1
|
Shen Z, Meng X, Rautela J, Chopin M, Huntington ND. Adjusting the scope of natural killer cells in cancer therapy. Cell Mol Immunol 2025:10.1038/s41423-025-01297-4. [PMID: 40410571 DOI: 10.1038/s41423-025-01297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/06/2025] [Indexed: 05/25/2025] Open
Abstract
Natural killer (NK) cells have evolved to detect abnormalities in tissues arising from infection with pathogens, genomic damage, or transformation and respond rapidly to the production of potent proinflammatory and cytolytic mediators. While this acute proinflammatory response is highly efficient at orchestrating sterilizing immunity to pathogens in a matter of days, cellular transformation often avoids the innate detection mechanisms of NK cells. When cellular transformation results in malignancy, tumor cells and/or the tumor microenvironment can evolve additional mechanisms to circumvent NK cell responses, and cancer is now a dominant disease burden worldwide. Here, we review recent advances in our understanding of the combined relationship between malignancies and natural killer (NK) cells, learn from recent clinical efforts in therapeutically targeting natural killer (NK) cells in cancer and outline some emerging therapeutic concepts that aim to improve the innate immune response against cancer.
Collapse
Affiliation(s)
- Zihen Shen
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Xiangpeng Meng
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jai Rautela
- oNKo-Innate Pty Ltd., Moonee Ponds, VIC, Australia
| | - Michael Chopin
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nicholas D Huntington
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
- oNKo-Innate Pty Ltd., Moonee Ponds, VIC, Australia.
| |
Collapse
|
2
|
Chang Z, Guo X, Li X, Wang Y, Zang Z, Pei S, Lu W, Li Y, Huang JD, Xiao Y, Liu C. Bacterial immunotherapy leveraging IL-10R hysteresis for both phagocytosis evasion and tumor immunity revitalization. Cell 2025; 188:1842-1857.e20. [PMID: 40037354 DOI: 10.1016/j.cell.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 12/07/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025]
Abstract
Bacterial immunotherapy holds promising cancer-fighting potential. However, unlocking its power requires a mechanistic understanding of how bacteria both evade antimicrobial immune defenses and stimulate anti-tumor immune responses within the tumor microenvironment (TME). Here, by harnessing an engineered Salmonella enterica strain with this dual proficiency, we unveil an underlying singular mechanism. Specifically, the hysteretic nonlinearity of interleukin-10 receptor (IL-10R) expression drives tumor-infiltrated immune cells into a tumor-specific IL-10Rhi state. Bacteria leverage this to enhance tumor-associated macrophages producing IL-10, evade phagocytosis by tumor-associated neutrophils, and coincidently expand and stimulate the preexisting exhausted tumor-resident CD8+ T cells. This effective combination eliminates tumors, prevents recurrence, and inhibits metastasis across multiple tumor types. Analysis of human samples suggests that the IL-10Rhi state might be a ubiquitous trait across human tumor types. Our study unveils the unsolved mechanism behind bacterial immunotherapy's dual challenge in solid tumors and provides a framework for intratumoral immunomodulation.
Collapse
Affiliation(s)
- Zhiguang Chang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuan Guo
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuefei Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Zang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiqi Lu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yang Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian-Dong Huang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China; Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chenli Liu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
El-Shemi AG, Alqurashi A, Abdulrahman JA, Alzahrani HD, Almwalad KS, Felfilan HH, Alomiri WS, Aloufi JA, Madkhali GH, Maqliyah SA, Alshahrani JB, Kamal HT, Daghistani SH, Refaat B, Minshawi F. IL-10-Directed Cancer Immunotherapy: Preclinical Advances, Clinical Insights, and Future Perspectives. Cancers (Basel) 2025; 17:1012. [PMID: 40149345 PMCID: PMC11940594 DOI: 10.3390/cancers17061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Interleukin-10 (IL-10) is a dimeric cytokine encoded by the IL-10 gene on chromosome 1 [...].
Collapse
Affiliation(s)
- Adel G. El-Shemi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Jihan Abdullah Abdulrahman
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Hanin Dhaifallah Alzahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Khawlah Saad Almwalad
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Hadeel Hisham Felfilan
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Wahaj Saud Alomiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Jana Ahmed Aloufi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Ghadeer Hassn Madkhali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Hematology, Dr. Sulaiman Al-Habib Medical Diagnostic Laboratory, Olaya District, Riyadh 12234-3785, Saudi Arabia
| | - Sarah Adel Maqliyah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Blood Bank and Laboratory, Saudi German Hospital, Makkah 24242, Saudi Arabia
| | - Jood Bandar Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Huda Taj Kamal
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Sawsan Hazim Daghistani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Bassem Refaat
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| |
Collapse
|
4
|
Kureshi CT, Dougan SK. Cytokines in cancer. Cancer Cell 2025; 43:15-35. [PMID: 39672170 PMCID: PMC11841838 DOI: 10.1016/j.ccell.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
Cytokines are proteins used by immune cells to communicate with each other and with cells in their environment. The pleiotropic effects of cytokine networks are determined by which cells express cytokines and which cells express cytokine receptors, with downstream outcomes that can differ based on cell type and environmental cues. Certain cytokines, such as interferon (IFN)-γ, have been clearly linked to anti-tumor immunity, while others, such as the innate inflammatory cytokines, promote oncogenesis. Here we provide an overview of the functional roles of cytokines in the tumor microenvironment. Although we have a sophisticated understanding of cytokine networks, therapeutically targeting cytokine pathways in cancer has been challenging. We discuss current progress in cytokine blockade, cytokine-based therapies, and engineered cytokine therapeutics as emerging cancer treatments of interest.
Collapse
Affiliation(s)
- Courtney T Kureshi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Foffano L, Bertoli E, Bortolot M, Torresan S, De Carlo E, Stanzione B, Del Conte A, Puglisi F, Spina M, Bearz A. Immunotherapy in Oncogene-Addicted NSCLC: Evidence and Therapeutic Approaches. Int J Mol Sci 2025; 26:583. [PMID: 39859299 PMCID: PMC11765476 DOI: 10.3390/ijms26020583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. The discovery of specific driver mutations has revolutionized the treatment landscape of oncogene-addicted NSCLC through targeted therapies, significantly improving patient outcomes. However, immune checkpoint inhibitors (ICIs) have demonstrated limited effectiveness in this context. Emerging evidence, though, reveals significant heterogeneity among different driver mutation subgroups, suggesting that certain patient subsets may benefit from ICIs, particularly when combined with other therapeutic modalities. In this review, we comprehensively examine the current evidence on the efficacy of immunotherapy in oncogene-addicted NSCLC. By analyzing recent clinical trials and preclinical studies, along with an overview of mechanisms that may reduce immunotherapy efficacy, we explored potential strategies to address these challenges, to provide insights that could optimize immunotherapy approaches and integrate them effectively into the treatment algorithm for oncogene-addicted NSCLC.
Collapse
Affiliation(s)
- Lorenzo Foffano
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Elisa Bertoli
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| | - Martina Bortolot
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Sara Torresan
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| | - Brigida Stanzione
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| | - Alessandro Del Conte
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| | - Fabio Puglisi
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Michele Spina
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| | - Alessandra Bearz
- Department of Medical Oncology, CRO di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (M.B.); (E.D.C.); (B.S.); (A.D.C.); (F.P.); (M.S.); (A.B.)
| |
Collapse
|
6
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
7
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
8
|
Wang B, Wang Z, Wang K, Shao Z, Chen H, Xu L, Pan Y, Zheng M, Geng W, Xu C. Inflammatory markers correlate with lymphocytes infiltrating and predict immunotherapy prognosis for esophageal cancer. Future Oncol 2024; 20:3267-3278. [PMID: 39530611 DOI: 10.1080/14796694.2024.2421151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: To investigate the prognostic value of inflammatory markers in esophageal squamous cell carcinoma (ESCC) patients treated with immune checkpoint inhibitors (ICIs).Materials & methods: The infiltration of CD3+ and CD8+ T cells in tissue microarrays from 180 patients who underwent radical esophagectomy was detected using immunohistochemistry. A separate cohort of 351 patients with metastatic/recurrent or unresectable ESCC treated with ICIs was enrolled for further investigation. The overall survival difference among groups was assessed using Kaplan-Meier analysis. Cox proportional hazards models were employed to investigate the prognostic impact of the inflammatory markers, along with other factors.Results: Decreased inflammation was found to be associated with increased CD3+ and CD8+ T-cell infiltration and a better prognosis. Then, the value of inflammatory markers in predicting survival in 351 ESCC patients receiving immunotherapy was validated. Ultimately, the systemic immune-inflammation index was identified as an independent prognostic factor for overall survival. Additionally, the patients with no distant organ metastasis, or treated by first-line immunotherapy combined with concurrent chemoradiotherapy can considerably prolong survival.Conclusion: Inflammation is associated with the level of tumor infiltrating lymphocytes and that the systemic immune-inflammation index is an effective prognostic predictor for ESCC patients treated with ICIs.
Collapse
Affiliation(s)
- Bei Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Jiangsu, Nanjing, 210023, China
- The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, China
| | - Zixuan Wang
- Graduate School of Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, No. 42, Baizi Pavilion, Nanjing, 210009, China
| | - Kun Wang
- School of Life Sciences, Division of Life Sciences & Medicine, University of Science & Technology of China, Hefei, 230026, China
| | - Zhongming Shao
- The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, China
| | - Haitao Chen
- The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, China
| | - Lincheng Xu
- The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, China
| | - Yan Pan
- The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, China
| | - Mingyue Zheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Jiangsu, Nanjing, 210023, China
- School of Life Sciences, Division of Life Sciences & Medicine, University of Science & Technology of China, Hefei, 230026, China
- Drug Discovery & Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Wei Geng
- The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, China
| | - Chuanhai Xu
- The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, 66 South People's Road, Yancheng, 224000, China
| |
Collapse
|
9
|
Dong Y, Khan L, Yao Y. Immunological features of EGFR-mutant non-small cell lung cancer and clinical practice: a narrative review. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:289-298. [PMID: 39735443 PMCID: PMC11674437 DOI: 10.1016/j.jncc.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/02/2024] [Accepted: 06/15/2024] [Indexed: 12/31/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have significantly improved outcomes for patients with advanced driver-negative non-small cell lung cancer (NSCLC). However, targeted therapy remains the preferred treatment for advanced driver-positive NSCLC, including cases with epidermal growth factor receptor (EGFR) mutations. Considering the variability in EGFR-mutant NSCLC, including expression levels of programmed cell death ligand 1 (PD-L1), tumor mutation burden (TMB), and other immunological features, the application of immunotherapy in this group is still a subject of investigation. Therefore, we have summarized and analyzed the immunological characteristics and regulatory mechanisms of different EGFR mutations in NSCLC, as well as the current clinical application of immunotherapy in the EGFR-mutant population, to provide a reference for future research.
Collapse
Affiliation(s)
- Yi Dong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liaqat Khan
- Research Center, Benazir Bhutto Hospital of Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Yu J, Feng L, Luo Z, Yang J, Zhang Q, Liu C, Liang D, Xie Y, Li H, Gong J, He Z, Lan P. Interleukin-10 deficiency suppresses colorectal cancer metastasis by enriching gut Parabacteroides distasonis. J Adv Res 2024:S2090-1232(24)00543-5. [PMID: 39571733 DOI: 10.1016/j.jare.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION The intricate interplay of interleukin-10 (IL-10) and gut microbiota influences tumor development and progression, yet the impacts on colorectal cancer (CRC) metastasis remain incompletely understood. METHODS The impact of Il10 deficiency on CRC metastasis was first evaluated in CRC metastasis tumor samples and mouse model. Antibiotic sterilization and fecal microbiota transplantation (FMT) experiment were used to assess the role of gut microbiota in IL-10 mediated CRC metastasis, and full-length 16S rDNA sequencing analysis further identified the potential target bacteria influencing CRC metastasis. The inhibitory effect of Parabacteroides distasonis (P. distasonis) on CRC metastasis was evaluated by oral administration in mice. Key metabolites involved in P. distasonis inhibition of CRC metastasis was identified by widely-targeted metabolome analysis and validated both in vivo and in vitro. The underlying mechanisms of P-hydroxyphenyl acetic acid (4-HPAA) inhibiting CRC metastasis was investigated via RNA-sequencing and validated in cellular experiments. RESULTS We revealed that serum IL-10 levels were markedly elevated in metastatic CRC patients compared to non-metastatic cases. In parallel, Il10-deficiency (Il10-/-) in mice resulted in decreased CRC metastasis in a gut microbiota-dependent manner. Mechanistically, Il10-/- mice reshaped gut microbiota composition, notably enriching P. distasonis. The enriched P. distasonis produced 4-HPAA, which activated the aryl hydrocarbon receptor (AHR) and subsequently inhibited the expression of VEGFA, a typical oncogene, thereby sequentially suppressing CRC metastasis. Importantly, engineered bacteria capable of producing 4-HPAA effectively hindered CRC metastasis. Furthermore, AHR depletion significantly disrupted the 4-HPAA-induced reduction in CRC cell migration and the inhibition of metastasis in both in vitro and in vivo lung metastasis mouse models. CONCLUSIONS These findings demonstrate the significance of IL-10 deficiency in suppressing CRC metastasis through the 4-HPPA-AHR-VEGFA axis mediated by gut P. distasonis, suggesting that P. distasonis or 4-HPAA supplementation could offer a promising therapeutic strategy for CRC metastasis prevention.
Collapse
Affiliation(s)
- Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Lili Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Jingyi Yang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Qiang Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Chen Liu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Dayi Liang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Yanchun Xie
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Hongmin Li
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Junli Gong
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China.
| | - Zhen He
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China.
| | - Ping Lan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
11
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Ma X, Chen J, Chen S, Lan X, Wei Z, Gao H, Hou E. Immunotherapy for renal cell carcinoma: New therapeutic combinations and adverse event management strategies: A review. Medicine (Baltimore) 2024; 103:e38991. [PMID: 39058879 PMCID: PMC11272340 DOI: 10.1097/md.0000000000038991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) combinations, as well as ICIs combined with tyrosine kinase inhibitors, have considerable potential for renal cell carcinoma (RCC) treatment. Newer targeted medications, gut microbiome, nanomedicines, and cyclin-dependent kinase (CDK) inhibitors demonstrate significant potential in preventing side effects and resistance associated with RCC treatment. Most patients, including those demonstrating long-term treatment effects, eventually demonstrate cancer progression. Nevertheless, recent studies have further revealed RCC pathogenesis and many acquired drug resistance mechanisms, which together have led to the identification of promising therapeutic targets. In addition to having roles in metabolism, immunogenicity, and the immune response to tumors, CDK4 and CDK6 regulate the cell cycle. Targeting CDK4 and CDK6, either separately or in combination with already approved treatments, may improve therapeutic outcomes in patients with kidney cancer. Other novel drugs, including pegylated interleukin 10, colony-stimulating factor 1 receptor inhibitors, CD40 agonists, and C-X-C receptor 4 inhibitors affect the tumor microenvironment and cancer cell metabolism. Moreover, a triple ICI combination has been noted to be efficacious. In general, compared with sunitinib as a single-drug treatment, newer ICI combinations improve overall survival in patients with RCC. Future research on the prevention of adverse events and medication resistance related to newer therapies may aid in ensuring effective treatment outcomes among patients with RCC. This article aims to summarize innovative immunotherapy drug combinations for RCC treatment and the mechanisms of action, drug resistance, and treatment of adverse events associated with these combinations.
Collapse
Affiliation(s)
- Xiaohan Ma
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Sheng Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuan Lan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zengzhao Wei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hongjun Gao
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Encun Hou
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
13
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
14
|
Shiri AM, Zhang T, Bedke T, Zazara DE, Zhao L, Lücke J, Sabihi M, Fazio A, Zhang S, Tauriello DVF, Batlle E, Steglich B, Kempski J, Agalioti T, Nawrocki M, Xu Y, Riecken K, Liebold I, Brockmann L, Konczalla L, Bosurgi L, Mercanoglu B, Seeger P, Küsters N, Lykoudis PM, Heumann A, Arck PC, Fehse B, Busch P, Grotelüschen R, Mann O, Izbicki JR, Hackert T, Flavell RA, Gagliani N, Giannou AD, Huber S. IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol 2024; 80:634-644. [PMID: 38160941 PMCID: PMC10964083 DOI: 10.1016/j.jhep.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND & AIMS The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. METHODS To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. RESULTS We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. CONCLUSIONS Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. IMPACT AND IMPLICATIONS Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.
Collapse
Affiliation(s)
- Ahmad Mustafa Shiri
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitra E Zazara
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany; University Children's Hospital, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Antonella Fazio
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Siwen Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniele V F Tauriello
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Babett Steglich
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Mikołaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Imke Liebold
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Protozoa Immunology, Bernard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Leonie Brockmann
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Leonie Konczalla
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Lidia Bosurgi
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Protozoa Immunology, Bernard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Philipp Seeger
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Natalie Küsters
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Panagis M Lykoudis
- 3rd Department of Surgery, National & Kapodistrian University of Athens, Greece; Division of Surgery & Interventional Science, University College London (UCL), UK
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Petra C Arck
- University Children's Hospital, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Philipp Busch
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Rainer Grotelüschen
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nicola Gagliani
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
15
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
16
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
17
|
He Z, Xie H, Xu H, Wu J, Zeng W, He Q, Jobin C, Jin S, Lan P. Chemotherapy-induced microbiota exacerbates the toxicity of chemotherapy through the suppression of interleukin-10 from macrophages. Gut Microbes 2024; 16:2319511. [PMID: 38400752 PMCID: PMC10896127 DOI: 10.1080/19490976.2024.2319511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
The gut microbiota has been shown to influence the efficacy and toxicity of chemotherapy, thereby affecting treatment outcomes. Understanding the mechanism by which microbiota affects chemotherapeutic toxicity would have a profound impact on cancer management. In this study, we report that fecal microbiota transplantation from oxaliplatin-exposed mice promotes toxicity in recipient mice. Splenic RNA sequencing and macrophage depletion experiment showed that the microbiota-induced toxicity of oxaliplatin in mice was dependent on macrophages. Furthermore, oxaliplatin-mediated toxicity was exacerbated in Il10-/- mice, but not attenuated in Rag1-/- mice. Adoptive transfer of macrophage into Il10-/- mice confirmed the role of macrophage-derived IL-10 in the improvement of oxaliplatin-induced toxicity. Depletion of fecal Lactobacillus and Bifidobacterium was associated with the exacerbation of oxaliplatin-mediated toxicity, whereas supplementation with these probiotics alleviated chemotherapy-induced toxicity. Importantly, IL-10 administration and probiotics supplementation did not attenuate the antitumor efficacy of chemotherapy. Clinically, patients with colorectal cancer exposed to oxaliplatin exhibited downregulation of peripheral CD45+IL-10+ cells. Collectively, our findings indicate that microbiota-mediated IL-10 production influences tolerance to chemotherapy, and thus represents a potential clinical target.
Collapse
Affiliation(s)
- Zhen He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hongyu Xie
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Haoyang Xu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinjie Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Wanyi Zeng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangzhou, China
| | - Qilang He
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangzhou, China
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida, Florida, USA
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Sanqing Jin
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Kou L, Xie X, Chen X, Li B, Li J, Li Y. The progress of research on immune checkpoint inhibitor resistance and reversal strategies for hepatocellular carcinoma. Cancer Immunol Immunother 2023; 72:3953-3969. [PMID: 37917364 PMCID: PMC10992589 DOI: 10.1007/s00262-023-03568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in humans, which is prone to recurrence and metastasis and has a poor prognosis. The occurrence and progression of HCC are closely related to immune elimination, immune homeostasis, and immune escape of the immune system. In recent years, immunotherapy, represented by immune checkpoint inhibitors (ICIs), has shown powerful anti-tumor capabilities in HCC patients. However, there are still some HCC patients who cannot benefit from ICIs treatment due to their innate or acquired drug resistance. Therefore, it is of great practical significance to explore the possible mechanisms of resistance to ICIs in HCC and to use them as a target to design strategies to reverse resistance, to overcome drug resistance in HCC and to improve the prognosis of patients. This article summarizes the possible primary (tumor microenvironment alteration, and signaling pathways, etc.) and acquired (immune checkpoint upregulation) resistance mechanisms in patients with HCC treated with ICIs, and based on this, discusses the status and effectiveness of combination drug strategy to reverse drug resistance, to provide a reference for subsequent related studies and decisions.
Collapse
Affiliation(s)
- Liqiu Kou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaolu Xie
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiu Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
19
|
Shih LJ, Yang CC, Liao MT, Lu KC, Hu WC, Lin CP. An important call: Suggestion of using IL-10 as therapeutic agent for COVID-19 with ARDS and other complications. Virulence 2023; 14:2190650. [PMID: 36914565 PMCID: PMC10026935 DOI: 10.1080/21505594.2023.2190650] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has a detrimental impact on public health. COVID-19 usually manifests as pneumonia, which can progress into acute respiratory distress syndrome (ARDS) related to uncontrolled TH17 immune reaction. Currently, there is no effective therapeutic agent to manage COVID-19 with complications. The currently available anti-viral drug remdesivir has an effectiveness of 30% in SARS-CoV-2-induced severe complications. Thus, there is a need to identify effective agents to treat COVID-19 and the associated acute lung injury and other complications. The host immunological pathway against this virus typically involves the THαβ immune response. THαβ immunity is triggered by type 1 interferon and interleukin-27 (IL-27), and the main effector cells of the THαβ immune response are IL10-CD4 T cells, CD8 T cells, NK cells, and IgG1-producing B cells. In particular, IL-10 exerts a potent immunomodulatory or anti-inflammatory effect and is an anti-fibrotic agent for pulmonary fibrosis. Concurrently, IL-10 can ameliorate acute lung injury or ARDS, especially those caused by viruses. Owing to its anti-viral activity and anti-pro-inflammatory effects, in this review, IL-10 is suggested as a possible treatment agent for COVID-19.
Collapse
Affiliation(s)
- Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan
| | - Chun-Chun Yang
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- National Defense Medical Center, Department of Pediatrics, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chih-Pei Lin
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- h Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
20
|
Silva FS, Barros-Lima A, Souza-Barros M, Crespo-Neto JA, Santos VGR, Pereira DS, Alves-Hanna FS, Magalhães-Gama F, Faria JAQA, Costa AG. A dual-role for IL-10: From leukemogenesis to the tumor progression in acute lymphoblastic leukemia. Cytokine 2023; 171:156371. [PMID: 37725872 DOI: 10.1016/j.cyto.2023.156371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer in the world, and accounts for 25% of all childhood cancers among children under 15 years of age. Longitudinal studies have shown that children with ALL are born with a deregulated immune response that, together with postnatal environmental exposures, favor the onset of the disease. In this context, IL-10, a key cytokine in the regulation of the immune response, presents itself as a paradoxical mediator, initially influencing the development of ALL through the regulation of inflammatory processes and later on the progression of malignancy, with the increase of this molecule in the leukemia microenvironment. According to the literature, this cytokine plays a critical role in the natural history of the disease and plays an important role in two different though complex scenarios. Thus, in this review, we explore the dual role of IL-10 in ALL, and describe its biological characteristics, immunological mechanisms and genetics, as well as its impact on the leukemia microenvironment and its clinical implications.
Collapse
Affiliation(s)
- Flavio Souza Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Amanda Barros-Lima
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Mateus Souza-Barros
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Juniel Assis Crespo-Neto
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | | | - Daniele Sá Pereira
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Fabíola Silva Alves-Hanna
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Jerusa Araújo Quintão Arantes Faria
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil.
| |
Collapse
|
21
|
Salkeni MA, Naing A. Interleukin-10 in cancer immunotherapy: from bench to bedside. Trends Cancer 2023; 9:716-725. [PMID: 37321942 PMCID: PMC10524969 DOI: 10.1016/j.trecan.2023.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-10 was one of the first cytokines to be recognized. However, its functionality in promoting antitumor immunity was described more recently. Context- and concentration-dependent biological effects are the hallmarks of the pleiotropic role of IL-10. Despite reducing tumor-promoting inflammation, IL-10 may have a role in rejuvenating exhausted tumor-resident T cells. Contrary to the assumption that IL-10 produces an immunosuppressive tumor microenvironment (TME), it promotes activation of tumor-resident CD8+ T cells, which aids tumor rejection. Emerging data from published early-Phase trials have shown mixed results in different tumor types. In this review, we summarize the biological effects of IL-10 and highlight the clinical experience using pegilodecakin.
Collapse
Affiliation(s)
- Mohamad Adham Salkeni
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Hu Y, Liu S, Wang L, Liu Y, Zhang D, Zhao Y. Treatment-free survival after discontinuation of immune checkpoint inhibitors in mNSCLC: a systematic review and meta-analysis. Front Immunol 2023; 14:1202822. [PMID: 37520573 PMCID: PMC10373084 DOI: 10.3389/fimmu.2023.1202822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Background Recent research has suggested that patients with metastatic non-small cell lung cancer (mNSCLC) can achieve ongoing response after discontinuation of immune checkpoint inhibitor (ICI), but the best time to discontinue and the factors influencing efficacy remain unknown. Method A systematic search was performed for prospective clinical trials in patients with mNSCLC treated with ICIs published up to July 10, 2022. Eligible studies reported treatment-free survival (TFS) after discontinuation of ICI in partial objective responders. We calculated objective response rate (ORR) and TFS using random-effects models with respective 95% confidence intervals (Cis), and performed subgroup analyses to discuss the specific associations between ORR and TFS and the associated influencing factors. Results Across the 26 cohorts (3833 patients) included, the weighted mean ORR for all patients was 29.30% (95% CI 24.28% to 34.57%), with ICI plus chemotherapy (48.83%, 95% CI 44.36% to 53.30%) significantly higher than monotherapy (23.40%, 95% CI 18.53% to 28.62%). 395 patients were all patients who were complete or partial responders in the study, 194 discontinued ICI treatment, and nearly 35.5% achieved a durable response. No significant differences in TFS were found between subgroups according to the ICI regimen classification. Four cohorts of patients who completed 35 courses of treatment showed high levels of pooled TFS at 6 (80.18%, 95% CI 53.03% to 97.87%) and 12 months (66.98%, 95% CI 46.90% to 84.47%). Three cohorts of patients discontinued ICI treatment due to treatment-related adverse events (TRAEs) with the TFS rates at 6 (76.98%, 95% CI 65.79% to 86.65%) and 12 months (64.79%, 95% CI 50.20% to 78.19%). Conclusion Patients with mNSCLC were able to achieve ongoing responses after discontinuation of ICI. In conclusion, the results of this meta-analysis indicate that different treatment regimens, different drugs or different treatment durations may have an impact on TFS.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinlong Zhao
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Wang B, Han Y, Zhang Y, Zhao Q, Wang H, Wei J, Meng L, Xin Y, Jiang X. Overcoming acquired resistance to cancer immune checkpoint therapy: potential strategies based on molecular mechanisms. Cell Biosci 2023; 13:120. [PMID: 37386520 DOI: 10.1186/s13578-023-01073-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-1/PD-L1 to boost tumor-specific T lymphocyte immunity have opened up new avenues for the treatment of various histological types of malignancies, with the possibility of durable responses and improved survival. However, the development of acquired resistance to ICI therapy over time after an initial response remains a major obstacle in cancer therapeutics. The potential mechanisms of acquired resistance to ICI therapy are still ambiguous. In this review, we focused on the current understanding of the mechanisms of acquired resistance to ICIs, including the lack of neoantigens and effective antigen presentation, mutations of IFN-γ/JAK signaling, and activation of alternate inhibitory immune checkpoints, immunosuppressive tumor microenvironment, epigenetic modification, and dysbiosis of the gut microbiome. Further, based on these mechanisms, potential therapeutic strategies to reverse the resistance to ICIs, which could provide clinical benefits to cancer patients, are also briefly discussed.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yin Han
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Huanhuan Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
24
|
Guan Q, Han M, Guo Q, Yan F, Wang M, Ning Q, Xi D. Strategies to reinvigorate exhausted CD8 + T cells in tumor microenvironment. Front Immunol 2023; 14:1204363. [PMID: 37398660 PMCID: PMC10311918 DOI: 10.3389/fimmu.2023.1204363] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
CD8+ T cell exhaustion is a stable dysfunctional state driven by chronic antigen stimulation in the tumor microenvironment (TME). Differentiation of exhausted CD8+ T cells (CD8+ TEXs) is accompanied by extensive transcriptional, epigenetic and metabolic reprogramming. CD8+ TEXs are mainly characterized by impaired proliferative and cytotoxic capacity as well as the increased expression of multiple co-inhibitory receptors. Preclinical tumor studies and clinical cohorts have demonstrated that T cell exhaustion is firmly associated with poor clinical outcomes in a variety of cancers. More importantly, CD8+ TEXs are regarded as the main responder to immune checkpoint blockade (ICB). However, to date, a large number of cancer patients have failed to achieve durable responses after ICB. Therefore, improving CD8+ TEXs may be a breakthrough point to reverse the current dilemma of cancer immunotherapy and eliminate cancers. Strategies to reinvigorate CD8+ TEXs in TME mainly include ICB, transcription factor-based therapy, epigenetic therapy, metabolism-based therapy and cytokine therapy, which target on different aspects of exhaustion progression. Each of them has its advantages and application scope. In this review, we mainly focus on the major advances of current strategies to reinvigorate CD8+ TEXs in TME. We summarize their efficacy and mechanisms, identify the promising monotherapy and combined therapy and propose suggestions to enhance the treatment efficacy to significantly boost anti-tumor immunity and achieve better clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong Xi
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol 2023; 14:1161067. [PMID: 37359549 PMCID: PMC10287165 DOI: 10.3389/fimmu.2023.1161067] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in modulating inflammation and in maintaining cell homeostasis. It primarily acts as an anti-inflammatory cytokine, protecting the body from an uncontrolled immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway. On the other hand, IL-10 can also have immunostimulating functions under certain conditions. Given the pivotal role of IL-10 in immune modulation, this cytokine could have relevant implications in pathologies characterized by hyperinflammatory state, such as cancer, or infectious diseases as in the case of COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a predictor of severity and mortality for patients with acute or post-acute SARS-CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal, released by tissues undergoing damage in an attempt to protect the organism from harmful hyperinflammation. Pharmacological strategies aimed to potentiate or restore IL-10 immunomodulatory action may represent novel promising avenues to counteract cytokine storm arising from hyperinflammation and effectively mitigate severe complications. Natural bioactive compounds, derived from terrestrial or marine photosynthetic organisms and able to increase IL-10 expression, could represent a useful prevention strategy to curb inflammation through IL-10 elevation and will be discussed here. However, the multifaceted nature of IL-10 has to be taken into account in the attempts to modulate its levels.
Collapse
Affiliation(s)
- Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eslam Abdalalem
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Napoli, Italy
| | - Luana Calabrone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) European Institute of Oncology IEO-, Milan, Italy
| |
Collapse
|
26
|
Stanley R, Flanagan S, Reilly DO, Kearney E, Naidoo J, Dowling CM. Immunotherapy through the Lens of Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15112996. [PMID: 37296957 DOI: 10.3390/cancers15112996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Immunotherapy has revolutionised anti-cancer treatment in solid organ malignancies. Specifically, the discovery of CTLA-4 followed by PD-1 in the early 2000s led to the practice-changing clinical development of immune checkpoint inhibitors (ICI). Patients with lung cancer, including both small cell (SCLC) and non-small cell lung cancer (NSCLC), benefit from the most commonly used form of immunotherapy in immune checkpoint inhibitors (ICI), resulting in increased survival and quality of life. In NSCLC, the benefit of ICIs has now extended from advanced NSCLC to earlier stages of disease, resulting in durable benefits and the even the emergence of the word 'cure' in long term responders. However, not all patients respond to immunotherapy, and few patients achieve long-term survival. Patients may also develop immune-related toxicity, a small percentage of which is associated with significant mortality and morbidity. This review article highlights the various types of immunotherapeutic strategies, their modes of action, and the practice-changing clinical trials that have led to the widespread use of immunotherapy, with a focus on ICIs in NSCLC and the current challenges associated with advancing the field of immunotherapy.
Collapse
Affiliation(s)
- Robyn Stanley
- School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Saoirse Flanagan
- School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | | | - Ella Kearney
- School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jarushka Naidoo
- Beaumont Hospital, D09 V2N0 Dublin, Ireland
- Department of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Catríona M Dowling
- School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| |
Collapse
|
27
|
Desai A, Peters S. Immunotherapy-based combinations in metastatic NSCLC. Cancer Treat Rev 2023; 116:102545. [PMID: 37030062 DOI: 10.1016/j.ctrv.2023.102545] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Immuno-oncology has revolutionized the treatment of metastatic non-small cell lung cancer (mNSCLC) since the approval of immunotherapy by the U.S. FDA in 2015. Despite the advancements, outcomes for patients have room for further improvement. Combination therapies have shown promise in overcoming resistance and improving outcomes. This review focuses on current immunotherapy-based combination approaches, reported and ongoing trials, as well as novel combination strategies, challenges, and future directions for mNSCLC treatment. We summarize approaches in combination with chemotherapy, novel immune checkpoints, tyrosine kinase inhibitors and other strategies including vaccines, and radiation therapy. The promise of biomarker-driven studies to understand resistance and design multi-arm platform trials that evaluate novel therapies is becoming of increasing relevance with the ultimate goal of administering precision immunotherapy by identifying the right dose of the right combination for the right patient at the right time.
Collapse
|
28
|
Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F, Delort L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int J Mol Sci 2023; 24:4002. [PMID: 36835413 PMCID: PMC9964711 DOI: 10.3390/ijms24044002] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Several immune and immunocompetent cells, including dendritic cells, macrophages, adipocytes, natural killer cells, T cells, and B cells, are significantly correlated with the complex discipline of oncology. Cytotoxic innate and adaptive immune cells can block tumor proliferation, and others can prevent the immune system from rejecting malignant cells and provide a favorable environment for tumor progression. These cells communicate with the microenvironment through cytokines, a chemical messenger, in an endocrine, paracrine, or autocrine manner. These cytokines play an important role in health and disease, particularly in host immune responses to infection and inflammation. They include chemokines, interleukins (ILs), adipokines, interferons, colony-stimulating factors (CSFs), and tumor necrosis factor (TNF), which are produced by a wide range of cells, including immune cells, such as macrophages, B-cells, T-cells, and mast cells, as well as endothelial cells, fibroblasts, a variety of stromal cells, and some cancer cells. Cytokines play a crucial role in cancer and cancer-related inflammation, with direct and indirect effects on tumor antagonistic or tumor promoting functions. They have been extensively researched as immunostimulatory mediators to promote the generation, migration and recruitment of immune cells that contribute to an effective antitumor immune response or pro-tumor microenvironment. Thus, in many cancers such as breast cancer, cytokines including leptin, IL-1B, IL-6, IL-8, IL-23, IL-17, and IL-10 stimulate while others including IL-2, IL-12, and IFN-γ, inhibit cancer proliferation and/or invasion and enhance the body's anti-tumor defense. Indeed, the multifactorial functions of cytokines in tumorigenesis will advance our understanding of cytokine crosstalk pathways in the tumor microenvironment, such as JAK/STAT, PI3K, AKT, Rac, MAPK, NF-κB, JunB, cFos, and mTOR, which are involved in angiogenesis, cancer proliferation and metastasis. Accordingly, targeting and blocking tumor-promoting cytokines or activating and amplifying tumor-inhibiting cytokines are considered cancer-directed therapies. Here, we focus on the role of the inflammatory cytokine system in pro- and anti-tumor immune responses, discuss cytokine pathways involved in immune responses to cancer and some anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Rea Bingula
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
29
|
Cavallazzi Sebold B, Ni G, Li J, Li H, Liu X, Wang T. PEGylated IL-10: Clinical Development in Cancer Immunotherapy, Where to Go? Curr Oncol Rep 2023; 25:115-122. [PMID: 36585961 DOI: 10.1007/s11912-022-01355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 01/01/2023]
Abstract
PURPOSEOF REVIEW The purpose of this review is to discuss the current understanding of the pegilodecakin (PEGylated interleukin 10) and its role in the inhibition of tumour growth and metastasis. This review also focuses on clinical data published to date that have evaluated the efficacy and safety of pegilodecakin. RECENT FINDINGS Pegilodecakin has shown significant promise in preclinical models, notable for decreased tumour burden and fewer sites of metastatic disease across various malignancies. It has been most widely assessed in a phase I/Ib clinical trial against several solid tumours, leading to the phase II and III clinical trials containing pegilodecakin and its combination with other current treatments. However, the updated data have not shown higher efficacy in renal cell carcinoma, metastatic non-small cell lung cancer or pancreatic cancer, with respect to the controls, yet the adverse events presented more mixed results. Further investigation into combination therapies including pegilodecakin is ongoing. Pegilodecakin showed promise in preclinical and phase I clinical trials on its efficacy in several solid tumours, with expected regulation of IL-10 signalling pathway observed. However, the phase II and III trials did not justify its application as potential immunotherapy in selected cancers. Further evaluation of pegilodecakin's efficacy in other cancers, either as monotherapy or in combination with the current treatments, is worth investigating clinically, which warrants to better understand its potential clinical utility.
Collapse
Affiliation(s)
- Bernardo Cavallazzi Sebold
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.,School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Guoying Ni
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.,The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China.,Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Hejie Li
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China. .,Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia. .,School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
30
|
Tabolacci C, De Vita D, Facchiano A, Bozzuto G, Beninati S, Failla CM, Di Martile M, Lintas C, Mischiati C, Stringaro A, Del Bufalo D, Facchiano F. Phytochemicals as Immunomodulatory Agents in Melanoma. Int J Mol Sci 2023; 24:2657. [PMID: 36768978 PMCID: PMC9916941 DOI: 10.3390/ijms24032657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
31
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
George A, Varghese J, Padinharayil H. Potential of Biotechnology in Cancer Management. NOVEL TECHNOLOGIES IN BIOSYSTEMS, BIOMEDICAL & DRUG DELIVERY 2023:9-44. [DOI: 10.1007/978-981-99-5281-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Qiao M, Zhou F, Liu X, Jiang T, Wang H, Jia Y, Li X, Zhao C, Cheng L, Chen X, Ren S, Liu H, Zhou C. Interleukin-10 induces expression of CD39 on CD8+T cells to potentiate anti-PD1 efficacy in EGFR-mutated non-small cell lung cancer. J Immunother Cancer 2022; 10:jitc-2022-005436. [PMID: 36543373 PMCID: PMC9772697 DOI: 10.1136/jitc-2022-005436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Anti-PD-1(L1) therapies are less efficacious in patients with EGFR-mutated non-small-cell lung cancer. However, the underlying mechanism is poorly understood. METHODS The characteristics of T cells in EGFR-mutated and wild-type tumors were analyzed based on The Cancer Genome Atlas database and clinical samples. Plasma levels of 8 T-cell-related cytokines were evaluated and its association with immunotherapy efficacy were explored. Association between EGFR signaling pathway and IL-10 was examined through tumor cell lines and clinical tumor samples. In vitro restimulation model of human CD8+T cells isolated from peripheral blood was used to analyze the impact of IL-10 on T cells. Doxycycline-inducible transgenic EGFRL858R mouse models were used to investigate the efficacy of combining recombinant mouse IL-10 protein and PD-1 blockade and its underlying mechanism in vivo. RESULTS EGFR-mutated tumors showed a lack of CD8+T cell infiltration and impaired CD8+T cell cytotoxic function. The incompetent CD8+T cells in EGFR-mutated tumors were characterized as absence of CD39 expression, which defined hallmarks of cytotoxic and exhausted features and could not be reinvigorated by anti-PD-1(L1) treatment. Instead, CD39 expression defined functional states of CD8+T cells and was associated with the therapeutic response of anti-PD-1(L1) therapies. Mechanically, IL-10 upregulated CD39 expression and was limited in EGFR-mutated tumors. IL-10 induced hallmarks of CD8+T cells immunity in CD39-dependent manner. Using autochthonous EGFR L858R-driven lung cancer mouse models, combining recombinant mouse IL-10 protein and PD-1 blockade optimized antitumor effects in EGFR-mutated lung tumors. CONCLUSIONS Our study suggested that owing to low level of IL-10 to induce the expression of CD39 on CD8+T cells, fewer phenotypically cytotoxic and exhausted CD39+CD8+T cells in EGFR-mutated tumors could be potentially reinvigorated by anti-PD-1(L1) treatment. Hence, IL-10 could potentially serve as a cytokine-based strategy to enhance efficacy of anti-PD-1(L1) treatment in EGFR-mutated tumors.
Collapse
Affiliation(s)
- Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China,Department of Medical Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hongcheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Jahangir M, Yazdani O, Kahrizi MS, Soltanzadeh S, Javididashtbayaz H, Mivefroshan A, Ilkhani S, Esbati R. Clinical potential of PD-1/PD-L1 blockade therapy for renal cell carcinoma (RCC): a rapidly evolving strategy. Cancer Cell Int 2022; 22:401. [PMID: 36510217 PMCID: PMC9743549 DOI: 10.1186/s12935-022-02816-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy has become a game-changing therapeutic approach revolutionizing the treatment setting of human malignancies, such as renal cell carcinoma (RCC). Despite the remarkable clinical activity of anti-PD-1 or anti-PD-L1 monoclonal antibodies, only a small portion of patients exhibit a positive response to PD-1/PD-L1 blockade therapy, and the primary or acquired resistance might ultimately favor cancer development in patients with clinical responses. In light of this, recent reports have signified that the addition of other therapeutic modalities to PD-1/PD-L1 blockade therapy might improve clinical responses in advanced RCC patients. Until, combination therapy with PD-1/PD-L1 blockade therapy plus cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitor (ipilimumab) or various vascular endothelial growth factor receptors (VEGFRs) inhibitors axitinib, such as axitinib and cabozantinib, has been approved by the United States Food and Drug Administration (FDA) as first-line treatment for metastatic RCC. In the present review, we have focused on the therapeutic benefits of the PD-1/PD-L1 blockade therapy as a single agent or in combination with other conventional or innovative targeted therapies in RCC patients. We also offer a glimpse into the well-determined prognostic factor associated with the clinical response of RCC patients to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Mohammadsaleh Jahangir
- grid.411746.10000 0004 4911 7066Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeed Kahrizi
- grid.411705.60000 0001 0166 0922Department of Surgery, Alborz University of Medical Sciences, Karaj, Alborz Iran
| | - Sara Soltanzadeh
- grid.411705.60000 0001 0166 0922Department of Radiation Oncology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Javididashtbayaz
- grid.411768.d0000 0004 1756 1744Baran Oncology Clinic, Medical Faculty, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Azam Mivefroshan
- grid.412763.50000 0004 0442 8645Department of Adult Nephrology, Urmia University of Medical Sciences, Urmia, Iran
| | - Saba Ilkhani
- grid.411600.2Department of Surgery and Vascular Surgery, Shohada-ye-Tajrish Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Romina Esbati
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Yao C, Zhang T, Wu T, Brugarolas J. Facts and Hopes for Immunotherapy in Renal Cell Carcinoma. Clin Cancer Res 2022; 28:5013-5020. [PMID: 35819272 PMCID: PMC9835201 DOI: 10.1158/1078-0432.ccr-21-2372] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023]
Abstract
Immunotherapy has made a significant impact in many tumors, including renal cell carcinoma (RCC). RCC has been known to be immunoresponsive since the cytokine era of IFNα and IL2, but only a small number of patients had durable clinical benefit. Since then, discoveries of key tumor drivers, as well as an understanding of the contribution of angiogenesis and the tumor microenvironment (TME), has led to advances in drug development, ultimately transforming patient outcomes. Combinations of anti-angiogenic agents with immune checkpoint inhibitors are now standard of care. Current challenges include patient selection for immunotherapy combinations, resistance acquisition, and optimally sequencing therapies. Further discoveries about RCC biology, the TME, and resistance mechanisms will likely pave the way for the next generation of therapies.
Collapse
Affiliation(s)
- Chen Yao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tian Zhang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
36
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
37
|
Lee YH, Tsai KW, Lu KC, Shih LJ, Hu WC. Cancer as a Dysfunctional Immune Disorder: Pro-Tumor TH1-like Immune Response and Anti-Tumor THαβ Immune Response Based on the Complete Updated Framework of Host Immunological Pathways. Biomedicines 2022; 10:biomedicines10102497. [PMID: 36289759 PMCID: PMC9599225 DOI: 10.3390/biomedicines10102497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
Host immunological pathways are delicate to cope with different types of pathogens. In this article, we divide immunological pathways into two groups: Immunoglobulin G-related eradicable immunities and Immunoglobulin A-related tolerable immunities. Once immune cells encounter an antigen, they can become anergic or trigger immune reactions. Immunoglobulin D B cells and γδ T cells are recognizing self-antigens to become anergic. Immunoglobulin M B cells and αβ T cells can trigger host immune reactions. Eradicable immune responses can be divided into four groups: TH1/TH2/TH22/THαβ (TH—T Helper cell groups). Tolerable immune responses can be divided into four groups: TH1-like/TH9/TH17/TH3. Four groups mean hosts can cope with four types of pathogens. Cancer is related to immune dysfunction. TH1-like immunity is pro-tumor immunity and THαβ is anti-tumor immunity. TH1-like immunity is the host tolerable immunity against intracellular micro-organisms. THαβ immunity is the host eradicable immunity against viruses. Cancer is also related to clonal anergy by Immunoglobulin D B cells and γδ T cells. Oncolytic viruses are related to the activation of anti-viral THαβ immunity. M2 macrophages are related to the tolerable TH1-like immunity, and they are related to metastasis. This review is key to understanding the immune pathogenesis of cancer. We can then develop better therapeutic agents to treat cancer.
Collapse
Affiliation(s)
- Yi-Hsin Lee
- Department of Anatomic Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Kuo-Cheng Lu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan
| | - Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology & Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Correspondence: ; Tel.: +886-2-266289779 (ext. 67633)
| |
Collapse
|
38
|
McRitchie BR, Akkaya B. Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment. Front Immunol 2022; 13:940052. [PMID: 36248808 PMCID: PMC9562032 DOI: 10.3389/fimmu.2022.940052] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
The concept of cancer immunotherapy has gained immense momentum over the recent years. The advancements in checkpoint blockade have led to a notable progress in treating a plethora of cancer types. However, these approaches also appear to have stalled due to factors such as individuals' genetic make-up, resistant tumor sub-types and immune related adverse events (irAE). While the major focus of immunotherapies has largely been alleviating the cell-intrinsic defects of CD8+ T cells in the tumor microenvironment (TME), amending the relationship between tumor specific CD4+ T cells and CD8+ T cells has started driving attention as well. A major roadblock to improve the cross-talk between CD4+ T cells and CD8+ T cells is the immune suppressive action of tumor infiltrating T regulatory (Treg) cells. Despite their indispensable in protecting tissues against autoimmune threats, Tregs have also been under scrutiny for helping tumors thrive. This review addresses how Tregs establish themselves at the TME and suppress anti-tumor immunity. Particularly, we delve into factors that promote Treg migration into tumor tissue and discuss the unique cellular and humoral composition of TME that aids survival, differentiation and function of intratumoral Tregs. Furthermore, we summarize the potential suppression mechanisms used by intratumoral Tregs and discuss ways to target those to ultimately guide new immunotherapies.
Collapse
Affiliation(s)
- Bayley R. McRitchie
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Billur Akkaya
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
39
|
Rallis KS, Corrigan AE, Dadah H, Stanislovas J, Zamani P, Makker S, Szabados B, Sideris M. IL-10 in cancer: an essential thermostatic regulator between homeostatic immunity and inflammation - a comprehensive review. Future Oncol 2022; 18:3349-3365. [PMID: 36172856 DOI: 10.2217/fon-2022-0063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble proteins that mediate intercellular signaling regulating immune and inflammatory responses. Cytokine modulation represents a promising cancer immunotherapy approach for immune-mediated tumor regression. However, redundancy in cytokine signaling and cytokines' pleiotropy, narrow therapeutic window, systemic toxicity, short half-life and limited efficacy represent outstanding challenges for cytokine-based cancer immunotherapies. Recently, there has been interest in the paradoxical role of IL-10 in cancer, its controversial prognostic utility and novel strategies to enhance its therapeutic profile. Here, the authors review the literature surrounding the role of IL-10 within the tumor microenvironment, its prognostic correlates to cancer patient outcomes and its pro- and antitumor effects, and they assess the legitimacy of potential therapeutic strategies harnessing IL-10 by outlining the notable preclinical and clinical evidence to date.
Collapse
Affiliation(s)
- Kathrine S Rallis
- Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, E1 2AD, UK.,Barts Cancer Institute, Queen Mary University of London, London, EC1M 5PZ, UK
| | - Amber E Corrigan
- GKT School of Medicine, King's College London, London, SE1 9RT, UK
| | - Hashim Dadah
- GKT School of Medicine, King's College London, London, SE1 9RT, UK
| | - Justas Stanislovas
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 5PZ, UK
| | - Parisa Zamani
- GKT School of Medicine, King's College London, London, SE1 9RT, UK
| | - Shania Makker
- Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, E1 2AD, UK
| | - Bernadett Szabados
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 5PZ, UK
| | - Michail Sideris
- Women's Health Research Unit, Queen Mary University of London, London, E1 2AB, UK
| |
Collapse
|
40
|
Takenaka Y, Takemoto N, Otsuka T, Nishio M, Tanida M, Fujii T, Hayashi K, Suzuki M, Mori M, Yamamoto Y, Uno A, Inohara H. Predictive significance of body composition indices in patients with head and neck squamous cell carcinoma treated with nivolumab: A multicenter retrospective study. Oral Oncol 2022; 132:106018. [PMID: 35835055 DOI: 10.1016/j.oraloncology.2022.106018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The identification of predictive factors is imperative for identifying patients with optimal responses to nivolumab. We aimed to determine whether body composition parameters can predict treatment outcomes in patients with head and neck squamous cell carcinoma (HNSCC) treated with nivolumab. METHOD We performed a multicenter retrospective chart review of patients with recurrent and/or metastatic HNSCC treated with nivolumab between 2017 and 2020. Computed tomography images and anthropometric measures were used to determine the skeletal muscle index (SMI), subcutaneous adipose index, visceral adipose index (VAI), and body mass index. Objective response, overall survival (OS), progression-free survival (PFS), and severe immune-related adverse events (irAEs) were the main outcomes. Odds ratios (ORs) and hazard ratios (HRs) for low-index groups compared with high-index groups were calculated for these outcomes. RESULTS Our study comprised 114 patients with a median follow-up period of 23.1 months. Low SMI and low VAI were significantly associated with poor disease control [OR: 0.39, 95% confidence interval (CI): 0.15-0.97] and poor response (OR: 0.38, 95% CI: 0.15-0.94), respectively. Low SMI independently predicted poor OS (HR: 2.06, 95% CI: 1.16-3.67), poor PFS (HR: 1.74, 95% CI: 1.04-2.92), and increased incidence of irAEs (OR: 6.00, 95% CI: 1.04-34.61). Low VAI independently predicted poor PFS (HR 2.07, 95% CI: 1.15-3.73). CONCLUSION The SMI and VAI are predictive factors of nivolumab therapy in patients with HNSCC. Body composition indices should be assessed before nivolumab treatment for achieving optimal responses to nivolumab.
Collapse
Affiliation(s)
- Yukinori Takenaka
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan; Department of Otorhinolaryngology, Osaka Police Hospital, Japan.
| | - Norihiko Takemoto
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan
| | - Tomoyuki Otsuka
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan
| | - Minako Nishio
- Department of Medical Oncology, Osaka International Cancer Institute, Japan
| | - Masashi Tanida
- Department of Head and Neck Surgery, Osaka International Cancer Institute, Japan
| | - Takashi Fujii
- Department of Head and Neck Surgery, Osaka International Cancer Institute, Japan
| | - Kazuki Hayashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan
| | - Motoyuki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan
| | - Masashi Mori
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka General Medical Center, Japan
| | - Yoshifumi Yamamoto
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka General Medical Center, Japan
| | - Atsuhiko Uno
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka General Medical Center, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
41
|
Liu YF, Zhang ZC, Wang SY, Fu SQ, Cheng XF, Chen R, Sun T. Immune checkpoint inhibitor-based therapy for advanced clear cell renal cell carcinoma: A narrative review. Int Immunopharmacol 2022; 110:108900. [PMID: 35753122 DOI: 10.1016/j.intimp.2022.108900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
The prognosis for advanced clear cell renal cell carcinoma (ccRCC) is not satisfactory, even though its treatment has evolved rapidly over the past 20 years. Systemic ccRCC treatment options mainly involve antiangiogenic therapy, immune checkpoint blockade, or a combination of these therapies, and as more clinical evidence becomes available, immune checkpoint inhibitors (ICIs) are increasingly dominant. Conventional ICIs lead to the restoration of T-cell activation and a reduction in T-cell depletion by specifically blocking programmed cell death 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen 4 (CTLA-4), ultimately enhancing the antitumor immune response. There is no doubt that these therapies have achieved some clinical efficacy in the overall ccRCC population, but response rates and durability remain a great challenge. Therefore, novel immune checkpoints or new combination therapeutic strategies based on ICIs continue to be sought and developed. This review will provide a comprehensive overview of ICI-based therapeutic strategies in advanced ccRCC, including their mechanisms of action and the latest clinical evidence.
Collapse
Affiliation(s)
- Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Zhi-Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Si-Yuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Sheng-Qiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Xiao-Feng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China.
| |
Collapse
|
42
|
Zhao LP, Hu JH, Hu D, Wang HJ, Huang CG, Luo RH, Zhou ZH, Huang XY, Xie T, Lou JS. Hyperprogression, a challenge of PD-1/PD-L1 inhibitors treatments: potential mechanisms and coping strategies. Biomed Pharmacother 2022; 150:112949. [PMID: 35447545 DOI: 10.1016/j.biopha.2022.112949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy is now a mainstay in cancer treatments. Programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immune checkpoint inhibitor (ICI) therapies have opened up a new venue of advanced cancer immunotherapy. However, hyperprogressive disease (HPD) induced by PD-1/PD-L1 inhibitors caused a significant decrease in the overall survival (OS) of the patients, which compromise the efficacy of PD-1/PD-L1 inhibitors. Therefore, HPD has become an urgent issue to be addressed in the clinical uses of PD-1/PD-L1 inhibitors. The mechanisms of HPD remain unclear, and possible predictive factors of HPD are not well understood. In this review, we summarized the potential mechanisms of HPD and coping strategies that can effectively reduce the occurrence and development of HPD.
Collapse
Affiliation(s)
- Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chang-Gang Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ru-Hua Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
43
|
Di Trani CA, Cirella A, Arrizabalaga L, Fernandez-Sendin M, Bella A, Aranda F, Melero I, Berraondo P. Overcoming the limitations of cytokines to improve cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:107-141. [PMID: 35777862 DOI: 10.1016/bs.ircmb.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytokines are pleiotropic soluble proteins used by immune cells to orchestrate a coordinated response against pathogens and malignancies. In cancer immunotherapy, cytokine-based drugs can be developed potentiating pro-inflammatory cytokines or blocking immunosuppressive cytokines. However, the complexity of the mechanisms of action of cytokines requires the use of biotechnological strategies to minimize systemic toxicity, while potentiating the antitumor response. Sequence mutagenesis, fusion proteins and gene therapy strategies are employed to enhance the half-life in circulation, target the desired bioactivity to the tumor microenvironment, and to optimize the therapeutic window of cytokines. In this review, we provide an overview of the different strategies currently being pursued in pre-clinical and clinical studies to make the most of cytokines for cancer immunotherapy.
Collapse
Affiliation(s)
- Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Angela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
44
|
Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022; 623:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Adagen, an enzyme replacement treatment for adenosine deaminase deficiency, was the first protein-polymer conjugate to be approved in early 1990s. Post this regulatory approval, numerous polymeric drugs and polymeric nanoparticles have entered the market as advanced or next-generation polymer-based therapeutics, while many others have currently been tested clinically. The polymer conjugation to therapeutic moiety offers several advantages, like enhanced solubilization of drug, controlled release, reduced immunogenicity, and prolonged circulation. The present review intends to highlight considerations in the design of therapeutically effective polymer-drug conjugates (PDCs), including the choice of linker chemistry. The potential synthetic strategies to formulate PDCs have been discussed along with recent advancements in the different types of PDCs, i.e., polymer-small molecular weight drug conjugates, polymer-protein conjugates, and stimuli-responsive PDCs, which are under clinical/preclinical investigation. Current impediments and regulatory hurdles hindering the clinical translation of PDC into effective therapeutic regimens for the amelioration of disease conditions have been addressed.
Collapse
Affiliation(s)
- Ankit Javia
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Jigar Vanza
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Denish Bardoliwala
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India; Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Maharashtra-425405, Indi
| | - Mrunali Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Hetal Thakkar
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India.
| |
Collapse
|
45
|
Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol (Dordr) 2022; 45:333-353. [PMID: 35587857 DOI: 10.1007/s13402-022-00667-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.
Collapse
|
46
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
47
|
Starzer AM, Preusser M, Berghoff AS. Immune escape mechanisms and therapeutic approaches in cancer: the cancer-immunity cycle. Ther Adv Med Oncol 2022; 14:17588359221096219. [PMID: 35510032 PMCID: PMC9058458 DOI: 10.1177/17588359221096219] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
The introduction of immune checkpoint inhibitors has changed the therapeutic possibilities for various cancer types. However, despite the success in some entities, a significant fraction of patients does not respond to immune checkpoint inhibitors. A functioning cancer-immunity cycle is needed as the precondition for a clinically meaningful response to immune checkpoint inhibitors. It is assumed that only if each step of the cycle is activated and functioning properly, immune checkpoint inhibitors induce a meaningful immune response. However, an activated cancer-immunity cycle might not be present equally in each patient and cancer type. Ideally, treatment concepts should consider each single step of the cancer-immunity cycle and provide personalized treatment approaches, allowing the adaption to functioning and malfunctioning steps of the individual patient’s specific cancer-immunity cycle. In the following review, we provide an overview of the single steps of the cancer-immunity cycle as well as the impact of malfunctioning steps on the generation of an effective tumor-specific immune response.
Collapse
Affiliation(s)
- Angelika M. Starzer
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S. Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 2022; 19:237-253. [PMID: 34997230 DOI: 10.1038/s41571-021-00588-9] [Citation(s) in RCA: 522] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 12/14/2022]
Abstract
During the past 40 years, cytokines and cytokine receptors have been extensively investigated as either cancer targets or cancer treatments. A strong preclinical rationale supports therapeutic strategies to enhance the growth inhibitory and immunostimulatory effects of interferons and interleukins, including IL-2, IL-7, IL-12 and IL-15, or to inhibit the inflammatory and tumour-promoting actions of cytokines such as TNF, IL-1β and IL-6. This rationale is underscored by the discovery of altered and dysregulated cytokine expression in all human cancers. These findings prompted clinical trials of several cytokines or cytokine antagonists, revealing relevant biological activity but limited therapeutic efficacy. However, most trials involved patients with advanced-stage disease, which might not be the optimal setting for cytokine-based therapy. The advent of more effective immunotherapies and an increased understanding of the tumour microenvironment have presented new approaches to harnessing cytokine networks in the treatment of cancer, which include using cytokine-based therapies to enhance the activity or alleviate the immune-related toxicities of other treatments as well as to target early stage cancers. Many challenges remain, especially concerning delivery methods, context dependencies, and the pleiotropic, redundant and often conflicting actions of many cytokines. Herein, we discuss the lessons learnt from the initial trials of single-agent cytokine-based therapies and subsequent efforts to better exploit such agents for the treatment of solid tumours.
Collapse
Affiliation(s)
- David J Propper
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Frances R Balkwill
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
49
|
Dholakia J, Cohen AC, Leath CA, Evans ET, Alvarez RD, Thaker PH. Development of Delivery Systems for Local Administration of Cytokines/Cytokine Gene-Directed Therapeutics: Modern Oncologic Implications. Curr Oncol Rep 2022; 24:389-397. [PMID: 35141857 PMCID: PMC10466172 DOI: 10.1007/s11912-022-01221-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss modern cytokine delivery systems in oncologic care, focusing on modalities being developed in the clinical trials or currently in use. These include pegylation, immune-cytokine drug conjugates, cytokine-expressing plasmid nanoparticles, nonviral cytokine nanoparticles, viral systems, and AcTakines. RECENT FINDINGS Cytokine therapy has the potential to contribute to cancer treatment options by modulating the immune system towards an improved antitumor response and has shown promise both independently and in combination with other immunotherapy agents. Despite promising preliminary studies, systemic toxicities and challenges with administration have limited the impact of unmodified cytokine therapy. In the last decade, novel delivery systems have been developed to address these challenges and facilitate cytokine-based oncologic treatments. Novel delivery systems provide potential solutions to decrease dose-limiting side effects, facilitate administration, and increase the therapeutic activity of cytokine treatments in oncology care. The expanding clinical and translational research in these systems provides an opportunity to augment the armamentarium of immune oncology and may represent the next frontier of cytokine-based immuno-oncology.
Collapse
Affiliation(s)
- Jhalak Dholakia
- Department of Obstetrics & Gynecology, University of Alabama Division of Gynecologic Oncology, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA.
| | - Alexander C Cohen
- Department of Obstetrics & Gynecology, Washington University in St. Louis Division of Gynecologic Oncology, St. Louis, MO, USA
| | - Charles A Leath
- Department of Obstetrics & Gynecology, University of Alabama Division of Gynecologic Oncology, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA
| | - Elizabeth T Evans
- Department of Obstetrics & Gynecology, University of Alabama Division of Gynecologic Oncology, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA
| | - Ronald D Alvarez
- Department of Obstetrics & Gynecology, Vanderbilt University Division of Gynecologic Oncology, Nashville, TN, USA
| | - Premal H Thaker
- Department of Obstetrics & Gynecology, Washington University in St. Louis Division of Gynecologic Oncology, St. Louis, MO, USA
| |
Collapse
|
50
|
Mortezaee K, Majidpoor J. Checkpoint inhibitor/interleukin-based combination therapy of cancer. Cancer Med 2022; 11:2934-2943. [PMID: 35301813 PMCID: PMC9359865 DOI: 10.1002/cam4.4659] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Immunotherapy using immune checkpoint inhibitors (ICIs) is the current focus in cancer immunotherapy. However, issues are raised in the area, as the recent studies showed that such therapeutic modality suffers from low durability and low or no efficacy for patients with some tumor types including cases with non-inflamed or cold cancers. Therefore, efforts have been made to solve the issue using immune combination therapy, such as the use of immunocytokines. The combination of ICI with interleukins (ILs) and IL-targeting agents is now under consideration in the area of therapy, and the primary results are promising. PURPOSE The focus of this review is to discuss the possibility of using ILs and IL-targeting drugs in combination with ICI in cancer immunotherapy and describing recent advances in the field using PEGylated ILs and fusion proteins. The key focus in this area is to reduce adverse events and to increase the efficacy and durability of such combination therapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|