Affiliation(s)
- Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China; Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Hematology, University of Groningen, University Medical Center Groningen, the Netherlands; Shantou University Medical College, Shantou, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Nipun Babu
- Shantou University Medical College, Shantou, China
| | - Wan Lin
- Shantou University Medical College, Shantou, China
| | | | - Liang Du
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Qiantao Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Hongzheng Ren
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Hao Zhang
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
31
|
Steadman JA, Hieken TJ. Advances from targeted therapy for non-metastatic HER2-positive inflammatory breast cancer. J Surg Oncol 2024; 130:366-370. [PMID: 39101322 DOI: 10.1002/jso.27797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Among inflammatory breast cancer (IBC) patients, over one-third have HER2-overexpressing (HER2+) tumors. Pathologic complete response (pCR) rates to neoadjuvant targeted and chemotherapy for patients with HER2+ non-metastatic IBC now apporach 60% and favorable long-term survival rates are being reported for those with a pCR. Immune mechanisms contributing to this phenomenon include antibody-mediated immune activation and induction of memory T-cell reponses which may explain the sustained antitumor response seen after discontinuation of targeted therapies.
Collapse
Affiliation(s)
- Jessica A Steadman
- Department of Surgery, Division of Breast and Melanoma Surgical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tina J Hieken
- Department of Surgery, Division of Breast and Melanoma Surgical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
32
|
Pinto A, Guarini C, Giampaglia M, Sanna V, Melaccio A, Lanotte L, Santoro AN, Pini F, Cusmai A, Giuliani F, Gadaleta-Caldarola G, Fedele P. Synergizing Immunotherapy and Antibody-Drug Conjugates: New Horizons in Breast Cancer Therapy. Pharmaceutics 2024; 16:1146. [PMID: 39339183 PMCID: PMC11435286 DOI: 10.3390/pharmaceutics16091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The advent of immunotherapy and antibody-drug conjugates (ADCs) have revolutionized breast cancer treatment, offering new hope to patients. However, challenges, such as resistance and limited efficacy in certain cases, remain. Recently, the combination of these therapies has emerged as a promising approach to address these challenges. ADCs play a crucial role by delivering cytotoxic agents directly to breast cancer cells, minimizing damage to healthy tissue and enhancing the tumor-killing effect. Concurrently, immunotherapies harness the body's immune system to recognize and eliminate cancer cells. This integration offers potential to overcome resistance mechanisms and significantly improve therapeutic outcomes. This review explores the rationale behind combining immunotherapies with ADCs, recent advances in this field, and the potential implications for breast cancer treatment.
Collapse
Affiliation(s)
- Antonello Pinto
- Oncology Unit, "Dario Camberlingo" Hospital, 72021 Francavilla Fontana, Italy
| | - Chiara Guarini
- Oncology Unit, "Dario Camberlingo" Hospital, 72021 Francavilla Fontana, Italy
| | | | - Valeria Sanna
- Oncology Unit, "Ospedale Civile Santissima Annunziata" Hospital, 07100 Sassari, Italy
| | | | - Laura Lanotte
- Oncology Unit, "Mons. Dimiccoli" Hospital, 70051 Barletta, Italy
| | | | - Francesca Pini
- Oncology Unit, "Dario Camberlingo" Hospital, 72021 Francavilla Fontana, Italy
| | - Antonio Cusmai
- "Don Tonino Bello", I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | | | | | - Palma Fedele
- Oncology Unit, "Dario Camberlingo" Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
33
|
Kim J, Son HY, Lee S, Rho HW, Kim R, Jeong H, Park C, Mun B, Moon Y, Jeong E, Lim EK, Haam S. Deep learning-assisted monitoring of trastuzumab efficacy in HER2-Overexpressing breast cancer via SERS immunoassays of tumor-derived urinary exosomal biomarkers. Biosens Bioelectron 2024; 258:116347. [PMID: 38723332 DOI: 10.1016/j.bios.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Monitoring drug efficacy is significant in the current concept of companion diagnostics in metastatic breast cancer. Trastuzumab, a drug targeting human epidermal growth factor receptor 2 (HER2), is an effective treatment for metastatic breast cancer. However, some patients develop resistance to this therapy; therefore, monitoring its efficacy is essential. Here, we describe a deep learning-assisted monitoring of trastuzumab efficacy based on a surface-enhanced Raman spectroscopy (SERS) immunoassay against HER2-overexpressing mouse urinary exosomes. Individual Raman reporters bearing the desired SERS tag and exosome capture substrate were prepared for the SERS immunoassay; SERS tag signals were collected to prepare deep learning training data. Using this deep learning algorithm, various complicated mixtures of SERS tags were successfully quantified and classified. Exosomal antigen levels of five types of cell-derived exosomes were determined using SERS-deep learning analysis and compared with those obtained via quantitative reverse transcription polymerase chain reaction and western blot analysis. Finally, drug efficacy was monitored via SERS-deep learning analysis using urinary exosomes from trastuzumab-treated mice. Use of this monitoring system should allow proactive responses to any treatment-resistant issues.
Collapse
Affiliation(s)
- Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Hye Young Son
- Department of Radiology, Yonsei University, Seoul, 03772, Republic of Korea; Severance Biomedical Science Institute, Yonsei University, Seoul, 03772, Republic of Korea; YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, 03772, Republic of Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology, Yonsei University, Seoul, 03772, Republic of Korea
| | - Ryunhyung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Hyein Jeong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Yesol Moon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Eunji Jeong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea.
| |
Collapse
|
34
|
Mustafin RN. Prospects for breast cancer immunotherapy using microRNAs and transposable elements as objects. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1011-1026. [PMID: 39351441 PMCID: PMC11438560 DOI: 10.37349/etat.2024.00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/04/2024] [Indexed: 10/04/2024] Open
Abstract
One of the directions in treatment of chemoresistant breast cancer (BC) may include new methods of activating the immune response against tumor cells. Clinically used checkpoint inhibition using antibodies to PD-1 and PD-L1 works in some patients, but the lack of biomarkers means number of respondents is low. The possibility of combining this method with chemotherapy is limited by an increased risk of toxic liver damage, development of immune-related pneumonitis, and thyroid dysfunction. This article includes introduction into the clinic of new methods of immunotherapy for BC, among which epigenetic activation of retroelements, double-stranded transcripts of which stimulate the interferon response against the tumor, is promising. For this purpose, inhibitors of DNA methyltransferase*, histone deacetylase* and histone methyltransferase* are used (* subtitles in the main text). Their antitumor effect is also mediated by removal of repressive epigenetic marks from tumor suppressor genes. However, numerous studies have proven the role of retroelements in the carcinogenesis of various malignant neoplasms, including BC. Moreover, endogenous retroviruses HERV-K and LINE1 retrotransposons are planned to be used as diagnostic biomarkers for BC. Therefore, a rational approach to using viral mimicry in antitumor therapy of BC may be the simultaneous suppression of specific retrotransposons (drivers for carcinogenesis) using reverse transcriptase inhibitors and silencing of specific transposons involved in carcinogenesis using complementary microRNAs. To determine possible pathways of influence in this direction, 35 specific transposon-derived microRNAs* changes in BC were identified, which can become guides for targeted therapy of BC.
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, Ministry of Health of Russia, 450008 Ufa, Russia
| |
Collapse
|
35
|
Putra IMR, Lestari IA, Fatimah N, Hanif N, Ujiantari NSO, Putri DDP, Hermawan A. Bioinformatics and In Vitro Study Reveal ERα as The Potential Target Gene of Honokiol to Enhance Trastuzumab Sensitivity in HER2+ Trastuzumab-Resistant Breast Cancer Cells. Comput Biol Chem 2024; 111:108084. [PMID: 38805864 DOI: 10.1016/j.compbiolchem.2024.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
Trastuzumab resistance presents a significant challenge in the treatment of HER2+ breast cancer, necessitating the investigation of combination therapies to overcome this resistance. Honokiol, a compound with broad anticancer activity, has shown promise in this regard. This study aims to discover the effect of honokiol in increasing trastuzumab sensitivity in HER2+ trastuzumab-resistant breast cancer cells HCC1954 and the underline mechanisms behind. A bioinformatics study performed to explore the most potential target hub gene for honokiol in HER2+ breast cancer. Honokiol, trastuzumab and combined treatment cytotoxicity activity was then evaluated in both parental HCC1954 and trastuzumab resistance (TR-HCC1954) cells using MTT assay. The expression levels of these hub genes were then analyzed using qRT-PCR and those that could not be analyzed were subjected to molecular docking to determine their potential. Honokiol showed a potent cytotoxicity activity with an IC50 of 41.05 μM and 69.61 μM in parental HCC1954 and TR-HCC1954 cell line respectively. Furthermore, the combination of honokiol and trastuzumab resulted in significant differences in cytotoxicity in TR-HCC1954 cells at specific concentrations. Molecular docking and the qRT-PCR showed that the potential ERα identified from the bioinformatics analysis was affected by the treatment. Our results show that honokiol has the potential to increase the sensitivity of trastuzumab in HER2+ trastuzumab resistant breast cancer cell line HCC1954 by affecting regulating estrogen receptor signaling. Further research is necessary to validate these findings.
Collapse
Affiliation(s)
- I Made Rhamanadana Putra
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta 55281, Indonesia
| | - Intan Ayu Lestari
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta 55281, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Naufa Hanif
- Master Student of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Navista Sri Octa Ujiantari
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dyaningtyas Dewi Pamungkas Putri
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta 55281, Indonesia
| | - Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta 55281, Indonesia; Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
36
|
Mai N, Chen JF, Rana S, Robson M, Chandarlapaty S, Rosen EY. Pathologic complete response to KEYNOTE522 and HER2-directed therapy for synchronous TNBC and HER2+ breast cancer. NPJ Precis Oncol 2024; 8:162. [PMID: 39069534 PMCID: PMC11284213 DOI: 10.1038/s41698-024-00631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Simultaneous presentation of two separate primary breast cancers of differing histology at initial diagnosis is an uncommon phenomenon; it is even rarer to find these pathologically distinct populations within the same biopsy. Here we report the case of a patient diagnosed with clearly demarcated, pathologically heterogenous triple negative breast cancer (TNBC) and HER2+ breast cancer that was treated with a hybrid chemoimmunotherapy regimen combining elements of Keynote-522 and a standard HER2-directed neoadjuvant regimen, yielding apathologic complete response by the time of surgery with no notable adverse events. Molecular analysis of the histologically distinct tumor populations confirmed molecular evidence of differential HER2 expression but also suggested clonal relatedness of the two tumor populations based upon mutational profile, with phenotypic divergence potentially resulting from copy number alterations in NF1. Overall, this case highlights a rare histologic phenomenon that was successfully treated by combining both TNBC and HER2 directed neoadjuvant therapies.
Collapse
Affiliation(s)
- Nicholas Mai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jie-Fu Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Satshil Rana
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ezra Y Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
37
|
Cai A, Chen Y, Wang LS, Cusick JK, Shi Y. Depicting Biomarkers for HER2-Inhibitor Resistance: Implication for Therapy in HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:2635. [PMID: 39123362 PMCID: PMC11311605 DOI: 10.3390/cancers16152635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
HER2 (human epidermal growth factor receptor 2) is highly expressed in a variety of cancers, including breast, lung, gastric, and pancreatic cancers. Its amplification is linked to poor clinical outcomes. At the genetic level, HER2 is encoded by the ERBB2 gene (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), which is frequently mutated or amplified in cancers, thus spurring extensive research into HER2 modulation and inhibition as viable anti-cancer strategies. An impressive body of FDA-approved drugs, including anti-HER2 monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and HER2-tyrosine kinase inhibitors (TKIs), have demonstrated success in enhancing overall survival (OS) and disease progression-free survival (PFS). Yet, drug resistance remains a persistent challenge and raises the risks of metastatic potential and tumor relapse. Research into alternative therapeutic options for HER2+ breast cancer therefore proves critical for adapting to this ever-evolving landscape. This review highlights current HER2-targeted therapies, discusses predictive biomarkers for drug resistance, and introduces promising emergent therapies-especially combination therapies-that are aimed at overcoming drug resistance in the context of HER2+ breast cancer.
Collapse
Affiliation(s)
- Alvan Cai
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Lily S. Wang
- University of California, Berkeley, CA 94720, USA;
| | - John K. Cusick
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
38
|
Tang M, Dang P, Liu T, Yang K, Wang Y, Tse G, Liu H, Liu Y, Chan JSK, Liu C, Li G. Risk factors and outcomes of pericardial effusion in cancer patients receiving PD-1 inhibitors. Int J Cardiol 2024; 407:132029. [PMID: 38583590 DOI: 10.1016/j.ijcard.2024.132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Programmed cell death 1 (PD-1) inhibitors can induce various adverse reactions associated with immunity, of which cardiotoxicity is a serious complication. Limited research exists on the link between PD-1 inhibitor use and pericardial effusion (PE) occurrence and outcomes. METHODS We conducted a retrospective study at the First Affiliated Hospital of Xi'an Jiaotong University from 2017 to 2019, comparing cancer patients who developed PE within 2 years after PD-1 inhibitor therapy to those who did not. Our primary outcome was the all-cause mortality rate at one year. We applied the Kaplan-Meier method for survival analysis. Multivariate logistic regression was utilized to identify PE risk factors, adjusting for potential confounders. RESULTS A total of 91 patients were finally included, of whom 39 patients had PE. Compared to non-PE group, one-year all-cause mortality was nearly 5 times higher in PE group (64.10% vs. 13.46%, P < 0.001). Patients who developed PE within 2 years of taking PD-1 inhibitors were significantly associated with increased all-cause mortality compared with those who did not (HR: 6.26, 95%CI: 2.70-14.53, P < 0.001). Multivariable logistic regression showed that use of sintilimab (OR: 14.568, 95%CI: 3.431-61.857, P < 0.001), history of lung cancer (OR: 15.360, 95%CI: 3.276-72.017, P = 0.001), and history of hypocalcemia (OR: 7.076, 95%CI: 1.879-26.649, P = 0.004) were independent risk factors of PE development in patients received PD-1 inhibitors therapy. CONCLUSIONS In cancer patients receiving PD-1 inhibitors, PE was associated with higher one-year mortality. Use of sintilimab, and history of lung cancer or hypocalcemia were linked to PE occurrence.
Collapse
Affiliation(s)
- Manyun Tang
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, China; Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Peizhu Dang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Liu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, China; Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Kun Yang
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, China; Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yifei Wang
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, China; Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; Epidemiology Research Unit, Cardiovascular Analytics Group, PowerHealth Limited, Hong Kong, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Hui Liu
- Biobank of The First Affiliated Hospital of Xian Jiaotong University, Xi'an, China
| | - Yufeng Liu
- Biobank of The First Affiliated Hospital of Xian Jiaotong University, Xi'an, China
| | - Jeffrey Shi Kai Chan
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, PowerHealth Research Institute, Hong Kong, China
| | - Chang Liu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, China; Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, China.
| | - Guoliang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
39
|
Dvir K, Giordano S, Leone JP. Immunotherapy in Breast Cancer. Int J Mol Sci 2024; 25:7517. [PMID: 39062758 PMCID: PMC11276856 DOI: 10.3390/ijms25147517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is a disease encompassing a spectrum of molecular subtypes and clinical presentations, each with distinct prognostic implications and treatment responses. Breast cancer has traditionally been considered an immunologically "cold" tumor, unresponsive to immunotherapy. However, clinical trials in recent years have found immunotherapy to be an efficacious therapeutic option for select patients. Breast cancer is categorized into different subtypes ranging from the most common positive hormone receptor (HR+), human epidermal growth factor receptor 2 (HER2)-negative type, to less frequent HER2- positive breast cancer and triple-negative breast cancer (TNBC), highlighting the necessity for tailored treatment strategies aimed at maximizing patient outcomes. Despite notable progress in early detection and new therapeutic modalities, breast cancer remains the second leading cause of cancer death in the USA. Moreover, in recent decades, breast cancer incidence rates have been increasing, especially in women younger than the age of 50. This has prompted the exploration of new therapeutic approaches to address this trend, offering new therapeutic prospects for breast cancer patients. Immunotherapy is a class of therapeutic agents that has revolutionized the treatment landscape of many cancers, namely melanoma, lung cancer, and gastroesophageal cancers, amongst others. Though belatedly, immunotherapy has entered the treatment armamentarium of breast cancer, with the approval of pembrolizumab in combination with chemotherapy in triple-negative breast cancer (TNBC) in the neoadjuvant and advanced settings, thereby paving the path for further research and integration of immune checkpoint inhibitors in other subtypes of breast cancer. Trials exploring various combination therapies to harness the power of immunotherapy in symbiosis with various chemotherapeutic agents are ongoing in hopes of improving response rates and prolonging survival for breast cancer patients. Biomarkers and precise patient selection for the utilization of immunotherapy remain cardinal and are currently under investigation, with some biomarkers showing promise, such as Program Death Lignat-1 (PDL-1) Combined Positive Score, Tumor Mutation Burden (TMB), and Tumor Infiltrating Lymphocytes (TILs). This review will present the current landscape of immunotherapy, particularly checkpoint inhibitors, in different types of breast cancer.
Collapse
Affiliation(s)
- Kathrin Dvir
- Dana Farber Cancer Institute, Boston, MA 02215, USA; (K.D.)
- St. Elizabeth’s Medical Center, Boston, MA 02111, USA
| | - Sara Giordano
- Dana Farber Cancer Institute, Boston, MA 02215, USA; (K.D.)
- St. Elizabeth’s Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
40
|
Boscolo Bielo L, Trapani D, Nicolò E, Valenza C, Guidi L, Belli C, Kotteas E, Marra A, Prat A, Fusco N, Criscitiello C, Burstein HJ, Curigliano G. The evolving landscape of metastatic HER2-positive, hormone receptor-positive Breast Cancer. Cancer Treat Rev 2024; 128:102761. [PMID: 38772169 DOI: 10.1016/j.ctrv.2024.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Therapeutic agents targeting Human Epidermal Growth Factor Receptor 2 (HER2) demonstrated to positively impact the prognosis of HER2-positive breast cancer. HER2-positive breast cancer can present either as hormone receptor-negative or positive, defining Triple-positive breast cancer (TPBC). TPBC demonstrate unique gene expression profiles, showing reduced HER2-driven gene expression, as recapitulated by a higher proportion of Luminal-type intrinsic subtypes. The different molecular landscape of TPBC dictates distinctive clinical features, including reduced chemotherapy sensitivity, different patterns of recurrence, and better overall prognosis. Cross-talk between HER2 and hormone receptor signaling seems to be critical to determine resistance to HER2-directed agents. Accordingly, superior outcomes have been achieved with the use of endocrine therapy, representing the first subtype-specific pharmacological intervention unique to this subgroup. Additional targeted agents capable to tackle resistance mechanisms to anti-HER2, hormone agents, or both might further improve the efficacy of treatments, such as PI3K/AKT/mTOR inhibitors, particularly in a biomarker-enriched setting, and CDK4/6-inhibitors, with preliminary data suggesting a role of PAM50 subtyping to predict higher benefits in luminal tumors. Finally, the distinct biology of triple-positive tumors may yield the rationale for considering combinations within antibody-drug conjugate regimens. Accordingly, in this review, we summarized the current evidence and rationale for considering TPBC as a different entity, in which distinct therapeutical approaches leveraging on the different biological profile of TPBC may result in superior anticancer regimens and improved patient-centric outcomes.
Collapse
Affiliation(s)
- Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Guidi
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carmen Belli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elias Kotteas
- Oncology Unit, Sotiria General Hospital, 3rd Dept of Internal Medicine, Athens School of Medicine, Greece
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Aleix Prat
- Department of Medical Oncology and Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Spain
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Harold J Burstein
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
41
|
Agostinetto E, Curigliano G, Piccart M. Emerging treatments in HER2-positive advanced breast cancer: Keep raising the bar. Cell Rep Med 2024; 5:101575. [PMID: 38759648 PMCID: PMC11228398 DOI: 10.1016/j.xcrm.2024.101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Patients with human epidermal receptor 2 (HER2)-positive breast cancer are experiencing a consistent shift toward better survival across the years, thanks to tremendous advancements in treatment strategies. The consistent improvements of outcomes set a high bar for new drug development and the need to explore new ways to overcome resistance mechanisms. Emerging treatments in HER2-positive breast cancer aim to tackle the disease by acting on different targets, including not only HER2 (both at the extra- and intracellular level), but also HER3, PD-(L)1, CTLA4, NKG2A, AKT, PI3K, and, in triple-positive tumors, the estrogen receptors and the cyclin-dependent kinases 4/6. This review describes the evolving treatment landscape of HER2-positive breast cancer, from the current approved therapies to the future perspectives, with a focus on the new agents which are likely to get approved in the next future.
Collapse
Affiliation(s)
- Elisa Agostinetto
- Oncology Department, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B.), Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium.
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| | - Martine Piccart
- Oncology Department, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B.), Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| |
Collapse
|
42
|
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW, Kundu GC. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer 2024; 23:92. [PMID: 38715072 PMCID: PMC11075356 DOI: 10.1186/s12943-024-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
- Department of Pharmaceutical Technology, Brainware University, West Bengal, 700125, India
| | - Ramesh Butti
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Sumit Das
- National Centre for Cell Sciences, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Prachi Kapse
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Suresh W Gosavi
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
43
|
Zhao S, Qiu Y, Yuan M, Wang Z. Progress of PD-1/PD-L1 inhibitor combination therapy in immune treatment for HER2-positive tumors. Eur J Clin Pharmacol 2024; 80:625-638. [PMID: 38342825 DOI: 10.1007/s00228-024-03644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Patients with HER2-positive cancers often face a poor prognosis, and treatment regimens containing anti-HER2 have become the first-line treatment options for breast and gastric cancers. However, these approaches are faced with significant challenges in terms of drug resistance. Hence, it is crucial to explore precise treatment strategies aimed at improving survival outcomes. ADVANCEMENTS IN TREATMENT Over the past few years, there has been rapid advancement in the realm of tumor therapy, particularly with the swift progress of immune checkpoint inhibitors, including PD-1/PD-L1 inhibitors. They exert anti-tumor effects by disrupting immune-suppressive factors within the tumor microenvironment. However, monotherapy with PD-1/PD-L1 inhibitors has several limitations. Consequently, numerous studies have explored combinatorial immunotherapeutic strategies and demonstrated highly promising avenues of development. OBJECTIVE This article aims to review the clinical trials investigating PD-1/PD-L1 inhibitor combination therapy for HER2-positive tumors. Additionally, it provides a summary of ongoing trials evaluating the efficacy and safety of these combined treatments, with the intention of furnishing valuable insights for the clinical management of HER2-positive cancer. CONCLUSION Combinatorial immunotherapeutic strategies involving PD-1/PD-L1 inhibitors hold considerable promise in the treatment of HER2-positive tumors. Continued research efforts and clinical trials are warranted to elucidate optimal treatment regimens that maximize therapeutic benefits while minimizing adverse effects.
Collapse
Affiliation(s)
- Sining Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiwu Qiu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqin Yuan
- Department of Colorectal Medicine, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zeng Wang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China, 310022.
| |
Collapse
|
44
|
Çetin K, Kökten Ş, Sarıkamış B, Yıldırım S, Gökçe ON, Barışık NÖ, Kılıç Ü. The association of PD-L1 expression and CD8-positive T cell infiltration rate with the pathological complete response after neoadjuvant treatment in HER2-positive breast cancer. Breast Cancer Res Treat 2024; 205:17-27. [PMID: 38273215 PMCID: PMC11062965 DOI: 10.1007/s10549-023-07242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
PURPOSE Achieving a pathological complete response (pCR) after neoadjuvant therapy in HER2-positive breast cancer patients is the most significant prognostic indicator, suggesting a low risk of recurrence and a survival advantage. This study aims to investigate clinicopathological parameters that can predict the response to neoadjuvant treatment in HER2 + breast cancers and to explore the roles of tumour-infiltrating lymphocytes (TILs), CD8 + T lymphocytes and PD-L1 expression. METHODS This single-centre retrospective study was conducted with 85 HER2-positive breast cancer patients who underwent surgery after receiving neoadjuvant therapy between January 2017 and January 2020. Paraffin blocks from these patients were selected for immunohistochemical studies. RESULTS A complete pathological response to neoadjuvant treatment was determined in 39 (45.9%) patients. High Ki-67 index (> 30%), moderate to high TIL infiltration, PD-L1 positivity and high CD8 cell count (≥ 25) were significantly associated with pCR in univariate analyses (p: 0.023, 0.025, 0.017 and 0.003, respectively). Multivariate regression analysis identified high Ki-67 index (> 30%) and CD8 cell infiltration as independent predictors for pCR in HER2-positive breast cancer. CONCLUSIONS High Ki-67 index, and high CD8 cell count are strong predictors for pCR in HER2-positive breast cancer. Tumours with high Ki-67 index, high TILs and CD8 infiltration may represent a subgroup where standard therapies are adequate. Conversely, those with low TILs and CD8 infiltration may identify a subgroup where use of novel strategies, including those that increase CD8 infiltration could be applied.
Collapse
Affiliation(s)
- Kenan Çetin
- Department of General Surgery, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Şermin Kökten
- Department of Pathology, University of Health Sciences, Kartal Dr. Lutfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Bahar Sarıkamış
- Department of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Sedat Yıldırım
- Department of Medical Oncology, University of Health Sciences, Kartal Dr. Lutfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Oruç Numan Gökçe
- Department of General Surgery, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Nagehan Özdemir Barışık
- Department of Pathology, University of Health Sciences, Kartal Dr. Lutfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Ülkan Kılıç
- Department of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
45
|
Alkassis S, Fitzsimmons K, Hurvitz S. Pembrolizumab-induced nephrotoxicity in a patient with breast cancer. Ther Adv Med Oncol 2024; 16:17588359241248362. [PMID: 38680292 PMCID: PMC11047248 DOI: 10.1177/17588359241248362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
The introduction of immunotherapy has revolutionized the treatment and improved outcomes of multiple types of cancer. Although breast cancer is a less immune-responsive tumor type, the incorporation of pembrolizumab into chemotherapy regimens in the neoadjuvant and first-line metastatic setting for the triple-negative disease has improved outcomes. However, the use of this type of treatment is associated with a spectrum of adverse events. Although rarely affected, kidneys can be a target for immunotherapy, leading to irreversible injury if not recognized and addressed early. A 52-year-old woman presented with clinical stage II right breast cancer diagnosed at an outside facility. Neoadjuvant docetaxel/carboplatin/pembrolizumab every 3 weeks was started. Given the partial response on MRI after the 4th cycle, treatment was switched to doxorubicin/cyclophosphamide. However, pembrolizumab was held in cycle 2 due to the rash and then resumed in cycle 3 after the resolution of symptoms. Elevated creatinine was noted 3 weeks after the last dose of pembrolizumab without improvement despite adequate fluid resuscitation. Diagnostic workup was unremarkable except for pyuria and minimal albuminuria on urinalysis. In the absence of other risk factors and the temporal relationship between pembrolizumab administration and the onset of acute kidney injury (AKI), immune-related nephrotoxicity was the underlying diagnosis. After initiation of corticosteroids, creatinine decreased back to baseline without the need for kidney biopsy. An addendum to the original pathology report from the outside facility surfaced 5 months after starting treatment, revealing that the second breast lesion had a Fluorescence in situ hybridization (FISH) test performed that was positive. Given this fact, therapy was changed to two cycles of neoadjuvant paclitaxel/carboplatin/trastuzumab/pertuzumab, with approximately 8 weeks between the last pembrolizumab dose and the first dose of trastuzumab. Thereafter, she underwent a right breast mastectomy which showed residual invasive carcinoma with negative margins and lymph nodes. She completed 1 year of trastuzumab. Immune-related AKI is a rare, but potentially serious complication associated with an increase in mortality. Further research is needed in the development and early detection. There is promising research in the development of noninvasive biomarkers which has the added benefit of identifying patients who can be re-challenged with immunotherapy.
Collapse
Affiliation(s)
- Samer Alkassis
- Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Kasey Fitzsimmons
- Division of Hematology/Oncology, UCLA Santa Monica Parkside, Santa Monica, CA, USA
| | - Sara Hurvitz
- Division of Hematology/Oncology, Fred Hutchinson Cancer Center, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
46
|
Guo L, Lin X, Lin X, Wang Y, Lin J, Zhang Y, Chen X, Chen M, Zhang G, Zhang Y. Risk of interstitial lung disease with the use of programmed cell death 1 (PD-1) inhibitor compared with programmed cell death ligand 1 (PD-L1) inhibitor in patients with breast cancer: A systematic review and meta-analysis. CANCER PATHOGENESIS AND THERAPY 2024; 2:91-102. [PMID: 38601483 PMCID: PMC11002750 DOI: 10.1016/j.cpt.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 04/12/2024]
Abstract
Background Programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors have become integral elements within the current landscape of breast cancer treatment modalities; however, they are associated with interstitial lung disease (ILD), which is rare but potentially fatal. Notably, only a few studies have compared the difference in ILD incidence between PD-1 and PD-L1 inhibitors. Therefore, this study aimed to assess the discrepancies regarding ILD risk between the two immune checkpoint inhibitors. We also reported three cases of ILD after PD-1 inhibitor treatment. Methods We comprehensively searched PubMed, EMBASE, and the Cochrane Library to identify clinical trials that investigated PD-1/PD-L1 inhibitor treatment for patients with breast cancer. Pooled overall estimates of incidence and risk ratio (RR) were calculated with a 95% confidence interval (CI), and a mirror group analysis was performed using eligible studies. Results This meta-analysis included 29 studies with 4639 patients who received PD-1/PD-L1 inhibitor treatment. A higher ILD incidence was observed among 2508 patients treated with PD-1 inhibitors than among 2131 patients treated with PD-L1 inhibitors (0.05 vs. 0.02). The mirror group analysis further revealed a higher ILD event risk in patients treated with PD-1 inhibitors than in those treated with PD-L1 inhibitors (RR = 2.34, 95% CI, 1.13-4.82, P = 0.02). Conclusion Our findings suggest a greater risk of ILD with PD-1 inhibitors than with PD-L1 inhibitors. These findings are instrumental for clinicians in treatment deliberations, and the adoption of more structured diagnostic approaches and management protocols is necessary to mitigate the risk of ILD.
Collapse
Affiliation(s)
- Lijuan Guo
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Xiaoyi Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
- Medical College, Shantou University, Shantou, Guangdong 515000, China
| | - Xin Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Yulei Wang
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Jiali Lin
- Department of Breast Cancer, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, Guangdong 528000, China
| | - Yi Zhang
- Department of Breast Cancer, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, Guangdong 528000, China
| | - Xiangqing Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, Guangdong 528000, China
| | - Miao Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, Guangdong 528000, China
| | - Guochun Zhang
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Yifang Zhang
- Department of Breast Cancer, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, Guangdong 528000, China
| |
Collapse
|
47
|
Marra A, Chandarlapaty S, Modi S. Management of patients with advanced-stage HER2-positive breast cancer: current evidence and future perspectives. Nat Rev Clin Oncol 2024; 21:185-202. [PMID: 38191924 DOI: 10.1038/s41571-023-00849-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Amplification and/or overexpression of ERBB2, the gene encoding HER2, can be found in 15-20% of invasive breast cancers and is associated with an aggressive phenotype and poor clinical outcomes. Relentless research efforts in molecular biology and drug development have led to the implementation of several HER2-targeted therapies, including monoclonal antibodies, tyrosine-kinase inhibitors and antibody-drug conjugates, constituting one of the best examples of bench-to-bedside translation in oncology. Each individual drug class has improved patient outcomes and, importantly, the combinatorial and sequential use of different HER2-targeted therapies has increased cure rates in the early stage disease setting and substantially prolonged survival for patients with advanced-stage disease. In this Review, we describe key steps in the development of the modern paradigm for the treatment of HER2-positive advanced-stage breast cancer, including selecting and sequencing new-generation HER2-targeted therapies, and summarize efficacy and safety outcomes from pivotal studies. We then outline the factors that are currently known to be related to resistance to HER2-targeted therapies, such as HER2 intratumoural heterogeneity, activation of alternative signalling pathways and immune escape mechanisms, as well as potential strategies that might be used in the future to overcome this resistance and further improve patient outcomes.
Collapse
Affiliation(s)
- Antonio Marra
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Shanu Modi
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
48
|
Alaluf E, Shalamov MM, Sonnenblick A. Update on current and new potential immunotherapies in breast cancer, from bench to bedside. Front Immunol 2024; 15:1287824. [PMID: 38433837 PMCID: PMC10905744 DOI: 10.3389/fimmu.2024.1287824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Impressive advances have been seen in cancer immunotherapy during the last years. Although breast cancer (BC) has been long considered as non-immunogenic, immunotherapy for the treatment of BC is now emerging as a new promising therapeutic approach with considerable potential. This is supported by a plethora of completed and ongoing preclinical and clinical studies in various types of immunotherapies. However, a significant gap between clinical oncology and basic cancer research impairs the understanding of cancer immunology and immunotherapy, hampering cancer therapy research and development. To exploit the accumulating available data in an optimal way, both fundamental mechanisms at play in BC immunotherapy and its clinical pitfalls must be integrated. Then, clinical trials must be critically designed with appropriate combinations of conventional and immunotherapeutic strategies. While there is room for major improvement, this updated review details the immunotherapeutic tools available to date, from bench to bedside, in the hope that this will lead to rethinking and optimizing standards of care for BC patients.
Collapse
Affiliation(s)
- Emmanuelle Alaluf
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Amir Sonnenblick
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
49
|
McMahon DJ, McLaughlin R, Naidoo J. Is Immunotherapy Beneficial in Patients with Oncogene-Addicted Non-Small Cell Lung Cancers? A Narrative Review. Cancers (Basel) 2024; 16:527. [PMID: 38339280 PMCID: PMC10854575 DOI: 10.3390/cancers16030527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 20 years, there has been a paradigm shift in the care of patients with non-small cell lung cancer (NSCLC), who now have a range of systemic treatment options including targeted therapy, chemotherapy, immunotherapy (ICI), and antibody-drug conjugates (ADCs). A proportion of these cancers have single identifiable alterations in oncogenes that drive their proliferation and cancer progression, known as "oncogene-addiction". These "driver alterations" are identified in approximately two thirds of patients with lung adenocarcinomas, via next generation sequencing or other orthogonal tests. It was noted in the early clinical development of ICIs that patients with oncogene-addicted NSCLC may have differential responses to ICI. The toxicity signal for patients with oncogene-addicted NSCLC when treated with ICIs also seemed to differ depending on the alteration present and the specific targeted agent used. Developing a greater understanding of the underlying reasons for these clinical observations has become an important area of research in NSCLC. In this review, we analyze the efficacy and safety of ICI according to specific mutations, and consider possible future directions to mitigate safety concerns and improve the outcomes for patients with oncogene-addicted NSCLC.
Collapse
Affiliation(s)
- David John McMahon
- Trinity St James’s Cancer Institute, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
| | | | - Jarushka Naidoo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Beaumont RCSI Cancer Centre, D09 V2NO Dublin, Ireland
- RCSI University of Health Sciences, D02 YN77 Dublin, Ireland
- Beaumont Hospital, D09 Y177 Dublin, Ireland
| |
Collapse
|
50
|
Rubin E, Shan KS, Dalal S, Vu DUD, Milillo-Naraine AM, Guaqueta D, Ergle A. Molecular Targeting of the Human Epidermal Growth Factor Receptor-2 (HER2) Genes across Various Cancers. Int J Mol Sci 2024; 25:1064. [PMID: 38256137 PMCID: PMC10816365 DOI: 10.3390/ijms25021064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) belongs to the ErbB family, a group of four transmembrane glycoproteins with tyrosine kinase activity, all structurally related to epidermal growth factor receptor (EGFR). These tyrosine kinases are involved in the transmission of cellular signals controlling normal cell growth and differentiation. If this transmission goes awry, it can lead to dysregulated growth of the cell. HER2 specifically can be implicated in the pathogenesis of at least eight malignancies. HER2 positivity quickly became a well-characterized indicator of aggressiveness and poor prognosis, with high rates of disease progression and mortality. After realizing the implication of HER2, it first became investigated as a target for treatment in breast cancer, and later expanded to areas of research in other cancer types. To this day, the most therapeutic advancements of anti-HER2 therapy have been in breast cancer; however, there have been strong advancements made in the incorporation of anti-HER2 therapy in other cancer types as well. This comprehensive review dissects HER2 to its core, incorporating the most up to date information. The topics touched upon are discussed in detail and up to 200 published sources from the most highly recognized journals have been integrated. The importance of knowing about HER2 is exemplified by the groundbreaking advancements that have been made, and the change in treatment plans it has brought to the oncological world in the last twenty years. Since its groundbreaking discovery there have been significant breakthroughs in knowledge regarding the actual receptor, the receptors biology, its mechanism of action, and advancements in tests to detect HER2 and significant strides on how to best incorporate targeted treatment. Due to the success of this field thus far, the review concludes by discussing the future of novel anti-HER2 therapy currently in development that everyone should be aware of.
Collapse
Affiliation(s)
- Elizabeth Rubin
- Memorial Cancer Institute, Pembroke Pines, FL 33028, USA; (K.S.S.); (S.D.); (D.U.D.V.); (A.M.M.-N.); (D.G.); (A.E.)
| | | | | | | | | | | | | |
Collapse
|