1
|
Frenț OD, Stefan L, Morgovan CM, Duteanu N, Dejeu IL, Marian E, Vicaș L, Manole F. A Systematic Review: Quercetin-Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int J Mol Sci 2024; 25:12091. [PMID: 39596162 PMCID: PMC11594109 DOI: 10.3390/ijms252212091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The main goal of this systematic review on the flavonol class secondary metabolite quercetin is to evaluate and summarize the existing research on quercetin's potential health benefits, therapeutic properties, and effectiveness in disease prevention and treatment. In addition to evaluating quercetin's potential for drug development with fewer side effects and lower toxicity, this type of review attempts to collect scientific evidence addressing quercetin's roles as an antioxidant, anti-inflammatory, antibacterial, and anticancer agent. In the first part, we analyze various flavonoid compounds, focusing on their chemical structure, classification, and natural sources. We highlight their most recent biological activities as reported in the literature. Among these compounds, we pay special attention to quercetin, detailing its chemical structure, physicochemical properties, and process of biosynthesis in plants. We also present natural sources of quercetin and emphasize its health benefits, such as its antioxidant and anti-inflammatory effects. Additionally, we discuss methods to enhance its bioavailability, analyzing the latest and most effective delivery systems based on quercetin.
Collapse
Affiliation(s)
- Olimpia-Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Liana Stefan
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Claudia Mona Morgovan
- Department of Chemistry, Faculty of Informatics and Sciences, University of Oradea, No 1 University Street, 410087 Oradea, Romania
| | - Narcis Duteanu
- Faculty of Chemical Engineering, Biotechnologies, and Environmental Protection, Politehnica University of Timisoara, No. 2 Victoriei Square, 300006 Timişoara, Romania
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Felicia Manole
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
2
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Azizi SE, Dalli M, Roubi M, Moon S, Berrichi A, Maleb A, Kim SH, Gseyra N, Kim B. Insights on Phytochemistry and Pharmacological Properties of Argania spinosa L. Skeels: A Comprehensive Review. ACS OMEGA 2024; 9:36043-36065. [PMID: 39220481 PMCID: PMC11360053 DOI: 10.1021/acsomega.4c05618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Across civilization, medicinal and aromatic plants have occupied an important place due to their extensive use in the treatment of different diseases. This review aims to summarize the existing knowledge about Argania spinosa L. Skeels by bridging traditional herbal knowledge with scientific investigations performed since 1957. Also, this review has shed light on the plant's botanical description and its partition in Morocco, followed by its traditional usage in southwestern Morocco and its socioeconomic importance for the local population. Furthermore, the present comprehensive review reported exhaustively the chemical composition of native and introduced Argania spinosa L. Skeels found in fixed oil, such as fatty acids, tocopherols, and phytosterols. Moreover, the bioactive compounds identified in other plant parts are also highlighted. Also, this review reports also techniques adopted in extraction, isolation, and purification and identification of biocompounds found in Argania spinosa L. Skeels. This review also sheds light on the pharmacological properties of this endemic plant of Morocco, such as antioxidant, antidiabetic, antibacterial, antiobesity, nanotechnology, and toxicity. Furthermore, a section of clinical trials performed on the plant products is also reported. Finally, this comprehensive review forms the backbone for future research on argan and its bioproducts, leading to improved health conditions and addressing future challenges.
Collapse
Affiliation(s)
- Salah-eddine Azizi
- Higher
Institute of Nursing Professions and Health Techniques, 60000 Oujda, Morocco
| | - Mohammed Dalli
- Higher
Institute of Nursing Professions and Health Techniques, 60000 Oujda, Morocco
- Laboratory
of Bioresources Biotechnology Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University of
Oujda, 60000 Oujda, Morocco
| | - Mohammed Roubi
- Laboratory
of Bioresources Biotechnology Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University of
Oujda, 60000 Oujda, Morocco
| | - Seungjoon Moon
- Chansol
Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon, Republic of Korea 21390
- Department
of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Abdelbasset Berrichi
- Laboratory
of Agricultural Production Improvement, Biotechnology and Environment,
Faculty of Sciences, Mohammed First University
of Oujda, 60000 Oujda, Morocco
| | - Adil Maleb
- Laboratory
of Bioresources Biotechnology Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University of
Oujda, 60000 Oujda, Morocco
- Laboratory
of Microbiology, Faculty of Medicine and Pharmacy, University Mohammed First, 60000 Oujda, Morocco
| | - Sung-Hoon Kim
- Department
of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nadia Gseyra
- Laboratory
of Bioresources Biotechnology Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University of
Oujda, 60000 Oujda, Morocco
| | - Bonglee Kim
- Department
of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Riaz A, Ali S, Summer M, Noor S, Nazakat L, Aqsa, Sharjeel M. Exploring the underlying pharmacological, immunomodulatory, and anti-inflammatory mechanisms of phytochemicals against wounds: a molecular insight. Inflammopharmacology 2024:10.1007/s10787-024-01545-5. [PMID: 39138746 DOI: 10.1007/s10787-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.
Collapse
Affiliation(s)
- Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sharjeel
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
5
|
Farhadi F, Sharififar F, Jafari M, Rahimi VB, Askari N, Askari VR. Hallmarks of Quercetin Benefits as a Functional Supplementary in the Management of Diabetes Mellitus-Related Maladies: From Basic to Clinical Applications. Curr Drug Metab 2024; 25:653-669. [PMID: 39878112 DOI: 10.2174/0113892002339410250108031621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance. Moreover, QE stimulates insulin secretion and attenuates insulin resistance through various pathways, namely transient KATP channel, motivating peroxisome proliferator-activated receptor expression, increasing glucose transporter-4, and decreasing inducible nitric oxide synthase in skeletal muscle. QE has protective effects on the complications caused by diabetes, such as polycystic ovary syndrome, high-fat diet-induced obesity, diabetic-induced hepatic damage, vascular inflammation, nephropathy, and neuropathy.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Jafari
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Mahmud AR, Ema TI, Siddiquee MFR, Shahriar A, Ahmed H, Mosfeq-Ul-Hasan M, Rahman N, Islam R, Uddin MR, Mizan MFR. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:47. [PMID: 37216013 PMCID: PMC10183303 DOI: 10.1186/s43088-023-00387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Flavonols are phytoconstituents of biological and medicinal importance. In addition to functioning as antioxidants, flavonols may play a role in antagonizing diabetes, cancer, cardiovascular disease, and viral and bacterial diseases. Quercetin, myricetin, kaempferol, and fisetin are the major dietary flavonols. Quercetin is a potent scavenger of free radicals, providing protection from free radical damage and oxidation-associated diseases. Main body of the abstract An extensive literature review of specific databases (e.g., Pubmed, google scholar, science direct) were conducted using the keywords "flavonol," "quercetin," "antidiabetic," "antiviral," "anticancer," and "myricetin." Some studies concluded that quercetin is a promising antioxidant agent while kaempferol could be effective against human gastric cancer. In addition, kaempferol prevents apoptosis of pancreatic beta-cells via boosting the function and survival rate of the beta-cells, leading to increased insulin secretion. Flavonols also show potential as alternatives to conventional antibiotics, restricting viral infection by antagonizing the envelope proteins to block viral entry. Short conclusion There is substantial scientific evidence that high consumption of flavonols is associated with reduced risk of cancer and coronary diseases, free radical damage alleviation, tumor growth prevention, and insulin secretion improvement, among other diverse health benefits. Nevertheless, more studies are required to determine the appropriate dietary concentration, dose, and type of flavonol for a particular condition to prevent any adverse side effects.
Collapse
Affiliation(s)
- Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | | | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217 Bangladesh
| | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), Dhaka, 1208 Bangladesh
| | - Md. Mosfeq-Ul-Hasan
- Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | |
Collapse
|
7
|
Ungureanu AR, Chițescu CL, Luță EA, Moroșan A, Mihaiescu DE, Mihai DP, Costea L, Ozon EA, Fița AC, Balaci TD, Boscencu R, Gîrd CE. Outlook on Chronic Venous Disease Treatment: Phytochemical Screening, In Vitro Antioxidant Activity and In Silico Studies for Three Vegetal Extracts. Molecules 2023; 28:molecules28093668. [PMID: 37175078 PMCID: PMC10180301 DOI: 10.3390/molecules28093668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic venous disease is one of the most common vascular diseases; the signs and symptoms are varied and are often neglected in the early stages. Vascular damage is based on proinflammatory, prothrombotic, prooxidant activity and increased expression of several matrix metalloproteinases (MMPs). The aim of this research is preparation and preliminary characterization of three vegetal extracts (Sophorae flos-SE, Ginkgo bilobae folium-GE and Calendulae flos-CE). The obtained dry extracts were subjected to phytochemical screening (FT-ICR-MS, UHPLC-HRMS/MS) and quantitative analysis (UHPLC-HRMS/MS, spectrophotometric methods). Antioxidant activity was evaluated using three methods: FRAP, DPPH and ABTS. More than 30 compounds were found in each extract. The amount of flavones follows the succession: SE > GE > CE; the amount of phenolcarboxylic acids follows: SE > CE > GE; and the amount of polyphenols follows: SE > GE > CE. Results for FRAP method varied as follows: SE > CE > GE; results for the DPPH method followed: SE > GE > CE; and results for ABTS followed: SE > GE > CE. Strong and very strong correlations (appreciated by Pearson coefficient) have been observed between antioxidant activity and the chemical content of extracts. Molecular docking studies revealed the potential of several identified phytochemicals to inhibit the activity of four MMP isoforms. In conclusion, these three extracts have potential in the treatment of chronic venous disease, based on their phytochemical composition.
Collapse
Affiliation(s)
- Andreea Roxana Ungureanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Carmen Lidia Chițescu
- Faculty of Medicine and Pharmacy, Dunărea de Jos University of Galați, A.I. Cuza 35, 800010 Galați, Romania
| | - Emanuela Alice Luță
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Alina Moroșan
- Faculty of Chemical Engineering and Biotechnologies, University of Politehnica, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Faculty of Chemical Engineering and Biotechnologies, University of Politehnica, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Dragoș Paul Mihai
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Liliana Costea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Emma Adriana Ozon
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Ancuța Cătălina Fița
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Teodora Dalila Balaci
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Rica Boscencu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
8
|
Filošević Vujnović A, Rubinić M, Starčević I, Andretić Waldowski R. Influence of Redox and Dopamine Regulation in Cocaine-Induced Phenotypes Using Drosophila. Antioxidants (Basel) 2023; 12:antiox12040933. [PMID: 37107308 PMCID: PMC10136103 DOI: 10.3390/antiox12040933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Reactive Oxidative Species (ROS) are produced during cellular metabolism and their amount is finely regulated because of negative consequences that ROS accumulation has on cellular functioning and survival. However, ROS play an important role in maintaining a healthy brain by participating in cellular signaling and regulating neuronal plasticity, which led to a shift in our understanding of ROS from being solely detrimental to having a more complex role in the brain. Here we use Drosophila melanogaster to investigate the influence of ROS on behavioral phenotypes induced by single or double exposure to volatilized cocaine (vCOC), sensitivity and locomotor sensitization (LS). Sensitivity and LS depend on glutathione antioxidant defense. Catalase activity and hydrogen peroxide (H2O2) accumulation play a minor role, but their presence is necessary in dopaminergic and serotonergic neurons for LS. Feeding flies the antioxidant quercetin completely abolishes LS confirming the permissive role of H2O2 in the development of LS. This can only partially be rescued by co-feeding H2O2 or the dopamine precursor 3,4-dihydroxy-L-phenylalanine (L-DA) showing coordinate and similar contribution of dopamine and H2O2. Genetic versatility of Drosophila can be used as a tool for more precise dissection of temporal, spatial and transcriptional events that regulate behaviors induced by vCOC.
Collapse
Affiliation(s)
| | - Marko Rubinić
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivona Starčević
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | | |
Collapse
|
9
|
Liu X, Zhao L, Wu B, Chen F. Improving solubility of poorly water-soluble drugs by protein-based strategy: A review. Int J Pharm 2023; 634:122704. [PMID: 36758883 DOI: 10.1016/j.ijpharm.2023.122704] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Poorly water-soluble drugs are frequently encountered and present a most challengeable difficulty in pharmaceutical development. Poor solubility of drugs can lead to suboptimal bioavailability and therapeutic efficiency. Increasing efforts have been contributed to improve the solubility of poorly water-soluble drugs for better pharmacokinetics and pharmacodynamics. Among various solubility enhancement technologies, protein-based strategy to address poorly water-soluble drugs issues has special interests for natural advantages including versatile interactions between proteins and hydrophobic drugs, biocompatibility, biodegradation, and metabolization of proteins. The protein-drug formulations could be formed by covalent conjugations or noncovalent interactions to facilitate solubility of poorly water-soluble drugs. This review is to summarize the advances using proteins including plant proteins, mammalian proteins, and recombinant proteins, to enhance water solubility of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| | - Limin Zhao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
10
|
Maksimovic S, Stankovic M, Roganovic S, Nesic I, Zvezdanovic J, Tadic V, Zizovic I. Towards a modern approach to traditional use of Helichrysum italicum in dermatological conditions: In vivo testing supercritical extract on artificially irritated skin. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115779. [PMID: 36202166 DOI: 10.1016/j.jep.2022.115779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Helichrysum italicum has been widely used in traditional medicine to treat allergies, colds, cough, skin, liver and gallbladder disorders, inflammation, infections, and sleeplessness. Furthermore, it possesses considerable wound healing and skin protective properties, documented by several in vivo studies performed on animals. However, there is a lack of experimental evidence supporting its potential as a topical agent tested by human clinical trials. AIM OF THE STUDY The study aimed to investigate the skin protective activity of cotton gauze and polypropylene non-woven fabric, impregnated with H. italicum extract by the integrated supercritical CO2 extraction-supercritical solvent impregnation process. MATERIALS AND METHODS The integrated process of supercritical CO2 extraction of H. italicum and the impregnation of cotton gauze and polypropylene non-woven fabric was performed under 350 bar and 40 °C with and without the addition of ethanol as a cosolvent. Impregnated textile materials were tested in vivo for their bioactivity on irritated human skin. Randomized in vivo studies performed involved assays of both safety and efficacy of the impregnated textiles. The effects were evaluated using the in vivo non-invasive biophysical measurements of the following skin parameters: electrical capacitance, transepidermal water loss, melanin index, erythema index, and skin pH. RESULTS Both cotton gauze and polypropylene non-woven fabric were impregnated with H. italicum extracts under supercritical conditions with considerable values of the impregnation yield (1.97%-4.25%). The addition of ethanol as a cosolvent during the process caused significant changes in the incorporated extracts' impregnation yield and chemical profile. Both impregnated textile materials were safe, evaluated by their testing on the human skin with no cause of any irritation and redness. However, efficacy studies revealed that polypropylene non-woven fabric impregnated with H. italicum extract with ethanol as a cosolvent, possessed significantly greater potential for skin protection than the other investigated samples. CONCLUSIONS The present study demonstrated the feasibility of the combined supercritical extraction and impregnation process in developing materials for topical application based on H. italicum extract. The results of in vivo studies performed on human volunteers confirmed the suitability of H. italicum active components to be a part of human skin protective preparations because of their ability to maintain the skin unimpaired. Traditionally claimed applications as a medicinal plant capable of regenerating skin have been scientifically proven, in addition to employing green technology in obtaining the impregnated materials with a broad spectrum of utilization.
Collapse
Affiliation(s)
- Svetolik Maksimovic
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120, Belgrade, Serbia.
| | - Milica Stankovic
- University of Nis, Faculty of Medicine, Dr. Zorana Djindjica 81, 18000, Nis, Serbia
| | - Sonja Roganovic
- University of Nis, Faculty of Medicine, Dr. Zorana Djindjica 81, 18000, Nis, Serbia
| | - Ivana Nesic
- University of Nis, Faculty of Medicine, Dr. Zorana Djindjica 81, 18000, Nis, Serbia
| | - Jelena Zvezdanovic
- University of Nis, Faculty of Technology, Bulevar Oslobodjenja 124, 16000, Leskovac, Serbia
| | - Vanja Tadic
- Institute for Medical Plant Research "Dr. Josif Pancic ", Tadeusa Koscuska 1, 11000, Belgrade, Serbia
| | - Irena Zizovic
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
11
|
Wang Z, Liu Z, Wu C, Liu S, Wang D, Hu C, Chen T, Ran Z, Gan W, Li G. Computational Analysis on Antioxidant Activity of Four Characteristic Structural Units from Persimmon Tannin. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010320. [PMID: 36614657 PMCID: PMC9821802 DOI: 10.3390/ma16010320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/03/2023]
Abstract
Antioxidants are molecules that can prevent the harmful effects of oxygen, help capture and neutralize free radicals, and thus eliminate the damage of free radicals to the human body. Persimmon tannin (PT) has excellent antioxidant activity, which is closely related to its molecular structure. We report here a comparative study of four characteristic structural units from PT (epicatechin gallate (ECG), epigallocatechin gallate (EGCG), A-type linked ECG dimer (A-ECG dimer), A-type linked EGCG dimer (A-EGCG dimer)) to explore the structure-activity relationship by using the density functional theory. Based on the antioxidation mechanism of hydrogen atom transfer, the most favorable active site for each molecule exerts antioxidant activity is determined. The structural parameters, molecular electrostatic potential, and frontier molecular orbital indicate that the key active sites are located on the phenolic hydroxyl group of the B ring for ECG and EGCG monomers, and the key active sites of the two dimers are located on the phenolic hydroxyl groups of the A and D' rings. The natural bond orbital and bond dissociation energy of the phenolic hydroxyl hydrogen atom show that the C11-OH in the ECG monomer and the C12-OH in the EGCG monomer are the most preferential sites, respectively. The most active site of the two A-linked dimers is likely located on the D' ring C20' phenolic hydroxyl group. Based on computational analysis of quantum chemical parameters, the A-ECG dimer is a more potent antioxidant than the A-EGCG dimer, ECG, and EGCG. This computational analysis provides the structure-activity relationship of the four characteristic units which will contribute to the development of the application of PT antioxidants in the future.
Collapse
Affiliation(s)
| | - Zhigao Liu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Chenxi Wu
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Songlin Liu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Dianhui Wang
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Chaohao Hu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Tao Chen
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhaojin Ran
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Weijiang Gan
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
12
|
Quercetin inhibits the progression of endometrial HEC-1-A cells by regulating ferroptosis-a preliminary study. Eur J Med Res 2022; 27:292. [PMID: 36522794 PMCID: PMC9753389 DOI: 10.1186/s40001-022-00934-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Endometrial carcinoma (EC) is one of the most common female reproductive system tumors, which seriously threatens women's health. This preliminary study aimed to investigate the effects of quercetin on the EC cells and explore the potential mechanism. METHODS In this study, the effects of quercetin on endometrial cancer HEC-1-A cells were studied by a series of cell biological methods, including CCK-8 detection of cell activity, Western blotting of ferroptosis-related proteins, apoptosis detection, reactive oxygen species (ROS) detection and other detections. RESULTS Our results showed that quercetin inhibited the proliferation and migration of EC cells, induced cell apoptosis, and affected the cell cycle. Furthermore, the anti-tumor effect of quercetin was related to the induction of ferroptosis in the EC cells. CONCLUSIONS Our study shows quercetin may exert anti-tumor effects, which may be related to the regulation of ferroptosis. Our study provides evidence for the future treatment of EC with small molecule drugs.
Collapse
|
13
|
Kambale EK, Quetin-Leclercq J, Memvanga PB, Beloqui A. An Overview of Herbal-Based Antidiabetic Drug Delivery Systems: Focus on Lipid- and Inorganic-Based Nanoformulations. Pharmaceutics 2022; 14:2135. [PMID: 36297570 PMCID: PMC9610297 DOI: 10.3390/pharmaceutics14102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetes is a metabolic pathology with chronic high blood glucose levels that occurs when the pancreas does not produce enough insulin or the body does not properly use the insulin it produces. Diabetes management is a puzzle and focuses on a healthy lifestyle, physical exercise, and medication. Thus far, the condition remains incurable; management just helps to control it. Its medical treatment is expensive and is to be followed for the long term, which is why people, especially from low-income countries, resort to herbal medicines. However, many active compounds isolated from plants (phytocompounds) are poorly bioavailable due to their low solubility, low permeability, or rapid elimination. To overcome these impediments and to alleviate the cost burden on disadvantaged populations, plant nanomedicines are being studied. Nanoparticulate formulations containing antidiabetic plant extracts or phytocompounds have shown promising results. We herein aimed to provide an overview of the use of lipid- and inorganic-based nanoparticulate delivery systems with plant extracts or phytocompounds for the treatment of diabetes while highlighting their advantages and limitations for clinical application. The findings from the reviewed works showed that these nanoparticulate formulations resulted in high antidiabetic activity at low doses compared to the corresponding plant extracts or phytocompounds alone. Moreover, it was shown that nanoparticulate systems address the poor bioavailability of herbal medicines, but the lack of enough preclinical and clinical pharmacokinetic and/or pharmacodynamic trials still delays their use in diabetic patients.
Collapse
Affiliation(s)
- Espoir K. Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
14
|
Derosa G, D'Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother Res 2022; 36:3709-3765. [PMID: 35912631 PMCID: PMC9804244 DOI: 10.1002/ptr.7564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Dysglycemia is a disease state preceding the onset of diabetes and includes impaired fasting glycemia and impaired glucose tolerance. This review aimed to collect and analyze the literature reporting the results of clinical trials evaluating the effects of selected nutraceuticals on glycemia in humans. The results of the analyzed trials, generally, showed the positive effects of the nutraceuticals studied alone or in association with other supplements on fasting plasma glucose and post-prandial plasma glucose as primary outcomes, and their efficacy in improving insulin resistance as a secondary outcome. Some evidences, obtained from clinical trials, suggest a role for some nutraceuticals, and in particular Berberis, Banaba, Curcumin, and Guar gum, in the management of prediabetes and diabetes. However, contradictory results were found on the hypoglycemic effects of Morus, Ilex paraguariensis, Omega-3, Allium cepa, and Trigonella faenum graecum, whereby rigorous long-term clinical trials are needed to confirm these data. More studies are also needed for Eugenia jambolana, as well as for Ascophyllum nodosum and Fucus vesiculosus which glucose-lowering effects were observed when administered in combination, but not alone. Further trials are also needed for quercetin.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Angela D'Angelo
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| |
Collapse
|
15
|
Kdimy A, El Yadini M, Guaadaoui A, Bourais I, El Hajjaji S, Le HV. Phytochemistry, Biological Activities, Therapeutic Potential, and Socio-Economic Value of the Caper Bush (Capparis spinosa L.). Chem Biodivers 2022; 19:e202200300. [PMID: 36064949 DOI: 10.1002/cbdv.202200300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022]
Abstract
Capparis spinosa L., commonly known as the caper bush, is an aromatic plant growing in most of the Mediterranean basin and some parts of Western Asia. C. spinosa L. has been utilized as a medicinal plant for quite a long time in conventional phytomedicine. Polyphenols and numerous bioactive chemicals extracted from C. spinosa L. display various therapeutic properties that have made this plant a target for further research as a health promoter. This review is meant to systematically summarize the traditional uses, the phytochemical composition of C. spinosa L., and the diverse pharmacological activities, as well as the synthetic routes to derivatives of some identified chemical components for the improvement of biological activities and enhancement of pharmacokinetic profiles. This review also addresses the benefits of C. spinosa L. in adapting to climate change and the socio-economic value that C. spinosa L. brings to the rural economies of many countries.
Collapse
Affiliation(s)
- Ayoub Kdimy
- Mohammed V University of Rabat Faculty of Sciences: Universite Mohammed V de Rabat Faculte des Sciences, Faculty of Science, United Nations Avenue, Agdal, Rabat, MOROCCO
| | - Meryem El Yadini
- Mohammed V University of Rabat Faculty of Sciences: Universite Mohammed V de Rabat Faculte des Sciences, Faculty of Science, United Nations Avenue, Agdal, Rabat, MOROCCO
| | - Abdelkarim Guaadaoui
- Mohammed V University of Rabat Faculty of Sciences: Universite Mohammed V de Rabat Faculte des Sciences, Faculty of Science, United Nations Avenue, Agdal, Rabat, MOROCCO
| | - Ilhame Bourais
- Mohammed V University of Rabat Faculty of Sciences: Universite Mohammed V de Rabat Faculte des Sciences, Faculty of Science, United Nations Avenue, Agdal, Rabat, MOROCCO
| | - Souad El Hajjaji
- Mohammed V University of Rabat Faculty of Sciences: Universite Mohammed V de Rabat Faculte des Sciences, Faculty of Science, United Nations Avenue, Agdal, Rabat, MOROCCO
| | - Hoang V Le
- University of Mississippi School of Pharmacy, Department of BioMolecular Sciences, 419 Faser Hall, 38677, University, UNITED STATES
| |
Collapse
|
16
|
Seyydi SM, Tofighi A, Rahmati M, Tolouei Azar J. Exercise and Urtica Dioica extract ameliorate mitochondrial function and the expression of cardiac muscle Nuclear Respiratory Factor 2 and Peroxisome proliferator-activated receptor Gamma Coactivator 1-alpha in STZ-induced diabetic rats. Gene 2022; 822:146351. [PMID: 35189251 DOI: 10.1016/j.gene.2022.146351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes mellitus can affect and disrupt the levels of PGC1α and NRF2 proteins in the mitochondrial biogenesis pathway. Considering the anti-diabetic properties of Urtica Dioica extract and exercise, this study aimed to investigate the beneficial effects of Urtica Dioica extract and endurance activity on PGC1α and NRF2 protein levels in the streptozotocin-induced diabetic rat heart tissue. MATERIALS AND METHODS 58 male Wistar rats were divided into five groups (N = 12) including: healthy control (HC), diabetes control (DC), diabetes Urtica Dioica (D-UD), diabetes exercise training (DT), and diabetes exercise training Urtica Dioica (DT-UD). Diabetes was induced intraperitoneally by STZ (45 mg/kg) injection. Two weeks after the induction of diabetes, the rats were stimulated to carry out the exercise (moderate intensity/5day/week) and the gavage of UD extract (50 mg/kg/day) was administered to the rats for six weeks. In this study, the western blotting method was used to measure the levels of PGC1α and NRF2 proteins. Moreover, cardiography was used to evaluate the functional parameters of the heart (ejection fraction & fractional shortening). Finally, the bioluminescence and ELISA methods were used to determine the content of adenosine triphosphate and citrate synthase. RESULTS The cardiac function parameters, the mitochondrial ATP and the CS content in DC group mice were impaired in comparison with the other study groups and showed a decreasing trend (P < 0.001). The treatment with EX + UD extract was able to minimize the rate of these disorders and acted as a protector of mitochondrial function. There were significant differences in the expression levels of NRF2 (F = 17.7, P = 0.001) and PGC-1α (F = 43.7, P = 0.001) mitochondrial proteins among the different groups. The levels of these proteins were significantly reduced in the DC group in comparison with the HC group (P < 0.001). The treatment with EX or UD extract increased the expression of PGC-1α and NRF2 proteins in the heart muscle of animals in the DT and D-UD groups in comparison with the DC group (P < 0.05). Moreover, the expression of these proteins was more pronounced in the DT-UD group. There was not a significant difference between the DT-UD group and the HC group regarding the expression of these proteins (P > 0.05). CONCLUSIONS The results of this study showed that treatment with EX and UD extract could treat the disorders which were caused by diabetes in the parameters of cardiac function. Moreover, it was able to improve the expression of the levels of proteins which were involved in mitochondrial biogenesis and its function. Finally, this kind of treatment could attract more attention to the roles of EX and UD extract in the prevention of cardiovascular complications in future studies.
Collapse
Affiliation(s)
- Seyyedeh Masoumeh Seyydi
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran
| | - Asghar Tofighi
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran.
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Javad Tolouei Azar
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
17
|
Kaur R, Sood A, Lang DK, Bhatia S, Al-Harrasi A, Aleya L, Behl T. Potential of flavonoids as anti-Alzheimer's agents: bench to bedside. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26063-26077. [PMID: 35067880 DOI: 10.1007/s11356-021-18165-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Developing therapies for neurodegenerative diseases are challenging because of the presence of blood-brain barrier and Alzheimer being one of the commonest and uprising neurodegenerative disorders possess the need for developing novel therapies. Alzheimer's is attributed to be the sixth leading cause of death in the USA and the number of cases is estimated to be increased from 58 million in 2021 to 88 million by 2050. Natural drugs have benefits of being cost-effective, widely available, fewer side effects, and immuno-booster can be useful in managing Alzheimer. Flavonoids can slow the neuronal degeneration as they have shown activity in central nervous system and are able to cross the blood-brain barrier. These can be easily extracted from fruits, vegetable, and plants. In Alzheimer disease, flavonoids scavenges the reactive oxygen species and reduces the production of amyloid beta protein. Agents from sub-classes of flavonoids such as flavanones, flavanols, flavones, flavonols, anthocyanins, and isoflavones having pharmacological action in treating Alzheimer disease are discussed in this review.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India.
| |
Collapse
|
18
|
Kant V, Sharma M, Jangir BL, Kumar V. Acceleration of wound healing by quercetin in diabetic rats requires mitigation of oxidative stress and stimulation of the proliferative phase. Biotech Histochem 2022; 97:461-472. [PMID: 35105256 DOI: 10.1080/10520295.2022.2032829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Increased oxidative stress in diabetic wound areas impairs wound healing. Quercetin exhibits significant antioxidant properties. We investigated the effects of topical quercetin on antioxidant status in diabetic wound areas and its effect on wound healing in rats. A 2 cm2 cutaneous wound was produced on the back of streptozotocin induced diabetic and normal rats. Rats were divided into three groups of 20: normal healthy control group, diabetic group and quercetin treated diabetic group. The control and diabetic groups were treated topically with ointment base once daily for 21 days. The quercetin treated diabetic rats were treated similarly with ointment containing quercetin. The quercetin treated diabetic group exhibited increased levels of catalase, glutathione peroxidase, superoxide dismutase and total thiols compared to the diabetic group. Nitrite levels in the diabetic group were decreased significantly on day 3 compared to the healthy control group. Malondialdehyde levels were decreased in the quercetin treated diabetic group compared to the diabetic group. The expression of proliferating cell nuclear antigen) (PCNA) was greater in the quercetin treated diabetic group on day 7 compared to healthy control and diabetic groups. Formation of granulation tissue and the quality of healed tissue was improved in the quercetin treated diabetic group compared to the diabetic group. Quercetin improves antioxidant status in wounds of diabetic rats and stimulates the proliferation phase, which accelerates wound healing.
Collapse
Affiliation(s)
- Vinay Kant
- Department of Veterinary Pharmacology and Toxicology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Maneesh Sharma
- Department of Veterinary Clinical Complex, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science, Hisar, India
| | - Babu Lal Jangir
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Vinod Kumar
- Department of Veterinary Pharmacology and Toxicology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
19
|
Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed Pharmacother 2021; 146:112560. [PMID: 34953390 DOI: 10.1016/j.biopha.2021.112560] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Quercetin, a bioflavonoid abundant in grapefruit, onion, berries, etc., has vast therapeutic potential, especially against Type 2 diabetes and its complications. Quercetin showed similar effects as that of metformin, (widely prescribed antidiabetic drug) in cell lines models (Sajan et al., 2010; Dhanya et al., 2017). In vivo findings also showcase it as a promising agent against diabetes and its pathophysiological complications. SCOPE AND APPROACH Quercetin can be produced on a large scale through a novel fermentation-based glycosylation strategy from cheap substrates and can be utilized as a dietary supplement. The review focuses on the mounting evidence pointing to Quercetin as a promising candidate for managing type 2 diabetes and its oxidative stress mediated pathophysiological complications. CONCLUSION Quercetin acts on multiple targets of diabetes and regulates key signalling pathways which improve the symptoms as well as the complications of Type 2 diabetes. However further studies are needed to improve the bioavailability and to establish a dosing regimen for Quercetin.
Collapse
Affiliation(s)
- R Dhanya
- Cardiovascular Diseases and Diabetes Biology Division, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud Post, Poojappura, Trivandrum 695014, Kerala, India.
| |
Collapse
|
20
|
M V, Wang K. Dietary natural products as a potential inhibitor towards advanced glycation end products and hyperglycemic complications: A phytotherapy approaches. Biomed Pharmacother 2021; 144:112336. [PMID: 34678719 DOI: 10.1016/j.biopha.2021.112336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022] Open
Abstract
Natural products exist in various natural foods such as plants, herbs, fruits, and vegetables. Furthermore, marine life offers potential natural products with significant biological activity. The biochemical reaction is known as advanced glycation end products (AGEs) occurs in the human body. On the other hand, foods are capable of a wide range of processing conditions resulting in the generation of exogenous AGEs adducts. Protein glycation and the formation of advanced glycation end products both contribute to the pathogenesis of hyperglycemic complications. AGEs also play a pivotal role in microvascular and macrovascular complications progression by receptors for advanced glycation end products (RAGE). RAGE activate by AGEs leads to up-regulation of transcriptional factor NF-kB and inflammatory genes. Around the globe, researchers are working in various approaches for therapeutical implications on controlling AGEs mediated disease complications. In this regard, one of the potential promising agents observed with a wide range of AGEs inhibition by food-derived natural products. Current biotechnological tools have been turned to natural products or phytochemicals to manufacture the molecules without compromising their functionality. Metabolic engineering and bioinformatics perspectives have recently enabled the generation of a few potent metabolites with anti-diabetic activity. As the primary focus, this review article will also discuss multidisciplinary approaches that emphasize current advances in anti-diabetic therapeutic action and future perspectives of natural products.
Collapse
Affiliation(s)
- Vijaykrishnaraj M
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
21
|
Karuppusamy N, Mariyappan V, Chen SM, Keerthi M, Ramachandran R. A simple electrochemical sensor for quercetin detection based on cadmium telluride nanoparticle incorporated on boron, sulfur co-doped reduced graphene oxide composite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Papakyriakopoulou P, Manta K, Kostantini C, Kikionis S, Banella S, Ioannou E, Christodoulou E, Rekkas DM, Dallas P, Vertzoni M, Valsami G, Colombo G. Nasal powders of quercetin-β-cyclodextrin derivatives complexes with mannitol/lecithin microparticles for Nose-to-Brain delivery: In vitro and ex vivo evaluation. Int J Pharm 2021; 607:121016. [PMID: 34411652 DOI: 10.1016/j.ijpharm.2021.121016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Quercetin, a flavonoid with possible neuroprotective action has been recently suggested for the early-stage treatment of Alzheimer's disease. The low solubility and extended first pass effect render quercetin unsuitable for oral administration. Alternatively, brain targeting is more feasible with nasal delivery, by-passing, non-invasively, Blood-Brain Barrier and ensuring rapid onset of action. Aiming to increase quercetin's disposition into brain, nasal powders consisting of quercetin-cyclodextrins (methyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin) lyophilizates blended with spray-dried microparticles of mannitol/lecithin were prepared. Quercetin's solubility at 37 °C and pH 7.4 was increased 19-35 times when complexed with cyclodextrins. Blending lyophilizates in various ratios with mannitol/lecithin microparticles, results in powders with improved morphological characteristics as observed by X-ray Diffraction and Scanning Electron Microscopy analysis. In vitro characterization of these powders using Franz cells, revealed rapid dissolution and permeation 17 (methyl-β-cyclodextrin) to 48 (hydroxypropyl-β-cyclodextrin) times higher than that of pure quercetin. Ex vivo powders' transport across rabbit nasal mucosa was found more efficient in comparison with the pure Que. The overall better performance of quercetin-hydroxypropyl-β-cyclodextrin powders is confirmed by ex vivo experiments revealing amount of quercetin permeated ranging from 0.03 ± 0.01 to 0.22 ± 0.05 μg/cm2 for hydroxypropyl-β-cyclodextrin and 0.022 ± 0.01 to 0.17 ± 0.04 μg/cm2 for methyl-β-cyclodextrin powders, while the permeation of pure quercetin was negligible.
Collapse
Affiliation(s)
- Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Konstantina Manta
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Christina Kostantini
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Italy
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Eirini Christodoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Dimitrios M Rekkas
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Paraskevas Dallas
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Maria Vertzoni
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece.
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Italy
| |
Collapse
|
23
|
Ferreira-Santos P, Badim H, Salvador ÂC, Silvestre AJD, Santos SAO, Rocha SM, Sousa AM, Pereira MO, Wilson CP, Rocha CMR, Teixeira JA, Botelho CM. Chemical Characterization of Sambucus nigra L. Flowers Aqueous Extract and Its Biological Implications. Biomolecules 2021; 11:biom11081222. [PMID: 34439888 PMCID: PMC8391949 DOI: 10.3390/biom11081222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The main goal of this study was to chemically characterize an aqueous S. nigra flower extract and validate it as a bioactive agent. The elderflower aqueous extraction was performed at different temperatures (50, 70 and 90 °C). The extract obtained at 90 °C exhibited the highest phenolic content and antiradical activity. Therefore, this extract was analyzed by GC-MS and HPLC-MS, which allowed the identification of 46 compounds, being quercetin and chlorogenic acid derivatives representative of 86% of the total of phenolic compounds identified in hydrophilic fraction of the aqueous extract. Naringenin (27.2%) was the major compound present in the lipophilic fraction. The antiproliferative effects of the S. nigra extract were evaluated using the colon cancer cell lines RKO, HCT-116, Caco-2 and the extract’s antigenotoxic potential was evaluated by the Comet assay in RKO cells. The RKO cells were the most susceptible to S. nigra flower extract (IC50 = 1250 µg mL−1). Moreover, the extract showed antimicrobial activity against Gram-positive bacteria, particularly Staphylococcus aureus and S. epidermidis. These results show that S. nigra-based extracts can be an important dietary source of bioactive phenolic compounds that contribute to health-span improving life quality, demonstrating their potential as nutraceutical, functional foods and/or cosmetic components for therapeutic purposes.
Collapse
Affiliation(s)
- Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Correspondence: (P.F.-S.); (C.M.B.)
| | - Helder Badim
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Ângelo C. Salvador
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Sónia A. O. Santos
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Sílvia M. Rocha
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana M. Sousa
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Maria Olívia Pereira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Cristina Pereira Wilson
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - José António Teixeira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Cláudia M. Botelho
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Correspondence: (P.F.-S.); (C.M.B.)
| |
Collapse
|
24
|
Santos ACD, Biluca FC, Braghini F, Gonzaga LV, Costa ACO, Fett R. Phenolic composition and biological activities of stingless bee honey: An overview based on its aglycone and glycoside compounds. Food Res Int 2021; 147:110553. [PMID: 34399530 DOI: 10.1016/j.foodres.2021.110553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022]
Abstract
Stingless bees are native to tropical and subtropical countries, such as Brazil. The wide variety of species, the sources of food collection (nectar and pollen), and the climate conditions strongly affect the chemical composition of the honey, making this a unique product with peculiar characteristics. Stingless bee honey presents higher water content, higher acidity, and a lower sugar concentration when compared to Apis mellifera honey. Moreover, there is a wide variety of microorganisms in stingless bees' environment, which leads their honey to go through a natural fermentative process during its production in the hive. Besides, fermentation and hydrolysis are effective ways to convert glycosides into aglycones, thus increasing the bioavailability of compounds. In this sense, stingless bee honey may possess a greater concentration of phenolic compounds aglycones than glycosides, which would increase its potential benefits. Therefore, this review aims to compile the most recent studies of stingless bee honey phenolic profile and its biological potential (antioxidant, antimicrobial, and anti-inflammatory activities) and a possible connection to its natural fermentation process.
Collapse
Affiliation(s)
- Adriane Costa Dos Santos
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil.
| | - Fabiola Carina Biluca
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil
| | - Francieli Braghini
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil.
| |
Collapse
|
25
|
Maksimovic S, Tadic V, Zvezdanovic J, Zizovic I. Utilization of supercritical CO2 in bioactive principles isolation from Helichrysum italicum and their adsorption on selected fabrics. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Direct Keap1-kelch inhibitors as potential drug candidates for oxidative stress-orchestrated diseases: A review on In silico perspective. Pharmacol Res 2021; 167:105577. [PMID: 33774182 DOI: 10.1016/j.phrs.2021.105577] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
The recent outcry in the search for direct keap1 inhibitors requires a quicker and more effective drug discovery process which is an inherent property of the Computer Aided Drug Discovery (CADD) to bring drug candidates into the clinic for patient's use. This Keap1 (negative regulator of ARE master activator) is emerging as a therapeutic strategy to combat oxidative stress-orchestrated diseases. The advances in computer algorithm and compound databases require that we highlight the functionalities that this technology possesses that can be exploited to target Keap1-Nrf2 PPI. Therefore, in this review, we uncover the in silico approaches that had been exploited towards the identification of keap1 inhibition in the light of appropriate fitting with relevant amino acid residues, we found 3 and 16 other compounds that perfectly fit keap1 kelch pocket/domain. Our goal is to harness the parameters that could orchestrate keap1 surface druggability by utilizing hotspot regions for virtual fragment screening and identification of hotspot residues.
Collapse
|
27
|
Filošević Vujnović A, Jović K, Pištan E, Andretić Waldowski R. Influence of Dopamine on Fluorescent Advanced Glycation End Products Formation Using Drosophila melanogaster. Biomolecules 2021; 11:biom11030453. [PMID: 33803017 PMCID: PMC8002736 DOI: 10.3390/biom11030453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/14/2023] Open
Abstract
Non-enzymatic glycation and covalent modification of proteins leads to Advanced Glycation End products (AGEs). AGEs are biomarkers of aging and neurodegenerative disease, and can be induced by impaired neuronal signaling. The objective of this study was to investigate if manipulation of dopamine (DA) in vitro using the model protein, bovine serum albumin (BSA), and in vivo using the model organism Drosophila melanogaster, influences fluorescent AGEs (fAGEs) formation as an indicator of dopamine-induced oxidation events. DA inhibited fAGEs-BSA synthesis in vitro, suggesting an anti-oxidative effect, which was not observed when flies were fed DA. Feeding flies cocaine and methamphetamine led to increased fAGEs formation. Mutants lacking the dopaminergic transporter or the D1-type showed further elevation of fAGEs accumulation, indicating that the long-term perturbation in DA function leads to higher production of fAGEs. To confirm that DA has oxidative properties in vivo, we fed flies antioxidant quercetin (QUE) together with methamphetamine. QUE significantly decreased methamphetamine-induced fAGEs formation suggesting that the perturbation of DA function in vivo leads to increased oxidation. These findings present arguments for the use of fAGEs as a biomarker of DA-associated neurodegenerative changes and for assessment of antioxidant interventions such as QUE treatment.
Collapse
Affiliation(s)
| | - Katarina Jović
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK;
| | | | - Rozi Andretić Waldowski
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia;
- Correspondence: ; Tel.: +385-51-584-553
| |
Collapse
|
28
|
Qi P, Li J, Gao S, Yuan Y, Sun Y, Liu N, Li Y, Wang G, Chen L, Shi J. Network Pharmacology-Based and Experimental Identification of the Effects of Quercetin on Alzheimer's Disease. Front Aging Neurosci 2020; 12:589588. [PMID: 33192484 PMCID: PMC7645061 DOI: 10.3389/fnagi.2020.589588] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/31/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the neurodegenerative brain disorders inducing nearly half of dementia cases, and the diagnosis and treatment of AD are the primary issues clinically. However, there is a lack of effective biomarkers and drugs for AD diagnosis and therapeutics so far. In this study, bioinformatics analysis combined with an experimental verification strategy was used to identify the biomarkers and the quercetin targets for AD diagnosis and treatment. First, differentially expressed genes in the AD brain were identified by microarray data analysis. Second, quercetin, a predominant flavonoid, was used to screen the target genes. Third, the drug–disease network was determined, and the target genes of quercetin treatment were obtained in AD-related HT-22 cell-based assay. Six genes, including MAPT, PIK3R1, CASP8, DAPK1, MAPK1, and CYCS, were validated by the system pharmacology analysis in the hippocampus samples of AD patients. The results suggested that MAPT, PIK3R1, CASP8, and DAPK1 were significantly increased, but MAPK1 and CYCS were significantly decreased in HT-22 cells after Aβ1-42 treatment. Moreover, MAPK1 and CYCS were markedly increased, but MAPT, PIK3R1, CASP8, and DAPK1 were markedly decreased after quercetin treatment in these HT-22 cells. Altogether, MAPT, PIK3R1, CASP8, DAPK1, MAPK1, and CYCS are all the biomarkers for AD diagnosis and the targets of quercetin treatment, and our findings may provide valuable biomarkers for AD diagnosis and treatment.
Collapse
Affiliation(s)
- Pingfang Qi
- Department of Pharmacy, The People's Hospital of Yichun City, Yichun, China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shichao Gao
- Department of Clinical Laboratory, The People's Hospital of Yichun City, Yichun, China.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Yirong Yuan
- Department of Neurosurgery, The People's Hospital of Yichun City, Yichun, China
| | - Yindi Sun
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Na Liu
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Gang Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
29
|
Quercetin mitigates the deoxynivalenol mycotoxin induced apoptosis in SH-SY5Y cells by modulating the oxidative stress mediators. Saudi J Biol Sci 2020; 28:465-477. [PMID: 33424329 PMCID: PMC7783655 DOI: 10.1016/j.sjbs.2020.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022] Open
Abstract
Deoxynivalenol (DON) is Fusarium mycotoxin that is frequently found in many cereal-based foods, and its ingestion has a deleterious impact on human health. In this investigation, we studied the mechanism of DON-induced neurotoxicity and followed by cytoprotective efficacy of quercetin (QUE) in contradiction of DON-induced neurotoxicity through assessing the oxidative stress and apoptotic demise in the human neuronal model, i.e. SH-SY5Y cells. DON diminished the proliferation of cells in the manner of dose and time-dependent as revealed by cell viability investigations, i.e. MTT and lactate dehydrogenase assays. Additional studies, such as intracellular reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial membrane potential (MMP), DNA damage, cell cycle, and neuronal biomarkers (amino acid decarboxylase, tyrosine hydroxylase, and brain-derived neurotrophic factor) demonstrated that DON induces apoptotic demise in neuronal cells through oxidative stress intermediaries. On another hand, pre-treatment of neuronal cells with 1 mM of quercetin (QUE) showed decent viability upon exposure to 100 µM of DON. In detailed studies demonstrated that QUE (1 mM) pre-treated cells show strong attenuation efficiency against DON-induced ROS generation, LPO, MMP loss, DNA impairment, cell cycle arrest, and down-regulation of neuronal biomarkers. The consequences of the investigation concluded that QUE mitigates the DON-induced stress viz., decreased ROS production and LPO generation, upholding MMP and DNA integrity and regulation of neuronal biomarker gene expression in SH-SY5Y cells.
Collapse
|
30
|
Mehanna MM, Mneimneh AT. Updated but not outdated “Gliadin”: A plant protein in advanced pharmaceutical nanotechnologies. Int J Pharm 2020; 587:119672. [DOI: 10.1016/j.ijpharm.2020.119672] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
31
|
Nagula RL, Wairkar S. Cellulose microsponges based gel of naringenin for atopic dermatitis: Design, optimization, in vitro and in vivo investigation. Int J Biol Macromol 2020; 164:717-725. [PMID: 32698069 DOI: 10.1016/j.ijbiomac.2020.07.168] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
Abstract
Naringenin, a bioflavonoid, is a natural alternative for atopic dermatitis that possesses anti-inflammatory, antioxidant and photo-protective action. The primary objective of this study is to prepare and evaluate naringenin-loaded microsponge gel for dermatitis. Ethyl cellulose based microsponges of naringenin were prepared by quasi-emulsion-solvent diffusion and statistically optimized by 32 factorial design. After in vitro characterization, optimized microsponge batch (Trial 3) was incorporated into Carbopol base to prepare 1% naringenin-loaded microsponge gel (NGMSG1%) which was evaluated for skin irritation, in vivo efficacy and drug deposition in DNFB-challenged albino Wistar rats in comparison to 1% plain naringenin gel (NGG1%). The average particle size and in vitro drug release of optimized microsponge formulation was observed to be 180 μm and 92.3% ± 2.37 at the end of 24 h, and entrapment was achieved till 82%. SEM study confirmed porous, spherical shaped microsponges whereas FTIR and DSC data supported the formation of microsponges. No skin irritation was observed with NGMSG and NGG in animals. NGMSG1% showed faster healing, substantial reduction in thickness of swollen earflap and WBC count than NGG1%. Similarly, NGMSG showed 3-fold greater drug deposition in skin than plain gel. Thus, naringenin loaded microsponge gel can be further explored as natural remedy for atopic dermatitis.
Collapse
Affiliation(s)
- Ruchika L Nagula
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
32
|
Jafarinia M, Sadat Hosseini M, kasiri N, Fazel N, Fathi F, Ganjalikhani Hakemi M, Eskandari N. Quercetin with the potential effect on allergic diseases. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2020; 16:36. [PMID: 32467711 PMCID: PMC7227109 DOI: 10.1186/s13223-020-00434-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Quercetin is a naturally occurring polyphenol flavonoid which is rich in antioxidants. It has anti-allergic functions that are known for inhibiting histamine production and pro-inflammatory mediators. Quercetin can regulate the Th1/Th2 stability, and decrease the antigen-specific IgE antibody releasing by B cells. Quercetin has a main role in anti-inflammatory and immunomodulatory function which makes it proper for the management of different diseases. Allergic diseases are a big concern and have high health care costs. In addition, the use of current therapies such as ß2-agonists and corticosteroids has been limited for long term use due to their numerous side effects. Since the effect of quercetin on allergic diseases has been widely studied, in the current article, we review the effect of quercetin on allergic diseases, such as allergic asthma, allergic rhinitis (AR), and atopic dermatitis (AD).
Collapse
Affiliation(s)
- Morteza Jafarinia
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Mahnaz Sadat Hosseini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Neda kasiri
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Niloofar Fazel
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Farshid Fathi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Mazdak Ganjalikhani Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Cao H, Li X, Wang F, Zhang Y, Xiong Y, Yang Q. Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems. Curr Med Chem 2020; 27:599-629. [PMID: 31400262 DOI: 10.2174/0929867326666190809221332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 03/15/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023]
Abstract
Glioma, especially its most malignant type, Glioblastoma (GBM), is the most common and the most aggressive malignant tumour in the central nervous system. Currently, we have no specific therapies that can significantly improve its dismal prognosis. Recent studies have reported promising in vitro experimental results of several novel glioma-targeting drugs; these studies are encouraging to both researchers and patients. However, clinical trials have revealed that novel compounds that focus on a single, clear glioma genetic alteration may not achieve a satisfactory outcome or have side effects that are unbearable. Based on this consensus, phytochemicals that exhibit multiple bioactivities have recently attracted much attention. Traditional Chinese medicine and traditional Indian medicine (Ayurveda) have shown that phytocompounds inhibit glioma angiogenesis, cancer stem cells and tumour proliferation; these results suggest a novel drug therapeutic strategy. However, single phytocompounds or their direct usage may not reverse comprehensive malignancy due to poor histological penetrability or relatively unsatisfactory in vivo efficiency. Recent research that has employed temozolomide combination treatment and Nanoparticles (NPs) with phytocompounds has revealed a powerful dual-target therapy and a high blood-brain barrier penetrability, which is accompanied by low side effects and strong specific targeting. This review is focused on major phytocompounds that have contributed to glioma-targeting treatment in recent years and their role in drug resistance inhibition, as well as novel drug delivery systems for clinical strategies. Lastly, we summarize a possible research strategy for the future.
Collapse
Affiliation(s)
- Hang Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Feiyifan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yueqi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Vásquez-Espinal A, Yañez O, Osorio E, Areche C, García-Beltrán O, Ruiz LM, Cassels BK, Tiznado W. Theoretical Study of the Antioxidant Activity of Quercetin Oxidation Products. Front Chem 2019; 7:818. [PMID: 31828060 PMCID: PMC6890856 DOI: 10.3389/fchem.2019.00818] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
It was recently shown that, when tested in cellular systems, quercetin oxidized products (Qox) have significantly better antioxidant activity than quercetin (Q) itself. The main Qox identified in the experiments are either 2,5,7,3',4'-pentahydroxy-3,4-flavandione (Fl) or its tautomer, 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (Bf). We have now performed a theoretical evaluation of different physicochemical properties using density functional theory (DFT) calculations on Q and its main Qox species. The most stable structures (for Q and Qox) were identified after a structural search on their potential energy surface. Since proton affinities (PAs) are much lower than the bond dissociation enthalpies (BDEs) of phenolic hydrogens, we consider that direct antioxidant activity in these species is mainly due to the sequential proton loss electron transfer (SPLET) mechanism. Moreover, our kinetic studies, according to transition state theory, show that Q is more favored by this mechanism. However, Qox have lower PAs than Q, suggesting that antioxidant activity by the SPLET mechanism should be a result of a balance between proclivity to transfer protons (which favors Qox) and the reaction kinetics of the conjugated base in the sequential electron transfer mechanism (which favors Q). Therefore, our results support the idea that Q is a better direct antioxidant than its oxidized derivatives due to its kinetically favored SPLET reactions. Moreover, our molecular docking calculations indicate a stabilizing interaction between either Q or Qox and the kelch-like ECH-associated protein-1 (Keap1), in the nuclear factor erythroid 2-related factor 2 (Nrf2)-binding site. This should favor the release of the Nrf2 factor, the master regulator of anti-oxidative responses, promoting the expression of the antioxidant responsive element (ARE)-dependent genes. Interestingly, the computed Keap1-metabolite interaction energy is most favored for the Bf compound, which in turn is the most stable oxidized tautomer, according to their computed energies. These results provide further support for the hypothesis that Qox species may be better indirect antioxidants than Q, reducing reactive oxygen species in animal cells by activating endogenous antioxidants.
Collapse
Affiliation(s)
- Alejandro Vásquez-Espinal
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Osvaldo Yañez
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Edison Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | - Lina María Ruiz
- Facultad Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Bruce K. Cassels
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
35
|
Sajadi Hezaveh Z, Azarkeivan A, Janani L, Shidfar F. Effect of quercetin on oxidative stress and liver function in beta-thalassemia major patients receiving desferrioxamine: A double-blind randomized clinical trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:91. [PMID: 31741663 PMCID: PMC6856539 DOI: 10.4103/jrms.jrms_911_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 06/12/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023]
Abstract
Background: Blood transfusion therapy is lifesaving for beta-thalassemia major patients, yet it indirectly causes complications such as oxidative stress and liver dysfunction. In the present study, we investigated the effect of quercetin supplementation on oxidative stress and liver function in beta-thalassemia major patients. Materials and Methods: In this double-blind clinical trial, 84 beta-thalassemia patients who received desferrioxamine (DFO) were randomly assigned to two groups; the treatment group received 500 mg quercetin tablet daily for 12 weeks, and the control group received placebo. In addition to demographic and anthropometric assessment, malondialdehyde (MDA), total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPx), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were biochemically assessed to detect the effect of quercetin on oxidative stress and liver function, respectively. The data were analyzed using SPSS 21. P < 0.05 was considered statistically significant. Results: Before adjusting for confounding variables, within-group comparison showed that quercetin supplementation reduced ALT (P < 0.001) and TAC (P < 0.001) significantly. Between-group comparison using analysis of covariance analysis though showed that quercetin could significantly reduce ALT (P = 0.002), but there was an insignificant increase in SOD and TAC, and insignificant decrease in GPx, MDA, AST, and ALP (P > 0.05). Conclusion: According to our results, consumption of 500 mg quercetin supplement daily for 3 months along with DFO treatment might be able to alter liver function, but not the oxidative stress in beta-thalassemia major patients.
Collapse
Affiliation(s)
- Zohreh Sajadi Hezaveh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Azita Azarkeivan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Leila Janani
- Department of Epidemiology and Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Rahimi M, Bahar S, Heydari R, Amininasab SM. Determination of quercetin using a molecularly imprinted polymer as solid-phase microextraction sorbent and high-performance liquid chromatography. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Vida RG, Fittler A, Somogyi-Végh A, Poór M. Dietary quercetin supplements: Assessment of online product informations and quantitation of quercetin in the products by high-performance liquid chromatography. Phytother Res 2019; 33:1912-1920. [PMID: 31155780 DOI: 10.1002/ptr.6382] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/31/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Administration of the increasingly popular dietary supplements containing quercetin may interfere with drug therapy. We intended to evaluate the online availability and quercetin content of the high-dose mono-component quercetin products and to review the potential use of quercetin products and their interactions with drugs. We monitored the online access to quercetin-containing dietary supplements, collected the relevant information from the websites, procured selected products from the vendors, and subjected them to substance analysis. The quercetin content was quantified by an HPLC-UV method. Twenty-five websites offered mono-component quercetin products, and nine products were procured. The quercetin content of eight products differed only ±10% from the nominal dose, whereas one product contained almost 30% more quercetin. Misleading indications such as antitumor and cardiovascular effects were often found on the sellers' websites. Quercetin-containing dietary supplements are available online with misleading indications. The recommended daily doses are often high (occasionally over 1,000 mg), which may induce clinically relevant interactions with medications. Because high-quercetin content of dietary supplements was confirmed, health care professionals should be aware of the unregulated internet market of dietary supplements and should consider the interactions of these substances with drugs.
Collapse
Affiliation(s)
- Róbert György Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - András Fittler
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Anna Somogyi-Végh
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Pécs, Hungary.,János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
38
|
Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease. Life Sci 2019; 224:109-119. [PMID: 30914316 DOI: 10.1016/j.lfs.2019.03.055] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Quercetin belongs to the flavonoids family, which is present in most of the plants including fruits, vegetables, green tea and even in red wine having antioxidant activities. It is available as a food supplement in the market and has physiological health effects. Quercetin has anti-inflammatory, anticancer and anti-prostate activities along with its beneficial effects on high cholesterol, kidney transplantation, asthma, diabetes, viral infections, pulmonary, schizophrenia and cardiovascular diseases. Quercetin possesses scavenging potential of hydroxyl radical (OH-), hydrogen peroxide (H2O2), and superoxide anion (O2-). These reactive oxygen species (ROS) hampers lipid, protein, amino acids and deoxyribonucleic acid (DNA) processing leading to epigenetic alterations. Quercetin has the ability to combat these harmful effects. ROS plays a vital role in the progression of Alzheimer's disease (AD), and we propose that quercetin would be the best choice to overcome cellular and molecular signals in regulating normal physiological functions. However, data are not well documented regarding exact cellular mechanisms of quercetin. The neuroprotective effects of quercetin are mainly due to potential up- and/or down-regulation of cytokines via nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Paraoxonase-2, c-Jun N-terminal kinase (JNK), Protein kinase C, Mitogen-activated protein kinase (MAPK) signalling cascades, and PI3K/Akt pathways. Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against AD.
Collapse
|
39
|
Petrescu AM, Paunescu V, Ilia G. The antiviral activity and cytotoxicity of 15 natural phenolic compounds with previously demonstrated antifungal activity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:498-504. [PMID: 30736713 DOI: 10.1080/03601234.2019.1574176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The present study attempted to evaluate the carcinogenicity of natural phenolic compounds with previously demonstrated antifungal activity, using a computational structure-cytotoxicity approach, namely the quantum structure cytotoxicity relationship model. The cytotoxicity of 15 phenolic compounds with antiviral activity 96 h after treatment was studied using the AdmetSAR computational program. Per the EPA classification, four of the investigated compounds would be included in the second cytotoxicity category, four in the third category, and six showed no toxicity, rendering the studied natural phenolic compounds much less toxic to aquatic life than synthetic pesticides, the organophosphorus compounds, which mostly fall into the first and second categories of toxicity.
Collapse
Affiliation(s)
- Alina M Petrescu
- a Center for Genic and Cellular Therapies in Cancer Treatment , Timisoara , Romania
- b Faculty of Chemistry, Biology, Geography, Department of Biology-Chemistry , West University of Timisoara , Timisoara , Romania
| | - Virgil Paunescu
- a Center for Genic and Cellular Therapies in Cancer Treatment , Timisoara , Romania
- c Department of Biology and Environmental Health , University of Medicine and Pharmacy "Victor Babes" , Timisoara , Romania
| | - Gheorghe Ilia
- a Center for Genic and Cellular Therapies in Cancer Treatment , Timisoara , Romania
- d Institute of Chemistry of the Romanian Academy , Timisoara , Romania
| |
Collapse
|
40
|
Nagula RL, Wairkar S. Recent advances in topical delivery of flavonoids: A review. J Control Release 2019; 296:190-201. [PMID: 30682442 DOI: 10.1016/j.jconrel.2019.01.029] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Flavonoids are one of the vital classes of bioactive chemicals, abundantly found in plants. These are natural polyphenolic compounds derived from plant metabolites. Their lipophilic nature and poor solubility lead to variable and limited oral bioavailability. The substantial pharmacological properties of flavonoids include antioxidant, anti-inflammatory, antiproliferative, photoprotective, depigmentation, anti-aging which are very promising in the treatment of several skin disorders. Thus, various topical delivery systems of flavonoids have been extensively studied. Mostly, colloidal carriers of flavonoids were reported which are very efficient for topical route with good encapsulation potential, reduced toxicity, and overcome the limitations of conventional dosage forms. This review focuses on various formulations aspects, in vitro characterization and in vivo studies of different classes of flavonoids administered by topical route. Although flavonoids offer tremendous potential in healing the skin conditions categorically, its clinical translation needs in depth safety and efficacy data, meeting established regulatory standards.
Collapse
Affiliation(s)
- Ruchika L Nagula
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
41
|
Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, Yu JQ, Chen Z, Yang Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed Pharmacother 2019; 109:1085-1099. [DOI: 10.1016/j.biopha.2018.10.130] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
|
42
|
Dymarska M, Janeczko T, Kostrzewa-Susłow E. Glycosylation of 3-Hydroxyflavone, 3-Methoxyflavone, Quercetin and Baicalein in Fungal Cultures of the Genus Isaria. Molecules 2018; 23:E2477. [PMID: 30262733 PMCID: PMC6222337 DOI: 10.3390/molecules23102477] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are plant secondary metabolites with a broad spectrum of biological activities. In nature, they occur mainly in the form of glycosides, but their extraction is often difficult and expensive, as is chemical synthesis. We have shown that biotransformations are an excellent method for obtaining flavonoid glycosides. We are the first team to describe the use of Isaria microorganisms in biotransformations of flavonoid compounds. In the present study as biocatalysts, we used one strain of Isaria fumosorosea KCH J2 isolated from a spider carcass in green areas of Wroclaw and two strains of I. farinosa (J1.4 and J1.6) isolated from insects found in already unused mines in Lower Silesia. The substrates were 3-hydroxyflavone, 3-methoxyflavone, quercetin (3,3',4',5,7-pentahydroxyflavone), and baicalein (5,6,7-trihydroxyflavone). For all the substrates that were used in this study, we obtained 4-O-methylglucopyranosides. In the case of substrates with a hydroxyl group in the third position, O-β-d-glucopyranosides were also formed. Isoquercetin that was obtained by biotransformation was used as a substrate to check the kinetics of the formation of flavonoid 4-O-methylglucopyranosides in I. fumosorosea KCH J2 culture. We did not observe the attachment of the methyl group to glucose unit in isoquercetin. Our finding suggest that the attachment of 4-O-methylglucopyranose occurs in one step.
Collapse
Affiliation(s)
- Monika Dymarska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - Tomasz Janeczko
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| |
Collapse
|
43
|
Pilařová V, Plachká K, Chrenková L, Najmanová I, Mladěnka P, Švec F, Novák O, Nováková L. Simultaneous determination of quercetin and its metabolites in rat plasma by using ultra-high performance liquid chromatography tandem mass spectrometry. Talanta 2018; 185:71-79. [PMID: 29759252 DOI: 10.1016/j.talanta.2018.03.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 11/29/2022]
Abstract
Fast, selective, and sensitive ultra-high performance liquid chromatography method with tandem mass spectrometry detection for the determination of quercetin and its metabolites with various physico-chemical properties such as molecular weight, lipophilicity, and acid-base properties has been developed. These compounds included small hydrophilic phenolic acids and more lipophilic metabolites with preserved flavonoid structure in small amount of rat plasma. The developed method enables selective separation of phenolic acids and a pair of isomers tamarixetin and isorhamnetin with satisfactory peak shapes and a high sensitivity using mass spectrometry detection. In addition, two sample preparation procedures including protein precipitation and microextraction in packed sorbent (MEPS) were optimized. The sample acidification included in protein precipitation as well as optimizing of MEPS sorbents and elution solvents improved isolation of quercetin and related compounds from rat plasma. Finally, both methods developed for sample preparation were fully validated to demonstrate sufficient accuracy and precision and acceptable matrix effects. Both sample preparation approaches combined with mass spectrometry-based quantification allowed the simultaneous determination of quercetin and its metabolites from a small amount of biological samples of only 50 μL. Due to the fast and non-selective parallel sample preparation, the protein precipitation was eventually applied to plasma samples derived from pharmacokinetic studies.
Collapse
Affiliation(s)
- Veronika Pilařová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Kateřina Plachká
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lucia Chrenková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Iveta Najmanová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
44
|
Zhang H, Ma ZF. Phytochemical and Pharmacological Properties of Capparis spinosa as a Medicinal Plant. Nutrients 2018; 10:E116. [PMID: 29364841 PMCID: PMC5852692 DOI: 10.3390/nu10020116] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/03/2022] Open
Abstract
Over the past decades, there has been increasing attention on polyphenol-rich foods including fruits and vegetables on human health. Polyphenols have been shown to possess some potential beneficial effects on human health and they are widely found in foods consumed by populations worldwide. Capparis spinosa (C. spinosa) is an important source of different secondary metabolites of interest to humankind. The traditional therapeutic applications of C. spinosa have been reported in Ancient Romans. Numerous bioactive phytochemical constituents have been isolated and identified from different parts (aerial parts, roots and seeds) of C. spinosa which are responsible alone or in combination for its various pharmacological activities. Therefore, this paper is a review of publications on the phytochemical and pharmacological properties of C. spinosa. There is insufficient evidence to suggest that C. spinosa or its extracts are able to improve the biomarkers of cardiovascular disease and diabetes. However, these studies used different parts of C. spinosa plant, methods of preparation and types of solvents, which cause the evaluation of activity of C. spinosa difficult and involve quite heterogeneous data. There is also evidence, although limited, to suggest benefits of C. spinosa in improving human health. Therefore, the relationship between C. spinosa and improved human health outcomes requires further study.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand.
| | - Zheng Feei Ma
- Department of Public Health, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
45
|
Zhao MH, Yuan L, Meng LY, Qiu JL, Wang CB. Quercetin-loaded mixed micelles exhibit enhanced cytotoxic efficacy in non-small cell lung cancer in vitro. Exp Ther Med 2017; 14:5503-5508. [PMID: 29285083 DOI: 10.3892/etm.2017.5230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 04/07/2017] [Indexed: 01/09/2023] Open
Abstract
In the present study, quercetin (QUR)-loaded mixed micelles (QUR-M) were prepared with the aim of improving the physicochemical and anticancer efficacy of QUR in lung cancer cells. The mixed micelles comprised tocopheryl polyethylene glycol 1000 succinate (TPGS) and a 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine derivative of polyethylene glycol. The nanosized QUR-M exhibited a pH-responsive and controlled release of QUR that is likely to be beneficial in cancer treatment. The results of an MTT assay clearly demonstrated that the anticancer effect of QUR-M in A549 cancer cells was stronger compared with that of free QUR at 24 and 48 h time points. The half-maximal inhibitory concentrations of QUR and QUR-M were observed to be 12.45 and 6.42 µg/ml, respectively. When stained with Hoechst 33342 and observed using a confocal laser scanning microscope, A549 cells treated with QUR-M exhibited severe chromatin condensation and apoptotic body formation of the nuclei. Overall, high intracellular uptake, sustained drug release and the presence of TPGS in the mixed micelles may result in an increased inhibitory effect against cell proliferation and improved therapeutic efficacy in lung cancers.
Collapse
Affiliation(s)
- Ming-Hong Zhao
- Department of Oncology, Jianhu People's Hospital, Yancheng, Jiangsu 224700, P.R. China
| | - Lin Yuan
- Department of Oncology, Jianhu People's Hospital, Yancheng, Jiangsu 224700, P.R. China
| | - Ling-Yun Meng
- Department of Oncology, Jianhu People's Hospital, Yancheng, Jiangsu 224700, P.R. China
| | - Jian-Ling Qiu
- Department of Oncology, Jianhu People's Hospital, Yancheng, Jiangsu 224700, P.R. China
| | - Chun-Bin Wang
- Department of Oncology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| |
Collapse
|
46
|
Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules 2017; 22:molecules22081270. [PMID: 28758919 PMCID: PMC6152094 DOI: 10.3390/molecules22081270] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin can prevent neurological disorders and exerts protection against mitochondrial damages. Various in vitro studies have assessed the anticancer effects of quercetin, although there are no conclusive data regarding its mode of action. However, low bioavailability, poor aqueous solubility as well as rapid body clearance, fast metabolism and enzymatic degradation hamper the use of quercetin as therapeutic agent, so intense research efforts have been focused on the modification of the quercetin scaffold to obtain analogs with potentially improved properties for clinical applications. This review gives an overview of the developments in the synthesis and anticancer-related activities of quercetin derivatives reported from 2012 to 2016.
Collapse
|
47
|
Ledoux A, St-Gelais A, Cieckiewicz E, Jansen O, Bordignon A, Illien B, Di Giovanni N, Marvilliers A, Hoareau F, Pendeville H, Quetin-Leclercq J, Frédérich M. Antimalarial Activities of Alkyl Cyclohexenone Derivatives Isolated from the Leaves of Poupartia borbonica. JOURNAL OF NATURAL PRODUCTS 2017; 80:1750-1757. [PMID: 28557449 DOI: 10.1021/acs.jnatprod.6b01019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bioactivity-guided fractionation of the ethyl acetate extract of the leaves of Poupartia borbonica led to the isolation of three new alkyl cyclohexenone derivatives 1-3, and named Poupartone A-C. The structures of the new compounds were elucidated by 1D and 2D NMR spectroscopic data analysis and MS, whereas calculated and experimental ECD spectra were used to define the absolute configurations. These compounds were active against 3D7 and W2 Plasmodium falciparum strains with IC50 values between 0.55 and 1.81 μM. In vitro cytotoxicity against WI38 human fibroblasts and the human cervical cancer cell line HeLa (WST-1 assay) showed that these compounds were also cytotoxic, but no hemolytic activity was observed for the extract and pure compounds. An in vivo antimalarial assay was performed on the major cyclohexenone using P. berghei-infected mice at a dose of 15 mg/kg/day ip. The assay revealed growth inhibition of 59.1 and 69.5% at days 5 and 7 postinfection, respectively, although some toxicity was observed. Zebrafish larvae were used as a model to determine the type of toxicity, and the results showed cardiac toxicity. The methanol extract was also studied, and it displayed moderate antiplasmodial properties in vitro. This extract contained the known flavonoids, quercetin, 3'-O-hydroxysulfonylquercetin, quercitrin, and isoquercitrin as well as ellagic acid, which showed high to low activity against the 3D7 P. falciparum strain.
Collapse
Affiliation(s)
- Allison Ledoux
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Alexis St-Gelais
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Avenue Hippocrate 15, 4000 Liège, Belgium
- Laboratoire d'Analyses et de Séparation des Essences Végétales (LASEVE), Université du Québec à Chicoutimi , 555 Boulevard de l'Université, Saguenay, Québec G7H 2B1, Canada
| | - Ewa Cieckiewicz
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Olivia Jansen
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Annélise Bordignon
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Bertrand Illien
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNA), University of Reunion Island , Avenue René Cassin 15, 97744 Saint-Denis, La Réunion France
| | - Nicolas Di Giovanni
- Laboratoire de Chimie Analytique Organique et Biologique (OBiAChem), University of Liège , Allée de la Chimie 3, Sart-Tilman, 4000 Liège, Belgium
| | - Arnaud Marvilliers
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNA), University of Reunion Island , Avenue René Cassin 15, 97744 Saint-Denis, La Réunion France
| | - Floriane Hoareau
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNA), University of Reunion Island , Avenue René Cassin 15, 97744 Saint-Denis, La Réunion France
| | - Hélène Pendeville
- Plateforme Zebrafish Facility and Transgenics, GIGA, University of Liège , Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain , Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Avenue Hippocrate 15, 4000 Liège, Belgium
| |
Collapse
|
48
|
Subramanian P, Kaliyamoorthy K, Jayapalan JJ, Abdul-Rahman PS, Haji Hashim O. Influence of Quercetin in the Temporal Regulation of Redox Homeostasis in Drosophila melanogaster. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3778206. [PMID: 28931163 PMCID: PMC5605229 DOI: 10.1093/jisesa/iex040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 06/07/2023]
Abstract
Numerous biological processes are governed by the biological clock. Studies using Drosophila melanogaster (L.) are valuable that could be of importance for their effective applications on rodent studies. In this study, the beneficial role of quercetin (a flavonoid) on H2O2 induced stress in D. melanogaster was investigated. D. melanogaster flies were divided into four groups (group I - control, group II - H2O2 (acute exposure), group III - quercetin, and group IV - quercetin + H2O2 treated). Negative geotaxis assay, oxidative stress indicators (protein carbonyls, thiobarbituric reactive substances [TBARS]), and antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione-S-transferase [GST], glutathione peroxidase, and reduced glutathione [GSH]) were measured at 4 h intervals over 24 h and temporal expression of heat shock protein-70 (Hsp70), Upd1 (homolog of IL-6 in Drosophila), and nitric oxide synthase (Nos) was analyzed by Western blotting. Groups II and IV showed altered biochemical rhythms (compared with controls). Decreased mesor values of negative geotaxis, SOD, CAT, GST, and GSH were noticed in H2O2, increased mesor of oxidative stress indicators (TBARS and protein carbonyl content) and a reversibility of the rhythmic characteristics were conspicuous after quercetin treatment. The expression levels of Hsp70, Upd1, and Nos were noticeably maximum at 04:00. Significant elevation of expression by H2O2 was nearly normalized by quercetin treatment. The possible mechanism by which quercetin modulates oxidant-antioxidant imbalance under oxidative stress could be ascribed to the modulation of the rhythmic properties. Our results will be helpful to understand the molecular interlink between circadian rhythm and oxidative stress mechanism.
Collapse
Affiliation(s)
- Perumal Subramanian
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram 608 002, Tamil Nadu, India (; )
| | - Kanimozhi Kaliyamoorthy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram 608 002, Tamil Nadu, India (; )
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ()
| | - Puteri Shafinaz Abdul-Rahman
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ()
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia (; )
| | - Onn Haji Hashim
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ()
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia (; )
| |
Collapse
|