1
|
Zhang H, Ouyang S, Qu Y, Li Z, Jiang Y, Peng T, Yang G, Chen T, Li B, Shen C, Zhao W. Humoral immune response characteristics of vulnerable populations against SARS-CoV-2 strains EG.5 and JN.1 after infection with strains BA.5 and XBB. Arch Virol 2025; 170:82. [PMID: 40100292 DOI: 10.1007/s00705-025-06248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/06/2024] [Indexed: 03/20/2025]
Abstract
In this study, we compared the humoral immune characteristics of children, elderly individuals, and pregnant women in Guangzhou, China, who had been infected with the SARS-CoV-2 strains BA.5 and XBB against the currently predominant strains EG.5 and JN.1. It was discovered that the neutralizing antibody titers in children, elderly individuals, and pregnant women against strains EG.5 and JN.1 were low in individuals who had been infected with strain BA.5, irrespective of their vaccination status. There was a significant positive correlation between the neutralization titers against JN.1 and EG.5 in both the acute and convalescent phases of BA.5 infection. For XBB-infected patients, the sera in the acute stage exhibited a low neutralizing titer against EG.5 and JN.1, whereas the convalescent sera demonstrated a significantly higher neutralizing titer against the two viruses, particularly in infected individuals who had been vaccinated. For XBB-infected patients, there was a strong positive correlation between the serum neutralizing antibody titers against EG.5 and JN.1 in both the acute and recovery phases. This finding provides crucial information for judging the epidemic trend of COVID-19 and the development of vaccines, especially for developing customized vaccines and immune strategies for different populations.
Collapse
Affiliation(s)
- Huan Zhang
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention CN, Guangzhou, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shi Ouyang
- Department of Infectious Diseases, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Yunyun Qu
- The Second Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, China
| | - Zhuolin Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Department of Infectious Diseases, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Tingting Peng
- Department of Infectious Diseases, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Guangyan Yang
- Jinan Central People's Hospital, Jinan, Shandong, China
| | - Tao Chen
- The Second Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, China.
| | - Baisheng Li
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention CN, Guangzhou, China.
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention CN, Guangzhou, China.
| |
Collapse
|
2
|
Angius F, Puxeddu S, Zaimi S, Canton S, Nematollahzadeh S, Pibiri A, Delogu I, Alvisi G, Moi ML, Manzin A. SARS-CoV-2 Evolution: Implications for Diagnosis, Treatment, Vaccine Effectiveness and Development. Vaccines (Basel) 2024; 13:17. [PMID: 39852796 PMCID: PMC11769326 DOI: 10.3390/vaccines13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
The COVID-19 pandemic, driven by the rapid evolution of the SARS-CoV-2 virus, presents ongoing challenges to global public health. SARS-CoV-2 is characterized by rapidly evolving mutations, especially in (but not limited to) the spike protein, complicating predictions about its evolutionary trajectory. These mutations have significantly affected transmissibility, immune evasion, and vaccine efficacy, leading to multiple pandemic waves with over half a billion cases and seven million deaths globally. Despite several strategies, from rapid vaccine development and administration to the design and availability of antivirals, including monoclonal antibodies, already having been employed, the persistent circulation of the virus and the emergence of new variants continue to result in high case numbers and fatalities. In the past four years, immense research efforts have contributed much to our understanding of the viral pathogenesis mechanism, the COVID-19 syndrome, and the host-microbe interactions, leading to the development of effective vaccines, diagnostic tools, and treatments. The focus of this review is to provide a comprehensive analysis of the functional impact of mutations on diagnosis, treatments, and vaccine effectiveness. We further discuss vaccine safety in pregnancy and the implications of hybrid immunity on long-term protection against infection, as well as the latest developments on a pan-coronavirus vaccine and nasal formulations, emphasizing the need for continued surveillance, research, and adaptive public health strategies in response to the ongoing SARS-CoV-2 evolution race.
Collapse
Affiliation(s)
- Fabrizio Angius
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Silvia Puxeddu
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Silvio Zaimi
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Serena Canton
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Sepehr Nematollahzadeh
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (S.N.); (G.A.)
| | - Andrea Pibiri
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Ilenia Delogu
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (S.N.); (G.A.)
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Aldo Manzin
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy (A.P.); (I.D.); (A.M.)
| |
Collapse
|
3
|
Stein SC, Hansen G, Ssebyatika G, Ströh LJ, Ochulor O, Herold E, Schwarzloh B, Mutschall D, Zischke J, Cordes AK, Schneider T, Hinrichs I, Blasczyk R, Kleine-Weber H, Hoffmann M, Klein F, Kaiser FK, Gonzalez-Hernandez M, Armando F, Ciurkiewicz M, Beythien G, Pöhlmann S, Baumgärtner W, Osterhaus A, Schulz TF, Krey T. A human monoclonal antibody neutralizing SARS-CoV-2 Omicron variants containing the L452R mutation. J Virol 2024; 98:e0122324. [PMID: 39494911 DOI: 10.1128/jvi.01223-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
The effectiveness of SARS-CoV-2 therapeutic antibodies targeting the spike (S) receptor-binding domain (RBD) has been hampered by the emergence of variants of concern (VOCs), which have acquired mutations to escape neutralizing antibodies (nAbs). These mutations are not evenly distributed on the RBD surface but cluster on several distinct surfaces, suggesting an influence of the targeted epitope on the capacity to neutralize a broad range of VOCs. Here, we identified a potent nAb from convalescent patients targeting the receptor-binding domain of a broad range of SARS-CoV-2 VOCs. Except for the Lambda and BA.2.86 variants, this nAb efficiently inhibited the entry of most tested VOCs, including Omicron subvariants BA.1, BA.2, XBB.1.5, and EG.5.1 and to a limited extent also BA.4/5, BA.4.6, and BQ.1.1. It bound recombinant S protein with picomolar affinity, reduced the viral load in the lung of infected hamsters, and prevented the severe lung pathology typical for SARS-CoV-2 infections. An X-ray structure of the nAb-RBD complex revealed an epitope that does not fall into any of the conventional classes and provided insights into its broad neutralization properties. Our findings highlight a conserved epitope within the SARS-CoV-2 RBD that should be preferably targeted by therapeutic antibodies and inform rational vaccine development.IMPORTANCETherapeutic antibodies are effective in preventing severe disease from SARS-CoV-2 infection and constitute an important option in pandemic preparedness, but mutations within the S protein of virus variants (e.g., a mutation of L452) confer resistance to many of such antibodies. Here, we identify a human antibody targeting the S protein receptor-binding domain (RBD) with an elevated escape barrier and characterize its interaction with the RBD functionally and structurally at the atomic level. A direct comparison with reported antibodies targeting the same epitope illustrates important differences in the interface, providing insights into the breadth of antibody binding. These findings highlight the relevance of an extended neutralization profiling in combination with biochemical and structural characterization of the antibody-RBD interaction for the selection of future therapeutic antibodies, which may accelerate the control of potential future pandemics.
Collapse
Affiliation(s)
- Saskia C Stein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Guido Hansen
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - George Ssebyatika
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Britta Schwarzloh
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Doris Mutschall
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Jasmin Zischke
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Cologne, Germany
| | - Anne K Cordes
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Talia Schneider
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Imke Hinrichs
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Hannah Kleine-Weber
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Franziska K Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mariana Gonzalez-Hernandez
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Stefan Pöhlmann
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- Global Virus Network, Center of Excellence, University of Veterinary Medicine, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hannover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| |
Collapse
|
4
|
Luo M, Zhou R, Tang B, Liu H, Chen B, Liu N, Mo Y, Zhang P, Lee YL, Ip JD, Wing-Ho Chu A, Chan WM, Man HO, Chen Y, To KKW, Yuen KY, Dang S, Chen Z. Ultrapotent class I neutralizing antibodies post Omicron breakthrough infection overcome broad SARS-CoV-2 escape variants. EBioMedicine 2024; 108:105354. [PMID: 39341153 PMCID: PMC11470419 DOI: 10.1016/j.ebiom.2024.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The spread of emerging SARS-CoV-2 immune escape sublineages, especially JN.1 and KP.2, has resulted in new waves of COVID-19 globally. The evolving memory B cell responses elicited by the parental Omicron variants to subvariants with substantial antigenic drift remain incompletely investigated. METHODS Using the single B cell antibody cloning technology, we isolated single memory B cells, delineated the B cell receptor repertoire and conducted the pseudovirus-based assay for recovered neutralizing antibodies (NAb) screening. We analyzed the cryo-EM structures of top broadly NAbs (bnAbs) and evaluated their in vivo efficacy (golden Syrian hamster model). FINDINGS By investigating the evolution of human B cell immunity, we discovered a new panel of bnAbs arising from vaccinees after Omicron BA.2/BA.5 breakthrough infections. Two lead bnAbs neutralized major Omicron subvariants including JN.1 and KP.2 with IC50 values less than 10 ng/mL, representing ultrapotent receptor binding domain (RBD)-specific class I bnAbs. They belonged to the IGHV3-53/3-66 clonotypes instead of evolving from the pre-existing vaccine-induced IGHV1-58/IGKV3-20 bnAb ZCB11. Despite sequence diversity, they targeted previously unrecognized, highly conserved conformational epitopes in the receptor binding motif (RBM) for ultrapotent ACE2 blockade. The lead bnAb ZCP3B4 not only protected the lungs of hamsters intranasally challenged with BA.5.2, BQ.1.1 and XBB.1.5 but also prevented their contact transmission. INTERPRETATION Our findings demonstrated that class I bnAbs have evolved an ultrapotent mode of action protecting against highly transmissible and broad Omicron escape variants, and their epitopes are potential targets for novel bnAbs and vaccine development. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Mengxiao Luo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Bingjie Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Hang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Bohao Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yufei Mo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Pengfei Zhang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Ye Lim Lee
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jonathan Daniel Ip
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Allen Wing-Ho Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Wan-Mui Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Hiu-On Man
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yuting Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China; HKUST-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, People's Republic of China.
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
5
|
Tsujino S, Deguchi S, Nomai T, Padilla-Blanco M, Plianchaisuk A, Wang L, Begum MM, Uriu K, Mizuma K, Nao N, Kojima I, Tsubo T, Li J, Matsumura Y, Nagao M, Oda Y, Tsuda M, Anraku Y, Kita S, Yajima H, Sasaki-Tabata K, Guo Z, Hinay AA, Yoshimatsu K, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Nasser H, Jonathan M, Putri O, Kim Y, Chen L, Suzuki R, Tamura T, Maenaka K, Irie T, Matsuno K, Tanaka S, Ito J, Ikeda T, Takayama K, Zahradnik J, Hashiguchi T, Fukuhara T, Sato K. Virological characteristics of the SARS-CoV-2 Omicron EG.5.1 variant. Microbiol Immunol 2024; 68:305-330. [PMID: 38961765 DOI: 10.1111/1348-0421.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.
Collapse
Affiliation(s)
- Shuhei Tsujino
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tomo Nomai
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Miguel Padilla-Blanco
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU (UCH-CEU), CEU Universities, Valencia, Spain
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Mst Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keita Mizuma
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Isshu Kojima
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tomoya Tsubo
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Jingshu Li
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kaori Sasaki-Tabata
- Department of Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ziyi Guo
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Alfredo A Hinay
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael Jonathan
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Olivia Putri
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences (i3L), Jakarta, Indonesia
| | - Yoonjin Kim
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Life Sciences, Faculty of Natural Science, Imperial College London, London, UK
| | - Luo Chen
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Irie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Jiri Zahradnik
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Yamamoto S, Matsuda K, Maeda K, Mizoue T, Horii K, Okudera K, Tan T, Oshiro Y, Inamura N, Nemoto T, S Takeuchi J, Konishi M, Sugiyama H, Aoyanagi N, Sugiura W, Ohmagari N. Protection of Omicron Bivalent Vaccine, Previous Infection, and Their Induced Neutralizing Antibodies Against Symptomatic Infection With Omicron XBB.1.16 and EG.5.1. Open Forum Infect Dis 2024; 11:ofae519. [PMID: 39319092 PMCID: PMC11420683 DOI: 10.1093/ofid/ofae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background Data are limited on the protective role of the Omicron BA bivalent vaccine, previous infection, and their induced neutralizing antibodies against Omicron XBB.1.16 and EG.5.1 infection. Methods We conducted a nested case-control analysis among tertiary hospital staff in Tokyo who had received ≥3 doses of COVID-19 vaccines and donated blood samples in June 2023 (1 month before the Omicron XBB.1.16 and EG.5.1 wave). We identified 206 symptomatic cases between June and September 2023 and selected their controls with 1:1 propensity score matching. We examined the association of vaccination, previous infection, and preinfection live virus neutralizing antibody titers against Omicron XBB.1.16 and EG.5.1 with the risk of COVID-19 infection. Results Previous infection during the Omicron BA- or XBB-dominant phase was associated with a significantly lower infection risk during the XBB.1.16 and EG.5.1-dominant phase than infection-naive status, with 70% and 100% protection, respectively, whereas Omicron BA bivalent vaccination showed no association. Preinfection neutralizing titers against XBB.1.16 and EG.5.1 were 39% (95% CI, 8%-60%) and 28% (95% CI, 8%-44%) lower in cases than matched controls. Neutralizing activity against XBB.1.16 and EG.5.1 was somewhat detectable in the sera of individuals with previous infection but barely detectable in those who were infection naive and received the Omicron bivalent vaccine. Conclusions In the era when the Omicron XBB vaccine was unavailable, the Omicron BA bivalent vaccine did not confer the neutralizing activity and protection against Omicron XBB.1.16 and EG.5.1 symptomatic infection. The previous infection afforded neutralizing titers and protection against symptomatic infection with these variants.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
- Department of Refractory Viral Infection, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kumi Horii
- Infection Control Office, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Kaori Okudera
- Infection Control Office, Kohnodai Hospital of the National Center for the Global Health and Medicine, Chiba, Japan
| | - Tomofumi Tan
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Yusuke Oshiro
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Natsumi Inamura
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Takashi Nemoto
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Junko S Takeuchi
- Department of Academic-Industrial Partnerships Promotion, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maki Konishi
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Haruhito Sugiyama
- Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Nobuyoshi Aoyanagi
- Kohnodai Hospital of the National Center for the Global Health and Medicine, Chiba, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Jiang XL, Song XD, Shi C, Yang GJ, Wang XJ, Zhang YW, Wu J, Zhao LX, Zhang MZ, Wang MM, Chen RR, He XJ, Dai EH, Gao HX, Shen Y, Dong G, Wang YL, Ma MJ. Variant-specific antibody response following repeated SARS-CoV-2 vaccination and infection. Cell Rep 2024; 43:114387. [PMID: 38896777 DOI: 10.1016/j.celrep.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.
Collapse
Affiliation(s)
- Xiao-Lin Jiang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan 250014, China
| | - Xue-Dong Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan 056001, China; Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China
| | - Chao Shi
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Guo-Jian Yang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan 250012, China
| | - Xue-Jun Wang
- Bioinformatics Center of Academy of Military Medical Science, Beijing 100850, China
| | - Yu-Wei Zhang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan 250014, China
| | - Jie Wu
- Department of Infectious Disease Control and Prevention, Binzhou Center for Disease Control and Prevention, Binzhou 256613, China
| | - Lian-Xiang Zhao
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ming-Ming Wang
- Bioinformatics Center of Academy of Military Medical Science, Beijing 100850, China
| | - Rui-Rui Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xue-Juan He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Er-Hei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China
| | - Hui-Xia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China
| | - Yuan Shen
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China.
| | - Gang Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yu-Ling Wang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China.
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan 250012, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Zhang L, Dopfer-Jablonka A, Cossmann A, Stankov MV, Graichen L, Moldenhauer AS, Fichter C, Aggarwal A, Turville SG, Behrens GM, Pöhlmann S, Hoffmann M. Rapid spread of the SARS-CoV-2 JN.1 lineage is associated with increased neutralization evasion. iScience 2024; 27:109904. [PMID: 38812550 PMCID: PMC11134884 DOI: 10.1016/j.isci.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
In July/August 2023, the highly mutated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) BA.2.86 lineage emerged and its descendant JN.1 is on track to become the dominant SARS-CoV-2 lineage globally. Compared to the spike (S) protein of the parental BA.2.86 lineage, the JN.1 S protein contains one mutation, L455S, which may affect receptor binding and antibody evasion. Here, we performed a virological assessment of the JN.1 lineage employing pseudovirus particles bearing diverse SARS-CoV-2 S proteins. Using this strategy, it was found that S protein mutation L455S confers increased neutralization resistance but reduces ACE2 binding capacity and S protein-driven cell entry efficiency. Altogether, these data suggest that the benefit of increased antibody evasion outweighs the reduced ACE2 binding capacity and further enabled the JN.1 lineage to effectively spread in the human population.
Collapse
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Anne Cossmann
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Metodi V. Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Christina Fichter
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Stuart G. Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Georg M.N. Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Center for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell 2024; 15:403-418. [PMID: 38442025 PMCID: PMC11131022 DOI: 10.1093/procel/pwae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Intensive selection pressure constrains the evolutionary trajectory of SARS-CoV-2 genomes and results in various novel variants with distinct mutation profiles. Point mutations, particularly those within the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein, lead to the functional alteration in both receptor engagement and monoclonal antibody (mAb) recognition. Here, we review the data of the RBD point mutations possessed by major SARS-CoV-2 variants and discuss their individual effects on ACE2 affinity and immune evasion. Many single amino acid substitutions within RBD epitopes crucial for the antibody evasion capacity may conversely weaken ACE2 binding affinity. However, this weakened effect could be largely compensated by specific epistatic mutations, such as N501Y, thus maintaining the overall ACE2 affinity for the spike protein of all major variants. The predominant direction of SARS-CoV-2 evolution lies neither in promoting ACE2 affinity nor evading mAb neutralization but in maintaining a delicate balance between these two dimensions. Together, this review interprets how RBD mutations efficiently resist antibody neutralization and meanwhile how the affinity between ACE2 and spike protein is maintained, emphasizing the significance of comprehensive assessment of spike mutations.
Collapse
Affiliation(s)
- Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
He Q, An Y, Zhou X, Xie H, Tao L, Li D, Zheng A, Li L, Xu Z, Yu S, Wang R, Hu H, Liu K, Wang Q, Dai L, Xu K, Gao GF. Neutralization of EG.5, EG.5.1, BA.2.86, and JN.1 by antisera from dimeric receptor-binding domain subunit vaccines and 41 human monoclonal antibodies. MED 2024; 5:401-413.e4. [PMID: 38574739 DOI: 10.1016/j.medj.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The recently circulating Omicron variants BA.2.86 and JN.1 were identified with more than 30 amino acid changes on the spike protein compared to BA.2 or XBB.1.5. This study aimed to comprehensively assess the immune escape potential of BA.2.86, JN.1, EG.5, and EG.5.1. METHODS We collected human and murine sera to evaluate serological neutralization activities. The participants received three doses of coronavirus disease 2019 (COVID-19) vaccines or a booster dose of the ZF2022-A vaccine (Delta-BA.5 receptor-binding domain [RBD]-heterodimer immunogen) or experienced a breakthrough infection (BTI). The ZF2202-A vaccine is under clinical trial study (ClinicalTrials.gov: NCT05850507). BALB/c mice were vaccinated with a panel of severe acute respiratory syndrome coronavirus 2 RBD-dimer proteins. The antibody evasion properties of these variants were analyzed with 41 representative human monoclonal antibodies targeting the eight RBD epitopes. FINDINGS We found that BA.2.86 had less neutralization evasion than EG.5 and EG.5.1 in humans. The ZF2202-A booster induced significantly higher neutralizing titers than BTI. Furthermore, BA.2.86 and JN.1 exhibited stronger antibody evasion than EG.5 and EG.5.1 on RBD-4 and RBD-5 epitopes. Compared to BA.2.86, JN.1 further lost the ability to bind to several RBD-1 monoclonal antibodies and displayed further immune escape. CONCLUSIONS Our data showed that the currently dominating sub-variant, JN.1, showed increased immune evasion compared to BA.2.86 and EG.5.1, which is highly concerning. This study provides a timely risk assessment of the interested sub-variants and the basis for updating COVID-19 vaccines. FUNDING This work was funded by the National Key R&D Program of China, the National Natural Science Foundation of China, the Beijing Life Science Academy, the Bill & Melinda Gates Foundation, and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF).
Collapse
MESH Headings
- Humans
- Animals
- Antibodies, Monoclonal/immunology
- SARS-CoV-2/immunology
- Mice
- Mice, Inbred BALB C
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- COVID-19/prevention & control
- COVID-19/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Female
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Betacoronavirus/immunology
- Male
- Immune Sera/immunology
- Adult
- Immune Evasion
- Neutralization Tests
- Epitopes/immunology
Collapse
Affiliation(s)
- Qingwen He
- Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yaling An
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xuemei Zhou
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Haitang Xie
- Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Lifeng Tao
- Anhui Zhifei Longcom Biopharmaceutical Co., Ltd., Hefei, Anhui Province, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Anqi Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Linjie Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shufan Yu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ruyue Wang
- Anhui Zhifei Longcom Biopharmaceutical Co., Ltd., Hefei, Anhui Province, China
| | - Hua Hu
- Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences (CAS), Beijing, China.
| | - George F Gao
- Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences (CAS), Beijing, China; D. H. Chen School of Universal Health and School of Public Health, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Di H, Pusch EA, Jones J, Kovacs NA, Hassell N, Sheth M, Lynn KS, Keller MW, Wilson MM, Keong LM, Cui D, Park SH, Chau R, Lacek KA, Liddell JD, Kirby MK, Yang G, Johnson M, Thor S, Zanders N, Feng C, Surie D, DeCuir J, Lester SN, Atherton L, Hicks H, Tamin A, Harcourt JL, Coughlin MM, Self WH, Rhoads JP, Gibbs KW, Hager DN, Shapiro NI, Exline MC, Lauring AS, Rambo-Martin B, Paden CR, Kondor RJ, Lee JS, Barnes JR, Thornburg NJ, Zhou B, Wentworth DE, Davis CT. Antigenic Characterization of Circulating and Emerging SARS-CoV-2 Variants in the U.S. throughout the Delta to Omicron Waves. Vaccines (Basel) 2024; 12:505. [PMID: 38793756 PMCID: PMC11125585 DOI: 10.3390/vaccines12050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into numerous lineages with unique spike mutations and caused multiple epidemics domestically and globally. Although COVID-19 vaccines are available, new variants with the capacity for immune evasion continue to emerge. To understand and characterize the evolution of circulating SARS-CoV-2 variants in the U.S., the Centers for Disease Control and Prevention (CDC) initiated the National SARS-CoV-2 Strain Surveillance (NS3) program and has received thousands of SARS-CoV-2 clinical specimens from across the nation as part of a genotype to phenotype characterization process. Focus reduction neutralization with various antisera was used to antigenically characterize 143 SARS-CoV-2 Delta, Mu and Omicron subvariants from selected clinical specimens received between May 2021 and February 2023, representing a total of 59 unique spike protein sequences. BA.4/5 subvariants BU.1, BQ.1.1, CR.1.1, CQ.2 and BA.4/5 + D420N + K444T; BA.2.75 subvariants BM.4.1.1, BA.2.75.2, CV.1; and recombinant Omicron variants XBF, XBB.1, XBB.1.5 showed the greatest escape from neutralizing antibodies when analyzed against post third-dose original monovalent vaccinee sera. Post fourth-dose bivalent vaccinee sera provided better protection against those subvariants, but substantial reductions in neutralization titers were still observed, especially among BA.4/5 subvariants with both an N-terminal domain (NTD) deletion and receptor binding domain (RBD) substitutions K444M + N460K and recombinant Omicron variants. This analysis demonstrated a framework for long-term systematic genotype to antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S., which is critical to assessing their potential impact on the effectiveness of current vaccines and antigen recommendations for future updates.
Collapse
Affiliation(s)
- Han Di
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Elizabeth A. Pusch
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joyce Jones
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Nicholas A. Kovacs
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Norman Hassell
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mili Sheth
- Division of Core Laboratory Services and Response, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kelly Sabrina Lynn
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Matthew W. Keller
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Malania M. Wilson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Lisa M. Keong
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Dan Cui
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - So Hee Park
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Eagle Global Scientific, Inc., Atlanta, GA 30341, USA
| | - Reina Chau
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kristine A. Lacek
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jimma D. Liddell
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Marie K. Kirby
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Genyan Yang
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Monique Johnson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sharmi Thor
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Natosha Zanders
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Chenchen Feng
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Diya Surie
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jennifer DeCuir
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sandra N. Lester
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Lydia Atherton
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Heather Hicks
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Synergy America, Inc., Duluth, GA 30329, USA
| | - Azaibi Tamin
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jennifer L. Harcourt
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Melissa M. Coughlin
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Wesley H. Self
- Vanderbilt Institute for Clinical & Translational Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jillian P. Rhoads
- Vanderbilt Institute for Clinical & Translational Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin W. Gibbs
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - David N. Hager
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan I. Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Matthew C. Exline
- Department of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Adam S. Lauring
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin Rambo-Martin
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Clinton R. Paden
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Rebecca J. Kondor
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Justin S. Lee
- Division of Core Laboratory Services and Response, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - John R. Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Natalie J. Thornburg
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Bin Zhou
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - David E. Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Charles Todd Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
12
|
Guo H, Ha S, Botten JW, Xu K, Zhang N, An Z, Strohl WR, Shiver JW, Fu TM. SARS-CoV-2 Omicron: Viral Evolution, Immune Evasion, and Alternative Durable Therapeutic Strategies. Viruses 2024; 16:697. [PMID: 38793580 PMCID: PMC11125895 DOI: 10.3390/v16050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the SARS-CoV-2 Omicron virus has gained dominance worldwide, its continual evolution with unpredictable mutations and patterns has revoked all authorized immunotherapeutics. Rapid viral evolution has also necessitated several rounds of vaccine updates in order to provide adequate immune protection. It remains imperative to understand how Omicron evolves into different subvariants and causes immune escape as this could help reevaluate the current intervention strategies mostly implemented in the clinics as emergency measures to counter the pandemic and, importantly, develop new solutions. Here, we provide a review focusing on the major events of Omicron viral evolution, including the features of spike mutation that lead to immune evasion against monoclonal antibody (mAb) therapy and vaccination, and suggest alternative durable options such as the ACE2-based experimental therapies superior to mAbs to address this unprecedented evolution of Omicron virus. In addition, this type of unique ACE2-based virus-trapping molecules can counter all zoonotic SARS coronaviruses, either from unknown animal hosts or from established wild-life reservoirs of SARS-CoV-2, and even seasonal alpha coronavirus NL63 that depends on human ACE2 for infection.
Collapse
Affiliation(s)
- Hailong Guo
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Sha Ha
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Jason W. Botten
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kai Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
13
|
Matusali G, Vergori A, Cimini E, Mariotti D, Mazzotta V, Lepri AC, Colavita F, Gagliardini R, Notari S, Meschi S, Fusto M, Tartaglia E, Girardi E, Maggi F, Antinori A. Poor durability of the neutralizing response against XBB sublineages after a bivalent mRNA COVID-19 booster dose in persons with HIV. J Med Virol 2024; 96:e29598. [PMID: 38624044 DOI: 10.1002/jmv.29598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
We estimated the dynamics of the neutralizing response against XBB sublineages and T cell response in persons with HIV (PWH) with previous AIDS and/or CD4 < 200/mm3 receiving the bivalent original strain/BA.4-5 booster dose in fall 2022. Samples were collected before the shot (Day 0), 15 days, 3, and 6 months after. PWH were stratified by immunization status: hybrid immunity (HI; vaccination plus COVID-19) versus nonhybrid immunity (nHI; vaccination only). Fifteen days after the booster, 16% and 30% of PWH were nonresponders in terms of anti-XBB.1.16 or anti-EG.5.1 nAbs, respectively. Three months after, a significant waning of anti-XBB.1.16, EG.5.1 and -XBB.1 nAbs was observed both in HI and nHI but nAbs in HI were higher than in nHI. Six months after both HI and nHI individuals displayed low mean levels of anti-XBB.1.16 and EG.5.1 nAbs. Regarding T cell response, IFN-γ values were stable over time and similar in HI and nHI. Our data showed that in PWH, during the prevalent circulation of the XBB.1.16, EG.5.1, and other XBB sublineages, a mRNA bivalent vaccine might not confer broad protection against them. With a view to the 2023/2024 vaccination campaign, the use of the monovalent XBB.1.5 mRNA vaccine should be urgently warranted in PWH to provide adequate protection.
Collapse
Affiliation(s)
- Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Alessandra Vergori
- Viral Immunodeficiency Unit, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Eleonora Cimini
- Immunology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Davide Mariotti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Valentina Mazzotta
- Viral Immunodeficiency Unit, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Alessandro Cozzi Lepri
- Institute for Global Health, University College of London, Centre for Clinical Research, Epidemiology, Modeling and Evaluation (CREME), London, UK
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Roberta Gagliardini
- Viral Immunodeficiency Unit, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Stefania Notari
- Immunology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Marisa Fusto
- Viral Immunodeficiency Unit, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Eleonora Tartaglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Andrea Antinori
- Viral Immunodeficiency Unit, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| |
Collapse
|
14
|
Zhao T, Tani Y, Makino-Okamura C, Takita M, Yamamoto C, Kawahara E, Abe T, Sugiura S, Yoshimura H, Uchiyama T, Yamazaki I, Ishigame H, Ueno T, Okuma K, Wakui M, Fukuyama H, Tsubokura M. Diminished neutralizing activity against the XBB1.5 strain in 55.9% of individuals post 6 months COVID-19 mRNA booster vaccination: insights from a pseudovirus assay on 1,353 participants in the Fukushima vaccination community survey, Japan. Front Immunol 2024; 15:1337520. [PMID: 38562937 PMCID: PMC10983612 DOI: 10.3389/fimmu.2024.1337520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
This study investigates the neutralizing activity against the XBB1.5 variant and the ancestral strain in a population post-bivalent vaccination using a pseudo virus assay validated with authentic virus assay. While bivalent booster vaccination and past infections enhanced neutralization against the XBB 1.5 strain, individuals with comorbidities showed reduced responses. The study suggests the need for continuous vaccine updates to address emerging SARS-CoV-2 variants and highlights the importance of monitoring real-world immune responses.
Collapse
Affiliation(s)
- Tianchen Zhao
- General Incorporated Association for Comprehensive Disaster Health Management Research Institute, Tokyo, Japan
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, Japan
| | - Yuta Tani
- General Incorporated Association for Comprehensive Disaster Health Management Research Institute, Tokyo, Japan
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Chieko Makino-Okamura
- Division of Immunology, Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka, Japan
- Infectious Diseases Research Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Morihito Takita
- General Incorporated Association for Comprehensive Disaster Health Management Research Institute, Tokyo, Japan
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, Japan
| | - Chika Yamamoto
- General Incorporated Association for Comprehensive Disaster Health Management Research Institute, Tokyo, Japan
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, Japan
| | - Eiki Kawahara
- Division of Immunology, Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka, Japan
- Infectious Diseases Research Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Toshiki Abe
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, Japan
| | - Sota Sugiura
- General Incorporated Association for Comprehensive Disaster Health Management Research Institute, Tokyo, Japan
| | - Hiroki Yoshimura
- General Incorporated Association for Comprehensive Disaster Health Management Research Institute, Tokyo, Japan
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, Japan
| | - Taiga Uchiyama
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, Japan
| | - Isato Yamazaki
- Division of Immunology, Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka, Japan
- Infectious Diseases Research Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Harumichi Ishigame
- Division of Immunology, Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka, Japan
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, School of Medicine, Hirakata, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, School of Medicine, Hirakata, Osaka, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hidehiro Fukuyama
- Division of Immunology, Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka, Japan
- Infectious Diseases Research Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
- INSERM EST, Strasbourg, France
| | - Masaharu Tsubokura
- General Incorporated Association for Comprehensive Disaster Health Management Research Institute, Tokyo, Japan
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima, Japan
| |
Collapse
|
15
|
Arantes I, Gomes M, Ito K, Sarafim S, Gräf T, Miyajima F, Khouri R, de Carvalho FC, de Almeida WAF, Siqueira MM, Resende PC, Naveca FG, Bello G, COVID-19 Fiocruz Genomic Surveillance Network. Spatiotemporal dynamics and epidemiological impact of SARS-CoV-2 XBB lineage dissemination in Brazil in 2023. Microbiol Spectr 2024; 12:e0383123. [PMID: 38315011 PMCID: PMC10913747 DOI: 10.1128/spectrum.03831-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
The SARS-CoV-2 XBB is a group of highly immune-evasive lineages of the Omicron variant of concern that emerged by recombining BA.2-descendent lineages and spread worldwide during 2023. In this study, we combine SARS-CoV-2 genomic data (n = 11,065 sequences) with epidemiological data of severe acute respiratory infection (SARI) cases collected in Brazil between October 2022 and July 2023 to reconstruct the space-time dynamics and epidemiologic impact of XBB dissemination in the country. Our analyses revealed that the introduction and local emergence of lineages carrying convergent mutations within the Spike protein, especially F486P, F456L, and L455F, propelled the spread of XBB* lineages in Brazil. The average relative instantaneous reproduction numbers of XBB* + F486P, XBB* + F486P + F456L, and XBB* + F486P + F456L + L455F lineages in Brazil were estimated to be 1.24, 1.33, and 1.48 higher than that of other co-circulating lineages (mainly BQ.1*/BE*), respectively. Despite such a growth advantage, the dissemination of these XBB* lineages had a reduced impact on Brazil's epidemiological scenario concerning previous Omicron subvariants. The peak number of SARI cases from SARS-CoV-2 during the XBB wave was approximately 90%, 80%, and 70% lower than that observed during the previous BA.1*, BA.5*, and BQ.1* waves, respectively. These findings revealed the emergence of multiple XBB lineages with progressively increasing growth advantage, yet with relatively limited epidemiological impact in Brazil throughout 2023. The XBB* + F486P + F456L + L455F lineages stand out for their heightened transmissibility, warranting close monitoring in the months ahead. IMPORTANCE Brazil was one the most affected countries by the SARS-CoV-2 pandemic, with more than 700,000 deaths by mid-2023. This study reconstructs the dissemination of the virus in the country in the first half of 2023, a period characterized by the dissemination of descendants of XBB.1, a recombinant of Omicron BA.2 lineages evolved in late 2022. The analysis supports that XBB dissemination was marked by the continuous emergence of indigenous lineages bearing similar mutations in key sites of their Spike protein, a process followed by continuous increments in transmissibility, and without repercussions in the incidence of severe cases. Thus, the results suggest that the epidemiological impact of the spread of a SARS-CoV-2 variant is influenced by an intricate interplay of factors that extend beyond the virus's transmissibility alone. The study also underlines the need for SARS-CoV-2 genomic surveillance that allows the monitoring of its ever-shifting composition.
Collapse
Affiliation(s)
- Ighor Arantes
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marcelo Gomes
- Grupo de Métodos Analíticos em Vigilância Epidemiológica, Fiocruz, Rio de Janeiro, Brazil
| | - Kimihito Ito
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Sharbilla Sarafim
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| | | | | | - Felipe Cotrim de Carvalho
- Departamento do Programa Nacional de Imunizações, Coordenação-Geral de Vigilância das doenças imunopreveníveis, Secretaria de Vigilância em saúde e ambiente, Brasília, Brazil
| | - Walquiria Aparecida Ferreira de Almeida
- Departamento do Programa Nacional de Imunizações, Coordenação-Geral de Vigilância das doenças imunopreveníveis, Secretaria de Vigilância em saúde e ambiente, Brasília, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Felipe Gomes Naveca
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - COVID-19 Fiocruz Genomic Surveillance Network
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Grupo de Métodos Analíticos em Vigilância Epidemiológica, Fiocruz, Rio de Janeiro, Brazil
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
- Fiocruz, Fortaleza, Brazil
- Instituto Gonçalo Moniz, Fiocruz, Salvador, Brazil
- Departamento do Programa Nacional de Imunizações, Coordenação-Geral de Vigilância das doenças imunopreveníveis, Secretaria de Vigilância em saúde e ambiente, Brasília, Brazil
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| |
Collapse
|
16
|
Gidari A, Sabbatini S, Bastianelli S, Pierucci S, Busti C, Svizzeretto E, Tommasi A, Pallotto C, Schiaroli E, Francisci D. Tixagevimab/Cilgavimab: Still a Valid Prophylaxis against COVID-19 New Variants? Viruses 2024; 16:354. [PMID: 38543720 PMCID: PMC10975286 DOI: 10.3390/v16030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND this study aims to evaluate the efficacy of tixagevimab/cilgavimab (Evusheld™) against various SARS-CoV-2 variants, including newer Omicron sublineages, in an immunocompromised cohort and in vitro. STUDY DESIGN Conducted in Italy, this research involves immunocompromised patients who received Evusheld. It evaluates serum neutralization activity against different SARS-CoV-2 strains (20A.EU1, BA.5, BQ.1, XBB.1.5, XBB.1.16, and EG.5) before (T0), after 14 (T1), and after 30 (T2) days from the tixagevimab/cilgavimab injection. Furthermore, the in vitro activity of Evusheld against SARS-CoV-2 VOCs was evaluated. RESULTS The cohort was composed of 72 immunocompromised patients. The serum neutralizing activity of tixagevimab/cilgavimab-treated patients was notably lower against newer variants such as BQ.1, XBB.1.5, XBB.1.16, and EG.5. Then, the in vitro study detailed specific EC50 values to quantify the activity of tixagevimab/cilgavimab against various SARS-CoV-2 VOCs. Newer variants like BQ.1 and XBB.1.5 exhibited notably lower neutralization, underscoring the challenges in effectively countering the evolving virus. Interestingly, tixagevimab/cilgavimab maintained reduced but still valid activity against EG.5 with an EC50 of 189 ng/mL and Cmax/EC90 of 110.7. CONCLUSIONS Tixagevimab/cilgavimab efficacy wanes against novel subvariants. This underscores the critical need for ongoing adaptation and vigilance in prophylactic strategies to effectively counter the dynamic and unpredictable nature of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anna Gidari
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06132 Perugia, Italy; (S.B.); (S.P.); (C.B.); (E.S.); (A.T.); (C.P.); (E.S.); (D.F.)
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06123 Perugia, Italy;
| | - Sabrina Bastianelli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06132 Perugia, Italy; (S.B.); (S.P.); (C.B.); (E.S.); (A.T.); (C.P.); (E.S.); (D.F.)
| | - Sara Pierucci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06132 Perugia, Italy; (S.B.); (S.P.); (C.B.); (E.S.); (A.T.); (C.P.); (E.S.); (D.F.)
| | - Chiara Busti
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06132 Perugia, Italy; (S.B.); (S.P.); (C.B.); (E.S.); (A.T.); (C.P.); (E.S.); (D.F.)
| | - Elisabetta Svizzeretto
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06132 Perugia, Italy; (S.B.); (S.P.); (C.B.); (E.S.); (A.T.); (C.P.); (E.S.); (D.F.)
| | - Andrea Tommasi
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06132 Perugia, Italy; (S.B.); (S.P.); (C.B.); (E.S.); (A.T.); (C.P.); (E.S.); (D.F.)
| | - Carlo Pallotto
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06132 Perugia, Italy; (S.B.); (S.P.); (C.B.); (E.S.); (A.T.); (C.P.); (E.S.); (D.F.)
| | - Elisabetta Schiaroli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06132 Perugia, Italy; (S.B.); (S.P.); (C.B.); (E.S.); (A.T.); (C.P.); (E.S.); (D.F.)
| | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, “Santa Maria della Misericordia” Hospital, University of Perugia, 06132 Perugia, Italy; (S.B.); (S.P.); (C.B.); (E.S.); (A.T.); (C.P.); (E.S.); (D.F.)
| |
Collapse
|
17
|
Tang J, Xu Q, Zhu C, Xuan K, Li T, Li Q, Pang X, Zha Z, Li J, Qiao L, Xu H, Wu G, Tian Y, Han J, Gao C, Yi J, Qian G, Tian X, Xie L. Immunogenicity of Tetravalent Protein Vaccine SCTV01E-2 against SARS-CoV-2 EG.5 Subvaraint: A Phase 2 Trial. Vaccines (Basel) 2024; 12:175. [PMID: 38400158 PMCID: PMC10893468 DOI: 10.3390/vaccines12020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The Omicron EG.5 lineage of SARS-CoV-2 is currently on a trajectory to become the dominant strain. This phase 2 study aims to evaluate the immunogenicity of SCTV01E-2, a tetravalent protein vaccine, with a specific emphasis on its immunogenicity against Omicron EG.5, comparing it with its progenitor vaccine, SCTV01E (NCT05933512). As of 12 September 2023, 429 participants aged ≥18 years were randomized into the groups SCTV01E (N = 215) and SCTV01E-2 (N = 214). Both vaccines showed increases in neutralizing antibody (nAb) against Omicron EG.5, with a 5.7-fold increase and a 9.0-fold increase in the SCTV01E and SCTV01E-2 groups 14 days post-vaccination, respectively. The predetermined statistical endpoints were achieved, showing that the geometric mean titer (GMT) of nAb and the seroresponse rate (SRR) against Omicron EG.5 were significantly higher in the SCTV01E-2 group than in the SCTV01E group. Additionally, SCTV01E and SCTV01E-2 induced a 5.5-fold and a 5.9-fold increase in nAb against XBB.1, respectively. Reactogenicity was generally mild and transient. No vaccine-related serious adverse events (SAEs), adverse events of special interest (AESIs), or deaths were reported. In summary, SCTV01E-2 elicited robust neutralizing responses against Omicron EG.5 and XBB.1 without raising safety concerns, highlighting its potential as a versatile COVID-19 vaccine against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jihai Tang
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Qinghua Xu
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Chaoyin Zhu
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Kun Xuan
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Tao Li
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Qingru Li
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Xingya Pang
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Zhenqiu Zha
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Jinwei Li
- Fuyang Center for Disease Control and Prevention, Fuyang 236030, China; (J.L.); (H.X.)
| | - Liyang Qiao
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Haiyang Xu
- Fuyang Center for Disease Control and Prevention, Fuyang 236030, China; (J.L.); (H.X.)
| | - Gang Wu
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Yan Tian
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Jun Han
- State Key Laboratory of Infectious, Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Cuige Gao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Jiang Yi
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Gui Qian
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Xuxin Tian
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
18
|
Zhang L, Kempf A, Nehlmeier I, Cossmann A, Richter A, Bdeir N, Graichen L, Moldenhauer AS, Dopfer-Jablonka A, Stankov MV, Simon-Loriere E, Schulz SR, Jäck HM, Čičin-Šain L, Behrens GMN, Drosten C, Hoffmann M, Pöhlmann S. SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell 2024; 187:596-608.e17. [PMID: 38194966 PMCID: PMC11317634 DOI: 10.1016/j.cell.2023.12.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.
Collapse
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Anne Cossmann
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Najat Bdeir
- Department of Viral Immunology, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | | | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Metodi V Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, 75015 Paris, France; National Reference Center for Viruses of respiratory Infections, Institut Pasteur, 75015 Paris, France
| | - Sebastian R Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany; Center for Individualized Infection Medicine, a joint venture of HZI and MHH, 30625 Hannover, Germany
| | - Georg M N Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany; Center for Individualized Infection Medicine, a joint venture of HZI and MHH, 30625 Hannover, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
19
|
Zhang H, Zhou K, Peng F, Gao Z, Song G, Hu B, Chun S, Xiao J, Qian M, Wu J, Pan K, Gao F, Guo M, Peng C, Zou G, Wu JZ, Cai K, Li Y. Novel small-molecule inhibitors of SARS-CoV-2 main protease with nanomolar antiviral potency. J Infect 2024; 88:211-214. [PMID: 38191095 DOI: 10.1016/j.jinf.2023.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Affiliation(s)
- Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Kangping Zhou
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention (Hubei CDC), Wuhan 430079, China
| | - Fei Peng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Zhao Gao
- Suzhou Ark Biopharmaceutical Co. Ltd., 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Guowei Song
- Suzhou Ark Biopharmaceutical Co. Ltd., 218 Xinghu Street, Suzhou, Jiangsu 215123, China.
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention (Hubei CDC), Wuhan 430079, China
| | - Sophia Chun
- Suzhou Ark Biopharmaceutical Co. Ltd., 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Junfeng Xiao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Mengfei Qian
- Suzhou Ark Biopharmaceutical Co. Ltd., 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jin Wu
- Suzhou Ark Biopharmaceutical Co. Ltd., 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Kai Pan
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention (Hubei CDC), Wuhan 430079, China
| | - Fan Gao
- Suzhou Ark Biopharmaceutical Co. Ltd., 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Meng Guo
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention (Hubei CDC), Wuhan 430079, China
| | - Cheng Peng
- Suzhou Ark Biopharmaceutical Co. Ltd., 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Gang Zou
- Suzhou Ark Biopharmaceutical Co. Ltd., 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jim Zhen Wu
- Suzhou Ark Biopharmaceutical Co. Ltd., 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention (Hubei CDC), Wuhan 430079, China.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
20
|
Shen F, Liang C, Yang CX, Lu Y, Li AQ, Duan Y, Zhang M, Tian RR, Dong XQ, Zheng YT, Pang W. SARS-CoV-2 breakthrough infections following inactivated vaccine vaccination induce few neutralizing antibodies against the currently emerging Omicron XBB variants. Virol Sin 2024; 39:173-176. [PMID: 38000528 PMCID: PMC10877414 DOI: 10.1016/j.virs.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023] Open
Abstract
•Inactivated vaccine breakthrough infection with ancestral variants induced nearly undetectable nAbs against XBB variants. •Inactivated vaccine breakthrough infection with Omicron BA.1 or BA.5 evoked very weak nAbs against XBB variants. •BA.5 infection induced higher nAbs against XBB variants than BA.1 infection.
Collapse
Affiliation(s)
- Fan Shen
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun Liang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui-Xian Yang
- Yunnan Provincial Infectious Disease Hospital, Kunming, 650399, China
| | - Ying Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - An-Qi Li
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Duan
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi Zhang
- Yunnan Provincial Infectious Disease Hospital, Kunming, 650399, China
| | - Ren-Rong Tian
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xing-Qi Dong
- Yunnan Provincial Infectious Disease Hospital, Kunming, 650399, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Pang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
21
|
Zuo F, Cao Y, Sun R, Yisimayi A, Du L, Bertoglio F, Schubert M, Guerra C, Cavalli A, Hust M, Robbiani DF, Abolhassani H, Xie XS, Hammarström L, Marcotte H, Pan-Hammarström Q. Neutralisation activity of mucosal IgA against XBB sublineages and BA.2.86. THE LANCET. INFECTIOUS DISEASES 2024; 24:e7-e9. [PMID: 38071989 DOI: 10.1016/s1473-3099(23)00732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Fanglei Zuo
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China; Changping Laboratory, Beijing, China
| | - Rui Sun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China; Changping Laboratory, Beijing, China
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Federico Bertoglio
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Michael Hust
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Davide F Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Xiaoliang Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China; Changping Laboratory, Beijing, China
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Harold Marcotte
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
22
|
Matula Z, Bekő G, Király V, Gönczi M, Zóka A, Baráth A, Uher F, Vályi-Nagy I. Long-Term SARS-CoV-2-Specific Humoral and T Cell Responses after the BNT162b2 or BBIBP-CorV Booster and the Incidence of Breakthrough Infections among Healthcare Workers. Vaccines (Basel) 2023; 12:3. [PMID: 38276662 PMCID: PMC10819931 DOI: 10.3390/vaccines12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The effectiveness of COVID-19 vaccines developed against the original virus strain deteriorated noticeably in efficacy against the Omicron variant (B.1.1.529). Moreover, the immunity developed after vaccination or due to natural infection rapidly waned. In the present study, covering this period, we summarize the incidence of breakthrough infections among healthcare workers (HCWs) with respect to administration of the three vaccine doses. Additionally, we evaluate the long-term SARS-CoV-2-specific humoral and T cell responses at two different time points: six and twelve months after receipt of the third (booster) dose. The spike-protein-specific antibody levels and the quantity of structural-protein-specific T cells were evaluated at these time points and compared with the values measured earlier, 14 days after the booster vaccination. The study participants were categorized into two cohorts: Members of the first cohort received a two-dose BNT162b2 mRNA-based vaccine regimen, followed by an additional BNT162b2 booster six months later. Individuals in the second cohort received an inactivated-virus-based BBIBP-CorV booster six months after the initial two-dose BNT162b2 vaccination. Overall, 64.3% of participants were infected with SARS-CoV-2 confirmed by PCR or antigen test; however, additional subjects from the first cohort (23%) who did not know about their previous infection but had an anti-nucleocapsid T cell response were also considered virus-experienced. According to our results, no statistically significant difference was found between the two cohorts regarding the SARS-CoV-2-specific T cell response, neutralizing anti-RBD IgG, and anti-S IgA serum antibody levels either six or twelve months after receiving the booster, despite the overall higher median values of the first cohort. The only significant difference was the higher anti-S1/S2 IgG antibody level in the first cohort one year after the BNT162b2 booster (p = 0.039). In summary, the BNT162b2 and BBIBP-CorV boosters maintain durable humoral and T cell-mediated immune memory even one year after application. Although the booster provided limited protection against Omicron breakthrough infections, as 73.6% of these infections occurred after the booster vaccination, which means 53.5% cumulative incidence, it still offered excellent protection against severe disease and hospitalization in both cohorts.
Collapse
Affiliation(s)
- Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary;
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.B.); (V.K.); (M.G.); (A.Z.); (A.B.)
| | - Viktória Király
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.B.); (V.K.); (M.G.); (A.Z.); (A.B.)
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.B.); (V.K.); (M.G.); (A.Z.); (A.B.)
| | - András Zóka
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.B.); (V.K.); (M.G.); (A.Z.); (A.B.)
| | - András Baráth
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.B.); (V.K.); (M.G.); (A.Z.); (A.B.)
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary;
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary;
| |
Collapse
|
23
|
Hu Y, Zou J, Kurhade C, Deng X, Chang HC, Kim DK, Shi PY, Ren P, Xie X. Less neutralization evasion of SARS-CoV-2 BA.2.86 than XBB sublineages and CH.1.1. Emerg Microbes Infect 2023; 12:2271089. [PMID: 37824708 PMCID: PMC10606781 DOI: 10.1080/22221751.2023.2271089] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
The highly mutated BA.2.86, with over 30 spike protein mutations in comparison to Omicron BA.2 and XBB.1.5 variants, has raised concerns about its potential to evade COVID-19 vaccination or prior SARS-CoV-2 infection-elicited immunity. In this study, we employ a live SARS-CoV-2 neutralization assay to compare the neutralization evasion ability of BA.2.86 with other emerged SARS-CoV-2 subvariants, including BA.2-derived CH.1.1, Delta-Omicron recombinant XBC.1.6, and XBB descendants XBB.1.5, XBB.1.16, XBB.2.3, EG.5.1 and FL.1.5.1. Our results show that BA.2.86 is less neutralization evasive than XBB sublineages. XBB descendants XBB.1.16, EG.5.1, and FL.1.5.1 continue to significantly evade neutralization induced by the parental COVID-19 mRNA vaccine and a BA.5 Bivalent booster. Notably, when compared to XBB.1.5, the more recent XBB descendants, particularly EG.5.1, display increased resistance to neutralization. Among all the tested variants, CH.1.1 exhibits the greatest neutralization evasion. In contrast, XBC.1.6 shows a slight reduction but remains comparably sensitive to neutralization when compared to BA.5. Furthermore, a recent XBB.1.5-breakthrough infection significantly enhances the breadth and potency of cross-neutralization. These findings reinforce the expectation that the upcoming XBB.1.5 mRNA vaccine would likely boost the neutralization of currently circulating variants, while also underscoring the critical importance of ongoing surveillance to monitor the evolution and immune evasion potential of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yanping Hu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chaitanya Kurhade
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiangxue Deng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hope C. Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Debora K. Kim
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
24
|
Faraone JN, Liu SL. Immune imprinting as a barrier to effective COVID-19 vaccines. Cell Rep Med 2023; 4:101291. [PMID: 37992689 PMCID: PMC10694758 DOI: 10.1016/j.xcrm.2023.101291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Wang and colleagues show that immune imprinting impairs neutralizing antibody titers for bivalent mRNA vaccination against SARS-CoV-2 Omicron subvariants. Imprinting from three doses of monovalent vaccine can be alleviated by BA.5 or BQ-lineage breakthrough infection but not by a bivalent booster.1.
Collapse
Affiliation(s)
- Julia N Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|