1
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Andrade CM, Carrasquilla M, Dabbas U, Briggs J, van Dijk H, Sergeev N, Sissoko A, Niangaly M, Ntalla C, LaVerriere E, Skinner J, Golob K, Richter J, Cisse H, Li S, Hendry JA, Asghar M, Doumtabe D, Farnert A, Ruppert T, Neafsey DE, Kayentao K, Doumbo S, Ongoiba A, Crompton PD, Traore B, Greenhouse B, Portugal S. Infection length and host environment influence on Plasmodium falciparum dry season reservoir. EMBO Mol Med 2024; 16:2349-2375. [PMID: 39284949 PMCID: PMC11473648 DOI: 10.1038/s44321-024-00127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 10/16/2024] Open
Abstract
Persistence of malaria parasites in asymptomatic hosts is crucial in areas of seasonally-interrupted transmission, where P. falciparum bridges wet seasons months apart. During the dry season, infected erythrocytes exhibit extended circulation with reduced cytoadherence, increasing the risk of splenic clearance of infected cells and hindering parasitaemia increase. However, what determines parasite persistence for long periods of time remains unknown. Here, we investigated whether seasonality affects plasma composition so that P. falciparum can detect and adjust to changing serological cues; or if alternatively, parasite infection length dictates clinical presentation and persistency. Data from Malian children exposed to alternating ~6-month wet and dry seasons show that plasma composition is unrelated to time of year in non-infected children, and that carrying P. falciparum only minimally affects plasma constitution in asymptomatic hosts. Parasites persisting in the blood of asymptomatic children from the dry into the ensuing wet season rarely if ever appeared to cause malaria in their hosts as seasons changed. In vitro culture in the presence of plasma collected in the dry or the wet seasons did not affect parasite development, replication or host-cell remodelling. The absence of a parasite-encoded sensing mechanism was further supported by the observation of similar features in P. falciparum persisting asymptomatically in the dry season and parasites in age- and sex-matched asymptomatic children in the wet season. Conversely, we show that P. falciparum clones transmitted early in the wet season had lower chance of surviving until the end of the following dry season, contrasting with a higher likelihood of survival of clones transmitted towards the end of the wet season, allowing for the re-initiation of transmission. We propose that the decreased virulence observed in persisting parasites during the dry season is not due to the parasites sensing ability, nor is it linked to a decreased capacity for parasite replication but rather a consequence decreased cytoadhesion associated with infection length.
Collapse
Affiliation(s)
- Carolina M Andrade
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | | | - Usama Dabbas
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jessica Briggs
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Hannah van Dijk
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nikolay Sergeev
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Awa Sissoko
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moussa Niangaly
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Emily LaVerriere
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Jeff Skinner
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Klara Golob
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeremy Richter
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hamidou Cisse
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Shanping Li
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Jason A Hendry
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm Sweden and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Biology, Lund University, Lund, Sweden
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Anna Farnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm Sweden and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bryan Greenhouse
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Silvia Portugal
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
3
|
González JEH, Salas-Sarduy E, Alvarez LH, Valiente PA, Arni RK, Pascutti PG. Three Decades of Targeting Falcipains to Develop Antiplasmodial Agents: What have we Learned and What can be Done Next? Curr Med Chem 2024; 31:2234-2263. [PMID: 37711130 DOI: 10.2174/0929867331666230913165219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Malaria is a devastating infectious disease that affects large swathes of human populations across the planet's tropical regions. It is caused by parasites of the genus Plasmodium, with Plasmodium falciparum being responsible for the most lethal form of the disease. During the intraerythrocytic stage in the human hosts, malaria parasites multiply and degrade hemoglobin (Hb) using a battery of proteases, which include two cysteine proteases, falcipains 2 and 3 (FP-2 and FP-3). Due to their role as major hemoglobinases, FP-2 and FP-3 have been targeted in studies aiming to discover new antimalarials and numerous inhibitors with activity against these enzymes, and parasites in culture have been identified. Nonetheless, cross-inhibition of human cysteine cathepsins remains a serious hurdle to overcome for these compounds to be used clinically. In this article, we have reviewed key functional and structural properties of FP-2/3 and described different compound series reported as inhibitors of these proteases during decades of active research in the field. Special attention is also paid to the wide range of computer-aided drug design (CADD) techniques successfully applied to discover new active compounds. Finally, we provide guidelines that, in our understanding, will help advance the rational discovery of new FP-2/3 inhibitors.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
- Department of Pharmaceutical Sciences, UZA II, University of Vienna, Vienna, 1090, Austria
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | | | - Pedro Alberto Valiente
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Matteucci KC, Correa AAS, Costa DL. Recent Advances in Host-Directed Therapies for Tuberculosis and Malaria. Front Cell Infect Microbiol 2022; 12:905278. [PMID: 35669122 PMCID: PMC9163498 DOI: 10.3389/fcimb.2022.905278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, and malaria, caused by parasites from the Plasmodium genus, are two of the major causes of death due to infectious diseases in the world. Both diseases are treatable with drugs that have microbicidal properties against each of the etiologic agents. However, problems related to treatment compliance by patients and emergence of drug resistant microorganisms have been a major problem for combating TB and malaria. This factor is further complicated by the absence of highly effective vaccines that can prevent the infection with either M. tuberculosis or Plasmodium. However, certain host biological processes have been found to play a role in the promotion of infection or in the pathogenesis of each disease. These processes can be targeted by host-directed therapies (HDTs), which can be administered in conjunction with the standard drug treatments for each pathogen, aiming to accelerate their elimination or to minimize detrimental side effects resulting from exacerbated inflammation. In this review we discuss potential new targets for the development of HDTs revealed by recent advances in the knowledge of host-pathogen interaction biology, and present an overview of strategies that have been tested in vivo, either in experimental models or in patients.
Collapse
Affiliation(s)
- Kely C. Matteucci
- Plataforma de Medicina Translacional Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André A. S. Correa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Diego L. Costa,
| |
Collapse
|
5
|
Arias CF, Acosta FJ, Fernandez-Arias C. Killing the competition: a theoretical framework for liver-stage malaria. Open Biol 2022; 12:210341. [PMID: 35350863 PMCID: PMC8965401 DOI: 10.1098/rsob.210341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The first stage of malaria infections takes place inside the host's hepatocytes. Remarkably, Plasmodium parasites do not infect hepatocytes immediately after reaching the liver. Instead, they migrate through several hepatocytes before infecting their definitive host cells, thus increasing their chances of immune destruction. Considering that malaria can proceed normally without cell traversal, this is indeed a puzzling behaviour. In fact, the role of hepatocyte traversal remains unknown to date, implying that the current understanding of malaria is incomplete. In this work, we hypothesize that the parasites traverse hepatocytes to actively trigger an immune response in the host. This behaviour would be part of a strategy of superinfection exclusion aimed to reduce intraspecific competition during the blood stage of the infection. Based on this hypothesis, we formulate a comprehensive theory of liver-stage malaria that integrates all the available knowledge about the infection. The interest of this new paradigm is not merely theoretical. It highlights major issues in the current empirical approach to the study of Plasmodium and suggests new strategies to fight malaria.
Collapse
Affiliation(s)
- Clemente F. Arias
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain,Grupo Interdisciplinar de Sistemas Complejos de Madrid, Spain
| | | | - Cristina Fernandez-Arias
- Departamento de Inmunología, Universidad Complutense de Madrid, Spain,Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| |
Collapse
|
6
|
Awasthi V, Gupta Y, Chauhan R, Kempaiah P, Das J. Growth inhibition of plasmodium falciparum by Nano-molar concentrations of 1-(4‑hydroxy-3-methoxyphenyl) decan-3-one (6-paradol); is a cure at hand? PHYTOMEDICINE PLUS 2022; 2:100208. [DOI: 10.1016/j.phyplu.2021.100208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
|
7
|
Haiyambo DH, Aleksenko L, Mumbengegwi D, Bock R, Uusiku P, Malleret B, Rénia L, Quaye IK. Children with Plasmodium vivax infection previously observed in Namibia, were Duffy negative and carried a c.136G > A mutation. BMC Infect Dis 2021; 21:856. [PMID: 34418990 PMCID: PMC8380386 DOI: 10.1186/s12879-021-06573-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background In a previous study, using a molecular approach, we reported the presence of P. vivax in Namibia. Here, we have extended our investigation to the Duffy antigen genetic profile of individuals of the same cohort with and without Plasmodium infections. Methods Participants with P. vivax (n = 3), P. falciparum (n = 23) mono-infections and co-infections of P. vivax/P. falciparum (n = 4), and P. falciparum/P. ovale (n = 3) were selected from seven regions. Participants with similar age but without any Plasmodium infections (n = 47) were also selected from all the regions. Duffy allelic profile was examined using standard PCR followed by sequencing of amplified products. Sequenced samples were also examined for the presence or absence of G125A mutation in codon 42, exon 2. Results All individuals tested carried the − 67 T > C mutation. However, while all P. vivax infected participants carried the c.G125A mutation, 7/28 P. falciparum infected participants and 9/41 of uninfected participants did not have the c.G125A mutation. The exon 2 region surrounding codon 42, had a c.136G > A mutation that was present in all P. vivax infections. The odds ratio for lack of this mutation with P. vivax infections was (OR 0.015, 95% CI 0.001–0.176; p = 0.001). Conclusion We conclude that P. vivax infections previously reported in Namibia, occurred in Duffy negative participants, carrying the G125A mutation in codon 42. The role of the additional mutation c.136 G > A in exon 2 in P. vivax infections, will require further investigations.
Collapse
Affiliation(s)
- Daniel Hosea Haiyambo
- Department of Biochemistry and Microbiology, University of Namibia School of Medicine, Windhoek, Namibia
| | - Larysa Aleksenko
- Department of Clinical Sciences, University of Lund, Lund, Sweden
| | - Davies Mumbengegwi
- Multidisciplinary Research Center, University of Namibia, Windhoek, Namibia
| | - Ronnie Bock
- Department of Biology, University of Namibia, Windhoek, Namibia
| | - Petrina Uusiku
- Ministry of Health and Social Services Department of Biology, National Vector Borne Disease Control Program, Windhoek, Namibia
| | - Benoit Malleret
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Laurent Rénia
- A*STAR ID Labs, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Isaac Kweku Quaye
- Faculty of Engineering, Computer and Applied Sciences, Regent University College of Science and Technology, Dansoman, P. O. Box DS 1636, Accra, Ghana.
| |
Collapse
|
8
|
Vijayan K, Wei L, Glennon EKK, Mattocks C, Bourgeois N, Staker B, Kaushansky A. Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chem Rev 2021; 121:10452-10468. [PMID: 34197083 DOI: 10.1021/acs.chemrev.1c00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terminal and benign diseases alike in adults, children, pregnant women, and others are successfully treated by pharmacological inhibitors that target human enzymes. Despite extensive global efforts to fight malaria, the disease continues to be a massive worldwide health burden, and new interventional strategies are needed. Current drugs and vector control strategies have contributed to the reduction in malaria deaths over the past 10 years, but progress toward eradication has waned in recent years. Resistance to antimalarial drugs is a substantial and growing problem. Moreover, targeting dormant forms of the malaria parasite Plasmodium vivax is only possible with two approved drugs, which are both contraindicated for individuals with glucose-6-phosphate dehydrogenase deficiency and in pregnant women. Plasmodium parasites are obligate intracellular parasites and thus have specific and absolute requirements of their hosts. Growing evidence has described these host necessities, paving the way for opportunities to pharmacologically target host factors to eliminate Plasmodium infection. Here, we describe progress in malaria research and adjacent fields and discuss key challenges that remain in implementing host-directed therapy against malaria.
Collapse
Affiliation(s)
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | | | - Christa Mattocks
- Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Natasha Bourgeois
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Bart Staker
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States.,Department of Pediatrics, University of Washington, Seattle, Washington 98105, United States.,Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Pedron CN, Silva AF, Torres MDT, Oliveira CSD, Andrade GP, Cerchiaro G, Pinhal MAS, de la Fuente-Nunez C, Oliveira Junior VX. Net charge tuning modulates the antiplasmodial and anticancer properties of peptides derived from scorpion venom. J Pept Sci 2021; 27:e3296. [PMID: 33442881 DOI: 10.1002/psc.3296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/06/2022]
Abstract
VmCT1, a linear helical antimicrobial peptide isolated from the venom of the scorpion Vaejovis mexicanus, displays broad spectrum antimicrobial activity against bacteria, fungi, and protozoa. Analogs derived from this peptide containing single Arg-substitutions have been shown to increase antimicrobial and antiparasitic activities against Trypanossoma cruzi. Here, we tested these analogs against malaria, an infectious disease caused by Plasmodium protozoa, and assessed their antitumoral properties. Specifically, we tested VmCT1 synthetic variants [Arg]3 -VmCT1-NH2 , [Arg]7 -VmCT1-NH2 , and [Arg]11 -VmCT1-NH2 , against Plasmodium gallinaceum sporozoites and MCF-7 mammary cancer cells. Our screen identified peptides [Arg]3 -VmCT1-NH2 and [Arg]7 -VmCT1-NH2 as potent antiplasmodial agents (IC50 of 0.57 and 0.51 μmol L-1 , respectively), whereas [Arg]11 -VmCT1-NH2 did not show activity against P. gallinaceum sporozoites. Interestingly, all peptides presented activity against MCF-7 and displayed lower cytotoxicity toward healthy cells. We demonstrate that increasing the net positive charge of VmCT1, through arginine substitutions, modulates the biological properties of this peptide family yielding novel antiplasmodial and antitumoral molecules.
Collapse
Affiliation(s)
- Cibele Nicolaski Pedron
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044020, Brazil
| | - Adriana Farias Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044020, Brazil
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, 19102, USA
| | | | - Gislaine Patricia Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil
| | - Giselle Cerchiaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil
| | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, 19102, USA
| | - Vani Xavier Oliveira Junior
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044020, Brazil
| |
Collapse
|
10
|
Plasmodium's journey through the Anopheles mosquito: A comprehensive review. Biochimie 2020; 181:176-190. [PMID: 33346039 DOI: 10.1016/j.biochi.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The malaria parasite has an extraordinary ability to evade the immune system due to which the development of a malaria vaccine is a challenging task. Extensive research on malarial infection in the human host particularly during the liver stage has resulted in the discovery of potential candidate vaccines including RTS,S/AS01 and R21. However, complete elimination of malaria would require a holistic multi-component approach. In line with this, under the World Health Organization's PATH Malaria Vaccine Initiative (MVI), the research focus has shifted towards the sexual stages of malaria in the mosquito host. Last two decades of scientific research obtained seminal information regarding the sexual/mosquito stages of the malaria. This updated and comprehensive review would provide the basis for consolidated understanding of cellular, biochemical, molecular and immunological aspects of parasite transmission right from the sexual stage commitment in the human host to the sporozoite delivery back into subsequent vertebrate host by the female Anopheles mosquito.
Collapse
|
11
|
Liang S, Zhu S, Zhao Q, Yu Y, Dong H, Wang Q, Wang H, Yu S, Huang B, Han H. Molecular characterization of 60S ribosomal protein L12 of E. tenella. Exp Parasitol 2020; 217:107963. [PMID: 32781092 DOI: 10.1016/j.exppara.2020.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
This study analyzed the large-subunit (60S) ribosomal protein L12 of Eimeria tenella (Et60s-RPL12). A full-length cDNA was cloned, and the recombinant protein was expressed in E. coli BL21 and inoculated in rabbits to produce the polyclonal antibody. Quantitative real-time polymerase chain reaction and western blotting were used to analyze the transcription levels of Et60s-RPL12 and translation levels in different developmental stages of E. tenella. The results showed that the mRNA transcription level of Et60s-RPL12 was highest in second-generation merozoites, whereas the translation level was highest in unsporulated oocysts. Indirect immunofluorescence showed that Et60s-RPL12 was localized to the anterior region and surface of sporozoites, except for the two refractile bodies. As the invasion of DF-1 cells progressed, fluorescence intensity was increased, and Et60s-RPL12 was localized to the parasitophorous vacuole membrane (PVM). The secretion assay results using staurosporine indicated that this protein was secreted, but not from micronemes. The role of Et60s-RPL12 in invasion was evaluated in vitro. The results of the invasion assay showed that polyclonal antibody inhibited host cell invasion by the parasite, which reached about 12%. However, the rate of invasion was not correlated with the concentration of IgG.
Collapse
Affiliation(s)
- Shanshan Liang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China; College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Yu Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China; College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Qingjie Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Shuilan Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China.
| |
Collapse
|
12
|
Wells MB, Andrew DJ. Anopheles Salivary Gland Architecture Shapes Plasmodium Sporozoite Availability for Transmission. mBio 2019; 10:e01238-19. [PMID: 31387905 PMCID: PMC6686039 DOI: 10.1128/mbio.01238-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Plasmodium sporozoites (SPZs) must traverse the mosquito salivary glands (SGs) to reach a new vertebrate host and continue the malaria disease cycle. Although SGs can harbor thousands of sporozoites, only 10 to 100 are deposited into a host during probing. To determine how the SGs might function as a bottleneck in SPZ transmission, we have characterized Anopheles stephensi SGs infected with the rodent malaria parasite Plasmodium berghei using immunofluorescence confocal microscopy. Our analyses corroborate findings from previous electron microscopy studies and provide new insights into the invasion process. We identified sites of SPZ accumulation within SGs across a range of infection intensities. Although SPZs were most often seen in the distal lateral SG lobes, they were also observed in the medial and proximal lateral lobes. Most parasites were associated with either the basement membrane or secretory cavities. SPZs accumulated at physical barriers, including fused salivary ducts and extensions of the chitinous salivary duct wall into the distal lumen. SPZs were observed only rarely within salivary ducts. SPZs appeared to contact each other in many different quantities, not just in the previously described large bundles. Within parasite bundles, all of the SPZs were oriented in the same direction. We found that moderate levels of infection did not necessarily correlate with major SG disruptions or abundant SG cell death. Altogether, our findings suggest that SG architecture largely acts as a barrier to SPZ transmission.IMPORTANCE Malaria continues to have a devastating impact on human health. With growing resistance to insecticides and antimalarial drugs, as well as climate change predictions indicating expansion of vector territories, the impact of malaria is likely to increase. Additional insights regarding pathogen migration through vector mosquitoes are needed to develop novel methods to prevent transmission to new hosts. Pathogens, including the microbes that cause malaria, must invade the salivary glands (SGs) for transmission. Since SG traversal is required for parasite transmission, SGs are ideal targets for transmission-blocking strategies. The work presented here highlights the role that mosquito SG architecture plays in limiting parasite traversal, revealing how the SG transmission bottleneck is imposed. Further, our data provide unprecedented detail about SG-sporozoite interactions and gland-to-gland variation not provided in previous studies.
Collapse
Affiliation(s)
- Michael B Wells
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
13
|
The transmission dynamics of a within-and between-hosts malaria model. ECOLOGICAL COMPLEXITY 2019. [DOI: 10.1016/j.ecocom.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Al-Khattaf FS, Tremp AZ, El-Houderi A, Dessens JT. The Plasmodium alveolin IMC1a is stabilised by its terminal cysteine motifs and facilitates sporozoite morphogenesis and infectivity in a dose-dependent manner. Mol Biochem Parasitol 2016; 211:48-56. [PMID: 27693349 PMCID: PMC5223771 DOI: 10.1016/j.molbiopara.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 01/17/2023]
Abstract
Apicomplexan parasites possess a unique cortical cytoskeleton structure composed of intermediate filaments. Its building blocks are provided by a conserved family of proteins named alveolins. The core alveolin structure is made up of tandem repeat sequences, thought to be responsible for the filamentous properties of these proteins. A subset of alveolins also possess conserved motifs composed of three closely spaced cysteine residues situated near the ends of the polypeptides. The roles of these cysteine motifs and their contribution to alveolin function remains poorly understood. The sporozoite-expressed IMC1a is unique within the Plasmodium alveolin family in having conserved cysteine motifs at both termini. Using transgenic Plasmodium berghei parasites, we show in this structure-function analysis that mutagenesis of the amino- or carboxy-terminal cysteine motif causes marked reductions in IMC1a protein levels in the parasite, which are accompanied by partial losses of sporozoite shape and infectivity. Our findings give new insight into alveolin function, identifying a dose-dependent effect of alveolin depletion on sporozoite size and infectivity, and vital roles of the terminal cysteine motifs in maintaining alveolin stability in the parasite.
Collapse
Affiliation(s)
- Fatimah S Al-Khattaf
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, Keppel street, London WC1E 7HT, United Kingdom
| | - Annie Z Tremp
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, Keppel street, London WC1E 7HT, United Kingdom
| | - Amira El-Houderi
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, Keppel street, London WC1E 7HT, United Kingdom
| | - Johannes T Dessens
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, Keppel street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
15
|
Immune protection-inducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine 2015; 33:7525-37. [DOI: 10.1016/j.vaccine.2015.09.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022]
|
16
|
Zhou C, Chen X, Zhang Q, Wang J, Wu MX. Laser mimicking mosquito bites for skin delivery of malaria sporozoite vaccines. J Control Release 2015; 204:30-7. [PMID: 25725360 DOI: 10.1016/j.jconrel.2015.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/27/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Immunization with radiation-attenuated sporozoites (RAS) via mosquito bites has been shown to induce sterile immunity against malaria in humans, but this route of vaccination is neither practical nor ethical. The importance of delivering RAS to the liver through circulation in eliciting immunity against this parasite has been recently verified by human studies showing that high-level protection was achieved only by intravenous (IV) administration of RAS, not by intradermal (ID) or subcutaneous (SC) vaccination. Here, we report in a murine model that ID inoculation of RAS into laser-illuminated skin confers immune protection against malarial infection almost as effectively as IV immunization. Brief illumination of the inoculation site with a low power 532 nm Nd:YAG laser enhanced the permeability of the capillary beneath the skin, owing to hemoglobin-specific absorbance of the light. The increased blood vessel permeability appeared to facilitate an association of RAS with blood vessel walls by an as-yet-unknown mechanism, ultimately promoting a 7-fold increase in RAS entering circulation and reaching the liver over ID administration. Accordingly, ID immunization of RAS at a laser-treated site stimulated much stronger sporozoite-specific antibody and CD8(+)IFN-γ(+) T cell responses than ID vaccination and provided nearly full protection against malarial infection, whereas ID immunization alone was ineffective. This novel, safe, and convenient strategy to augment efficacy of ID sporozoite-based vaccines warrants further investigation in large animals and in humans.
Collapse
Affiliation(s)
- Chang Zhou
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Xinyuan Chen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Qi Zhang
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Ji Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States; Affiliated faculty member of the Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02115, United States.
| |
Collapse
|
17
|
Bertolino P, Bowen DG. Malaria and the liver: immunological hide-and-seek or subversion of immunity from within? Front Microbiol 2015; 6:41. [PMID: 25741320 PMCID: PMC4332352 DOI: 10.3389/fmicb.2015.00041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/12/2015] [Indexed: 12/28/2022] Open
Abstract
During the pre-erythrocytic asymptomatic phase of malarial infection, sporozoites develop transiently inside less than 100 hepatocytes that subsequently release thousands of merozoites. Killing of these hepatocytes by cytotoxic T cells (CTLs) confers protection to subsequent malarial infection, suggesting that this bottleneck phase in the parasite life cycle can be targeted by vaccination. During natural transmission, although some CTLs are generated in the skin draining lymph nodes, they are unable to eliminate the parasite, suggesting that the liver is important for the sporozoite to escape immune surveillance. The contribution of the organ to this process is unclear. Based on the known ability of several hepatic antigen-presenting cells (APCs) to induce primary activation of CD8 T cells and tolerance, malarial antigens presented by both infected hepatocytes and/or hepatic cross-presenting APCs should result in tolerance. However, our latest model predicts that due to the low frequency of infected hepatocytes, some T cells recognizing sporozoite epitopes with high affinity should differentiate into CTLs. In this review, we discuss two possible models to explain why CTLs generated in the liver and skin draining lymph nodes are unable to eliminate the parasite: (1) sporozoites harness the tolerogenic property of the liver; (2) CTLs are not tolerized but fail to detect infected cells due to sparse infection of hepatocytes and the very short liver stage. We propose that while malaria sporozoites might use the ability of the liver to tolerize both naive and effector cells, they have also developed strategies to decrease the probability of encounter between CTLs and infected liver cells. Thus, we predict that to achieve protection, vaccination strategies should aim to boost intrahepatic activation and/or increase the chance of encounter between sporozoite-specific CTLs and infected hepatocytes.
Collapse
Affiliation(s)
- Patrick Bertolino
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital Sydney, NSW, Australia
| | - David G Bowen
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital Sydney, NSW, Australia
| |
Collapse
|
18
|
Plasmodium falciparum infection induces expression of a mosquito salivary protein (Agaphelin) that targets neutrophil function and inhibits thrombosis without impairing hemostasis. PLoS Pathog 2014; 10:e1004338. [PMID: 25211214 PMCID: PMC4161438 DOI: 10.1371/journal.ppat.1004338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/02/2014] [Indexed: 01/05/2023] Open
Abstract
Background Invasion of mosquito salivary glands (SGs) by Plasmodium falciparum sporozoites is an essential step in the malaria life cycle. How infection modulates gene expression, and affects hematophagy remains unclear. Principal Findings Using Affimetrix chip microarray, we found that at least 43 genes are differentially expressed in the glands of Plasmodium falciparum-infected Anopheles gambiae mosquitoes. Among the upregulated genes, one codes for Agaphelin, a 58-amino acid protein containing a single Kazal domain with a Leu in the P1 position. Agaphelin displays high homology to orthologs present in Aedes sp and Culex sp salivary glands, indicating an evolutionarily expanded family. Kinetics and surface plasmon resonance experiments determined that chemically synthesized Agaphelin behaves as a slow and tight inhibitor of neutrophil elastase (KD∼10 nM), but does not affect other enzymes, nor promotes vasodilation, or exhibit antimicrobial activity. TAXIscan chamber assay revealed that Agaphelin inhibits neutrophil chemotaxis toward fMLP, affecting several parameter associated with cell migration. In addition, Agaphelin reduces paw edema formation and accumulation of tissue myeloperoxidase triggered by injection of carrageenan in mice. Agaphelin also blocks elastase/cathepsin-mediated platelet aggregation, abrogates elastase-mediated cleavage of tissue factor pathway inhibitor, and attenuates neutrophil-induced coagulation. Notably, Agaphelin inhibits neutrophil extracellular traps (NETs) formation and prevents FeCl3-induced arterial thrombosis, without impairing hemostasis. Conclusions Blockade of neutrophil elastase emerges as a novel antihemostatic mechanism in hematophagy; it also supports the notion that neutrophils and the innate immune response are targets for antithrombotic therapy. In addition, Agaphelin is the first antihemostatic whose expression is induced by Plasmodium sp infection. These results suggest that an important interplay takes place in parasite-vector-host interactions. Malaria is transmitted by Plasmodium falciparum-infected Anopheles gambiae mosquitoes. Salivary gland contributes to the development of the parasite by creating a favorable environment for the infection and facilitating blood feeding and reproduction of the vector. However, the molecular mechanism by which the vector salivary gland modulates parasite/host interactions is not understood. We discovered that infection of the mosquito salivary gland upregulates several genes; among them, one codes for a protease inhibitor named Agaphelin. Notably, Agaphelin was found to exhibit multiple antihemostatic functions by targeting elastase. As a result, it inhibits platelet function which is required for blood to clot, and it prevents cleavage of TFPI, an anticoagulant that has recently been found to play a crucial role in thrombus formation in vivo. Agaphelin also attenuates neutrophils chemotaxis and the release of Neutrophil Extracellular Traps. These results provide evidence that neutrophils serve as a link between coagulation and the innate immune response. Agaphelin also exhibits anti-inflammatory and antithrombotic effects in vivo. Furthermore, Agaphelin did not promote bleeding, suggesting that targeting neutrophil exhibits potential therapeutic value. Altogether, these results highlight that the interplay between parasite, vector and host is a dynamic process that contributes and sustains the interface among Plasmodium, Anopheles and humans.
Collapse
|
19
|
Miura K, Jongert E, Deng B, Zhou L, Lusingu JP, Drakeley CJ, Fay MP, Long CA, Vekemans J. Effect of ingested human antibodies induced by RTS, S/AS01 malaria vaccination in children on Plasmodium falciparum oocyst formation and sporogony in mosquitoes. Malar J 2014; 13:263. [PMID: 25007730 PMCID: PMC4100490 DOI: 10.1186/1475-2875-13-263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/03/2014] [Indexed: 12/18/2022] Open
Abstract
Background The circumsporozoite protein (CS protein) on the malaria parasites in mosquitoes plays an important role in sporogony in mosquitoes. The RTS,S/AS01 malaria vaccine candidate, which has shown significant efficacy against clinical malaria in a large Phase 3 trial, targets the Plasmodium falciparum CS protein, but the ability of serum from vaccinated individuals to inhibit sporogony in mosquitoes has not been evaluated. Methods Previously a double-blind, randomized trial of RTS,S/AS01 vaccine, as compared with rabies vaccine, in five- to 17-month old children in Tanzania was conducted. In this study, polyclonal human antibodies were purified from the pools of sera taken one month after the third vaccination. IgGs were purified from four pools of sera from 25 RTS,S/AS01 vaccinated children each, and two pools of sera from 25 children vaccinated with rabies vaccine each. The ability of antibodies to inhibit P. falciparum oocyst formation and/or sporogony in the mosquito host was evaluated by a standard membrane-feeding assay. The test antibodies were fed on day 0 (at the same time as the gametocyte feed), or on days 3 or 6 (serial-feed experiments). The oocyst and sporozoite counts were performed on days 8 and 16, respectively. In addition, two human anti-CS monoclonal antibodies (mAb) and a control mAb were also evaluated. Results Polyclonal anti-CS IgG preparations from RTS,S-vaccinated children tested at concentrations of 149-210 ELISA units (EU)/ml did not show significant inhibition in oocyst and sporozoite formation when the antibodies were fed with gametocytes at the same time, or later (serial-feed experiments). Similarly, anti-CS mAbs tested at 6,421 or 7,122 EU/ml did not show reduction in oocyst and sporozoite formation. Conclusions This study does not support the concept that anti-CS antibodies induced by the RTS,S/AS01 vaccines in humans noticeably reduce malaria transmission by blocking P. falciparum sporozoite development or salivary gland invasion in mosquitoes when taken up during feeding.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
21
|
Marie A, Boissière A, Tsapi MT, Poinsignon A, Awono-Ambéné PH, Morlais I, Remoue F, Cornelie S. Evaluation of a real-time quantitative PCR to measure the wild Plasmodium falciparum infectivity rate in salivary glands of Anopheles gambiae. Malar J 2013; 12:224. [PMID: 23819831 PMCID: PMC3707787 DOI: 10.1186/1475-2875-12-224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/04/2013] [Indexed: 12/15/2022] Open
Abstract
Background Evaluation of malaria sporozoite rates in the salivary glands of Anopheles gambiae is essential for estimating the number of infective mosquitoes, and consequently, the entomological inoculation rate (EIR). EIR is a key indicator for evaluating the risk of malaria transmission. Although the enzyme-linked immunosorbent assay specific for detecting the circumsporozoite protein (CSP-ELISA) is routinely used in the field, it presents several limitations. A multiplex PCR can also be used to detect the four species of Plasmodium in salivary glands. The aim of this study was to evaluate the efficacy of a real-time quantitative PCR in detecting and quantifying wild Plasmodium falciparum in the salivary glands of An. gambiae. Methods Anopheles gambiae (n=364) were experimentally infected with blood from P. falciparum gametocyte carriers, and P. falciparum in the sporozoite stage were detected in salivary glands by using a real-time quantitative PCR (qPCR) assay. The sensitivity and specificity of this qPCR were compared with the multiplex PCR applied from the Padley method. CSP-ELISA was also performed on carcasses of the same mosquitoes. Results The prevalence of P. falciparum and the intensity of infection were evaluated using qPCR. This method had a limit of detection of six sporozoites per μL based on standard curves. The number of P. falciparum genomes in the salivary gland samples reached 9,262 parasites/μL (mean: 254.5; 95% CI: 163.5-345.6). The qPCR showed a similar sensitivity (100%) and a high specificity (60%) compared to the multiplex PCR. The agreement between the two methods was “substantial” (κ = 0.63, P <0.05). The number of P. falciparum-positive mosquitoes evaluated with the qPCR (76%), multiplex PCR (59%), and CSP-ELISA (83%) was significantly different (P <0.005). Conclusions The qPCR assay can be used to detect P. falciparum in salivary glands of An. gambiae. The qPCR is highly sensitive and is more specific than multiplex PCR, allowing an accurate measure of infective An. gambiae. The results also showed that the CSP-ELISA overestimates the sporozoite rate, detecting sporozoites in the haemolymph in addition to the salivary glands.
Collapse
Affiliation(s)
- Alexandra Marie
- Laboratoire MIVEGEC (UMR IRD 224 CNRS 5290 UM1-UM2), 911 Av, Agropolis, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Currà C, Di Luca M, Picci L, de Sousa Silva Gomes dos Santos C, Siden-Kiamos I, Pace T, Ponzi M. The ETRAMP family member SEP2 is expressed throughout Plasmodium berghei life cycle and is released during sporozoite gliding motility. PLoS One 2013; 8:e67238. [PMID: 23840634 PMCID: PMC3696012 DOI: 10.1371/journal.pone.0067238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/15/2013] [Indexed: 12/02/2022] Open
Abstract
The early transcribed membrane proteins ETRAMPs belong to a family of small, transmembrane molecules unique to Plasmodium parasite, which share a signal peptide followed by a short lysine-rich stretch, a transmembrane domain and a variable, highly charged C-terminal region. ETRAMPs are usually expressed in a stage-specific manner. In the blood stages they localize to the parasitophorous vacuole membrane and, in described cases, to vesicle-like structures exported to the host erythrocyte cytosol. Two family members of the rodent parasite Plasmodium berghei, uis3 and uis4, localize to secretory organelles of sporozoites and to the parasitophorous membrane vacuole of the liver stages. By the use of specific antibodies and the generation of transgenic lines, we showed that the P. berghei ETRAMP family member SEP2 is abundantly expressed in gametocytes as well as in mosquito and liver stages. In intracellular parasite stages, SEP2 is routed to the parasitophorous vacuole membrane while, in invasive ookinete and sporozoite stages, it localizes to the parasite surface. To date SEP2 is the only ETRAMP protein detected throughout the parasite life cycle. Furthermore, SEP2 is also released during gliding motility of salivary gland sporozoites. A limited number of proteins are known to be involved in this key function and the best characterized, the CSP and TRAP, are both promising transmission-blocking candidates. Our results suggest that ETRAMP members may be viewed as new potential candidates for malaria control.
Collapse
Affiliation(s)
- Chiara Currà
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Roma, Italy
| | - Marco Di Luca
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Roma, Italy
| | - Leonardo Picci
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Roma, Italy
| | | | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Tomasino Pace
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Roma, Italy
| | - Marta Ponzi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Roma, Italy
| |
Collapse
|
23
|
Sreenivasamurthy SK, Dey G, Ramu M, Kumar M, Gupta MK, Mohanty AK, Harsha HC, Sharma P, Kumar N, Pandey A, Kumar A, Prasad TSK. A compendium of molecules involved in vector-pathogen interactions pertaining to malaria. Malar J 2013; 12:216. [PMID: 23802619 PMCID: PMC3734095 DOI: 10.1186/1475-2875-12-216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023] Open
Abstract
Malaria is a vector-borne disease causing extensive morbidity, debility and mortality. Development of resistance to drugs among parasites and to conventional insecticides among vector-mosquitoes necessitates innovative measures to combat this disease. Identification of molecules involved in the maintenance of complex developmental cycles of the parasites within the vector and the host can provide attractive targets to intervene in the disease transmission. In the last decade, several efforts have been made in identifying such molecules involved in mosquito-parasite interactions and, subsequently, validating their role in the development of parasites within the vector. In this study, a list of mosquito proteins, which facilitate or inhibit the development of malaria parasites in the midgut, haemolymph and salivary glands of mosquitoes, is compiled. A total of 94 molecules have been reported and validated for their role in the development of malaria parasites inside the vector. This compendium of molecules will serve as a centralized resource to biomedical researchers investigating vector-pathogen interactions and malaria transmission.
Collapse
|
24
|
Aidoo E, Addai FK, Ahenkorah J, Hottor B, Bugyei KA, Gyan BA. Natural cocoa ingestion reduced liver damage in mice infected with Plasmodium berghei (NK65). Res Rep Trop Med 2012; 3:107-116. [PMID: 30890870 PMCID: PMC6065559 DOI: 10.2147/rrtm.s33149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE This study tested whether natural cocoa powder ingestion could mitigate hepatic injury coincident with murine malaria. Plasmodium berghei infection causes liver damage including hepatic sinusoidal distension, and elevated serum alanine transaminase (ALT) and aspartate transaminase (AST) levels. According to literature, these pathologies largely result from activity of reactive oxygen species (ROS) and may be extenuated by antioxidants. ANIMALS AND METHODS Thirty Balb/c mice were randomly assigned to three equal groups. One of two groups of mice inoculated with 0.2 mL of P. berghei-parasitized red blood cells (RBCs) was given unrestricted 24-hour access to a natural cocoa powder beverage (2% by weight) in place of water. The third group of mice were neither infected nor given cocoa. All mice were fed the same standard chow. After 6 days, mice were sacrificed and their livers processed for histomorphometric assessment of mean hepatic sinusoidal diameter as a quantitative measure of altered morphology. Serum ALT and AST were measured as a gauge of functional impairment. RESULTS Compared with uninfected mice, hepatic sinusoidal diameter in P. berghei-infected mice not given cocoa increased by 150%, whereas a smaller increase of 83% occurred in infected mice that ingested cocoa. Mean serum ALT increased by 127% in infected mice not given cocoa and 80% in infected mice that consumed cocoa, compared with the value for uninfected mice. Similarly, mean serum AST was raised by 141% in infected mice not given cocoa and 93% in infected mice that drank cocoa. CONCLUSION Distension of hepatic sinusoidal diameter in P. berghei-infected mice was reduced by 67%, whereas respective elevations of serum ALT and AST concentrations were reduced by 47% and 48% via ingestion of cocoa. Anti-inflammatory and antioxidant components of cocoa probably mediated the demonstrated hepatoprotective benefit by blunting pernicious ROS activity in P. berghei-infected mice.
Collapse
Affiliation(s)
| | | | | | | | - Kwasi A Bugyei
- Department of Pharmacology, University of Ghana Medical School, College of Health Sciences, Korle-Bu, Accra, Ghana
| | - Ben A Gyan
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
25
|
Montagna GN, Buscaglia CA, Münter S, Goosmann C, Frischknecht F, Brinkmann V, Matuschewski K. Critical role for heat shock protein 20 (HSP20) in migration of malarial sporozoites. J Biol Chem 2011; 287:2410-22. [PMID: 22139844 DOI: 10.1074/jbc.m111.302109] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Plasmodium sporozoites, single cell eukaryotic pathogens, use their own actin/myosin-based motor machinery for life cycle progression, which includes forward locomotion, penetration of cellular barriers, and invasion of target cells. To display fast gliding motility, the parasite uses a high turnover of actin polymerization and adhesion sites. Paradoxically, only a few classic actin regulatory proteins appear to be encoded in the Plasmodium genome. Small heat shock proteins have been associated with cytoskeleton modulation in various biological processes. In this study, we identify HSP20 as a novel player in Plasmodium motility and provide molecular genetics evidence for a critical role of a small heat shock protein in cell traction and motility. We demonstrate that HSP20 ablation profoundly affects sporozoite-substrate adhesion, which translates into aberrant speed and directionality in vitro. Loss of HSP20 function impairs migration in the host, an important sporozoite trait required to find a blood vessel and reach the liver after being deposited in the skin by the mosquito. Our study also shows that fast locomotion of sporozoites is crucial during natural malaria transmission.
Collapse
|
26
|
House BL, Hollingdale MR, Sacci JB, Richie TL. Functional immunoassays using an in-vitro malaria liver-stage infection model: where do we go from here? Trends Parasitol 2009; 25:525-33. [PMID: 19747878 DOI: 10.1016/j.pt.2009.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/26/2009] [Accepted: 08/07/2009] [Indexed: 01/23/2023]
Abstract
For more than 25 years, the ISI assay and ILSDA have been used to study the development of the malaria parasite in the liver, to discover and characterize sporozoite and liver-stage antigens, to support the development of malaria vaccine candidates, and to search for immunological correlates of protection in animals and in humans. Although both assays have been limited by low sporozoite invasion rates, significant biological variability, and the subjective nature of manually counting hepatocytes containing parasites as the read-out, they have nevertheless been useful tools for exploring parasite biology. This review describes the origin, application and current status of these assays, critically discusses the need for improvements, and explores the roles of these assays in supporting the development of an effective vaccine against Plasmodium falciparum malaria.
Collapse
Affiliation(s)
- Brent L House
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD 21737, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Comparison of the proteomes of malaria sporozoites at different stages and mutation of selected genes reveals proteins necessary for infection of the vertebrate host. The malaria parasite sporozoite proteome changes during maturation, revealing proteins specifically expressed in the stage that infects the human host.
Collapse
Affiliation(s)
- Marissa Vignali
- Malaria Program, Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
28
|
Distinct malaria parasite sporozoites reveal transcriptional changes that cause differential tissue infection competence in the mosquito vector and mammalian host. Mol Cell Biol 2008; 28:6196-207. [PMID: 18710954 DOI: 10.1128/mcb.00553-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The malaria parasite sporozoite transmission stage develops and differentiates within parasite oocysts on the Anopheles mosquito midgut. Successful inoculation of the parasite into a mammalian host is critically dependent on the sporozoite's ability to first infect the mosquito salivary glands. Remarkable changes in tissue infection competence are observed as the sporozoites transit from the midgut oocysts to the salivary glands. Our microarray analysis shows that compared to oocyst sporozoites, salivary gland sporozoites upregulate expression of at least 124 unique genes. Conversely, oocyst sporozoites show upregulation of at least 47 genes (upregulated in oocyst sporozoites [UOS genes]) before they infect the salivary glands. Targeted gene deletion of UOS3, encoding a putative transmembrane protein with a thrombospondin repeat that localizes to the sporozoite secretory organelles, rendered oocyst sporozoites unable to infect the mosquito salivary glands but maintained the parasites' liver infection competence. This phenotype demonstrates the significance of differential UOS expression. Thus, the UIS-UOS gene classification provides a framework to elucidate the infectivity and transmission success of Plasmodium sporozoites on a whole-genome scale. Genes identified herein might represent targets for vector-based transmission blocking strategies (UOS genes), as well as strategies that prevent mammalian host infection (UIS genes).
Collapse
|
29
|
Hepatocyte permissiveness to Plasmodium infection is conveyed by a short and structurally conserved region of the CD81 large extracellular domain. PLoS Pathog 2008; 4:e1000010. [PMID: 18389082 PMCID: PMC2279262 DOI: 10.1371/journal.ppat.1000010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 01/18/2008] [Indexed: 01/02/2023] Open
Abstract
Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a malaria infection, and thus represents an attractive target for anti-malarial interventions. Still, the molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that the tetraspanin CD81, a known receptor for the hepatitis C virus (HCV), is required on hepatocytes for infection by sporozoites of several Plasmodium species. Here we have characterized CD81 molecular determinants required for infection of hepatocytic cells by P. yoelii sporozoites. Using CD9/CD81 chimeras, we have identified in CD81 a 21 amino acid stretch located in a domain structurally conserved in the large extracellular loop of tetraspanins, which is sufficient in an otherwise CD9 background to confer susceptibility to P. yoelii infection. By site-directed mutagenesis, we have demonstrated the key role of a solvent-exposed region around residue D137 within this domain. A mAb that requires this region for optimal binding did not block infection, in contrast to other CD81 mAbs. This study has uncovered a new functionally important region of CD81, independent of HCV E2 envelope protein binding domain, and further suggests that CD81 may not interact directly with a parasite ligand during Plasmodium infection, but instead may regulate the function of a yet unknown partner protein. Minutes after the bite of a female mosquito, the malaria parasite Plasmodium enters the liver where it invades liver-specific cells called hepatocytes and undergoes one round of multiplication. This stage is a prerequisite to the blood stages of the life cycle which cause the malaria symptoms. The invasion of hepatocytes probably requires a series of interaction between the host cell and the parasite, but the exact mechanisms are still elusive. CD81, a protein of the tetraspanin superfamily, is the only hepatocyte surface protein that has been shown to be strictly required for the infection by the malaria parasite. We have here studied the regions of CD81 that are important for infection, by exchanging segments with the corresponding parts of a closely related molecule, or by mutating discrete residues. This study has uncovered a new functionally important region of CD81 and, by comparing the ability of several CD81 antibodies to block infection, has strengthened the hypothesis that CD81 might regulate the function of another molecule present at the hepatocyte surface during Plasmodium infection. The region of CD81 identified here is different from the region involved in the binding of the hepatitis C virus.
Collapse
|
30
|
Inhibition of collagen-induced platelet aggregation by anopheline antiplatelet protein, a saliva protein from a malaria vector mosquito. Blood 2007; 111:2007-14. [PMID: 18056842 DOI: 10.1182/blood-2007-06-097824] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During blood feeding, mosquitoes inject saliva containing a mixture of molecules that inactivate or inhibit various components of the hemostatic response to the bite injury as well as the inflammatory reactions produced by the bite, to facilitate the ingestion of blood. However, the molecular functions of the individual saliva components remain largely unknown. Here, we describe anopheline antiplatelet protein (AAPP) isolated from the saliva of Anopheles stephensi, a human malaria vector mosquito. AAPP exhibited a strong and specific inhibitory activity toward collagen-induced platelet aggregation. The inhibitory mechanism involves direct binding of AAPP to collagen, which blocks platelet adhesion to collagen and inhibits the subsequent increase in intracellular Ca(2+) concentration ([Ca(2+)]i). The binding of AAPP to collagen effectively blocked platelet adhesion via glycoprotein VI (GPVI) and integrin alpha(2)beta(1). Cell adhesion assay showed that AAPP inhibited the binding of GPVI to collagen type I and III without direct effect on GPVI. Moreover, intravenously administered recombinant AAPP strongly inhibited collagen-induced platelet aggregation ex vivo in rats. In summary, AAPP is a malaria vector mosquito-derived specific antagonist of receptors that mediate the adhesion of platelets to collagen. Our study may provide important insights for elucidating the effects of mosquito blood feeding against host hemostasis.
Collapse
|
31
|
Okulate MA, Kalume DE, Reddy R, Kristiansen T, Bhattacharyya M, Chaerkady R, Pandey A, Kumar N. Identification and molecular characterization of a novel protein Saglin as a target of monoclonal antibodies affecting salivary gland infectivity of Plasmodium sporozoites. INSECT MOLECULAR BIOLOGY 2007; 16:711-22. [PMID: 18093000 DOI: 10.1111/j.1365-2583.2007.00765.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Molecular mechanisms underlying the interaction between malarial sporozoites and putative receptor(s) on the salivary glands of Anopheles gambiae remain largely unknown. In previous studies, a salivary gland protein of ~100 kDa was identified as a putative target based on recognition of the protein by a monoclonal antibody (mAb) 2A3 that caused a >/= 70% reduction in the average number of sporozoites per infected salivary gland when fed to mosquitoes. Using affinity purification we purified the target of this mAb from extracts of female A. gambiae salivary glands and it was found to be a novel protein by tandem mass spectrometric analysis. Biochemical and molecular characterization of the 100 kDa protein showed that this molecule, designated Saglin, exists as a disulphide-bonded homodimer of 50 kDa subunits. The ability to form homodimers was retained even in the recombinant Saglin expressed in mammalian cells (HEK293). The amino acid sequence of Saglin contains a signal peptide suggesting that Saglin is a secreted protein. If Saglin is indeed involved in the process of invasion of A. gambiae salivary glands by sporozoites of Plasmodium, it could provide a novel target for future investigations aimed at interruption of malaria transmission.
Collapse
Affiliation(s)
- M A Okulate
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Garcia JE, Puentes A, Patarroyo ME. Developmental biology of sporozoite-host interactions in Plasmodium falciparum malaria: implications for vaccine design. Clin Microbiol Rev 2006; 19:686-707. [PMID: 17041140 PMCID: PMC1592691 DOI: 10.1128/cmr.00063-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum sporozoite infects different types of cells in a mosquito's salivary glands and human epithelial and Kuppfer cells and hepatocytes. These become differentiated later on, transforming themselves into the invasive red blood cell form, the merozoite. The ability of sporozoites to interact with different types of cells requires a wide variety of mechanisms allowing them to survive in both hosts: mobility, receptor-ligand interactions with different cellular receptors, and transformation and development into other invasive parasite forms, which are vitally important for parasite survival. Sporozoite complexity is reflected in the large quantity of proteins that can be expressed. Some of them have been extensively studied, such as CSP, TRAP, STARP, LSA-1, LSA-3, SALSA, SPECT1, SPECT2, MAEBL, and SPATR, due to their importance in infection and their potential use as vaccines. Our work has been focused on the search for the molecular mechanisms of parasite-host cellular receptor-ligand interactions by identifying amino acid sequences and the critical binding residues from these proteins relevant to parasite invasion. Once such sequences have been identified, it will be possible to modify them to induce a strong immune response against P. falciparum in the experimental Aotus monkey model. This all leads towards developing multistage, multicomponent, subunit-based vaccines that will be effective in eradicating or controlling malaria caused by P. falciparum.
Collapse
Affiliation(s)
- Javier E Garcia
- Fundacion Instituto de Immunología de Colombia, Carrera 50 #26-00, Bogotá, Colombia
| | | | | |
Collapse
|
33
|
Malkin E, Dubovsky F, Moree M. Progress towards the development of malaria vaccines. Trends Parasitol 2006; 22:292-5. [PMID: 16707275 DOI: 10.1016/j.pt.2006.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/06/2006] [Accepted: 05/03/2006] [Indexed: 11/22/2022]
Abstract
The misery and suffering caused worldwide by infection with the malaria parasite, especially Plasmodium falciparum, has been well documented. Although no licensed vaccine against malaria currently exists, progress has accelerated in recent years towards the goal of developing one. Although the complexity of the malaria parasite has made the malaria vaccine development process tenuous, advances in science and in the vaccine development process as well as increases in funding are encouraging. These advances, coupled with the results of the recent clinical trial of the vaccine candidate RTS,S, have added new vigor to the idea that a malaria vaccine is not only possible but probable.
Collapse
Affiliation(s)
- Elissa Malkin
- PATH Malaria Vaccine Initiative, 7500 Old Georgetown Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
34
|
Abstract
The clinical manifestations of Plasmodium falciparum malaria are directly linked to the blood stage of the parasite life cycle. At the blood stage, the circulating merozoites invade erythrocytes via a specific invasion pathway often identified with its dependence or independence on sialic acid residues of the host receptor. The invasion process involves multiple receptor-ligand interactions that mediate a complex series of events in a period of approximately 1 min. Although the mechanism by which merozoites invade erythrocytes is not fully understood, recent advances have put a new perspective on the importance of developing a multivalent blood stage-malaria vaccine. In this review, we highlight the role of currently identified host invasion receptors in blood-stage malaria.
Collapse
Affiliation(s)
- S S Oh
- Division of Cell Biology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, 736 Cambridge Street, Boston, MA 02135, USA
| | | |
Collapse
|
35
|
Bosch J, Turley S, Daly TM, Bogh SM, Villasmil ML, Roach C, Zhou N, Morrisey JM, Vaidya AB, Bergman LW, Hol WGJ. Structure of the MTIP-MyoA complex, a key component of the malaria parasite invasion motor. Proc Natl Acad Sci U S A 2006; 103:4852-7. [PMID: 16547135 PMCID: PMC1458759 DOI: 10.1073/pnas.0510907103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Indexed: 11/18/2022] Open
Abstract
The causative agents of malaria have developed a sophisticated machinery for entering multiple cell types in the human and insect hosts. In this machinery, a critical interaction occurs between the unusual myosin motor MyoA and the MyoA-tail Interacting Protein (MTIP). Here we present one crystal structure that shows three different conformations of Plasmodium MTIP, one of these in complex with the MyoA-tail, which reveal major conformational changes in the C-terminal domain of MTIP upon binding the MyoA-tail helix, thereby creating several hydrophobic pockets in MTIP that are the recipients of key hydrophobic side chains of MyoA. Because we also show that the MyoA helix is able to block parasite growth, this provides avenues for designing antimalarials.
Collapse
Affiliation(s)
- Jürgen Bosch
- Departments of *Biochemistry and Biological Structure and
- Structural Genomics of Pathogenic Protozoa (SGPP), and
| | - Stewart Turley
- Departments of *Biochemistry and Biological Structure and
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195; and
| | - Thomas M. Daly
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Stephen M. Bogh
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Michelle L. Villasmil
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Claudia Roach
- Departments of *Biochemistry and Biological Structure and
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195; and
| | - Na Zhou
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Lawrence W. Bergman
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Wim G. J. Hol
- Departments of *Biochemistry and Biological Structure and
- Structural Genomics of Pathogenic Protozoa (SGPP), and
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195; and
| |
Collapse
|
36
|
Londoño B, Arango E, Zapata C, Herrera S, Saez J, Blair S, Carmona-Fonseca J. Effect ofSolanum nudum Dunal (Solanaceae) steroids on hepatic trophozoites ofPlasmodium vivax. Phytother Res 2006; 20:267-73. [PMID: 16557608 DOI: 10.1002/ptr.1849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Steroids isolated from the plant Solanum nudum showed antiplasmodial activity against the blood stages of Plasmodium falciparum. It has been demonstrated that these steroids are neither mutagenic in vitro nor clastogenic in vivo. This study evaluated the effect of five steroids of S. nudum (SN-1, SN-2, SN-3, SN-4 and SN-5) on hepatic trophozoites of P. vivax, using an experimental design, non-balanced, with blind determination of the effect expressed as the percentage reduction of hepatic trophozoites. The sporozoites used to inoculate human hepatoma cells HepG2-A16 were obtained from gametocytemic blood of volunteers infected only with P. vivax, and passed into laboratory-reared Anopheles albimanus mosquitoes. Steroids were added at three different doses (100, 10 and 1 microg/mL) just after inoculation of the cells with sporozoites. The effect was determined by indirect immunofluorescence assays using the monoclonal antibodies Pv210 or Pv47E-2E10 and steroid cytotoxicity on HepG2-A16 cells was assessed by the MTT method. All the steroids reduced the number of hepatic P. vivax trophozoites, SN-2 and SN-4 reduced the number of hepatic trophozoites by 47% and 39% (p < 0.05), respectively.
Collapse
Affiliation(s)
- Berlin Londoño
- Grupo Malaria, Universidad de Antioquia, Medellín, Colombia
| | | | | | | | | | | | | |
Collapse
|
37
|
Brossier F, David Sibley L. Toxoplasma gondii: microneme protein MIC2. Int J Biochem Cell Biol 2005; 37:2266-72. [PMID: 16084754 DOI: 10.1016/j.biocel.2005.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 06/09/2005] [Indexed: 11/25/2022]
Abstract
The phylum Apicomplexa contains parasites responsible for a variety of diseases including malaria, cryptosporidiosis, and toxoplasmosis. One of the common features of these parasites is that they contain a set of apical organelles whose sequential secretion is required for the invasion of host cells. Microneme proteins are the main adhesins involved in the attachment to the host cell surface by apicomplexans. The microneme protein MIC2, produced by Toxoplasma gondii, is conserved in apicomplexans and serves as a model to understand the first steps of invasion by the phylum. New data about the structure-function relationship of MIC2 reinforce the critical role of this protein in the successful invasion of cells by Toxoplasma and reveal potential therapeutic targets that may be used to control toxoplasmosis.
Collapse
Affiliation(s)
- Fabien Brossier
- Washington University School of Medicine, Department of Microbiology, Campus Box 8230, Saint Louis, MO 63110-1093, USA
| | | |
Collapse
|
38
|
Blair PL, Carucci DJ. Functional proteome and expression analysis of sporozoites and hepatic stages of malaria development. Curr Top Microbiol Immunol 2005; 295:417-38. [PMID: 16265900 DOI: 10.1007/3-540-29088-5_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An evolution in modern malaria research occurred with the completion of the Plasmodium falciparum genome project and the onset and application of novel post-genomic technologies. Corresponding with these technological achievements are improvements in accessing and purifying parasite material from 'hard-to-reach' stages of malaria development. Characterization of gene and protein expression in the infectious sporozoite and subsequent liver-stage parasite development is critical to identify novel pre-erythrocytic drug and vaccine targets as well as to understand the basic biology of this deadly parasite. Both transcriptional and proteomic analyses on these stages and the remaining stages of development will assist in the 'credentialing process' of the complete malaria genome.
Collapse
Affiliation(s)
- P L Blair
- Biology Department, Earlham College, 801 National Road West, Richmond, IN 47374, USA.
| | | |
Collapse
|
39
|
Baton LA, Ranford-Cartwright LC. Spreading the seeds of million-murdering death**This title and some subheadings are taken from lines in Ronald Ross' poem In Exile, Reply – What Ails the Solitude, written on 21 August 1897, the day after he made his Nobel-Prize-winning discovery of parasite stages in the mosquito. ‘This day relenting God hath placed within my hand a wondrous thing; and God be praised. At His command, seeking His secret deeds with tears and toiling breath I find thy cunning seeds, O million-murdering Death. I know this little thing a myriad men will save. O Death, where is thy sting, thy victory, O Grave!’: metamorphoses of malaria in the mosquito. Trends Parasitol 2005; 21:573-80. [PMID: 16236552 DOI: 10.1016/j.pt.2005.09.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 08/15/2005] [Accepted: 09/29/2005] [Indexed: 11/15/2022]
Abstract
Plasmodium spp. undergo a complex obligate developmental cycle within their invertebrate vectors that enables transmission between vertebrate hosts. This developmental cycle involves sexual reproduction and then asexual multiplication, separated by phases of invasion and colonization of distinct vector tissues. As with other stages in the Plasmodium life cycle, there is exquisite adaptation of the malaria parasite to its changing environment as it transforms within the blood of its vertebrate host, through the different tissues of its mosquito vector and onwards to infect a new vertebrate host. Despite the intricacies inherent in these successive transformations, malaria parasites remain staggeringly successful at disseminating through their vertebrate host populations.
Collapse
Affiliation(s)
- Luke A Baton
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, UK, G12 8QQ.
| | | |
Collapse
|
40
|
Engelmann S, Sinnis P, Matuschewski K. Transgenic Plasmodium berghei sporozoites expressing beta-galactosidase for quantification of sporozoite transmission. Mol Biochem Parasitol 2005; 146:30-7. [PMID: 16316690 PMCID: PMC1853313 DOI: 10.1016/j.molbiopara.2005.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/12/2005] [Accepted: 10/19/2005] [Indexed: 11/20/2022]
Abstract
Malaria transmission occurs during a blood-meal of an infected Anopheles mosquito. Visualization and quantification of sporozoites along the journey from the mosquito midgut, where they develop, to the vertebrate liver, their final target organ, is important for understanding many aspects of sporozoite biology. Here we describe the generation of Plasmodium berghei parasites that express the reporter gene lacZ as a stable transgene, under the control of the sporozoite-specific CSP promoter. Transgenic sporozoites expressing beta-galactosidase can be simply visualized and quantified in an enzymatic assay. In addition, these sporozoites can be used to quantify sporozoites deposited in subcutaneous tissue during natural infection.
Collapse
Affiliation(s)
- Sabine Engelmann
- Department of Parasitology, Heidelberg University School of Medicine, INF 324, 69120 Heidelberg, Germany
| | - Photini Sinnis
- Department of Medical and Molecular Parasitology, New York University School of Medicine, 341 E. 25th St., New York, NY 10010, USA
- * Corresponding author. Tel.: +1 212 263 6818; fax: +1 212 263 8116
| | - Kai Matuschewski
- Department of Parasitology, Heidelberg University School of Medicine, INF 324, 69120 Heidelberg, Germany
- ** Corresponding author. Tel.: +49 6221 568284; fax: +49 6221 564643
| |
Collapse
|
41
|
Basso LA, da Silva LHP, Fett-Neto AG, de Azevedo WF, Moreira IDS, Palma MS, Calixto JB, Astolfi Filho S, dos Santos RR, Soares MBP, Santos DS. The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases: a review. Mem Inst Oswaldo Cruz 2005; 100:475-506. [PMID: 16302058 DOI: 10.1590/s0074-02762005000600001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Collapse
Affiliation(s)
- Luiz Augusto Basso
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arrighi RBG, Lycett G, Mahairaki V, Siden-Kiamos I, Louis C. Laminin and the malaria parasite's journey through the mosquito midgut. ACTA ACUST UNITED AC 2005; 208:2497-502. [PMID: 15961736 DOI: 10.1242/jeb.01664] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the invasion of the mosquito midgut epithelium, Plasmodium ookinetes come to rest on the basal lamina, where they transform into the sporozoite-producing oocysts. Laminin, one of the basal lamina's major components, has previously been shown to bind several surface proteins of Plasmodium ookinetes. Here, using the recently developed RNAi technique in mosquitoes, we used a specific dsRNA construct targeted against the LANB2 gene (laminin gamma1) of Anopheles gambiae to reduce its mRNA levels, leading to a substantial reduction in the number of successfully developed oocysts in the mosquito midgut. Moreover, this molecular relationship is corroborated by the intimate association of developing P. berghei parasites and laminin in the gut, as observed using confocal microscopy. Our data support the notion of laminin playing a functional role in the development of the malaria parasite within the mosquito midgut.
Collapse
Affiliation(s)
- Romanico B G Arrighi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Vassilika Vouton, PO Box 1527, 71110 Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
43
|
Aly ASI, Matuschewski K. A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. ACTA ACUST UNITED AC 2005; 202:225-30. [PMID: 16027235 PMCID: PMC2213010 DOI: 10.1084/jem.20050545] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Plasmodium life cycle is a sequence of alternating invasive and replicative stages within the vertebrate and invertebrate hosts. How malarial parasites exit their host cells after completion of reproduction remains largely unsolved. Inhibitor studies indicated a role of Plasmodium cysteine proteases in merozoite release from host erythrocytes. To validate a vital function of malarial cysteine proteases in active parasite egress, we searched for target genes that can be analyzed functionally by reverse genetics. Herein, we describe a complete arrest of Plasmodium sporozoite egress from Anopheles midgut oocysts by targeted disruption of a stage-specific cysteine protease. Our findings show that sporozoites exit oocysts by parasite-dependent proteolysis rather than by passive oocyst rupture resulting from parasite growth. We provide genetic proof that malarial cysteine proteases are necessary for egress of invasive stages from their intracellular compartment and propose that similar cysteine protease–dependent mechanisms occur during egress from liver-stage and blood-stage schizonts.
Collapse
Affiliation(s)
- Ahmed S I Aly
- Department of Parasitology, Heidelberg University School of Medicine, 69120 Heidelberg, Germany
| | | |
Collapse
|
44
|
Schüler H, Mueller AK, Matuschewski K. A Plasmodium actin-depolymerizing factor that binds exclusively to actin monomers. Mol Biol Cell 2005; 16:4013-23. [PMID: 15975905 PMCID: PMC1196315 DOI: 10.1091/mbc.e05-02-0086] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ADF/cofilins (AC) are essential F- and G-actin binding proteins that modulate microfilament turnover. The genome of Plasmodium falciparum, the parasite causing malaria, contains two members of the AC family. Interestingly, P. falciparum ADF1 lacks the F-actin binding residues of the AC consensus. Reverse genetics in the rodent malaria model system suggest that ADF1 performs vital functions during the pathogenic red blood cell stages, whereas ADF2 is not present in these stages. We show that recombinant PfADF1 interacts with monomeric actin but does not bind to actin polymers. Although other AC proteins inhibit nucleotide exchange on monomeric actin, the Plasmodium ortholog stimulates nucleotide exchange. Thus, PfADF1 differs in its biochemical properties from previously known AC proteins and seems to promote turnover exclusively by interaction with actin monomers. These findings provide important insights into the low cytosolic abundance and unique turnover characteristics of actin polymers in parasites of the phylum Apicomplexa.
Collapse
Affiliation(s)
- Herwig Schüler
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| | | | | |
Collapse
|
45
|
Labbé M, de Venevelles P, Girard-Misguich F, Bourdieu C, Guillaume A, Péry P. Eimeria tenella microneme protein EtMIC3: identification, localisation and role in host cell infection. Mol Biochem Parasitol 2005; 140:43-53. [PMID: 15694485 DOI: 10.1016/j.molbiopara.2004.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/26/2004] [Accepted: 12/08/2004] [Indexed: 11/26/2022]
Abstract
The gene coding for Eimeria tenella protein EtMIC3 was cloned by screening a sporozoite cDNA library with two independent monoclonal antibodies raised against the oocyst stage. The deduced sequence of EtMIC3 is 988 amino acids long. The protein presents seven repeats in tandem, with four highly conserved internal repeats and three more divergent external repeats. Each repeat is characterised by a tyrosine kinase phosphorylation site, WRCY, and a reminiscent motif of the thrombospondin1 (TSP1)-type I domain, CXXXCG. The protein EtMIC3 is localised at the apex of free parasite stages. It is not detected in the early intracellular parasite stage but is synthesised in mature schizonts. Secretion of the protein is induced when sporozoites are incubated in complete medium at 41 degrees C. Strangely enough, the two independent mAb that allow cloning of EtMIC3 interfere with parasitic growth in different ways. One is able to inhibit parasite invasion whereas the other inhibits development. Expression and localisation of the protein EtMIC3 are consistent with a protein involved in the invasion process as is expected for a microneme protein.
Collapse
Affiliation(s)
- M Labbé
- Laboratoire de Virologie et Immunologie Moléculaires INRA, 78352 Jouy-en-Josas, France.
| | | | | | | | | | | |
Collapse
|
46
|
Mueller AK, Camargo N, Kaiser K, Andorfer C, Frevert U, Matuschewski K, Kappe SHI. Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. Proc Natl Acad Sci U S A 2005; 102:3022-7. [PMID: 15699336 PMCID: PMC548321 DOI: 10.1073/pnas.0408442102] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites of mammals, including the species that cause malaria in humans, infect the liver first and develop there into clinically silent liver stages. Liver stages grow and ultimately produce thousands of first-generation merozoites, which initiate the erythrocytic cycles causing malaria pathology. Here, we present a Plasmodium protein with a critical function for complete liver stage development. UIS4 (up-regulated in infective sporozoites gene 4) is expressed exclusively in infective sporozoites and developing liver stages, where it localizes to the parasitophorous vacuole membrane. Targeted gene disruption of UIS4 in the rodent model malaria parasite Plasmodium berghei generated knockout parasites that progress through the malaria life cycle until after hepatocyte invasion but are severely impaired in further liver stage development. Immunization with UIS4 knockout sporozoites completely protects mice against subsequent infectious WT sporozoite challenge. Genetically attenuated liver stages may thus induce immune responses, which inhibit subsequent infection of the liver with WT parasites.
Collapse
Affiliation(s)
- Ann-Kristin Mueller
- Department of Parasitology, Heidelberg University School of Medicine, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The Molecular Approaches to Malaria 2004 meeting provided an opportunity to see the impressive progress in all research fields and in the four years since the previous Molecular Approaches to Malaria meeting, when much of the Plasmodium falciparum genome sequence was already available. Study of the part of the Plasmodium life cycle associated with transmission through the vector, which begins with the commitment of blood-stage forms to sexual development, has been especially fruitful. This success is a result of several reasons including: (i) the availability of the genome sequence; (ii) the availability of good animal models that allow parasite culture and facile in vivo studies of many of the life cycle stages involved in transmission; (iii) the availability of genetic manipulation technologies for the animal models of malaria, as well as P. falciparum; and (iv) the ability to study lethal gene knockouts at this stage of the life cycle.
Collapse
Affiliation(s)
- Shahid M Khan
- Department of Parasitology, Centre of Infectious Disease, Leiden University Medical Centre, Albinusdreef 1, 2333 ZA Leiden, The Netherlands
| | | |
Collapse
|
48
|
Mueller AK, Labaied M, Kappe SHI, Matuschewski K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 2004; 433:164-7. [PMID: 15580261 DOI: 10.1038/nature03188] [Citation(s) in RCA: 380] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2004] [Accepted: 11/16/2004] [Indexed: 11/09/2022]
Abstract
Malaria is a mosquito-borne disease that is transmitted by inoculation of the Plasmodium parasite sporozoite stage. Sporozoites invade hepatocytes, transform into liver stages, and subsequent liver-stage development ultimately results in release of pathogenic merozoites. Liver stages of the parasite are a prime target for malaria vaccines because they can be completely eliminated by sterilizing immune responses, thereby preventing malarial infection. Using expression profiling, we previously identified genes that are only expressed in the pre-erythrocytic stages of the parasite. Here, we show by reverse genetics that one identified gene, UIS3 (upregulated in infective sporozoites gene 3), is essential for early liver-stage development. uis3-deficient sporozoites infect hepatocytes but are unable to establish blood-stage infections in vivo, and thus do not lead to disease. Immunization with uis3-deficient sporozoites confers complete protection against infectious sporozoite challenge in a rodent malaria model. This protection is sustained and stage specific. Our findings demonstrate that a safe and effective, genetically attenuated whole-organism malaria vaccine is possible.
Collapse
Affiliation(s)
- Ann-Kristin Mueller
- Department of Parasitology, Heidelberg University School of Medicine, Heidelberg 69120, Germany
| | | | | | | |
Collapse
|
49
|
Tucker RP. The thrombospondin type 1 repeat superfamily. Int J Biochem Cell Biol 2004; 36:969-74. [PMID: 15094110 DOI: 10.1016/j.biocel.2003.12.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 12/09/2003] [Accepted: 12/10/2003] [Indexed: 11/22/2022]
Abstract
The TSR superfamily is a diverse family of extracellular matrix and transmembrane proteins, many of which have functions related to regulating matrix organization, cell-cell interactions and cell guidance. This review samples some of the contemporary literature regarding TSR superfamily members (e.g. F-spondin, UNC-5, ADAMTS, papilin, and TRAP) where specific functions are assigned to the TSR domains. Combining these observations with the published crystal structure of the TSRs of thrombospondin-1 may hold a key to the development of therapeutic agents for fighting parasitic infection and tumor growth.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California at Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
50
|
Abstract
Apicomplexan parasites have evolved an efficient mechanism to gain entry into non-phagocytic cells, hence challenging their hosts by the establishment of infection in immuno-privileged tissues. Gliding motility is a prerequisite for the invasive stage of most apicomplexans, allowing them to migrate across tissues, and actively invade and egress host cells. In the late 1960s, detailed morphological studies revealed that motile apicomplexans share an elaborate architecture comprising a subpellicular cytoskeleton and apical organelles. Since 1993, the development of technologies for transient and stable transfection have provided powerful tools with which to identify gene products associated with these structures and organelles, as well as to understand their functions. In combination with access to several parasite genomes, it is now possible to compare and contrast the strategies and molecular machines that have been selectively designed by distinct life stages within a species, or by different apicomplexan species, to optimize infection.
Collapse
Affiliation(s)
- Dominique Soldati
- Department of Microbiology and Molecular Medicine, C.M.U. Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland. dominique
| | | | | |
Collapse
|