1
|
Hao X, Cao F, Xu Z, You S, Mi T, Wang L, Guo Y, Zhang Z, Cao J, Lou J, Liu Y, Chen X, Zhou Z, Mi W, Tong L. Causal relationship and mediating role between depression and cognitive performance. J Prev Alzheimers Dis 2025:100196. [PMID: 40345928 DOI: 10.1016/j.tjpad.2025.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Recent studies have increasingly emphasized the robust correlation between depression and cognitive function. However, it remains unclear whether this relationship is causal or merely coincidental. To address this uncertainty, we conducted two-sample bidirectional Mendelian randomization (MR) analyses to investigate the connection between depression and cognitive performance. METHODS We sourced genome-wide association study (GWAS) data for depression (NSNPs=21,306,230) from the FinnGen (R10) and for cognitive performance (NSNPs=10,049,954) from the IEU GWAS database. Causal effects employed methodologies such as Inverse variance weighted (IVW), weighted median, MR Egger, simple mode and weighted mode. Two-step analysis determined the contribution of the mediator variable to the outcomes. To determine stability and reliability, sensitivity analyses were performed that included an assessment of heterogeneity, horizontal pleiotropy, and the leave-one-out techniques. RESULTS This MR analysis identified 8 independent significant SNPs associated with depression and 81 SNPs linked to cognitive performance. Our findings revealed that depression increases the risk of developing deteriorating cognitive performance (IVW β, -0.11; 95 % confidence interval (CI), -0.18 - -0.05; PIVW value= 5.97E-04). Conversely, cognitive performance decline could also predispose individuals to depression [odds ratio (OR)IVW, 0.85; 95 % CI, 0.76 - 0.95; PIVW value=0.004]. Multivariate MR analysis confirmed the robustness of this bidirectional association. A two-step MR mediation analysis indicated that the pathway from depression to cognitive performance is mediated by pain, with a mediation effect size of -0.022 and a mediation ratio of 28.95 %. The pathway from cognitive performance to depression is mediated by frailty, with a mediation effect value of -0.028, representing 22.40 % of the mediation proportion. CONCLUSION A two-way causal relationship between depression and cognitive performance, with pain and frailty being mediating factors, respectively. Future research should prioritize mechanistic studies, targeted interventions, and personalized approaches to disentangle and mitigate the bidirectional effects of depression and cognitive performance.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Fuyang Cao
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Ziyao Xu
- Department of General surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Shaohua You
- Department of Pain, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Tianyue Mi
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, USA
| | - Lei Wang
- Biomedical Big Data Center, Zhongguancun Big Data Industry Alliance, Beijing, PR China
| | - Yongxin Guo
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Zhuoning Zhang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Jingsheng Lou
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Xianyang Chen
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, USA
| | - Zhikang Zhou
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China.
| | - Li Tong
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China.
| |
Collapse
|
2
|
Chen L, Wang Z, Wang Y, Jiang H, Ding Y, Xia Q, Cheng X, Zhang X. Alterations in fatty acid metabolism in patients with schizophrenia in a multi-omics perspective. Schizophr Res 2025; 279:94-105. [PMID: 40184646 DOI: 10.1016/j.schres.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Recent research has extensively explored the involvement of gut microbes in various fatty acid metabolic processes, elucidating their crucial roles in host energy homeostasis and metabolism. Nevertheless, there remains a dearth of studies examining the comprehensive profile of fatty acid metabolites in schizophrenia and their potential connection to gut microbes. METHOD Conducting a thorough investigation, this study scrutinized the gut microbiome composition of 63 individuals, consisting of 35 schizophrenia (SZ) patients and 28 demographically matched healthy control (HC) subjects. Feces and serum samples were meticulously collected, with stool samples subjected to 16S rRNA sequencing targeting region V4 and untargeted metabolomics analysis, while serum samples underwent untargeted metabolomics assessment. RESULTS A total of 21 different genus-level species were identified in the SZ and HC groups. Predictive analysis of gut flora pathways revealed abnormal fatty acid degradation in schizophrenia. Notably, 17 differential fatty acid metabolites were found in feces, whereas 43 were found in serum fatty acid metabolites. A higher proportion of differential fatty acid metabolites were found in serum compared to those in feces. The predominant pathways enriched in fatty acid metabolites included biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, and linoleic acid metabolism. Additionally, a significant correlation was noted between intestinal flora and fatty acids, as well as potential interactions between intestinal flora, fecal fatty acids and serum fatty acids. CONCLUSIONS Our multi-omics study provides new insights into the pathogenesis of schizophrenia, which may inform the treatment of neurodevelopmental disorders by modifying fatty acid metabolism through modulation of the gut microbiota.
Collapse
Affiliation(s)
- Long Chen
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui 230000, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China,; Anhui Mental Health Center, Hefei 230000, China
| | - Zhiqiang Wang
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui 230000, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China,; Anhui Mental Health Center, Hefei 230000, China; School of Mental Health and Psychological Science, Anhui Medical University, Hefei 230022, China
| | - Yanyu Wang
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui 230000, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China,; Anhui Mental Health Center, Hefei 230000, China; School of Mental Health and Psychological Science, Anhui Medical University, Hefei 230022, China
| | - Haonan Jiang
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui 230000, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China,; Anhui Mental Health Center, Hefei 230000, China; School of Mental Health and Psychological Science, Anhui Medical University, Hefei 230022, China
| | - Yuntong Ding
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui 230000, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China,; Anhui Mental Health Center, Hefei 230000, China
| | - Qingrong Xia
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui 230000, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China,; Anhui Mental Health Center, Hefei 230000, China
| | - Xialong Cheng
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui 230000, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China,; Anhui Mental Health Center, Hefei 230000, China
| | - Xulai Zhang
- Anhui Clinical Center for mental and psychological diseases, Hefei Fourth People's Hospital, 316 Mei shan Road, Hefei, Anhui 230000, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China,; Anhui Mental Health Center, Hefei 230000, China; School of Mental Health and Psychological Science, Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
3
|
Jung JY, Ahn Y, Park JW, Jung K, Kim S, Lim S, Jung SH, Kim H, Kim B, Hwang MY, Kim YJ, Park WY, Okbay A, O'Connell KS, Andreassen OA, Myung W, Won HH. Polygenic overlap between subjective well-being and psychiatric disorders and cross-ancestry validation. Nat Hum Behav 2025:10.1038/s41562-025-02155-z. [PMID: 40229577 DOI: 10.1038/s41562-025-02155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/24/2025] [Indexed: 04/16/2025]
Abstract
Subjective well-being (SWB) is important for understanding human behaviour and health. Although the connection between SWB and psychiatric disorders has been studied, common genetic mechanisms remain unclear. This study aimed to explore the genetic relationship between SWB and psychiatric disorders. Bivariate causal mixture modelling (MiXeR), polygenic risk score (PRS) and Mendelian randomization (MR) analyses showed substantial polygenic overlap and associations between SWB and the psychiatric disorders. Subsequent replication studies in East Asian populations confirmed the polygenic overlap between schizophrenia and SWB. The conditional and conjunctional false discovery rate analyses identified additional or shared genetic loci associated with SWB or psychiatric disorders. Functional annotation revealed enrichment of specific brain tissues and genes associated with SWB. The identified genetic loci showed cross-ancestry transferability between the European and Korean populations. Our findings provide valuable insights into the common genetic mechanisms underlying SWB and psychiatric disorders.
Collapse
Affiliation(s)
- Jin Young Jung
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Yeeun Ahn
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Jung-Wook Park
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Kyeongmin Jung
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Soyeon Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Soohyun Lim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Hyuk Jung
- Department of Medical Informatics, Kangwon National University College of Medicine, Chuncheon, South Korea
| | - Hyejin Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Beomsu Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Aysu Okbay
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Kevin S O'Connell
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea.
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea.
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea.
| |
Collapse
|
4
|
Chen H, Chen X, Yao Q, Xin J, Zhang Y, Huang X, Wang D, Li M, Zhang T, Tillmann T, Yan W, Huang G. Appraising the causal relevance of maternal red blood cell folate and congenital heart disease in offspring: 2-sample Mendelian randomization. Ann Epidemiol 2025; 106:23-29. [PMID: 40233869 DOI: 10.1016/j.annepidem.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
PURPOSE We performed a 2-sample Mendelian randomization (MR) using maternal MTHFR C677T as the genetic instrument to validate the causal association between maternal red blood cell (RBC) folate and offspring congenital heart disease (CHD) risk. METHODS We obtained the genetic association for RBC folate through pooling data from 2 genome-wide association studies (the Trinity Student Study [n = 2229]) and Shanghai Preconception sub-cohort [n = 980]). We performed a meta-analysis of genetic studies to obtain the association for CHD (35 studies; 6141 CHDs and 14078 controls) and used the Wald ratio method for the 2-sample MR. RESULTS Maternal MTHFR C677T variant was associated with lower RBC folate (-116 nmol/L per risk allele) and higher CHD risk (odds ratio [OR], 1.32 per allele; 95 % CI, 1.18-1.47). Per 100-nmol/L genetically determined higher RBC folate was associated with 21 % lower CHD risk (OR, 0.79 [0.70-0.90]). The association was evident in the Asian populations (0.72 [0.61-0.85]) and regions with low folate status (0.76 [0.65-0.88]) but not in the Caucasian populations (0.96 [0.89-1.04]) or regions with fortification (0.92 [0.79-1.06]). CONCLUSIONS Our findings support a causal role of maternal folate in offspring CHD risk, mainly confined to Asian populations and regions with low folate status.
Collapse
Affiliation(s)
- Hongyan Chen
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Shanghai 201102, China; Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xiaotian Chen
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Shanghai 201102, China; Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Qinyu Yao
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Shanghai 201102, China; Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jibin Xin
- Fudan University Library, Fudan University, Shanghai 200433, China
| | - Yi Zhang
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Shanghai 201102, China; Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xiangyuan Huang
- Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Dingmei Wang
- Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Mengru Li
- Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Tiansong Zhang
- Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Taavi Tillmann
- Institute of Family Medicine and Public Health, University of Tartu, Estonia
| | - Weili Yan
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Shanghai 201102, China; Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Guoying Huang
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Shanghai 201102, China; Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China.
| |
Collapse
|
5
|
Modesti MN, Arena JF, Del Casale A, Gentile G, Borro M, Parmigiani G, Simmaco M, Guariglia C, Ferracuti S. Lipidomics and genomics in mental health: insights into major depressive disorder, bipolar disorder, schizophrenia, and obsessive-compulsive disorder. Lipids Health Dis 2025; 24:89. [PMID: 40069786 PMCID: PMC11895309 DOI: 10.1186/s12944-025-02512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/01/2025] [Indexed: 03/15/2025] Open
Abstract
INTRODUCTION This systematic review explores the hypothesis that various lipid categories and lipid metabolism-related genomic variations link to mental disorders, seeking potential clinically useful markers. METHODS We searched PubMed, Scopus, and PsycInfo databases until October 12th, 2024, using terms related to lipidomics, lipid-related genomics, and different mental disorders, i.e., Major Depressive Disorder (MDD), Bipolar Disorder (BD), Schizophrenia (SCZ), and Obsessive-Compulsive Disorder (OCD). Eligible studies were assessed. Extracted data included author, year, methodology, outcomes, genes, and lipids linked to disorders. Bias and evidence certainty were evaluated. The systematic review adhered to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and a registered protocol (PROSPERO: CRD42023438862). RESULTS A total of 27 studies were included. SCZ showed alterations in 77 lipids, including triglycerides (TG), ceramides, and phosphatidylcholine, while MDD and BD exhibited 97 and 47 altered lipids, respectively, with overlap among disorders. Shared genes, such as ABCA13, DGKZ, and FADS, and pathways involving inflammation, lipid metabolism, and mitochondrial function were identified. OCD was associated with sphingolipid signaling and peroxisomal metabolism. DISCUSSION Lipid signatures in MDD, BD, and SCZ shed light on underlying processes. Further research is needed to validate biomarkers and refine their clinical applications in precision psychiatry.
Collapse
Affiliation(s)
- Martina Nicole Modesti
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| | - Jan Francesco Arena
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant 'Andrea University Hospital, Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant 'Andrea University Hospital, Rome, Italy
| | | | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant 'Andrea University Hospital, Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, "Santa Lucia" Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
6
|
Xu CX, Huang W, Shi XJ, Du Y, Liang JQ, Fang X, Chen HY, Cheng Y. Dysregulation of Serum Exosomal Lipid Metabolism in Schizophrenia: A Biomarker Perspective. Mol Neurobiol 2025; 62:3556-3567. [PMID: 39312067 DOI: 10.1007/s12035-024-04477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/01/2024] [Indexed: 02/04/2025]
Abstract
Exosomes, crucial extracellular vesicles, have emerged as potential biomarkers for neurological conditions, including schizophrenia (SCZ). However, the exploration of exosomal lipids in the context of SCZ remains scarce, necessitating in-depth investigation. Leveraging ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), this study aimed to characterize the lipidomic profile of serum exosomes from SCZ patients, assessing their potential as novel biomarkers for SCZ diagnosis through absolute quantitative lipidomics. Our comprehensive lipidomic analysis unveiled 39 serum exosomal lipids that were differentially expressed between SCZ patients (n = 20) and healthy controls (HC, n = 20). These findings revealed a profound dysregulation in lipid metabolism pathways, notably in sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism. Among these, seven exosomal lipids stood out for their diagnostic potential, exhibiting remarkable ability to differentiate SCZ patients from HCs with an unparalleled classification performance, evidenced by an area under the curve (AUC) of 0.94 (95% CI, 0.82-1.00). These lipids included specific ceramides and phosphoethanolamines, pointing to a distinct lipid metabolic fingerprint associated with SCZ. Furthermore, bioinformatic analyses reinforced the pivotal involvement of these lipids in SCZ-related lipid metabolic processes, suggesting their integral role in the disorder's pathophysiology. This study significantly advances our understanding of SCZ by pinpointing dysregulated exosomal lipid metabolism as a key factor in its pathology. The identified serum exosome-derived lipids emerge as compelling biomarkers for SCZ diagnosis, offering a promising avenue towards the development of objective and reliable diagnostic tools.
Collapse
Affiliation(s)
- Chen-Xi Xu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, No. 27, South Street of Zhongguancun, Haidian District, Beijing, 100081, China
| | - Wei Huang
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiao-Jie Shi
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jia-Quan Liang
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xuan Fang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, No. 27, South Street of Zhongguancun, Haidian District, Beijing, 100081, China
| | - He-Yuan Chen
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, No. 27, South Street of Zhongguancun, Haidian District, Beijing, 100081, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, No. 27, South Street of Zhongguancun, Haidian District, Beijing, 100081, China.
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
7
|
Zeng Q, Luo X, Chen X, Luo W, Li R, Yang S, Yang J, Shu X, Li Q, Hu J, Ma L, Mantzoros CS. Renin-independent aldosteronism and metabolic dysfunction-associated steatotic liver disease and cirrhosis: A genetic association study. Clin Nutr 2025; 44:193-200. [PMID: 39708461 DOI: 10.1016/j.clnu.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND & AIMS Renin-independent aldosteronism (RIA) refers to a spectrum of autonomous aldosterone hypersecretion. We aimed to explore the genetical relationship between RIA and metabolic dysfunction-associated steatotic liver disease (MASLD) and cirrhosis. METHODS We included 125357 participants from the cohort of United Kingdom Biobank. We calculated a polygenic risk score (PRS) for RIA on the basis of reported data from genome-wide association studies, and performed an analysis of Phenome Wide Association Studies (PheWAS) on diverse outcomes. We explored the genetical relationship between RIA and MASLD or cirrhosis by using Mendelian randomization analysis. RESULTS An increased RIA PRS was associated with higher risks of MASLD and MASLD related cirrhosis, and the well-defined RIA related target organ damages such as hypertension or kidney diseases was also significant in the PheWAS analysis. When compared to individuals with low RIA PRS (tertile 1, 0.41-9.89), those with high RIA PRS (tertile 3, 13.58-23.16) showed significantly higher odds ratio (OR) of MASLD (OR 1.28, 95 % confidence interval [CI] 1.09-1.49) and cirrhosis (OR 1.49, 95%CI 1.03-2.16). In analyses of two-sample Mendelian randomization, genetically predicted RIA significantly correlated with elevated risks of MASLD and cirrhosis (inverse variance weighted odds ratio [95 % CI]: 1.05 [1.01-1.09]) for MASLD, 1.08 [1.02-1.13] for cirrhosis), meanwhile we observed no significant directional pleiotropy or heterogeneity. CONCLUSION Renin-independent aldosteronism is genetically associated with higher risks of MASLD and cirrhosis. Targeted treatment of autonomous aldosterone secretion may alleviate MASLD progression.
Collapse
Affiliation(s)
- Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolin Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Nephrology and Endocrinology, The People's Hospital of Tongliang District, Chongqing, China
| | - Xiangjun Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruolin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Xiaoyu Shu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinbo Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Linqiang Ma
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Boston VA Healthcare System, Boston, MA 02130, United States of America
| |
Collapse
|
8
|
Liu ZY, Zhang H, Sun XL, Liu JY. Causal association between metabolites and age-related macular degeneration: a bidirectional two-sample mendelian randomization study. Hereditas 2024; 161:51. [PMID: 39707561 DOI: 10.1186/s41065-024-00356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of visual impairment in the elderly population. Accumulating evidence has revealed the possible association between metabolites and AMD. This study aimed to assess the effect of plasma metabolites on AMD and its two subtypes using a bidirectional two-sample Mendelian randomization approach. METHODS The causality between plasma metabolites and AMD was assessed by a bidirectional two-sample Mendelian randomization (MR) analysis using the genome-wide association studies (GWAS) summary statistics of 1400 genetically determined metabolites (GDMs) and AMD. For this MR analysis, inverse variance weighted (IVW) was used as the primary method, with weighted median, MR-Egger, weighted mode, and simple mode as supplementary methods to examine the causality. MR-Egger intercept, Cochran's Q, and MR-PRESSO test were employed to evaluate possible pleiotropy and heterogeneity. RESULTS The results of IVW showed significant causal associations between 13 GDMs and AMD. 1-stearoyl-GPE (18:0), androstenediol (3β,17β) monosulfate, stearoyl sphingomyelin (d18:1/18:0), xylose, and X-11,850 exhibited a protective effect on AMD, while gulonate and mannonate increased the risk of AMD. 1-stearoyl-GPE (18:0) and X-11,850 exhibited protective effects on dry AMD. DHEAS, 1-stearoyl-GPE (18:0), 5α-androstan-3β,17β-diol disulfate, xylose, androstenediol (3β,17β) monosulfate, and N2-acetyl, N6, N6-dimethyllysine exhibited a protective effect on wet AMD, while succinimide, 16a-hydroxy DHEA 3-sulfate, and X-13,553 increased the risk of wet AMD. Horizontal pleiotropy and heterogeneity did not distort the causal estimates. In the reverse MR analysis, AMD reduced the androstenediol (3β,17β) monosulfate level, and increased the stearoyl sphingomyelin(d18:1/18:0) level. CONCLUSION This study supported the effect of plasma metabolites on AMD, providing novel insights for clinical diagnosis and prevention strategy.
Collapse
Affiliation(s)
- Zhen-Yu Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China.
| | - Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Xiu-Li Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Jian-Ying Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
9
|
Bertoni C, Pini C, Mazzocchi A, Agostoni C, Brambilla P. The Role of Alpha-Linolenic Acid and Other Polyunsaturated Fatty Acids in Mental Health: A Narrative Review. Int J Mol Sci 2024; 25:12479. [PMID: 39596544 PMCID: PMC11594615 DOI: 10.3390/ijms252212479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The present review investigates the relationship between polyunsaturated fatty acids (PUFAs) and mental health disorders, such as dementia, psychosis, schizophrenia, Alzheimer's disease, anorexia nervosa, and impairment problems in animals and human models. Data were collected from a variety of studies: randomized intervention trials, observational and interventional studies, case reports, and epidemiological studies. The evidence suggests that PUFAs are beneficial for mental health, brain function, and behavior. ALA, EPA, and DHA have very significant neuroprotective properties, particularly in inducing changes to the synaptic membrane and modulating brain cell signaling. In the case of neurodegenerative disorders, PUFAs incorporated into cellular membranes have been shown to protect against cell atrophy and death. The formal analyses of the included studies pointed to a decrease in ALA, EPA, and DHA levels in various populations (e.g., children, adolescents, adults, and seniors) presenting with different types of mental disorders. These results indicate that PUFA supplementation may be considered as an innovative therapeutic strategy to reduce the risk of neuronal degeneration.
Collapse
Affiliation(s)
- Camilla Bertoni
- Department of Veterinary Sciences for Health, Animal Production and Food Safety, University of Milan, 20122 Milan, Italy;
| | - Cecilia Pini
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (C.P.); (P.B.)
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Pediatric Area, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (C.P.); (P.B.)
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
10
|
Mongan D, Perry BI, Healy C, Susai SR, Zammit S, Cannon M, Cotter DR. Longitudinal Trajectories of Plasma Polyunsaturated Fatty Acids and Associations With Psychosis Spectrum Outcomes in Early Adulthood. Biol Psychiatry 2024; 96:772-781. [PMID: 38631425 DOI: 10.1016/j.biopsych.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Evidence supports associations between polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and psychosis. However, polyunsaturated fatty acid trajectories in the general population have not been characterized, and associations with psychosis spectrum outcomes in early adulthood are unknown. METHODS Plasma omega-6 to omega-3 ratio and DHA (expressed as percentage of total fatty acids) were measured by nuclear magnetic spectroscopy at 7, 15, 17, and 24 years of age in participants of ALSPAC (Avon Longitudinal Study of Parents and Children). Curvilinear growth mixture modeling evaluated body mass index-adjusted trajectories of both measures. Outcomes were assessed at 24 years. Psychotic experiences (PEs), at-risk mental state status, psychotic disorder, and number of PEs were assessed using the Psychosis-Like Symptoms interview (n = 3635; 2247 [61.8%] female). Negative symptoms score was measured using the Community Assessment of Psychic Experiences (n = 3484; 2161 [62.0%] female). Associations were adjusted for sex, ethnicity, parental social class, and cumulative smoking and alcohol use. RESULTS Relative to stable average, the persistently high omega-6 to omega-3 ratio trajectory was associated with increased odds of PEs and psychotic disorder, but attenuated on adjustment for covariates (PEs adjusted odds ratio [aOR] = 1.63, 95% CI = 0.92-2.89; psychotic disorder aOR = 1.69, 95% CI = 0.71-4.07). This was also the case for persistently low DHA (PEs aOR = 1.42, 95% CI = 0.84-2.37; psychotic disorder aOR = 1.14, 95% CI = 0.49-2.67). Following adjustment, persistently high omega-6 to omega-3 ratio was associated with increased number of PEs (β = 0.41, 95% CI = 0.05-0.78) and negative symptoms score (β = 0.43, 95% CI = 0.14-0.72), as was persistently low DHA (number of PEs β = 0.45, 95% CI = 0.14-0.76; negative symptoms β = 0.35, 95% CI = 0.12-0.58). CONCLUSIONS Optimization of polyunsaturated fatty acid status during development warrants further investigation in relation to psychotic symptoms in early adulthood.
Collapse
Affiliation(s)
- David Mongan
- Centre for Public Health, Queen's University Belfast, Northern Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland.
| | - Benjamin I Perry
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Stan Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
11
|
Qiu X, Guo R, Wang Y, Zheng S, Wang B, Gong Y. Mendelian randomization reveals potential causal relationships between cellular senescence-related genes and multiple cancer risks. Commun Biol 2024; 7:1069. [PMID: 39215079 PMCID: PMC11364673 DOI: 10.1038/s42003-024-06755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular senescence is widely acknowledged as having strong associations with cancer. However, the intricate relationships between cellular senescence-related (CSR) genes and cancer risk remain poorly explored, with insights on causality remaining elusive. In this study, Mendelian Randomization (MR) analyses were used to draw causal inferences from 866 CSR genes as exposures and summary statistics for 18 common cancers as outcomes. We focused on genetic variants affecting gene expression, DNA methylation, and protein expression quantitative trait loci (cis-eQTL, cis-mQTL, and cis-pQTL, respectively), which were strongly linked to CSR genes alterations. Variants were selected as instrumental variables (IVs) and analyzed for causality with cancer using both summary-data-based MR (SMR) and two-sample MR (TSMR) approaches. Bayesian colocalization was used to unravel potential regulatory mechanisms underpinning risk variants in cancer, and further validate the robustness of MR results. We identified five CSR genes (CNOT6, DNMT3B, MAP2K1, TBPL1, and SREBF1), 18 DNA methylation genes, and LAYN protein expression which were all causally associated with different cancer types. Beyond causality, a comprehensive analysis of gene function, pathways, and druggability values was also conducted. These findings provide a robust foundation for unravelling CSR genes molecular mechanisms and promoting clinical drug development for cancer.
Collapse
Affiliation(s)
- Xunan Qiu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Rui Guo
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yingying Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuwen Zheng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Bengang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China.
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
12
|
Lutz M, Moya PR, Gallorio S, Ríos U, Arancibia M. Effects of Dietary Fiber, Phenolic Compounds, and Fatty Acids on Mental Health: Possible Interactions with Genetic and Epigenetic Aspects. Nutrients 2024; 16:2578. [PMID: 39203714 PMCID: PMC11356825 DOI: 10.3390/nu16162578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Scientific evidence shows that dietary patterns are a key environmental determinant of mental health. Dietary constituents can modify epigenetic patterns and thus the gene expression of relevant genetic variants in various mental health conditions. In the present work, we describe some nutrigenomic effects of dietary fiber, phenolic compounds (plant secondary metabolites), and fatty acids on mental health outcomes, with emphasis on their possible interactions with genetic and epigenetic aspects. Prebiotics, through their effects on the gut microbiota, have been associated with modulation in the neuroendocrine response to stress and the facilitation of the processing of positive emotions. Some of the genetic and epigenetic mechanisms include the serotonin neurotransmitter system (TPH1 gene) and the brain-derived neurotrophic factor (inhibition of histone deacetylases). The consumption of phenolic compounds exerts a positive role in neurocognitive domains. The evidence showing the involvement of genetic and epigenetic factors comes mainly from animal models, highlighting the role of epigenetic mechanisms through miRNAs and methyltransferases as well as the effect on the expression of apoptotic-related genes. Long-chain n-3 fatty acids (EPA and DHA) have been mainly related to psychotic and mood disorders, but the genetic and epigenetic evidence is scarce. Studies on the genetic and epigenetic basis of these interactions need to be promoted to move towards a precision and personalized approach to medicine.
Collapse
Affiliation(s)
- Mariane Lutz
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.L.); (P.R.M.); (U.R.)
- Department of Public Health, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2362735, Chile
| | - Pablo R. Moya
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.L.); (P.R.M.); (U.R.)
- Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Sofía Gallorio
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2362735, Chile;
| | - Ulises Ríos
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.L.); (P.R.M.); (U.R.)
- Department of Psychiatry, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2362735, Chile
| | - Marcelo Arancibia
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.L.); (P.R.M.); (U.R.)
- Department of Psychiatry, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2362735, Chile
| |
Collapse
|
13
|
Wang Q, Zhen W, Hu R, Wang Z, Sun Y, Sun W, Huang C, Xu J, Zhang H. Occlusion dysfunction and Alzheimer's disease: Mendelian randomization study. Front Aging Neurosci 2024; 16:1423322. [PMID: 39035234 PMCID: PMC11258003 DOI: 10.3389/fnagi.2024.1423322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Aim Occlusion dysfunction (OD) is increasingly linked to Alzheimer's disease (AD). This study aimed to elucidate the causal relationship between OD and AD using Mendelian randomization (MR) analysis. Materials and methods Genome-wide association study (GWAS) meta-analysis data obtained from FinnGen, IEU Open GWAS, and UK Biobank (UKBB) was represented as instrumental variables. We validated the causal relationship between periodontal disease (PD), loose teeth (PD & occlusion dysfunction), dentures restoration (occlusion recovery), and AD. Results According to the MR analysis, PD and AD have no direct causal relationship (P = 0.395, IVW). However, loose teeth significantly increased the risk of AD progression (P = 0.017, IVW, OR = 187.3567, 95%CI = 2.54E+00-1.38E+04). These findings were further supported by the negative causal relationship between dentures restoration and AD (P = 0.015, IVW, OR = 0.0234, 95%CI = 1.13E-03-0.485). Conclusion The occlusion dysfunction can ultimately induce Alzheimer's disease. Occlusion function was a potentially protective factor for maintaining neurological health.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wenyu Zhen
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Rui Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuqiang Sun
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, Anhui Public Health Clinical Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianguang Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Han G, Wei P, He M, Jia L, Su Q, Yang X, Hao R. Role of plasma fatty acid in age-related macular degeneration: insights from a mendelian randomization analysis. Lipids Health Dis 2024; 23:206. [PMID: 38951820 PMCID: PMC11218068 DOI: 10.1186/s12944-024-02197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND An imbalance in lipid metabolism has been linked to the development of AMD, but the causal relationship between AMD and plasma fatty acids (FAs) remains controversial. Using a two-sample Mendelian randomization (MR) approach, we sought to evaluate the impact of specific FA plasma levels on the risk of different AMD subtypes. METHODS We analysed genome-wide association data of circulating FAs from 115,006 European-descended individuals in the UK Biobank. These data were used in a two-sample MR framework to assess the potential role of circulating FAs in developing wet and dry AMD. Sensitivity analyses were conducted to ensure the robustness of our findings. Additional multivariable and locus-specific MR analyses were conducted to evaluate direct effects of FA on AMD subtypes, minimizing biases from lipoprotein-related traits and triglycerides. RESULTS Mendelian randomization revealed associations of omega-3 was associated with decreased wet (OR 0.78, 95%CI 0.66-0.92) and dry AMD (0.85, 0.74-0.97) risk, showed a protective effect on AMD. Notably, the omega-6 to omega-3 ratio showed potential causal effects on both wet (1.27, 1.03-1.56) and dry AMD (1.18, 1.02-1.37). Multivariable MR suggested that the causal relationship of omega-3, omega-6 to omega-3 ratio on wet AMD persists after conditioning on HDL, LDL and triglycerides, albeit with slightly diminished evidence strength. Locus-specific MR linked to omega-3(FADS1, 0.89, 0.82-0.98; FADS2, 0.88, 0.81-0.96) and omega-6 to omega-3 ratio (FADS1, 1.10, 1.02-1.20; FADS2, 1.11, 1.03-1.20) suggests causal effects of these factors on wet AMD. CONCLUSIONS The associations between plasma FA concentrations and AMD, suggest potential causal role of omega-3, and the omega-6 to omega-3 ratio in wet AMD. These results underscore the impact of an imbalanced circulating omega-3 and omega-6 FA ratio on AMD pathophysiology from MR perspective.
Collapse
Affiliation(s)
- Guoge Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China.
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China.
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China.
| | - Pinghui Wei
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
| | - Meiqin He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, PR China
| | - Lanbo Jia
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
| | - Qi Su
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
| | - Xiru Yang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
| | - Rui Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
| |
Collapse
|
15
|
Qi W, Wang D, Hong Y, Yao J, Wang H, Zhu L, Pan H. Investigating the causal relationship between thyroid dysfunction diseases and osteoporosis: a two-sample Mendelian randomization analysis. Sci Rep 2024; 14:12784. [PMID: 38834708 DOI: 10.1038/s41598-024-62854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
The prevalence of thyroid dysfunction diseases (TDFDs) and osteoporosis (OP) is high. Previous studies have indicated a potential association between TDFDs and OP, yet the causal direction remains unclear. This study aimed to investigate the potential causal relationship between TDFDs and the risk of developing OP and related fractures. We obtained pooled data from genome-wide association studies (GWASs) conducted on TDFDs and OP in European populations and identified single-nucleotide polymorphisms (SNPs) with genome-wide significance levels associated with exposure to TDFDs as instrumental variables. Inverse variance weighted (IVW) was employed as the primary method for Mendelian randomization (MR) analysis, supplemented by MR‒Egger, weighted median, simple mode and weighted mode methods. Sensitivity analyses were conducted to evaluate the robustness of the findings. The IVW method demonstrated an increased risk of OP in patients with TDFDs, including hyperthyroidism and hypothyroidism (TDFDs: OR = 1.11; 95% CI 1.09, 1.13; hypothyroidism: OR = 1.14; 95% CI 1.10, 1.17; hyperthyroidism: OR = 1.09; 95% CI 1.06, 1.12). These findings were supported by supplementary analysis, which revealed a positive correlation between TDFDs and the risk of OP. Multiple sensitivity analyses confirmed the absence of horizontal pleiotropy in the study, thus indicating the robustness of our results. The causal relationship between TDFDs and increased risk of OP implies the need for early bone mineral density (BMD) screening and proactive prevention and treatment strategies for individuals with TDFDs.
Collapse
Affiliation(s)
- Weihui Qi
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China
| | - Yihu Hong
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China
| | - Jun Yao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China
| | - Huang Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China
| | - Li Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China.
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China.
| |
Collapse
|
16
|
Carnegie R, Borges MC, Jones HJ, Zheng J, Haycock P, Evans J, Martin RM. Omega-3 fatty acids and major depression: a Mendelian randomization study. Transl Psychiatry 2024; 14:222. [PMID: 38811538 PMCID: PMC11136966 DOI: 10.1038/s41398-024-02932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Omega-3 fatty acids have been implicated in the aetiology of depressive disorders, though trials supplementing omega-3 to prevent major depressive disorder (MDD) have so far been unsuccessful. Whether this association is causal remains unclear. We used two sample Mendelian randomization (MR) to investigate causality. Genetic variants associated with circulating omega-3 and omega-6 fatty acids in UK Biobank (UKBB, n = 115,078) were selected as exposures. The Psychiatric Genomics Consortium (PGC) genome-wide association studies (GWAS) of MDD (n = 430,775; cases = 116,209; controls = 314,566) and recurrent depression (rMDD, n = 80,933; cases = 17,451; controls = 62,482), were used as outcomes. Multivariable MR (MVMR) models were used to account for biologically correlated lipids, such as high- and low-density cholesterol and triglycerides, and to explore the relative importance of longer-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) using data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE, n = 8866). Genetic colocalization analyses were used to explore the presence of a shared underlying causal variant between traits. Genetically predicted total omega-3 fatty acids reduced the odds of MDD (ORIVW 0.96 per standard deviation (SD, i.e. 0.22 mmol/l) (95% CIs 0.93-0.98, p = 0.003)). The largest point estimates were observed for eicosapentaenoic acid (EPA), a long-chain omega-3 fatty acid (OREPA 0.92; 95% CI 0.88-0.96; p = 0.0002). The effect of omega-3 fatty acids was robust to MVMR models accounting for biologically correlated lipids. 'Leave-one-out' analyses highlighted the FADS gene cluster as a key driver of the effect. Colocalization analyses suggested a shared causal variant using the primary outcome sample, but genomic confounding could not be fully excluded. This study supports a role for omega-3 fatty acids, particularly EPA, in the aetiology of depression, although pleiotropic mechanisms cannot be ruled out. The findings support guidelines highlighting the importance of EPA dose and ratio for MDD and question whether targeted interventions may be superior to universal prevention trials, as modest effect sizes will limit statistical power.
Collapse
Affiliation(s)
- R Carnegie
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- Medical Research Centre (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - M C Borges
- Medical Research Centre (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - H J Jones
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Centre (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - J Zheng
- Medical Research Centre (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - P Haycock
- Medical Research Centre (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - J Evans
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - R M Martin
- Medical Research Centre (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Zhou K, Zhang Q, Yuan Z, Yan Y, Zhao Q, Wang J. Plasma fatty acids and attention deficit hyperactivity disorder: a Mendelian randomization investigation. Front Psychiatry 2024; 15:1368942. [PMID: 38764473 PMCID: PMC11099612 DOI: 10.3389/fpsyt.2024.1368942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Background Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder of childhood, and pathogenesis is not fully understood. Observational studies suggest an association between fatty acids abnormalities and ADHD, but there are contradictions and differences between these findings. To address this uncertainty, we employed a two-sample bidirectional Mendelian Randomization (MR) analysis to investigate the causal relationship between fatty acids and ADHD. Methods We conducted a two-sample Mendelian Randomization (MR) study, selecting single nucleotide polymorphisms (SNPs) highly correlated with fatty acid levels from the CHARGE Consortium as our instruments. The outcome data were sourced from the Psychiatric Genomics Consortium (PGC) dataset on ADHD, comprising 225,534 individuals, with 162,384 cases and 65,693 controls. Inverse variance weighting, MR-Egger, and weighted median methods were employed to estimate the causal relationship between fatty acids and ADHD. Cochran's Q-test was used to quantify heterogeneity of instrumental variables. Sensitivity analyses included MR-Egger intercept tests, leave-one-out analyses, and funnel plots. Results The MR analysis revealed no significant associations between genetically predicted levels of various saturated, monounsaturated, and polyunsaturated fatty acids (including omega-3 and omega-6) and ADHD risk in the CHARGE and PGC cohorts. Notably, an initial association with Dihomo-gamma-linolenic acid (DGLA) (OR = 1.009, p = 0.032 by IVW) did not persist after correction for multiple testing (adjusted p-value = 0.286). Sensitivity analysis supported our findings, indicating robustness. Moreover, there was a lack of evidence supporting a causal link from ADHD to fatty acids. Conclusion While our study on the basis of genetic data does not provide evidence to support the causal role of fatty acids in ADHD, it does not preclude their potential involvement in reducing the risk of ADHD. Further research is needed to explore this possibility.
Collapse
Affiliation(s)
- Kangning Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhua Yuan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yurou Yan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Zhao
- Department of Pediatrics, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Junhong Wang
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Wu X, Jiang L, Qi H, Hu C, Jia X, Lin H, Wang S, Lin L, Zhang Y, Zheng R, Li M, Wang T, Zhao Z, Xu M, Xu Y, Chen Y, Zheng J, Bi Y, Lu J. Brain tissue- and cell type-specific eQTL Mendelian randomization reveals efficacy of FADS1 and FADS2 on cognitive function. Transl Psychiatry 2024; 14:77. [PMID: 38316767 PMCID: PMC10844634 DOI: 10.1038/s41398-024-02784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Epidemiological studies suggested an association between omega-3 fatty acids and cognitive function. However, the causal role of the fatty acid desaturase (FADS) gene, which play a key role in regulating omega-3 fatty acids biosynthesis, on cognitive function is unclear. Hence, we used two-sample Mendelian randomization (MR) to estimate the gene-specific causal effect of omega-3 fatty acids (N = 114,999) on cognitive function (N = 300,486). Tissue- and cell type-specific effects of FADS1/FADS2 expression on cognitive function were estimated using brain tissue cis-expression quantitative trait loci (cis-eQTL) datasets (GTEx, N ≤ 209; MetaBrain, N ≤ 8,613) and single cell cis-eQTL data (N = 373), respectively. These causal effects were further evaluated in whole blood cis-eQTL data (N ≤ 31,684). A series of sensitivity analyses were conducted to validate MR assumptions. Leave-one-out MR showed a FADS gene-specific effect of omega-3 fatty acids on cognitive function [β = -1.3 × 10-2, 95% confidence interval (CI) (-2.2 × 10-2, -5 × 10-3), P = 2 × 10-3]. Tissue-specific MR showed an effect of increased FADS1 expression in cerebellar hemisphere and FADS2 expression in nucleus accumbens basal ganglia on maintaining cognitive function, while decreased FADS1 expression in nine brain tissues on maintaining cognitive function [colocalization probability (PP.H4) ranged from 71.7% to 100.0%]. Cell type-specific MR showed decreased FADS1/FADS2 expression in oligodendrocyte was associated with maintaining cognitive function (PP.H4 = 82.3%, respectively). Increased FADS1/FADS2 expression in whole blood showed an effect on cognitive function maintenance (PP.H4 = 86.6% and 88.4%, respectively). This study revealed putative causal effect of FADS1/FADS2 expression in brain tissues and blood on cognitive function. These findings provided evidence to prioritize FADS gene as potential target gene for maintenance of cognitive function.
Collapse
Affiliation(s)
- Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Qi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifang Zhang
- Network and Information Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Rao S, Chen X, Ou OY, Chair SY, Chien WT, Liu G, Waye MMY. A Positive Causal Effect of Shrimp Allergy on Major Depressive Disorder Mediated by Allergy- and Immune-Related Pathways in the East Asian Population. Nutrients 2023; 16:79. [PMID: 38201909 PMCID: PMC10780813 DOI: 10.3390/nu16010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Observational studies have implied a potential correlation between allergic diseases and major depressive disorder (MDD). However, the relationship is still inconclusive as it is likely to be interfered with by substantial confounding factors and potential reverse causality. The present study aimed to investigate causal correlation of the two diseases by a Mendelian randomization (MR) study and further elucidate the underlying molecular mechanisms. METHODS With the biggest summary datasets of a genome-wide association study (GWAS) in the East Asian population, we conducted a two-sample, bidirectional MR study to assess the causal correlation between shrimp allergy (SA) and MDD. Subsequently, we identified the pleiotropic genes' susceptibility to the two diseases at whole-genome and tissue-specific levels, respectively. Enriched GO sets and KEGG pathways were also discovered to elucidate the potential underlying mechanisms. RESULTS With the most suitable MR method, SA was identified as a causal risk factor for MDD based on three different groups of independent genetic instruments, respectively (p < 2.81 × 10-2). In contrast, we did not observe a significant causal effect of MDD on SA. The GWAS-pairwise program successfully identified seven pleiotropic genetic variants (PPA3 > 0.8), indicating that the two diseases indeed have a shared genetic basis. At a whole-genome level, the MAGMA program identified 44 pleiotropic genes, which were enriched in allergy-related pathways, such as antigen processing and presentation pathway (p = 1.46 × 10-2). In brain-specific tissue, the S-MultiXcan program found 17 pleiotropic genes that were significantly enriched in immune-related pathways and GO sets, including asthma-related pathway, T-cell activation-related, and major histocompatibility complex protein-related GO sets. Regarding whole-blood tissue, the program identified six pleiotropic genes that are significantly enriched in tolerance induction-related GO sets. CONCLUSIONS The present study for the first time indicated a significant causal effect of SA on the occurrence of MDD, but the reverse was not true. Enrichment analyses of pleiotropic genes at whole-genome and tissue-specific levels implied the involvement of allergy and immune-related pathways in the shared genetic mechanism of the two diseases. Elucidating the causal effect and the acting direction may be beneficial in reducing the incidence rate of MDD for the massive group of SA patients in the East Asian region.
Collapse
Affiliation(s)
- Shitao Rao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; (S.R.); (X.C.)
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaotong Chen
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; (S.R.); (X.C.)
| | - Olivia Yanlai Ou
- Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Sek Ying Chair
- Croucher Laboratory for Human Genomics, Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China; (S.Y.C.); (W.T.C.)
| | - Wai Tong Chien
- Croucher Laboratory for Human Genomics, Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China; (S.Y.C.); (W.T.C.)
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, China
| | - Mary Miu Yee Waye
- Croucher Laboratory for Human Genomics, Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China; (S.Y.C.); (W.T.C.)
| |
Collapse
|
20
|
Hu J, Zeng Q, Chen X, Luo W, Tang Z, Mei M, Zhao W, Du Z, Liu Z, Li Q, Cheng Q, Yang S. Primary aldosteronism and lower-extremity arterial disease: a two-sample Mendelian randomization study. Cardiovasc Diabetol 2023; 22:352. [PMID: 38124109 PMCID: PMC10734059 DOI: 10.1186/s12933-023-02086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND AIMS Primary aldosteronism (PA) is an adrenal disorder of autonomous aldosterone secretion which promotes arterial injury. We aimed to explore whether PA is causally associated with lower-extremity arterial disease (LEAD). METHODS We included 39,713 patients with diabetes and 419,312 participants without diabetes from UK Biobank. We derived a polygenic risk score (PRS) for PA based on previous genome-wide association studies (GWAS). Outcomes included LEAD and LEAD related gangrene or amputation. We conducted a two-sample Mendelian randomization analysis for PA and outcomes to explore their potential causal relationship. RESULTS In whole population, individuals with a higher PA PRS had an increased risk of LEAD. Among patients with diabetes, compared to the subjects in the first tertile of PA PRS, subjects in the third tertile showed a 1.24-fold higher risk of LEAD (OR 1.24, 95% CI 1.03-1.49) and a 2.09-fold higher risk of gangrene (OR 2.09, 95% CI 1.27-3.44), and 1.72-fold higher risk of amputation (OR 1.72, 95% CI 1.10-2.67). Among subjects without diabetes, there was no significant association between PA PRS and LEAD, gangrene or amputation. Two-sample Mendelian randomization analysis indicated that genetically predictors of PA was significantly associated with higher risks of LEAD and gangrene (inverse variance weighted OR 1.20 [95% CI 1.08-1.34]) for LEAD, 1.48 [95% CI 1.28-1.70] for gangrene), with no evidence of significant heterogeneity or directional pleiotropy. CONCLUSIONS Primary aldosteronism is genetically and causally associated with higher risks of LEAD and gangrene, especially among patients with diabetes. Targeting on the autonomous aldosterone secretion may prevent LEAD progression.
Collapse
Affiliation(s)
- Jinbo Hu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Qinglian Zeng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Xiangjun Chen
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Wenjin Luo
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Ziwei Tang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Mei Mei
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Wenrui Zhao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Zhipeng Du
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Zhiping Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China.
| | - Qingfeng Cheng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China.
| | - Shumin Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China.
| |
Collapse
|
21
|
Chen Y, Bai B, Ye S, Gao X, Zheng X, Ying K, Pan H, Xie B. Genetic effect of metformin use on risk of cancers: evidence from Mendelian randomization analysis. Diabetol Metab Syndr 2023; 15:252. [PMID: 38057926 DOI: 10.1186/s13098-023-01218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Increasing number of studies reported the positive effect of metformin on the prevention and treatment of cancers. However, the genetic causal effect of metformin utilization on the risk of common cancers was not completely demonstrated. METHODS Two-sample Mendelian Randomization (two-sample MR) analysis was conducted to uncover the genetically predicted causal association between metformin use and 26 kinds of cancers. Besides, two-step Mendelian Randomization (two-step MR) assessment was applied to clarify the mediators which mediated the causal effect of metformin on certain cancer. We utilized five robust analytical methods, in which the inverse variance weighting (IVW) method served as the major one. Sensitivity, pleiotropy, and heterogeneity were assessed. The genetic statistics of exposure, outcomes, and mediators were downloaded from publicly available datasets, including the Open Genome-Wide Association Study (GWAS), FinnGen consortium (FinnGen), and UK Biobank (UKB). RESULTS Among 26 kinds of common cancers, HER-positive breast cancer was presented with a significant causal relationship with metformin use [Beta: - 4.0982; OR: 0.0166 (95% CI: 0.0008, 0.3376); P value: 0.0077], which indicated metformin could prevent people from HER-positive breast cancer. Other cancers only showed modest associations with metformin use. Potential mediators were included in two-step MR, among which total testosterone levels (mediating effect: 24.52%) displayed significant mediating roles. Leave-one-out, MR-Egger, and MR-PRESSO analyses produced consistent outcomes. CONCLUSION Metformin use exhibited a genetically protective effect on HER-positive breast cancer, which was partially mediated by total testosterone levels.
Collapse
Affiliation(s)
- Yao Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Shuchang Ye
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital, Soochow University, Suzhou, 215004, People's Republic of China
| | - Xinnan Zheng
- Department of Radiation Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Kangkang Ying
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, People's Republic of China.
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, People's Republic of China.
| |
Collapse
|
22
|
Xu H, Sun Y, Francis M, Cheng CF, Modulla NT, Brenna JT, Chiang CWK, Ye K. Shared genetic basis informs the roles of polyunsaturated fatty acids in brain disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.03.23296500. [PMID: 37873425 PMCID: PMC10593041 DOI: 10.1101/2023.10.03.23296500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The neural tissue is rich in polyunsaturated fatty acids (PUFAs), components that are indispensable for the proper functioning of neurons, such as neurotransmission. PUFA nutritional deficiency and imbalance have been linked to a variety of chronic brain disorders, including major depressive disorder (MDD), anxiety, and anorexia. However, the effects of PUFAs on brain disorders remain inconclusive, and the extent of their shared genetic determinants is largely unknown. Here, we used genome-wide association summary statistics to systematically examine the shared genetic basis between six phenotypes of circulating PUFAs (N = 114,999) and 20 brain disorders (N = 9,725-762,917), infer their potential causal relationships, identify colocalized regions, and pinpoint shared genetic variants. Genetic correlation and polygenic overlap analyses revealed a widespread shared genetic basis for 77 trait pairs between six PUFA phenotypes and 16 brain disorders. Two-sample Mendelian randomization analysis indicated potential causal relationships for 16 pairs of PUFAs and brain disorders, including alcohol consumption, bipolar disorder (BIP), and MDD. Colocalization analysis identified 40 shared loci (13 unique) among six PUFAs and ten brain disorders. Twenty-two unique variants were statistically inferred as candidate shared causal variants, including rs1260326 (GCKR), rs174564 (FADS2) and rs4818766 (ADARB1). These findings reveal a widespread shared genetic basis between PUFAs and brain disorders, pinpoint specific shared variants, and provide support for the potential effects of PUFAs on certain brain disorders, especially MDD, BIP, and alcohol consumption.
Collapse
Affiliation(s)
- Huifang Xu
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Yitang Sun
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Michael Francis
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Claire F. Cheng
- Department of Genetics, University of Georgia, Athens, Georgia
| | | | - J. Thomas Brenna
- Dell Pediatric Research Institute and Department of Pediatrics, The University of Texas at Austin, Texas
- Dell Pediatric Research Institute and Department of Chemistry, The University of Texas at Austin, Texas
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Texas
| | - Charleston W. K. Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, Georgia
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| |
Collapse
|
23
|
Hiller JK, Jangmo A, Tesli MS, Jaholkowski PP, Hoseth EZ, Steen NE, Haram M. Lipid Biomarker Research in Bipolar Disorder: A Scoping Review of Trends, Challenges, and Future Directions. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:594-604. [PMID: 37881590 PMCID: PMC10593953 DOI: 10.1016/j.bpsgos.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 10/27/2023] Open
Abstract
Bipolar disorder (BD) is a disabling disorder with heterogeneous symptom profiles and trajectories. Like many other neuropsychiatric disorders, clinical decision making related to diagnoses and choice of treatment is based on clinical assessments alone, and risk prediction for treatment success or resistance at an individual level remains sparse. An enormous effort to add biological markers to this risk prediction is ongoing. The role of lipids in normal brain functioning is well established, and several hypotheses about the role of lipids in the pathogenesis of neuropsychiatric disorders, including BD, have been made. The frequent comorbidity between neuropsychiatric disorders and cardiovascular disease, the genetic overlap of risk genes for severe mental disorders and genes involved in lipid regulation, and the lipid-altering effects of antipsychotics and mood stabilizers indicate that lipids could hold promise as biomarkers for neuropsychiatric disorders, including BD. To date, reviews of lipid biomarkers in schizophrenia and major depression have noted caveats for future investigations, while reviews of lipid biomarker research in BD is missing. In the current scoping review, we present a comprehensive overview of trends in previous research on lipid biomarkers in BD. The current literature varies greatly in the phenotypes investigated and study designs, leading to divergent findings. Small sample size; potential confounders related to physical activity, nutritional status, and medication use; and cross-sectional designs were frequently reported limitations. Future research may benefit from pivoting toward utilization of newer laboratory techniques such as lipidomics, but consistent use of study methods across cohorts is also needed.
Collapse
Affiliation(s)
| | - Andreas Jangmo
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Martin Steen Tesli
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Research and Education in Forensic Psychiatry, Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Piotr Pawel Jaholkowski
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Zsuzsanna Hoseth
- Clinic of Mental Health and Addiction, Møre and Romsdal Health Trust, Kristiansund, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marit Haram
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Liu Z, Pan H, Liu B, Li L, Yang H, Shen T. Environmental and occupational risk factors for COPD and its prevalence among miners worldwide: a Mendelian randomization and meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97545-97561. [PMID: 37592069 DOI: 10.1007/s11356-023-29269-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death after cardiovascular disease and stroke, and its incidence is associated with genetic, environmental, and occupational factors. Miner is high-risk population for COPD, but the global prevalence of COPD in this group is inaccurate. In this study, the environmental and occupational risk factors for COPD were explored comprehensively with a two-sample Mendelian randomization study by combining genome-wide association data from two large global sample sizes of publicly available databases, UK Biobank (n = 503,317) and FinnGen (n = 193,638), as well as the prevalence of COPD among miners was investigated with meta-analysis followed a random-effects model including seven studies (16,033 miners in total). This study found that asthma, smoking, shift work, and workplace dust exposure may increase an individual's risk of COPD. The pooled prevalence of COPD among miners globally was 12% (95% CI: 8%, 18%), with higher prevalence of COPD among ex-smokers and dust-exposed individuals, and was significantly influenced by the method of diagnosis. Our findings suggest that there is currently a lack of practical criteria for diagnosing COPD in the physical examination and screening of miners. The actual prevalence of COPD may be underestimated due to the healthy worker effect and the phenomenon of job switching, and appropriate policies should be favored in the future to reduce the risk of COPD in miner.
Collapse
Affiliation(s)
- Zikai Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Haihong Pan
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bin Liu
- Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lanlan Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hongxu Yang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
25
|
Li Y, Tang C, Wu W, Li Z, Li X, Huang W, Chen W, Mai X, Li X, Xu C, Xie G, Liang J. Abnormal blood lipid and electrocardiogram characteristics in common mental disorders. BMC Psychiatry 2023; 23:465. [PMID: 37365547 DOI: 10.1186/s12888-023-04965-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND At present, there is not enough evidence to prove the relationship between blood lipid and electrocardiogram (ECG) abnormalities in common mental disorders (CMD). This study aimed to explore the relationship between them, to detect and prevent arrhythmia or sudden death. METHODS We collected 272 CMD patients (maintained a fixed drug dose pattern for 1 year or more), including 95 schizophrenias (SC), 90 bipolar disorders (BD) and 87 major depressive disorders (MDD), and 78 healthy controls (HC) from the Third People's Hospital of Foshan, China. We analyzed and compared their blood lipid and ECG indicators, to clarify the relationship between them. RESULTS 350 participants were included. There were no significant differences in age, gender, total cholesterol (TC), low density lipoprotein (LDL) and QTc (p > 0.05) among subjects. And there were significant differences in body mass index (BMI), triglyceride (TG), high density lipoprotein (HDL), heart rate, PR interval and QRS width (p < 0.05). Person correlation analysis showed that QRS width was positively correlated with BMI and TG. And negatively correlated with HDL. Meanwhile, QTc was positively correlated with BMI. Multiple linear regional analysis further proved that TG (B = 3.849, p = 0.007) and LDL (B = 11.764, p = 0.018) were the risk factors, and HDL (B = -9.935, p = 0.025) was the protective factor for QRS width increase. CONCLUSION Long term medication of CMD patients should strengthen weight management, and conduct regular blood lipid and ECG examinations to achieve early detection and intervention in order to promote their health.
Collapse
Affiliation(s)
- Yan Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Chaohua Tang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Weibo Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Zhijian Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Wei Huang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Wensheng Chen
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Xiancong Mai
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Caixia Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China.
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Messina A, Concerto C, Rodolico A, Petralia A, Caraci F, Signorelli MS. Is It Time for a Paradigm Shift in the Treatment of Schizophrenia? The Use of Inflammation-Reducing and Neuroprotective Drugs-A Review. Brain Sci 2023; 13:957. [PMID: 37371435 DOI: 10.3390/brainsci13060957] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Comprehending the pathogenesis of schizophrenia represents a challenge for global mental health. To date, although it is evident that alterations in dopaminergic, serotonergic, and glutamatergic neurotransmission underlie the clinical expressiveness of the disease, neuronal disconnections represent only an epiphenomenon. In recent years, several clinical studies have converged on the hypothesis of microglia hyperactivation and a consequent neuroinflammatory state as a pathogenic substrate of schizophrenia. Prenatal, perinatal, and postnatal factors can cause microglia to switch from M2 anti-inflammatory to M1 pro-inflammatory states. A continuous mild neuroinflammatory state progressively leads to neuronal loss, a reduction in dendritic spines, and myelin degeneration. The augmentation of drugs that reduce neuroinflammation to antipsychotics could be an effective therapeutic modality in managing schizophrenia. This review will consider studies in which drugs with anti-inflammatory and neuroprotective properties have been used in addition to antipsychotic treatment in patients with schizophrenia.
Collapse
Affiliation(s)
- Antonino Messina
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Carmen Concerto
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Translational Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| |
Collapse
|
27
|
Hu C, Zhou Y, Wu X, Jia X, Zhu Y, Zheng R, Wang S, Lin L, Qi H, Lin H, Li M, Wang T, Zhao Z, Xu M, Xu Y, Chen Y, Ning G, Borges MC, Wang W, Zheng J, Bi Y, Lu J. Evaluating the distinct pleiotropic effects of omega-3 fatty acids on type 2 diabetes mellitus: a mendelian randomization study. J Transl Med 2023; 21:370. [PMID: 37286992 DOI: 10.1186/s12967-023-04202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Observational studies and conventional Mendelian randomization (MR) studies showed inconclusive evidence to support the association between omega-3 fatty acids and type 2 diabetes. We aim to evaluate the causal effect of omega-3 fatty acids on type 2 diabetes mellitus (T2DM), and the distinct intermediate phenotypes linking the two. METHODS Two-sample MR was performed using genetic instruments derived from a recent genome-wide association study (GWAS) of omega-3 fatty acids (N = 114,999) from UK Biobank and outcome data obtained from a large-scale T2DM GWAS (62,892 cases and 596,424 controls) in European ancestry. MR-Clust was applied to determine clustered genetic instruments of omega-3 fatty acids that influences T2DM. Two-step MR analysis was used to identify potential intermediate phenotypes (e.g. glycemic traits) that linking omega-3 fatty acids with T2DM. RESULTS Univariate MR showed heterogenous effect of omega-3 fatty acids on T2DM. At least two pleiotropic effects between omega-3 fatty acids and T2DM were identified using MR-Clust. For cluster 1 with seven instruments, increasing omega-3 fatty acids reduced T2DM risk (OR: 0.52, 95%CI 0.45-0.59), and decreased HOMA-IR (β = - 0.13, SE = 0.05, P = 0.02). On the contrary, MR analysis using 10 instruments in cluster 2 showed that increasing omega-3 fatty acids increased T2DM risk (OR:1.10; 95%CI 1.06-1.15), and decreased HOMA-B (β = - 0.04, SE = 0.01, P = 4.52 × 10-5). Two-step MR indicated that increasing omega-3 fatty acid levels decreased T2DM risk via decreasing HOMA-IR in cluster 1, while increased T2DM risk via decreasing HOMA-B in cluster 2. CONCLUSIONS This study provides evidence to support two distinct pleiotropic effects of omega-3 fatty acids on T2DM risk influenced by different gene clusters, which could be partially explained by distinct effects of omega-3 fatty acids on insulin resistance and beta cell dysfunction. The pleiotropic feature of omega-3 fatty acids variants and its complex relationships with T2DM need to be carefully considered in future genetic and clinical studies.
Collapse
Affiliation(s)
- Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyue Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Qi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria-Carolina Borges
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Hu J, Chen X, Luo Y, Yang J, Zeng Q, Luo W, Shu X, Cheng Q, Gong L, Wang Z, Li Q, Yang S. Renin-independent aldosteronism and chronic kidney disease in diabetes: Observational and Mendelian randomization analyses. Metabolism 2023:155593. [PMID: 37236301 DOI: 10.1016/j.metabol.2023.155593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Renin-independent aldosteronism (RIA) describes the spectrum of autonomous aldosterone secretion from mild to overt. We aimed to explore whether RIA is causally associated with chronic kidney disease (CKD) in patients with diabetes. METHODS We cross-sectionally included 1027, 402 and 39,709 patients with any type of diabetes from cohorts of EIMDS, CONPASS and UK Biobank, respectively. In EIMDS, we defined RIA and renin-dependent aldosteronism based on plasma aldosterone and renin concentrations. We performed captopril challenge test to confirm renin-dependent or independent aldosteronism in CONPASS. In UK Biobank, we generated genetic instruments for RIA based on the genome-wide association studies (GWAS). We extracted the corresponding single nucleotide polymorphisms (SNPs) information from the GWAS data of CKD in diabetes. We harmonized the SNP-RIA and SNP-CKD data to conduct the two-sample Mendelian randomization analyses. FINDINGS In EIMDS and CONPASS, when compared to subjects with normal aldosterone concentration or renin-dependent aldosteronism, participants with RIA had a lower estimated glomerular filtration rate, a higher prevalence of CKD, and a higher multivariate-adjusted odds ratio (OR) of CKD (OR 2.62 [95%CI 1.09-6.32] in EIMDS, and 4.31 [1.39-13.35] in CONPASS). The two-sample Mendelian randomization analysis indicated that RIA was significantly associated with a higher risk of CKD (inverse variance weighted OR 1.10 [95 % CI 1.05-1.14]), with no evidence of significant heterogeneity or substantial directional pleiotropy. INTERPRETATION Among patients with diabetes, renin-independent aldosteronism is causally associated with a higher risk of CKD. Targeted treatment of autonomous aldosterone secretion may benefit renal function in diabetes.
Collapse
Affiliation(s)
- Jinbo Hu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Chen
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Luo
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Bishan Hospital of Chongqing, Bishan hospital of Chongqing medical university, China
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Qinglian Zeng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Luo
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Shu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, China
| | - Qingfeng Cheng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lilin Gong
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihong Wang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Shumin Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
29
|
Frajerman A, Chaumette B, Farabos D, Despres G, Simonard C, Lamazière A, Krebs MO, Kebir O. Membrane Lipids in Ultra-High-Risk Patients: Potential Predictive Biomarkers of Conversion to Psychosis. Nutrients 2023; 15:2215. [PMID: 37432345 DOI: 10.3390/nu15092215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023] Open
Abstract
Alterations in membrane lipids are reported in schizophrenia. However, no conclusion can be drawn regarding the extended and predictive value of these alterations in persons at ultra-high risk of psychosis (UHR). Recent studies suggested that sterols' impact on psychiatric disorders was underestimated. Here, we simultaneously explored sterols, fatty acids (FA), and phospholipids (PL) in UHR persons for the first time. We analysed erythrocyte membrane lipids in 61 UHR persons, including 29 who later converted to psychosis (UHR-C) and 32 who did not (UHC-NC). We used gas chromatography for FA and liquid chromatography tandem with mass spectrometry for sterols and phospholipids. Among UHR individuals, elevated baseline membrane linoleic acid level was associated with conversion to psychosis (26.1% vs. 60.5%, p = 0.02). Combining sterols, FA, and PL membrane composition improved the prediction of psychosis onset (AUC = 0.73). This is the first report showing that membrane sterol participates, with other membrane lipids, in modulating the risk of psychosis. It suggests that membrane lipids could be used as biomarkers for personalised medicine in UHR patients.
Collapse
Affiliation(s)
- Ariel Frajerman
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERM U1266, F-75014 Paris, France
| | - Boris Chaumette
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERM U1266, F-75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, F-75674 Paris, France
- Department of Psychiatry, McGill University, Montréal, QC H3A 0G4, Canada
| | - Dominique Farabos
- INSERM UMR S 938, Département METOMICS, Centre de Recherche Saint-Antoine, Sorbonne Université, AP-HP, F-75012 Paris, France
| | - Gaétan Despres
- INSERM UMR S 938, Département METOMICS, Centre de Recherche Saint-Antoine, Sorbonne Université, AP-HP, F-75012 Paris, France
| | - Christelle Simonard
- INSERM UMR S 938, Département METOMICS, Centre de Recherche Saint-Antoine, Sorbonne Université, AP-HP, F-75012 Paris, France
| | - Antonin Lamazière
- INSERM UMR S 938, Département METOMICS, Centre de Recherche Saint-Antoine, Sorbonne Université, AP-HP, F-75012 Paris, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERM U1266, F-75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, F-75674 Paris, France
| | - Oussama Kebir
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERM U1266, F-75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, F-75674 Paris, France
| |
Collapse
|
30
|
Gao Z, Li B, Guo X, Bai W, Kou C. The association between schizophrenia and white blood cells count: a bidirectional two-sample Mendelian randomization study. BMC Psychiatry 2023; 23:271. [PMID: 37076806 PMCID: PMC10114369 DOI: 10.1186/s12888-023-04760-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/07/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Positive associations between the risk of schizophrenia and the level of white blood cells (WBC) count have been suggested by observational studies. However, the causality of this association is still unclear. METHODS We used a group of bidirectional two-sample Mendelian randomization (MR) analyses to estimate the causal relationship between schizophrenia and WBC count traits (i.e., WBC count, lymphocyte count, neutrophil count, basophil count, eosinophil count, and monocyte count). The threshold of FDR-adjusted P < 0.05 was considered as showing potential evidence of a causal effect. Instrument variables were included based on the genome-wide significance threshold (P < 5 × 10- 8) and linkage disequilibrium (LD) clumping (r2 < 0.01). In total, 81, 95, 85, 87, 76, and 83 schizophrenia-related single nucleotide polymorphisms (SNPs) were used as genetic instruments from Psychiatric Genomics Consortium for six WBC count traits, respectively. And in reverse MR analysis, 458, 206, 408, 468, 473, and 390 variants extracted from six WBC count traits were utilized as genetic instruments, which were obtained from a recent large-scale Genome-Wide Association Study (GWAS). RESULTS Genetically predicted schizophrenia was positively associated with the level of WBC count [odds ratio (OR) 1.017, 95% confidence interval (CI) 1.008-1.026; P = 7.53 × 10- 4], basophil count (OR 1.014, 95%CI 1.005-1.022; P = 0.002), eosinophil count (OR 1.021, 95%CI 1.011-1.031; P = 2.77 × 10- 4), monocyte count (OR 1.018, 95%CI 1.009-1.027; P = 4.60 × 10- 4), lymphocyte count (OR 1.021, 95%CI 1.012-1.030; P = 4.51 × 10- 5), and neutrophil count (OR 1.013, 95%CI 1.005-1.022; P = 0.004). WBC count traits are not associated with the risk of schizophrenia in our reverse MR results. CONCLUSION Schizophrenia is associated with elevated levels of WBC count (i.e., higher WBC count, lymphocyte count, neutrophil count, basophil count, eosinophil count, and monocyte count).
Collapse
Affiliation(s)
- Zibo Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Biao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Xinru Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Wei Bai
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, China.
| | - Changgui Kou
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
31
|
Huang YJ, Ke W, Hu L, Wei YD, Dong MX. Liquid chromatography-mass spectrometry-based metabolomic profiling reveals sex differences of lipid metabolism among the elderly from Southwest China. BMC Geriatr 2023; 23:156. [PMID: 36944918 PMCID: PMC10031952 DOI: 10.1186/s12877-023-03897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The sexual dimorphism represents one of the triggers of the metabolic disparities while the identification of sex-specific metabolites in the elderly has not been achieved. METHODS A group of aged healthy population from Southwest China were recruited and clinical characteristics were collected. Fasting plasma samples were obtained and untargeted liquid chromatography-mass spectrometry-based metabolomic analyses were performed. Differentially expressed metabolites between males and females were identified from the metabolomic analysis and metabolite sets enrichment analysis was employed. RESULTS Sixteen males and fifteen females were finally enrolled. According to clinical characteristics, no significant differences can be found except for smoking history. There were thirty-six differentially expressed metabolites between different sexes, most of which were lipids and lipid-like molecules. Twenty-three metabolites of males were increased while thirteen were decreased compared with females. The top four classes of metabolites were fatty acids and conjugates (30.6%), glycerophosphocholines (22.2%), sphingomyelins (11.1%), and flavonoids (8.3%). Fatty acids and conjugates, glycerophosphocholines, and sphingomyelins were significantly enriched in metabolite sets enrichment analysis. CONCLUSIONS Significant lipid metabolic differences were found between males and females among the elderly. Fatty acids and conjugates, glycerophosphocholines, and sphingomyelins may partly account for sex differences and can be potential treatment targets for sex-specific diseases.
Collapse
Affiliation(s)
- Yuan-Jun Huang
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 430060, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Hubei General Hospital, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, China
| | - Ling Hu
- Department of Neurology, Renmin Hospital of Wuhan University, Hubei General Hospital, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, China
| | - You-Dong Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Mei-Xue Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Hubei General Hospital, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Nomura M, Tanaka K, Banno Y, Hara R, Asami M, Otsuka T, Tomata Y. Polyunsaturated fatty acids and risk of anorexia nervosa: A Mendelian randomization study. J Affect Disord 2023; 330:245-248. [PMID: 36907461 DOI: 10.1016/j.jad.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE Observational studies have suggested that polyunsaturated fatty acids (PUFAs) decrease the risk of anorexia nervosa (AN). In the present study, we examined this hypothesis using a Mendelian randomization analysis. METHODS We used summary statistics for single-nucleotide polymorphisms associated with plasma levels of n-6 (linoleic acid and arachidonic acid) and n-3 PUFAs (alpha-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) and the corresponding data for AN from a genome-wide association meta-analysis of 72,517 individuals (16,992 diagnosed AN cases and 55,525 controls). RESULTS None of the genetically predicted PUFAs were significantly associated with the risk of AN; odds ratios (95 % confidence interval) per 1 standard deviation increase in PUFA levels were 1.03 (0.98, 1.08) for linoleic acid, 0.99 (0.96, 1.03) for arachidonic acid, 1.03 (0.94, 1.12) for alpha-linolenic acid, 0.98 (0.90, 1.08) for eicosapentaenoic acid, 0.96 (0.91, 1.02) for docosapentaenoic acid, and 1.01 (0.90, 1.36) for docosahexaenoic acid. LIMITATION Only two types of fatty acids (LA and DPA) can be used for pleiotropy tests using the MR-Egger intercept test. CONCLUSION This study does not support the hypothesis that PUFAs decrease the risk of AN.
Collapse
Affiliation(s)
- Miho Nomura
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, Yokosuka, Japan
| | - Kotone Tanaka
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, Yokosuka, Japan
| | - Yukika Banno
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, Yokosuka, Japan
| | - Risako Hara
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, Yokosuka, Japan
| | - Momoko Asami
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, Yokosuka, Japan
| | - Tatsui Otsuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasutake Tomata
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, Yokosuka, Japan; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
33
|
Sitarz R, Juchnowicz D, Karakuła K, Forma A, Baj J, Rog J, Karpiński R, Machrowska A, Karakuła-Juchnowicz H. Niacin Skin Flush Backs-From the Roots of the Test to Nowadays Hope. J Clin Med 2023; 12:1879. [PMID: 36902666 PMCID: PMC10003235 DOI: 10.3390/jcm12051879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The niacin skin flush test (NSFT) is a simple method used to assess the content of fatty acids in cell membranes and is a possible indicator of factors hidden behind various outcomes in patients. The purpose of this paper is to determine the potential usefulness of NSFT in mental disorder diagnostics along with the determination of factors that may affect its results. The authors reviewed articles from 1977 onwards, focusing on the history, variety of methodologies, influencing factors, and proposed mechanisms underlying its performance. Research indicated that NSFT could be applicable in early intervention, staging in psychiatry, and the search for new therapeutic methods and drugs based on the mechanisms of NSFT action. The NSFT can contribute to defining an individualized diet for patients and prevent the development of damaging disease effects at an early stage. There is promising evidence for supplementation with polyunsaturated fatty acids, which have a beneficial influence on the metabolic profile and are effective even in the subclinical phase of the disease. NSFT can contribute to the new classification of diseases and a better understanding of certain mental disorders' pathophysiology. However, there is a need to establish a validated method for assessing the NSFT results.
Collapse
Affiliation(s)
- Ryszard Sitarz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
| | - Dariusz Juchnowicz
- Department of Psychiatry and Psychiatric Nursing, Medical University of Lublin, 20-059 Lublin, Poland
| | - Kaja Karakuła
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
- Department of Forensic Medicine, Medical University of Lublin, 20-059 Lublin, Poland
| | - Alicja Forma
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
- Department of Forensic Medicine, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Joanna Rog
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 02-776 Warsaw, Poland
| | - Robert Karpiński
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| | - Anna Machrowska
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| | - Hanna Karakuła-Juchnowicz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
| |
Collapse
|
34
|
A Preliminary Comparison of Plasma Tryptophan Metabolites and Medium- and Long-Chain Fatty Acids in Adult Patients with Major Depressive Disorder and Schizophrenia. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020413. [PMID: 36837614 PMCID: PMC9968143 DOI: 10.3390/medicina59020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Background and Objectives: Disturbance of tryptophan (Trp) and fatty acid (FA) metabolism plays a role in the pathogenesis of psychiatric disorders. However, quantitative analysis and comparison of plasma Trp metabolites and medium- and long-chain fatty acids (MCFAs and LCFAs) in adult patients with major depressive disorder (MDD) and schizophrenia (SCH) are limited. Materials and Methods: Clinical symptoms were assessed and the level of Trp metabolites and MCFAs and LCFAs for plasma samples from patients with MDD (n = 24) or SCH (n = 22) and healthy controls (HC, n = 23) were obtained and analyzed. Results: We observed changes in Trp metabolites and MCFAs and LCFAs with MDD and SCH and found that Trp and its metabolites, such as N-formyl-kynurenine (NKY), 5-hydroxyindole-3-acetic acid (5-HIAA), and indole, as well as omega-3 polyunsaturated fatty acids (N3) and the ratio of N3 to omega-6 polyunsaturated fatty acids (N3: N6), decreased in both MDD and SCH patients. Meanwhile, levels of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) decreased in SCH patients, and there was a significant difference in the composition of MCFAs and LCFAs between MDD and SCH patients. Moreover, the top 10 differential molecules could distinguish the two groups of diseases from HC and each other with high reliability. Conclusions: This study provides a further understanding of dysfunctional Trp and FA metabolism in adult patients with SCH or MDD and might develop combinatorial classifiers to distinguish between these disorders.
Collapse
|
35
|
Jia L, Chen Y, Liu C, Luan Y, Jia M. Genetically predicted green tea intake and the risk of arterial embolism and thrombosis. Front Med (Lausanne) 2023; 10:1156254. [PMID: 37035310 PMCID: PMC10075307 DOI: 10.3389/fmed.2023.1156254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Background In previous observational studies, green tea intake has been demonstrated to protect against arterial embolism and thrombosis. However, whether there is a causative connection between green tea intake and arterial embolism and thrombosis is currently unclear. Methods A two-sample Mendelian randomization (MR) study has been designed to explore whether there is a causal association between green tea intake and arterial embolism and thrombosis by acquiring exposure and outcome data from previously published research. Data from the MRC-IEU (data on green tea intake, 64,949 participants) consortium and the FinnGen project (data on arterial embolism and thrombosis, 278 cases of arterial thrombosis and 92,349 control participants) has been utilized to determine the causal impact of green tea intake on arterial embolism and thrombosis. Results We found that genetically predicted green tea intake was causally associated with a lower risk of arterial embolism and thrombosis (IVW odds ratio [OR] per SD decrease in green tea intake = 0.92 [95% confidence interval, 0.85-0.99]; p = 0.032). Moreover, the sensitivity analysis (both MR Egger regression and weighted median) yielded comparable estimates but with low precision. No directional pleiotropic effect between green tea intake and arterial embolism and thrombosis was observed in both funnel plots and MR-Egger intercepts. Conclusions Our study provided causal evidence that genetically predicted green tea intake may be a protective factor against arterial embolism and thrombosis.
Collapse
|
36
|
Huang Y, Chen C, Zhou W, Zhang Q, Zhao Y, He D, Ye Z, Xia P. Genetically predicted alterations in thyroid function are associated with the risk of benign prostatic disease. Front Endocrinol (Lausanne) 2023; 14:1163586. [PMID: 37143736 PMCID: PMC10153094 DOI: 10.3389/fendo.2023.1163586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023] Open
Abstract
Background Benign prostatic diseases (BPDs), such as benign prostate hyperplasia (BPH) and prostatitis, harm the quality of life of affected patients. However, observational studies exploring the association between thyroid function and BPDs have hitherto yielded inconsistent results. In this study, we explored whether there is a causal genetic association between them using Mendelian randomization (MR) analysis. Methods We used publicly available summary statistics from the Thyroidomics Consortium and 23andMe on thyrotropin (TSH; 54,288 participants), thyroxine [free tetraiodothyronine (FT4); 49,269 participants], subclinical hypothyroidism (3,440 cases and 49,983 controls), overt hypothyroidism (8,000 cases and 117,000 controls), and subclinical hyperthyroidism (1,840 cases and 49,983 controls) to screen for instrumental variables of thyroid function. Results for BPD such as prostatic hyperplasia (13,118 cases and 72,799 controls) and prostatitis (1,859 cases and 72,799 controls) were obtained from the FinnGen study. The causal relationship between thyroid function and BPD was primarily assessed using MR with an inverse variance weighted approach. In addition, sensitivity analyses were performed to test the robustness of the results. Results We found that TSH [OR (95% CI) = 0.912(0.845-0.984), p =1.8 x 10-2], subclinical hypothyroidism [OR (95% CI) = 0.864(0.810-0.922), p =1.04 x 10-5], and overt hypothyroidism [OR (95% CI) = 0.885 (0.831-0. 944), p =2 x 10-4] had a significant effect on genetic susceptibility to BPH, unlike hyperthyroidism [OR (95% CI) = 1.049(0.990-1.111), p =1.05 x 10-1] and FT4 [OR (95% CI) = 0.979(0.857-1.119), p = 7.59 x 10-1] had no effect. We also found that TSH [OR (95% CI) =0.823(0.700-0.967), p = 1.8 x 10-2] and overt hypothyroidism [OR (95% CI) = 0.853(0.730-0.997), p = 4.6 x 10-2] significantly influenced the prostatitis, whereas FT4 levels [OR (95% CI) = 1.141(0.901-1.444), p = 2.75 x 10-1], subclinical hypothyroidism [OR (95% CI) =0. 897(0.784- 1.026), p = 1.12 x 10-1], and hyperthyroidism [OR (95% CI) = 1.069(0.947-1.206), p = 2.79 x 10-1] did not have a significant effect. Conclusion Overall, our study results suggest that hypothyroidism and TSH levels influence the risk of genetically predicted BPH and prostatitis, providing new insights into the causal relationship between thyroid function and BPD.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wanqing Zhou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qian Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanfei Zhao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dehao He
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
- *Correspondence: Pingping Xia,
| |
Collapse
|
37
|
Zeng L, Lv H, Wang X, Xue R, Zhou C, Liu X, Yu H. Causal effects of fatty acids on depression: Mendelian randomization study. Front Nutr 2022; 9:1010476. [PMID: 36562041 PMCID: PMC9763462 DOI: 10.3389/fnut.2022.1010476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives Fatty acids (FA) are widely believed to play a role in the pathophysiology of depression. However, the causal relationships between FA and depression remain elusive and warrant further research. We aimed to investigate the potential causal relationship between FA [saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)] and the risk of depression using Mendelian randomization (MR) analysis. Methods We conducted a two-sample MR analysis using large-scale European-based genome-wide association studies (GWASs) summary data related to depression (n = 500,199 individuals) and FA [saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)] levels. MR analysis was performed using the Wald ratio and inverse variance-weighted (IVW) methods, and sensitivity analysis was conducted by the simple mode, weighted mode, weighted median method, and MR-Egger method. Results We found the causal effects for the levels of oleic acid (OA; OR = 1.07, p = 5.72 × 10-4), adrenic acid (OR = 0.74, p = 1.01 × 10-3), α-linolenic acid (ALA; OR = 2.52, p = 1.01 × 10-3), eicosapentaenoic acid (EPA; OR = 0.84, p = 3.11 × 10-3) on depression risk, after Bonferroni correction. The sensitivity analyses indicated similar trends. No causal effect between the levels of SFA and depression risk was observed. Conclusion Our study suggests that adrenic acid and EPA are protective against the risk of depression, while OA and ALA are potential risk factors for depression. Nonetheless, the underlying mechanisms that mediate the association between these FAs and depression risk should be investigated in further experiments.
Collapse
Affiliation(s)
- Lingsi Zeng
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Honggang Lv
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Xubo Wang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Ranran Xue
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Cong Zhou
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Xia Liu
- Department of Sleep Medicine, Shandong Daizhuang Hospital, Jining, Shandong, China,Xia Liu,
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China,*Correspondence: Hao Yu,
| |
Collapse
|
38
|
Yu YH, Su HM, Lin SH, Hsiao PC, Lin YT, Liu CM, Hwang TJ, Hsieh MH, Liu CC, Chien YL, Kuo CJ, Hwu HG, Chen WJ. Niacin skin flush and membrane polyunsaturated fatty acids in schizophrenia from the acute state to partial remission: a dynamic relationship. SCHIZOPHRENIA 2022; 8:38. [PMID: 35853900 PMCID: PMC9261101 DOI: 10.1038/s41537-022-00252-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022]
Abstract
Despite the consistent finding of an attenuated niacin-induced flush response in schizophrenia, its long-term stability and relationship to the membrane polyunsaturated fatty acid (PUFA) levels remain unknown. We conducted niacin skin tests and measured the membrane PUFAs using gas chromatography among 46 schizophrenia inpatients and 37 healthy controls at the baseline and the 2-month follow-up. Attenuated flush responses were persistently observed in schizophrenia patients in both acute and partial remission states, whereas an increased flush response was found in the controls. A persistent decrease in both dihomo-gamma-linolenic acid and docosahexaenoic acid and an increased turnover of arachidonic acid (ARA) via endogenous biosynthesis were found in schizophrenia patients. A composite niacin flush score by combining those with a control-to-case ratio of >1.4 (i.e., scores at 5 min of 0.1 M, 0.01 M, and 0.001 M + 10 min of 0.01 M and 0.001 M + 15 min of 0.001 M) at the baseline was correlated positively with ARA levels among controls but not among schizophrenia patients, whereas the flush score at the 2-month follow-up was correlated positively with ARA levels among patients. The 2-month persistence of attenuated niacin-induced flush response in schizophrenia patients implies that the niacin skin test might tap a long-term vulnerability to schizophrenia beyond acute exacerbation.
Collapse
|
39
|
Evidence that complement and coagulation proteins are mediating the clinical response to omega-3 fatty acids: A mass spectrometry-based investigation in subjects at clinical high-risk for psychosis. Transl Psychiatry 2022; 12:454. [PMID: 36307392 PMCID: PMC9616837 DOI: 10.1038/s41398-022-02217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Preliminary evidence indicates beneficial effects of omega-3 polyunsaturated fatty acids (PUFAs) in early psychosis. The present study investigates the molecular mechanism of omega-3 PUFA-associated therapeutic effects in clinical high-risk (CHR) participants. Plasma samples of 126 CHR psychosis participants at baseline and 6-months follow-up were included. Plasma protein levels were quantified using mass spectrometry and erythrocyte omega-3 PUFA levels were quantified using gas chromatography. We examined the relationship between change in polyunsaturated PUFAs (between baseline and 6-month follow-up) and follow-up plasma proteins. Using mediation analysis, we investigated whether plasma proteins mediated the relationship between change in omega-3 PUFAs and clinical outcomes. A 6-months change in omega-3 PUFAs was associated with 24 plasma proteins at follow-up. Pathway analysis revealed the complement and coagulation pathway as the main biological pathway to be associated with change in omega-3 PUFAs. Moreover, complement and coagulation pathway proteins significantly mediated the relationship between change in omega-3 PUFAs and clinical outcome at follow-up. The inflammatory protein complement C5 and protein S100A9 negatively mediated the relationship between change in omega-3 PUFAs and positive symptom severity, while C5 positively mediated the relationship between change in omega-3 and functional outcome. The relationship between change in omega-3 PUFAs and cognition was positively mediated through coagulation factor V and complement protein C1QB. Our findings provide evidence for a longitudinal association of omega-3 PUFAs with complement and coagulation protein changes in the blood. Further, the results suggest that an increase in omega-3 PUFAs decreases symptom severity and improves cognition in the CHR state through modulating effects of complement and coagulation proteins.
Collapse
|
40
|
Wu Y, Li Y, Zhu J, Long J. Shared genetics and causality underlying epilepsy and attention-deficit hyperactivity disorder. Psychiatry Res 2022; 316:114794. [PMID: 35994864 DOI: 10.1016/j.psychres.2022.114794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
The prevalence of attention deficit hyperactivity disorder (ADHD) in patients with epilepsy was much higher than prevalence in general population, and vice versa. The mechanisms underlying comorbid ADHD and epilepsy remained largely unknown. Here, we systematically analyzed the genetic correlation, causality, shared genetics and specific trait related tissues by using linkage disequilibrium score regression (LDSC), two sample Mendelian randomization (TwoSampleMR), bivariate causal mixture model (MiXeR), conjunctional false discovery rate (conjFDR) and LDSC applied to specifically expressed genes based on genome wide association studies (GWASs) data of ADHD and epilepsy. We found that ADHD had significant positive genetic association with epilepsy. Two-sample Mendelian randomization analysis with genome wide significant single nucleotide polymorphisms (SNPs) as instrument variables suggested a positively causal effect of ADHD on epilepsy. Using MiXeR, which estimates the total amount of shared variants, we observed 1 K causal variants overlapped between ADHD and epilepsy. At conjFDR <0.05, ADHD shared 2 distinct genomic loci with Epilepsy. Further disease-relevant tissues analysis showed that cortex, substantia nigra, amygdala and hippocampus were both associated with ADHD and epilepsy. Our results suggested that ADHD was genetically correlated with epilepsy, which might be due to the fact that they shared common pathogenic sites and tissues origin.
Collapse
Affiliation(s)
- Yong Wu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan, Hubei 430012, China
| | - Yichen Li
- Radiology Department, Wuhan Mental Health Center, Wuhan, Hubei 430012, China
| | - Junhong Zhu
- Department of Mental Rehabilitation, Wuhan Mental Health Center, Wuhan, Hubei 430012, China.
| | - Jingyi Long
- Department of Child & Adolescent Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei 430012, China.
| |
Collapse
|
41
|
Wang J, Huang Y, Yang H, Lin Z, Campos AI, Rentería ME, Xu L. Plasma polyunsaturated fatty acid concentrations and sleep apnea risk: A two-sample Mendelian randomization study. Front Nutr 2022; 9:956900. [PMID: 36061896 PMCID: PMC9433775 DOI: 10.3389/fnut.2022.956900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous observational studies have found that lower levels of circulating polyunsaturated fatty acids (PUFAs) were associated with a higher risk of sleep apnea (SA). However, the causality of the association remains unclear. Materials and methods We used the two-sample Mendelian randomization (MR) study to assess the causal association of omega-3 and omega-6 fatty acids with SA. Single-nucleotide polymorphisms (SNPs) predicting the plasma level of PUFAs at the suggestive genome-wide significance level (p < 5 × 10–6) were selected as instrumental variables (IVs) from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) (n = ∼8,000) Consortium. For outcomes, the summary-level statistics of SA were obtained from the latest genome-wide association study (GWAS), which combined five cohorts with a total number of 25,008 SA cases and 172,050 snoring cases (total = 523,366). Results We found no association of α-linolenic acid (ALA) [odds ratio (OR) = 1.09 per% changed, 95% confidence interval (CI) 0.67–1.78], eicosapentaenoic acid (EPA) (OR = 0.94, 95% CI 0.88–1.01), docosapentaenoic acid (DPA) (OR = 0.95, 95% CI 0.88–1.02), and docosahexaenoic acid (DHA) (OR = 0.99, 95% CI 0.96–1.02) with the risk of SA using inverse-variance weighted (IVW) method. Moreover, for omega-6 PUFAs, no association between linoleic acid (LA) (OR = 0.98, 95% CI 0.96–1.01), arachidonic acid (AA) (1.00, 95% CI 0.99–1.01), and adrenic acid (AdrA) (0.93, 95% CI 0.71–1.21) with the risk of SA was found. Similarly, no associations of PUFAs with SA were found in single-locus MR analysis. Conclusion In the current study, we first found that there is no genetic evidence to support the causal role of omega-3 and omega-6 PUFAs in the risk of SA. From a public health perspective, our findings refute the notion that consumption of foods rich in PUFAs or the use of PUFAs supplementation can reduce the risk of SA.
Collapse
Affiliation(s)
- Jiao Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingyue Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huiling Yang
- Eastern-Fusion Master Studio of Hezhou, Hezhou, China
| | - Zihong Lin
- Hezhou Research Institute of Longevity Health Science, Hezhou, China
| | - Adrian I. Campos
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Miguel E. Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Lin Xu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
- Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Lin Xu,
| |
Collapse
|
42
|
Yue W, Huang H, Duan J. Potential diagnostic biomarkers for schizophrenia. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:385-416. [PMID: 37724326 PMCID: PMC10388817 DOI: 10.1515/mr-2022-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 09/20/2023]
Abstract
Schizophrenia (SCH) is a complex and severe mental disorder with high prevalence, disability, mortality and carries a heavy disease burden, the lifetime prevalence of SCH is around 0.7%-1.0%, which has a profound impact on the individual and society. In the clinical practice of SCH, key problems such as subjective diagnosis, experiential treatment, and poor overall prognosis are still challenging. In recent years, some exciting discoveries have been made in the research on objective biomarkers of SCH, mainly focusing on genetic susceptibility genes, metabolic indicators, immune indices, brain imaging, electrophysiological characteristics. This review aims to summarize the biomarkers that may be used for the prediction and diagnosis of SCH.
Collapse
Affiliation(s)
- Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University) and Chinese Academy of Medical Sciences Research Unit, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University Health System, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|