1
|
Salazar-Ardiles C, Asserella-Rebollo L, Cornejo C, Arias D, Vasquez-Muñoz M, Toledo C, Andrade DC. Molecular diagnostic approaches for SARS-CoV-2 detection and pathophysiological consequences. Mol Biol Rep 2023; 50:10367-10382. [PMID: 37817022 DOI: 10.1007/s11033-023-08844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
SARS-CoV-2, a novel coronavirus within the Coronaviridae family, is the causative agent behind the respiratory ailment referred to as COVID-19. Operating on a global scale, COVID-19 has led to a substantial number of fatalities, exerting profound effects on both public health and the global economy. The most frequently reported symptoms encompass fever, cough, muscle or body aches, loss of taste or smell, headaches, and fatigue. Furthermore, a subset of individuals may manifest more severe symptoms, including those consistent with viral pneumonitis, which can be so profound as to result in fatalities. Consequently, this situation has spurred the rapid advancement of disease diagnostic technologies worldwide. Predominantly employed in diagnosing COVID-19, the real-time quantitative reverse transcription PCR has been the foremost diagnostic method, effectively detecting SARS-CoV-2 viral RNA. As the pandemic has evolved, antigen and serological tests have emerged as valuable diagnostic tools. Antigen tests pinpoint specific viral proteins of SARS-CoV-2, offering swift results, while serological tests identify the presence of antibodies in blood samples. Additionally, there have been notable strides in sample collection methods, notably with the introduction of saliva-based tests, presenting a non-invasive substitute to nasopharyngeal swabs. Given the ongoing mutations in SARS-CoV-2, there has been a continuous need for genomic surveillance, encompassing full genome sequencing and the identification of new variants through Illumina technology and, more recently, nanopore metagenomic sequencing (SMTN). Consequently, while diagnostic testing methods for COVID-19 have experienced remarkable progress, no test is flawless, and there exist limitations with each technique, including sensitivity, specificity, sample collection, and the minimum viral load necessary for accurate detection. These aspects are comprehensively addressed within this current review.
Collapse
Affiliation(s)
- Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | | | - Carlos Cornejo
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | - Dayana Arias
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | - Manuel Vasquez-Muñoz
- Dirección de Docencia de Especialidades Médicas, Dirección de Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory and Sleep Physiology, Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - David C Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile.
| |
Collapse
|
2
|
Colorimetric and Raman dual-mode lateral flow immunoassay detection of SARS-CoV-2 N protein antibody based on Ag nanoparticles with ultrathin Au shell assembled onto Fe 3O 4 nanoparticles. Anal Bioanal Chem 2023; 415:545-554. [PMID: 36414739 PMCID: PMC9685096 DOI: 10.1007/s00216-022-04437-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Serological antibody tests are useful complements of nuclei acid detection for SARS-CoV-2 diagnosis, which can significantly improve diagnostic accuracy. However, antibody detection in serum or plasma remains challenging to do with high sensitivity. In this study, Ag nanoparticles with ultra-thin Au shells embedded with 4-mercaptobenzoic acid (MBA) (AgMBA@Au) were manufactured and then assembled onto Fe3O4 surface by electrostatic interaction to construct the Fe3O4-AgMBA@Au nanoparticles (NPs) with magnetic-Raman-colorimetric properties. Based on the composite nanoparticles, a colorimetric and Raman dual-mode lateral flow immunoassay (LFIA) for ultrasensitive identification of SARS-CoV-2 nucleocapsid (N) protein antibody was constructed. The magnetic nanoparticles (Fe3O4 NPs) were acted as the core and coated a layer of AgMBA@Au particles on the surface by electrostatic interaction to prepare Fe3O4-AgMBA@Au NPs, which can amplify the SERS signal due to multiple AgMBA@Au particles concentrated on a single magnetic nanoparticle. Moreover, the Fe3O4-AgMBA@Au NPs facilitated pre-purifying sample using magnetic separation, and complex matrix interference would be greatly decreased in the detection. The Fe3O4-AgMBA@Au NPs modified with N protein recognized and bound with N protein antibodies, which were trapped on the T-line, forming color band for observing detection. Under optimal conditions, the N protein antibodies could be qualitatively detected in colorimetric mode with the visual limit of 10-8 mg/mL and quantitatively detected by SERS signals between 10-6 and 10-10 mg /mL with 0.08 pg/mL detection limit. The coefficients variations (CV) of intra-assay was 8.0%, whereas of inter-assay was 11.7%, confirming of good reproducibility. Finally, this approach was able to discriminate between positive, negative, and weakly positive samples when detecting 107 clinical serum samples. The process enables highly sensitive quantitative assays that are valuable for evaluating disease processes and guiding treatment. Colorimetric and Raman dual-mode LFIA detection of SARS-CoV-2 N protein antibody based on Fe3O4-AgMBA@Au nanoparticles.
Collapse
|
3
|
Ravi V, Swaminathan A, Yadav S, Arya H, Pandey R. SARS-CoV-2 Variants of Concern and Variations within Their Genome Architecture: Does Nucleotide Distribution and Mutation Rate Alter the Functionality and Evolution of the Virus? Viruses 2022; 14:2499. [PMID: 36423107 PMCID: PMC9694950 DOI: 10.3390/v14112499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 virus pathogenicity and transmissibility are correlated with the mutations acquired over time, giving rise to variants of concern (VOCs). Mutations can significantly influence the genetic make-up of the virus. Herein, we analyzed the SARS-CoV-2 genomes and sub-genomic nucleotide composition in relation to the mutation rate. Nucleotide percentage distributions of 1397 in-house-sequenced SARS-CoV-2 genomes were enumerated, and comparative analyses (i) within the VOCs and of (ii) recovered and mortality patients were performed. Fisher's test was carried out to highlight the significant mutations, followed by RNA secondary structure prediction and protein modeling for their functional impacts. Subsequently, a uniform dinucleotide composition of AT and GC was found across study cohorts. Notably, the N gene was observed to have a high GC percentage coupled with a relatively higher mutation rate. Functional analysis demonstrated the N gene mutations, C29144T and G29332T, to induce structural changes at the RNA level. Protein secondary structure prediction with N gene missense mutations revealed a differential composition of alpha helices, beta sheets, and coils, whereas the tertiary structure displayed no significant changes. Additionally, the N gene CTD region displayed no mutations. The analysis highlighted the importance of N protein in viral evolution with CTD as a possible target for antiviral drugs.
Collapse
Affiliation(s)
- Varsha Ravi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Aparna Swaminathan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Sunita Yadav
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Hemant Arya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Yu J, Qin Z, Liu X, He X, Yao J, Zhou X, Wen K, Yu N, Wu Q, Xiao W, Zhu L, Wan C, Zhang B, Zhao W. High-specificity targets in SARS-CoV-2 N protein for serological detection and distinction from SARS-CoV. Comput Biol Med 2022; 143:105272. [PMID: 35121361 PMCID: PMC8799378 DOI: 10.1016/j.compbiomed.2022.105272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Numerous serological detection kits are being rapidly developed and approved for screening and diagnosing suspected coronavirus disease 2019 (COVID-19) cases. However, cross-reactivity between pre-existing antibodies against other coronaviruses and the captured antigens in these kits can affect detection accuracy, emphasizing the necessity for identifying highly specific antigen fragments for antibody detection. Thus, we performed a conservation and specificity analysis of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein. We also integrated various B-cell epitope prediction methods to obtain possible dominant epitope regions for the N protein, analyzed the differences in serological antibody levels for different epitopes using ELISA, and identified N protein epitopes for IgG and IgM with high-specificity. The SARS-CoV-2 N protein showed low mutation rates and shared the highest amino acid similarity with SARS-CoV; however, it differed substantially from other coronaviruses. Tests targeting the SARS-CoV-2 N protein produce strong positive results in patients recovering from SARS-CoV. The N18-39 and N183-197 epitopes for IgG and IgM detection, respectively, can effectively overcome cross-reactivity, and even exhibit good specificity between SARS-CoV-2 and SARS-CoV. The antibody levels detected with these were consistent with those detected using the complete N protein. These findings provide a basis for serological diagnosis and determining the kinetics of SARS-CoV-2 antibody detection in patients.
Collapse
Affiliation(s)
- Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, Guangdong Province, 510515, China.
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, Guangdong Province, 510515, China.
| | - Xuling Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, Guangdong Province, 510515, China.
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, Guangdong Province, 510515, China.
| | - Jinxiu Yao
- Yangjiang People's Hospital, No.42 Dongshan Road, Yangjiang, Guangdong Province, 529500, China.
| | - Xuan Zhou
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No. 466, Xingang Middle Road, Guangzhou, Guangdong Province, 510317, China.
| | - Kun Wen
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Guangzhou, Guangdong Province, 510282, China.
| | - Nan Yu
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Guangzhou, Guangdong Province, 510282, China.
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, Guangdong Province, 510515, China.
| | - Weiwei Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, Guangdong Province, 510515, China.
| | - Li Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, Guangdong Province, 510515, China.
| | - Chengsong Wan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, Guangdong Province, 510515, China.
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, Guangdong Province, 510515, China.
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
5
|
ELISA-Based Analysis Reveals an Anti-SARS-CoV-2 Protein Immune Response Profile Associated with Disease Severity. J Clin Med 2022; 11:jcm11020405. [PMID: 35054099 PMCID: PMC8781066 DOI: 10.3390/jcm11020405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
Since the start of the COVID-19 pandemic, many studies have investigated the humoral response to SARS-CoV-2 during infection. Studies with native viral proteins constitute a first-line approach to assessing the overall immune response, but small peptides are an accurate and valuable tool for the fine characterization of B-cell epitopes, despite the restriction of this approach to the determination of linear epitopes. In this study, we used ELISA and peptides covering a selection of structural and non-structural SARS-CoV-2 proteins to identify key epitopes eliciting a strong immune response that could serve as a biological signature of disease characteristics, such as severity, in particular. We used 213 plasma samples from a cohort of patients well-characterized clinically and biologically and followed for COVID-19 infection. We found that patients developing severe disease had higher titers of antibodies mapping to multiple specific epitopes than patients with mild to moderate disease. These data are potentially important as they could be used for immunological profiling to improve our knowledge of the quantitative and qualitative characteristics of the humoral response in relation to patient outcome.
Collapse
|
6
|
Sun Z, Zheng X, Ji F, Zhou M, Su X, Ren K, Li L. Mass Spectrometry Analysis of SARS-CoV-2 Nucleocapsid Protein Reveals Camouflaging Glycans and Unique Post-Translational Modifications. INFECTIOUS MICROBES & DISEASES 2021; 3:149-157. [PMID: 38630108 PMCID: PMC8454284 DOI: 10.1097/im9.0000000000000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023]
Abstract
The devastating coronavirus disease 2019 (COVID-19) pandemic has prompted worldwide efforts to study structural biological traits of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its viral components. Compared to the Spike protein, which is the primary target for currently available vaccines or antibodies, knowledge about other virion structural components is incomplete. Using high-resolution mass spectrometry, we report a comprehensive post-translational modification (PTM) analysis of nucleocapsid phosphoprotein (NCP), the most abundant structural component of the SARS-CoV-2 virion. In addition to phosphoryl groups, we show that the SARS-CoV-2 NCP is decorated with a variety of PTMs, including N-glycans and ubiquitin. Based on newly identified PTMs, refined protein structural models of SARS-CoV-2 NCP were proposed and potential immune recognition epitopes of NCP were aligned with PTMs. These data can facilitate the design of novel vaccines or therapeutics targeting NCP, as valuable alternatives to the current vaccination and treatment paradigm that is under threat of the ever-mutating SARS-CoV-2 Spike protein.
Collapse
Affiliation(s)
- Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoqin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Kordyukova LV, Shanko AV. COVID-19: Myths and Reality. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:800-817. [PMID: 34284707 PMCID: PMC8265000 DOI: 10.1134/s0006297921070026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
COVID-19, a new human respiratory disease that has killed nearly 3 million people in a year since the start of the pandemic, is a global public health challenge. Its infectious agent, SARS-CoV-2, differs from other coronaviruses in a number of structural features that make this virus more pathogenic and transmissible. In this review, we discuss some important characteristics of the main SARS-CoV-2 surface antigen, the spike (S) protein, such as (i) ability of the receptor-binding domain (RBD) to switch between the "standing-up" position (open pre-fusion conformation) for receptor binding and the "lying-down" position (closed pre-fusion conformation) for immune system evasion; (ii) advantage of a high binding affinity of the RBD open conformation to the human angiotensin-converting enzyme 2 (ACE2) receptor for efficient cell entry; and (iii) S protein preliminary activation by the intracellular furin-like proteases for facilitation of the virus spreading across different cell types. We describe interactions between the S protein and cellular receptors, co-receptors, and antagonists, as well as a hypothetical mechanism of the homotrimeric spike structure destabilization that triggers the fusion of the viral envelope with the cell membrane at physiological pH and mediates the viral nucleocapsid entry into the cytoplasm. The transition of the S protein pre-fusion conformation to the post-fusion one on the surface of virions after their treatment with some reagents, such as β-propiolactone, is essential, especially in relation to the vaccine production. We also compare the COVID-19 pathogenesis with that of severe outbreaks of "avian" influenza caused by the A/H5 and A/H7 highly pathogenic viruses and discuss the structural similarities between the SARS-CoV-2 S protein and hemagglutinins of those highly pathogenic strains. Finally, we touch on the prospective and currently used COVID-19 antiviral and anti-pathogenetic therapeutics, as well as recently approved conventional and innovative COVID-19 vaccines and their molecular and immunological features.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Andrey V Shanko
- FORT LLC, R&D Department, Moscow, 119435, Russia
- Ivanovsky Institute of Virology, Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia
| |
Collapse
|
8
|
Tamminen K, Salminen M, Blazevic V. Seroprevalence and SARS-CoV-2 cross-reactivity of endemic coronavirus OC43 and 229E antibodies in Finnish children and adults. Clin Immunol 2021; 229:108782. [PMID: 34118402 PMCID: PMC8188772 DOI: 10.1016/j.clim.2021.108782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Endemic human coronaviruses (hCoVs) are common causative agents of respiratory tract infections, affecting especially children. However, in the ongoing SARS-CoV-2 pandemic, children are the least affected age-group. The objective of this study was to investigate the magnitude of endemic hCoVs antibodies in Finnish children and adults, and pre-pandemic antibody cross-reactivity with SARS-CoV-2. Antibody levels against endemic hCoVs start to rise at a very early age, reaching to overall 100% seroprevalence. No difference in the antibody levels was detected for OC43 but the magnitude of 229E-specific antibodies was significantly higher in the sera of children. OC43 and 229E hCoV antibody levels of children correlated significantly with each other and with the level of cross-reactive SARS-CoV-2 antibodies, whereas these correlations completely lacked in adults. Although none of the sera showed SARS-CoV-2 neutralization, the higher overall hCoV cross-reactivity observed in children might, at least partially, contribute in controlling SARS-CoV-2 infection in this population.
Collapse
Affiliation(s)
- Kirsi Tamminen
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.
| | - Marjo Salminen
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.
| | - Vesna Blazevic
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.
| |
Collapse
|
9
|
Murrell I, Forde D, Zelek W, Tyson L, Chichester L, Palmer N, Jones R, Morgan BP, Moore C. Temporal development and neutralising potential of antibodies against SARS-CoV-2 in hospitalised COVID-19 patients: An observational cohort study. PLoS One 2021; 16:e0245382. [PMID: 33497420 PMCID: PMC7837461 DOI: 10.1371/journal.pone.0245382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
Antibody responses are important in the control of viral respiratory infection in the human host. What is not clear for SARS-CoV-2 is how rapidly this response occurs, or when antibodies with protective capability evolve. Hence, defining the events of SARS-CoV-2 seroconversion and the time frame for the development of antibodies with protective potential may help to explain the different clinical presentations of COVID-19. Furthermore, accurate descriptions of seroconversion are needed to inform the best use of serological assays for diagnostic testing and serosurveillance studies. Here, we describe the humoral responses in a cohort of hospitalised COVID-19 patients (n = 19) shortly following the onset of symptoms. Commercial and 'in-house' serological assays were used to measure IgG antibodies against different SARS-CoV-2 structural antigens-Spike (S) S1 sub-unit and Nucleocapsid protein (NP)-and to assess the potential for virus neutralisation mediated specifically by inhibition of binding between the viral attachment protein (S protein) and cognate receptor (ACE-2). Antibody response kinetics varied amongst the cohort, with patients seroconverting within 1 week, between 1-2 weeks, or after 2 weeks, following symptom onset. Anti-NP IgG responses were generally detected earlier, but reached maximum levels slower, than anti-S1 IgG responses. The earliest IgG antibodies produced by all patients included those that recognised the S protein receptor-binding domain (RBD) and were capable of inhibiting binding to ACE-2. These data revealed events and patterns of SARS-CoV-2 seroconversion that may be important predictors of the outcome of infection and guide the delivery of clinical services in the COVID-19 response.
Collapse
Affiliation(s)
- Isa Murrell
- Wales Specialist Virology Centre, Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, United Kingdom
| | - Donall Forde
- Wales Specialist Virology Centre, Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, United Kingdom
| | - Wioleta Zelek
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Linda Tyson
- Wales Specialist Virology Centre, Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, United Kingdom
| | - Lisa Chichester
- Wales Specialist Virology Centre, Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, United Kingdom
| | - Nicki Palmer
- Wales Specialist Virology Centre, Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, United Kingdom
| | - Rachel Jones
- Wales Specialist Virology Centre, Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, United Kingdom
| | - B. Paul Morgan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Catherine Moore
- Wales Specialist Virology Centre, Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, United Kingdom
| |
Collapse
|
10
|
Attenuated Subcomponent Vaccine Design Targeting the SARS-CoV-2 Nucleocapsid Phosphoprotein RNA Binding Domain: In Silico Analysis. J Immunol Res 2020; 2020:2837670. [PMID: 32964056 PMCID: PMC7501546 DOI: 10.1155/2020/2837670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
The novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has previously never been identified with humans, thereby creating devastation in public health. The need for an effective vaccine to curb this pandemic cannot be overemphasized. In view of this, we designed a subcomponent antigenic peptide vaccine targeting the N-terminal (NT) and C-terminal (CT) RNA binding domains of the nucleocapsid protein that aid in viral replication. Promising antigenic B cell and T cell epitopes were predicted using computational pipelines. The peptides “RIRGGDGKMKDL” and “AFGRRGPEQTQGNFG” were the B cell linear epitopes with good antigenic index and nonallergenic property. Two CD8+ and Three CD4+ T cell epitopes were also selected considering their safe immunogenic profiling such as allergenicity, antigen level conservancy, antigenicity, peptide toxicity, and putative restrictions to a number of MHC-I and MHC-II alleles. With these selected epitopes, a nonallergenic chimeric peptide vaccine incapable of inducing a type II hypersensitivity reaction was constructed. The molecular interaction between the Toll-like receptor-5 (TLR5) which was triggered by the vaccine was analyzed by molecular docking and scrutinized using dynamics simulation. Finally, in silico cloning was performed to ensure the expression and translation efficiency of the vaccine, utilizing the pET-28a vector. This research, therefore, provides a guide for experimental investigation and validation.
Collapse
|
11
|
Facchetti F, Bugatti M, Drera E, Tripodo C, Sartori E, Cancila V, Papaccio M, Castellani R, Casola S, Boniotti MB, Cavadini P, Lavazza A. SARS-CoV2 vertical transmission with adverse effects on the newborn revealed through integrated immunohistochemical, electron microscopy and molecular analyses of Placenta. EBioMedicine 2020; 59:102951. [PMID: 32818801 PMCID: PMC7430280 DOI: 10.1016/j.ebiom.2020.102951] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND . The occurrence of trans-placental transmission of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection remains highly debated. Placental positivity for SARS-CoV-2 has been reported in selected cases, but infection or virus-associated disease of fetal tissues or newborns remains to be demonstrated. METHODS We screened for SARS-CoV-2 spike (S) protein expression placentas from 101 women who delivered between February 7 and May 15, 2020, including 15 tested positive for SARS-CoV-2 RNA, 34 tested negative, and 52 not evaluated as they did not meet testing criteria (32), or delivered before COVID-19 pandemic declaration (20). Immunostain for SARS-CoV-2 nucleocapsid (N) was performed in the placentas of all COVID-19 positive women. One placenta resulted positive for the SARS-CoV-2 S and N proteins, which was further studied by RNA-in situ hybridization and RT-PCR for S transcripts, and by electron microscopy. A comprehensive immunohistochemical and immunofluorescence analysis of the placental inflammatory infiltrate completed the investigations. FINDINGS SARS-CoV-2 S and N proteins were strongly expressed in the placenta of a COVID-19 pregnant woman whose newborn tested positive for viral RNA and developed COVID-19 pneumonia soon after birth. SARS-CoV-2 antigens, RNA and/or particles morphologically consistent with coronavirus were identified in villous syncytiotrophoblast, endothelial cells, fibroblasts, in maternal macrophages, and in Hofbauer cells and fetal intravascular mononuclear cells. The placenta intervillous inflammatory infiltrate consisted of neutrophils and monocyte-macrophages expressing activation markers. Absence of villitis was associated with an increase in the number of Hofbauer cells, which expressed PD-L1. Scattered neutrophil extracellular traps (NETs) were identified by immunofluorescence. INTERPRETATION We provide first-time evidence for maternal-fetal transmission of SARS-CoV-2, likely propagated by circulating virus-infected fetal mononuclear cells. Placenta infection was associated with recruitment of maternal inflammatory cells in the intervillous space, without villitis. PD-L1 expression in syncytiotrophoblast and Hofbaeur cells, together with limited production of NETs, may have prevented immune cell-driven placental damage, ensuring sufficient maternal-fetus nutrient exchanges.
Collapse
Affiliation(s)
- Fabio Facchetti
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy.
| | - Mattia Bugatti
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Emma Drera
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, 90134, Palermo, Italy
| | - Enrico Sartori
- Department of Obstetrics and Gynaecology, University of Brescia, 25123, Brescia, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, 90134, Palermo, Italy
| | - Marta Papaccio
- Department of Obstetrics and Gynaecology, University of Brescia, 25123, Brescia, Italy
| | - Roberta Castellani
- Department of Obstetrics and Gynaecology, University of Brescia, 25123, Brescia, Italy
| | - Stefano Casola
- The FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (I.Z.S.L.E.R.), 25124 Brescia, Italy
| | - Patrizia Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (I.Z.S.L.E.R.), 25124 Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (I.Z.S.L.E.R.), 25124 Brescia, Italy
| |
Collapse
|
12
|
Experimental Study on the Oxidation and Diffusion Behavior of Inconel 625 and Tool Materials. CRYSTALS 2018. [DOI: 10.3390/cryst8120471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oxidation and diffusion simulation experiments were conducted to choose the most suitable material for cutting the Inconel 625 superalloy. Three tool materials, WC/Co, coated carbide, and ceramic were used as tool materials in the oxidation simulation experiment. The three tool materials were heated for 30 min in a high-temperature furnace, and the high-temperature oxidation products were examined with scanning electron microscopy and X-ray diffraction (XRD). Tools were heated for 90 min in a vacuum tube furnace. The element diffusion behaviors of Inconel 625 and the tool materials were analysed with energy-dispersive X-ray spectroscopy and XRD. Some of the WC and Co in the WC/Co and coated carbide tool materials was oxidized to WO3, Co3O4, and CoWO4, and the oxidation reaction became more intense as the temperature increased. For the ceramic tool, only TiC was oxidized to TiO2, which indicates good oxidation resistance. In the diffusion couple experiments, the diffusion levels of the three tool materials increased with temperature, but the degree of influence differed. Diffusion of elements was hindered by the (Al, Ti) N coating of the coated carbide and effectively inhibited by the Al2O3 in the ceramic tool. In terms of oxidation and diffusion, the most suitable tool material for cutting Inconel 625 was the ceramic, followed by the coated carbide and then WC/Co.
Collapse
|
13
|
The Multifunctional Nucleolar Protein Nucleophosmin/NPM/B23 and the Nucleoplasmin Family of Proteins. THE NUCLEOLUS 2011. [PMCID: PMC7121557 DOI: 10.1007/978-1-4614-0514-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleophosmin (NPM)/nucleoplasmin family of nuclear chaperones has three members: NPM1, NPM2, and NPM3. Nuclear chaperones serve to ensure proper assembly of nucleosomes and proper formation of higher order structures of chromatin. In fact, this family of proteins has such diverse functions in cellular processes such as chromatin remodeling, ribosome biogenesis, genome stability, centrosome replication, cell cycle, transcriptional regulation, apoptosis, and tumor suppression. Of the members of this family, NPM1 is the most studied and is the main focus of this review. NPM2 and NPM3 are less well characterized, and are also discussed wherever appropriate. The structure–function relationship of NPM proteins has largely been worked out. Other than the many processes in which NPM1 takes part, the major interest comes from its involvement in human cancers, particularly acute myeloid leukemia (AML). Its significance stems from the fact that AML with mutated NPM1 accounts for ∼30% of all AML cases and usually has good prognosis. Its clinical importance also comes from its involvement in virus replication, particularly in the era of outbreaks of infectious diseases.
Collapse
|
14
|
Mark J, Li X, Cyr T, Fournier S, Jaentschke B, Hefford MA. SARS coronavirus: unusual lability of the nucleocapsid protein. Biochem Biophys Res Commun 2008; 377:429-433. [PMID: 18926799 PMCID: PMC7092863 DOI: 10.1016/j.bbrc.2008.09.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 01/30/2023]
Abstract
The severe acute respiratory syndrome (SARS) is a contagious disease that killed hundreds and sickened thousands of people worldwide between November 2002 and July 2003. The nucleocapsid (N) protein of the coronavirus responsible for this disease plays a critical role in viral assembly and maturation and is of particular interest because of its potential as an antiviral target or vaccine candidate. Refolding of SARS N-protein during production and purification showed the presence of two additional protein bands by SDS-PAGE. Mass spectroscopy (MALDI, SELDI, and LC/MS) confirmed that the bands are proteolytic products of N-protein and the cleavage sites are four SR motifs in the serine-arginine-rich region-sites not suggestive of any known protease. Furthermore, results of subsequent testing for contaminating protease(s) were negative: cleavage appears to be due to inherent instability and/or autolysis. The importance of N-protein proteolysis to viral life cycle and thus to possible treatment directions are discussed.
Collapse
Affiliation(s)
- John Mark
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Xuguang Li
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Terry Cyr
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Sylvie Fournier
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Bozena Jaentschke
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Mary Alice Hefford
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2.
| |
Collapse
|
15
|
Zeng Y, Ye L, Zhu S, Zheng H, Zhao P, Cai W, Su L, She Y, Wu Z. The nucleocapsid protein of SARS-associated coronavirus inhibits B23 phosphorylation. Biochem Biophys Res Commun 2008; 369:287-91. [PMID: 18243139 PMCID: PMC7092856 DOI: 10.1016/j.bbrc.2008.01.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 01/16/2008] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is responsible for SARS infection. Nucleocapsid (N) protein of SARS-CoV encapsidates the viral RNA and plays an important role in virus particle assembly and release. In this study, the N protein of SARS-CoV was found to associate with B23, a phosphoprotein in nucleolus, in vitro and in vivo. Mapping studies localized the critical N sequences for this interaction to amino acid residues 175–210, which included a serine/arginine (SR)-rich domain. In vitro phosphorylation assay showed that the N protein inhibited the B23 phosphorylation at Thr199.
Collapse
Affiliation(s)
- Yingchun Zeng
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sensitive and specific enzyme-linked immunosorbent assay using chemiluminescence for detection of severe acute respiratory syndrome viral infection. J Clin Microbiol 2007; 46:302-10. [PMID: 18032623 DOI: 10.1128/jcm.01006-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we report the development of a more-sensitive immunoassay for severe acute respiratory syndrome (SARS) based on an enzyme-linked immunosorbent assay using chemiluminescence (CLEIA) to detect the viral nucleocapsid (N) antigen in nasopharyngeal aspirate (NPA) from patients infected with SARS coronavirus (CoV). The CLEIA was established with an optical combination of monoclonal antibodies (MAbs) against SARS CoV N protein prepared from mice immunized with recombinant N protein without cultivating the virus. The capture and detecting MAbs of the CLEIA reacted to the carboxyl-terminal and amino-terminal peptides of the N protein, respectively. The CLEIA was capable of detecting recombinant N protein at 1.56 pg/ml and viral N protein in SARS CoV cell culture lysates at 0.087 of 50% tissue culture infective doses/ml. The CLEIA showed no cross-reactivities to recombinant N proteins of common human CoV (229E, OC43, and NL63) or lysates of cells infected with 229E and OC43. In addition, an evaluation with 18 SARS-positive NPA samples, all confirmed SARS positive by quantitative PCR and antibodies to SARS CoV, revealed that all (18/18) were found positive by the CLEIA; thus, the sensitivity of detection was 100%. When we tested 20 SARS-negative NPA samples, the CLEIA was shown to have high specificity (100%). The sensitivity of our novel SARS CLEIA was significantly higher than the previous EIA and comparable to the other methods using reverse transcription-PCR.
Collapse
|
17
|
Zhang X, Wu K, Wang D, Yue X, Song D, Zhu Y, Wu J. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. Virology 2007; 365:324-35. [PMID: 17490702 PMCID: PMC7103332 DOI: 10.1016/j.virol.2007.04.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 01/20/2007] [Accepted: 04/09/2007] [Indexed: 12/22/2022]
Abstract
High levels of interleukin-6 (IL-6) in the acute stage associated with lung lesions were found in SARS patients. To evaluate the mechanisms behind this event, we investigated the roles of SARS-CoV proteins in the regulation of IL-6. Results showed that the viral nucleocapsid (N) protein activated IL-6 expression in a concentration-dependent manner. Promoter analyses suggested that NF-κB binding element was required for IL-6 expression regulated by N protein. Further studies demonstrated that N protein bound directly to NF-κB element on the promoter. We also showed that N protein activated IL-6 expression through NF-κB by facilitating the translocation of NF-κB from cytosol to nucleus. Mutational analyses revealed that two regions of N protein were essential for its function in the activation of IL-6. These results provided new insights into understanding the mechanism involved in the function of SARS-CoV N protein and pathogenesis of the virus.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Di Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Xin Yue
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Degui Song
- College of Biological Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
- Corresponding authors. J. Wu is to be contacted at fax: +86 27 68754592.
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
- Corresponding authors. J. Wu is to be contacted at fax: +86 27 68754592.
| |
Collapse
|
18
|
Bussmann BM, Reiche S, Jacob LH, Braun JM, Jassoy C. Antigenic and cellular localisation analysis of the severe acute respiratory syndrome coronavirus nucleocapsid protein using monoclonal antibodies. Virus Res 2006; 122:119-26. [PMID: 16920216 PMCID: PMC7114340 DOI: 10.1016/j.virusres.2006.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/07/2006] [Accepted: 07/12/2006] [Indexed: 01/19/2023]
Abstract
A member of the family of coronaviruses has previously been identified as the cause of the severe acute respiratory syndrome (SARS). In this study, several monoclonal antibodies against the nucleocapsid protein have been generated to examine distribution of the nucleocapsid in virus-infected cells and to study antigenic regions of the protein. Confocal microscopic analysis identified nucleocapsids packaged in vesicles in the perinuclear area indicating viral synthesis at the endoplasmic reticulum and Golgi apparatus. The monoclonal antibodies bound to the central and carboxyterminal half of the nucleocapsid protein indicating prominent exposure and immunogenicity of this part of the protein. Antibodies recognised both linear and conformational epitopes. Predictions of antigenicity using mathematical modelling based on hydrophobicity analysis of SARS nucleoprotein could not be confirmed fully. Antibody binding to discontinuous peptides provides evidence that amino acids 274–283 and 373–382 assemble to a structural unit particularly rich in basic amino acids. In addition, amino acids 286–295, 316–325 and 361–367 that represent the epitope recognised by monoclonal antibody 6D11C1 converge indicating a well-structured C-terminal region of the SARS virus nucleocapsid protein and functional relationship of the peptide regions involved. Alternatively, dimerisation of the nucleocapsid protein may result in juxtaposition of the amino acid sequences 316–325 and 361–367 on one nucleoprotein molecule to amino acid 286–295 on the second peptide. The monoclonal antibodies will be available to assess antigenicity and immunological variabilities between different SARS CoV strains.
Collapse
Affiliation(s)
- Bianca M. Bussmann
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Sven Reiche
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Lotta H. Jacob
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Jan Matthias Braun
- Institute of Clinical Immunology and Transfusion Medicine (IKIT) and Interdisciplinary Centre of Clinical Research (IZKF), Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Christian Jassoy
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
- Corresponding author. Tel.: +49 341 9714314; fax: +49 341 9714309.
| |
Collapse
|
19
|
Yan X, Hao Q, Mu Y, Timani KA, Ye L, Zhu Y, Wu J. Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. Int J Biochem Cell Biol 2006; 38:1417-28. [PMID: 16546436 PMCID: PMC7108415 DOI: 10.1016/j.biocel.2006.02.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 01/17/2006] [Accepted: 02/07/2006] [Indexed: 02/02/2023]
Abstract
SARS-associated coronavirus (SARS-CoV) causes inflammation and damage to the lungs resulting in severe acute respiratory syndrome. To evaluate the molecular mechanisms behind this event, we investigated the roles of SARS-CoV proteins in regulation of the proinflammatory factor, cyclooxygenase-2 (COX-2). Individual viral proteins were tested for their abilities to regulate COX-2 gene expression. Results showed that the COX-2 promoter was activated by the nucleocapsid (N) protein in a concentration-dependent manner. Western blot analysis indicated that N protein was sufficient to stimulate the production of COX-2 protein in mammalian cells. COX-2 promoter mutations suggested that activation of COX-2 transcription depended on two regulatory elements, a nuclear factor-kappa B (NF-kappaB) binding site, and a CCAAT/enhancer binding protein (C/EBP) binding site. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) demonstrated that SARS-CoV N protein bound directly to these regulatory sequences. Protein mutation analysis revealed that a Lys-rich motif of N protein acted as a nuclear localization signal and was essential for the activation of COX-2. In addition, a Leu-rich motif was found to be required for the N protein function. A sequence of 68 residuals was identified as a potential DNA-binding domain essential for activating COX-2 expression. We propose that SARS-CoV N protein causes inflammation of the lungs by activating COX-2 gene expression by binding directly to the promoter resulting in inflammation through multiple COX-2 signaling cascades.
Collapse
Affiliation(s)
- Xiaohong Yan
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qian Hao
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yongxin Mu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Khalid Amine Timani
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Linbai Ye
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ying Zhu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jianguo Wu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
20
|
Chen Z, Pei D, Jiang L, Song Y, Wang J, Wang H, Zhou D, Zhai J, Du Z, Li B, Qiu M, Han Y, Guo Z, Yang R. Antigenicity analysis of different regions of the severe acute respiratory syndrome coronavirus nucleocapsid protein. Clin Chem 2004; 50:988-95. [PMID: 15054081 PMCID: PMC7108132 DOI: 10.1373/clinchem.2004.031096] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: The widespread threat of severe acute respiratory syndrome (SARS) to human health has made urgent the development of fast and accurate analytical methods for its early diagnosis and a safe and efficient antiviral vaccine for preventive use. For this purpose, we investigated the antigenicity of different regions of the SARS coronavirus (SARS-CoV) nucleocapsid (N) protein. Methods: The cDNA for full-length N protein and its various regions from the SARS-CoV was cloned and expressed in Escherichia coli. After purification, all of the protein fragments were printed on glass slides to fabricate a protein microarray and then probed with the sera from SARS patients to determine the reactivity of these protein fragments. Results: The full-length protein and two other fragments reacted with all 52 sera tested. Four important regions with possible epitopes were identified and named as EP1 (amino acids 51–71), EP2 (134–208), EP3 (249–273), and EP4 (349–422), respectively. EP2 and EP4 possessed linear epitopes, whereas EP1 and EP2 were able to form conformational epitopes that could react with most (>80%) of the tested sera. EP3 and EP4 also formed conformational epitopes, and antibodies against these epitopes existed in all 52 of the sera tested. Conclusion: The N protein is a highly immunogenic protein of the SARS-CoV. Conformational epitopes are important for this protein, and antigenicity of the COOH terminus is higher than that of the NH2 terminus. The N protein is a potential diagnostic antigen and vaccine candidate for SARS-CoV.
Collapse
Affiliation(s)
- Zeliang Chen
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Decui Pei
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lingxiao Jiang
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yajun Song
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jin Wang
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hongxia Wang
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Dongsheng Zhou
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Junhui Zhai
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zongmin Du
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Bei Li
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Maofeng Qiu
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanping Han
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhaobiao Guo
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ruifu Yang
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
- Address correspondence to this author at: Institute of Microbiology and Epidemiology, Academy of Military Medical Science, 20, Dongdajie, Fengtai District, Beijing 100071, People’s Republic of China. Fax 86-10-83820748; e-mail
| |
Collapse
|
21
|
Chow KYC, Hon CC, Hui RKH, Wong RTY, Yip CW, Zeng F, Leung FCC. Molecular advances in severe acute respiratory syndrome-associated coronavirus (SARS-CoV). GENOMICS, PROTEOMICS & BIOINFORMATICS 2003; 1:247-62. [PMID: 15629054 PMCID: PMC5172416 DOI: 10.1016/s1672-0229(03)01031-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The sudden outbreak of severe acute respiratory syndrome (SARS) in 2002 prompted the establishment of a global scientific network subsuming most of the traditional rivalries in the competitive field of virology. Within months of the SARS outbreak, collaborative work revealed the identity of the disastrous pathogen as SARS-associated coronavirus (SARS-CoV). However, although the rapid identification of the agent represented an important breakthrough, our understanding of the deadly virus remains limited. Detailed biological knowledge is crucial for the development of effective countermeasures, diagnostic tests, vaccines and antiviral drugs against the SARS-CoV. This article reviews the present state of molecular knowledge about SARS-CoV, from the aspects of comparative genomics, molecular biology of viral genes, evolution, and epidemiology, and describes the diagnostic tests and the anti-viral drugs derived so far based on the available molecular information.
Collapse
|