1
|
Nouanesengsy A, Semesi A, Quach K, Ivanochko D, Byrne W, Hwang M, La Neve MR, Leon-Ponte M, Litosh A, Wisener N, Adeli K, Campigotto A, Grunebaum E, McGeer A, Moraes TJ, Sepiashvili L, Upton J, Julien JP, Allen U. Persistence and decay of neutralizing antibody responses elicited by SARS-CoV-2 infection and hybrid immunity in a Canadian cohort. Microbiol Spectr 2025; 13:e0133324. [PMID: 39969224 PMCID: PMC11960127 DOI: 10.1128/spectrum.01333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
A major challenge with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been assessing the intensity, dynamics, and determinants of the antibody responses after infection and/or vaccination. Therefore, we aimed to characterize the longitudinal dynamics of the antibody responses among naturally infected individuals and individuals who achieved hybrid immunity in a large Canadian cohort. We demonstrate that anti-Spike IgGs and neutralizing antibody dynamics vary greatly among individuals with COVID-19, in peak antibody levels, rate of waning, and longevity of the antibody response. Additionally, we found an association between robust antibody responses and individuals with severe COVID-19 clinical symptoms during the first-month post-symptom onset. For individuals who achieved hybrid immunity, a robust increase in anti-S1 IgGs and neutralizing antibodies followed the first vaccination dose; however, there was a minimal increase in the anti-S1 IgGs and neutralizing antibody titers after administration of the second dose of the vaccine. Furthermore, neutralizing antibodies elicited by the wild-type virus alone were largely ineffective against emerging variants of concern in our natural infection-only cohort, in contrast to a much broader and more robust neutralization profile observed in individuals who achieved hybrid immunity. Our findings emphasize the need for global SARS-CoV-2 vaccination efforts to further sustain protective immune responses required to minimize viral spread and disease severity in the population. As SARS-CoV-2 variants continue to emerge, understanding the interplay between previous infections, vaccine durability, and virus evolution will be critical for guiding ongoing vaccination strategies. IMPORTANCE A major challenge with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been assessing the intensity, dynamics, and determinants of the antibody response after infection and/or vaccination. Our paper addresses this in a large Canadian cohort with antibody responses that were generated by natural infection as well as vaccine in some persons studied.
Collapse
Affiliation(s)
- Amy Nouanesengsy
- Program in Molecular Medicine, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Semesi
- Program in Molecular Medicine, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| | - Kim Quach
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danton Ivanochko
- Program in Molecular Medicine, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| | - Walter Byrne
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthew Hwang
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maria-Rosa La Neve
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matilde Leon-Ponte
- Division of Allergy and Immunology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alice Litosh
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicole Wisener
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Campigotto
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| | - Allison McGeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tunenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Theo J. Moraes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lusia Sepiashvili
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Julia Upton
- Division of Allergy and Immunology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Upton Allen
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Huang CY, Su SB, Chen KT. Surveillance strategies for SARS-CoV-2 infections through one health approach. Heliyon 2024; 10:e37128. [PMID: 39286214 PMCID: PMC11403048 DOI: 10.1016/j.heliyon.2024.e37128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), is an emergent disease that threatens global health. Public health structures and economic activities have been disrupted globally by the COVID-19 pandemic. Over 556.3 million confirmed cases and 6.3 million deaths have been reported. However, the exact mechanism of its emergence in humans remains unclear. SARS-CoV-2 is believed to have a zoonotic origin, suggesting a spillover route from animals to humans, which is potentially facilitated by wildlife farming and trade. The COVID-19 pandemic highlighted the importance of the One Health approach in managing threats of zoonosis in the human-animal-environment interaction. Implementing vigilant surveillance programs by adopting the One Health concept at the interfaces between wildlife, livestock, and humans is the most pertinent, practical, and actionable strategy for preventing and preparing for future pandemics of zoonosis, such as COVID-19 infection. This review summarizes the updated evidence of CoV infections in humans and animals and provides an appropriate strategy for preventive measures focused on surveillance systems through an On Health approach.
Collapse
Affiliation(s)
- Chien-Yuan Huang
- Division of Occupational Medicine, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Hu WH, Cai HL, Yan HC, Wang H, Sun HM, Wei YY, Hao YT. Protective effectiveness of previous infection against subsequent SARS-Cov-2 infection: systematic review and meta-analysis. Front Public Health 2024; 12:1353415. [PMID: 38966699 PMCID: PMC11222391 DOI: 10.3389/fpubh.2024.1353415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Background The protective effectiveness provided by naturally acquired immunity against SARS-CoV-2 reinfection remain controversial. Objective To systematically evaluate the protective effect of natural immunity against subsequent SARS-CoV-2 infection with different variants. Methods We searched for related studies published in seven databases before March 5, 2023. Eligible studies included in the analysis reported the risk of subsequent infection for groups with or without a prior SARS-CoV-2 infection. The primary outcome was the overall pooled incidence rate ratio (IRR) of SARS-CoV-2 reinfection/infection between the two groups. We also focused on the protective effectiveness of natural immunity against reinfection/infection with different SARS-CoV-2 variants. We used a random-effects model to pool the data, and obtained the bias-adjusted results using the trim-and-fill method. Meta-regression and subgroup analyses were conducted to explore the sources of heterogeneity. Sensitivity analysis was performed by excluding included studies one by one to evaluate the stability of the results. Results We identified 40 eligible articles including more than 20 million individuals without the history of SARS-CoV-2 vaccination. The bias-adjusted efficacy of naturally acquired antibodies against reinfection was estimated at 65% (pooled IRR = 0.35, 95% CI = 0.26-0.47), with higher efficacy against symptomatic COVID-19 cases (pooled IRR = 0.15, 95% CI = 0.08-0.26) than asymptomatic infection (pooled IRR = 0.40, 95% CI = 0.29-0.54). Meta-regression revealed that SARS-CoV-2 variant was a statistically significant effect modifier, which explaining 46.40% of the variation in IRRs. For different SARS-CoV-2 variant, the pooled IRRs for the Alpha (pooled IRR = 0.11, 95% CI = 0.06-0.19), Delta (pooled IRR = 0.19, 95% CI = 0.15-0.24) and Omicron (pooled IRR = 0.61, 95% CI = 0.42-0.87) variant were higher and higher. In other subgroup analyses, the pooled IRRs of SARS-CoV-2 infection were statistically various in different countries, publication year and the inclusion end time of population, with a significant difference (p = 0.02, p < 0.010 and p < 0.010), respectively. The risk of subsequent infection in the seropositive population appeared to increase slowly over time. Despite the heterogeneity in included studies, sensitivity analyses showed stable results. Conclusion Previous SARS-CoV-2 infection provides protection against pre-omicron reinfection, but less against omicron. Ongoing viral mutation requires attention and prevention strategies, such as vaccine catch-up, in conjunction with multiple factors.
Collapse
Affiliation(s)
- Wei-Hua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Huan-Le Cai
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huan-Chang Yan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Han Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui-Min Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yong-Yue Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yuan-Tao Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Mink S, Reimann P, Fraunberger P. Prognostic value of anti-SARS-CoV-2 antibodies: a systematic review. Clin Chem Lab Med 2024; 62:1029-1043. [PMID: 38349073 DOI: 10.1515/cclm-2023-1487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/02/2024] [Indexed: 04/30/2024]
Abstract
OBJECTIVES Globally, over 772 million cases of COVID-19 have been reported. New variants of interest with corresponding spikes in case numbers continue to be identified. Vulnerable patients, including older adults or patients with severe comorbidities, continue to be at risk. A large body of evidence has been accumulated regarding anti-SARS-CoV-2-antibodies and COVID-19 but the usefulness of antibody measurements remains unclear. This systematic review aims to assess the prognostic value of anti-SARS-CoV-2-antibodies and their usefulness for guiding booster vaccinations. METHODS Studies in English and published between January 2020 and October 2023 were included. Studies that relied on multiparameter-models or comprised fewer than 100 participants were excluded. PubMed and via the WHO COVID-19 research database, Embase and Medline databases were searched. Study selection and quality assessment was conducted independently by two researchers. RESULTS After screening 1,160 studies, 33 studies comprising >30 million individuals were included. Anti-SARS-CoV-2-antibodies were strongly associated with reduced risk of SARS-CoV-2-infection and better outcomes, including mortality. Risk of infection and COVID-19 severity decreased with increasing antibody levels. CONCLUSIONS Anti-SARS-CoV-2-antibodies are useful for early identification of high-risk patients and timely adjustment of therapy. Protective thresholds may be applied to advise booster vaccinations but verification in separate cohorts is required.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Patrick Reimann
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Peter Fraunberger
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| |
Collapse
|
5
|
Mellinghoff SC, Robrecht S, Sprute R, Mayer L, Weskamm LM, Dahlke C, Gruell H, Teipel F, Schlößer HA, Siepmann K, Thelen M, Fink AM, Fischer K, Klein F, Addo MM, Kolovou A, Cornely OA, Eichhorst B, Hallek M, Langerbeins P. Hybrid immunity to SARS-CoV-2 in patients with chronic lymphocytic leukemia. Eur J Haematol 2024; 112:788-793. [PMID: 38311570 DOI: 10.1111/ejh.14170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024]
Abstract
OBJECTIVE Preventing severe COVID-19 remains a priority globally, particularly in the immunocompromised population. As shown in healthy individuals, immunity against SARS-CoV-2 can be yielded by previous infection, vaccination, or both (hybrid immunity). The objective of this observation study was to investigate hybrid immunity in patients with chronic lymphocytic leukemia (CLL). METHODS/RESULTS Blood samples of six patients with CLL were collected 55 days after fourth COVID-19 vaccination. All patients had a SARS-CoV-2 infection within 12 months before the second booster (fourth vaccination). SARS-CoV-2 spike receptor binding domain (RBD)-specific IgG antibodies were detectable in 6/6 (100.0%) CLL patients after four compared to 4/6 (66.7%) after three vaccinations. The median number of SARS-CoV-2 spike-specific T cells after repeated booster vaccination plus infection was 166 spot-forming cells (SFC) per million peripheral blood mononuclear cells. Overall, 5/5 (100%) studied patients showed a detectable increase in T cell activity. CONCLUSION Our data reveal an increase of cellular and humoral immune response in CLL patients after fourth COVID-19 vaccination combined with SARS-CoV-2 infection, even in those undergoing B cell-depleting treatment. Patients with prior vaccination failure now show a specific IgG response. Future research should explore the duration and effectiveness of hybrid immunity considering various factors like past infection and vaccination rates, types and numbers of doses, and emerging variants.
Collapse
Affiliation(s)
- Sibylle C Mellinghoff
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sandra Robrecht
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Rosanne Sprute
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Leonie Mayer
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Leonie M Weskamm
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christine Dahlke
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Henning Gruell
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Finn Teipel
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hans A Schlößer
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Klara Siepmann
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Thelen
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anna-Maria Fink
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Florian Klein
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marylyn M Addo
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infectious Diseases, First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Androniki Kolovou
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Barbara Eichhorst
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Michael Hallek
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Petra Langerbeins
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Peghin M, De Martino M, Palese A, Chiappinotto S, Fonda F, Gerussi V, Sartor A, Curcio F, Grossi PA, Isola M, Tascini C. Antibody response and risk of reinfection over 2 years among the patients with first wave of COVID-19. Clin Microbiol Infect 2024; 30:522-530. [PMID: 38141821 DOI: 10.1016/j.cmi.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVES To describe the dynamics and factors related to natural and hybrid humoral response against the SARS-CoV-2 and risk of reinfection among first-wave patients. METHODS A prospective longitudinal study with periodic serological follow-up after acute onset of all recovered patients with SARS-CoV-2 infection cared in Udine Hospital (March-May 2020). Nucleocapsid (N) protein and spike receptor-binding domain (S-RBD) antibody tests were used to distinguish natural and vaccine-induced response. RESULTS Overall, 153 patients (66 men, mean age 56 years) were followed for a median of 27.3 (interquartile range 26.9-27.8) months. Seroreversion was 98.5% (95% CI: 96.8-99.4) for SARS-CoV-2-N IgM at 1 year and 57.4% (95% CI: 51.5-63.5) for SARS-CoV-2-N IgG at 2 years. Initial serological response (hazard ratio [HR]: 0.99, 95% CI: 0.99-0.99, p 0.002 for IgM and HR: 0.97, 95% CI: 0.97-0.98, p < 0.001 for IgG) and severity of acute infection (HR: 0.62, 95% CI: 0.39-0.96, p 0.033 for IgM and HR: 0.60, 95% CI: 0.37-0.99, p < 0.001 for IgG) were independently associated with persistent SARS-CoV-2-N IgM/IgG response. Older age and smoker status were associated with long-term SARS-CoV-2-N IgM and SARS-CoV-2-N IgG, respectively (HR: 0.75, 95% CI: 0.57-0.98, p 0.038; HR: 1.77, 95% CI: 1.19-2.61, p 0.004 respectively). All patients maintained SARS-CoV-2-S-RBD IgG response at 24-month follow-up. Reinfections occurred in 25 of 153 (16.3%) patients, mostly during the omicron circulation. Reinfection rates did not differ significantly between SARS-CoV-2-N IgG seronegative and seropositive patients (14/89, 15.7% vs. 10/62, 16.1%, p 0.947). Unvaccinated patients had higher risk of reinfection (4/7, 57.1% vs. vaccinated 21/146, 14.4%, p 0.014). DISCUSSION First-wave patients had durable natural humoral immunity in 40% and anti-S-RBD response in 100% up to 2 years after infection. Natural humoral response alone was not protective against reinfections with omicron SARS-CoV-2 variants, whereas vaccination was effective to reduce the risk of a new infection.
Collapse
Affiliation(s)
- Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Maria De Martino
- Division of Medical Statistics, Department of Medicine, University of Udine, Udine, Italy.
| | - Alvisa Palese
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Federico Fonda
- Department of Medicine, University of Udine, Udine, Italy
| | - Valentina Gerussi
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Assunta Sartor
- Institute of Clinical Pathology, Department of Laboratory Medicine, University of Udine, ASUFC, Udine, Italy
| | - Francesco Curcio
- Institute of Clinical Pathology, Department of Laboratory Medicine, University of Udine, ASUFC, Udine, Italy
| | - Paolo Antonio Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Miriam Isola
- Division of Medical Statistics, Department of Medicine, University of Udine, Udine, Italy
| | - Carlo Tascini
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| |
Collapse
|
7
|
Nealon J, Mefsin YM, McMenamin ME, Ainslie KE, Cowling BJ. Reported effectiveness of COVID-19 monovalent booster vaccines and hybrid immunity against mild and severe Omicron disease in adults: A systematic review and meta-regression analysis. Vaccine X 2024; 17:100451. [PMID: 38379667 PMCID: PMC10877401 DOI: 10.1016/j.jvacx.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Background Waning of COVID-19 vaccine efficacy/effectiveness (VE) has been observed across settings and epidemiological contexts. We conducted a systematic review of COVID-19 VE studies and performed a meta-regression analysis to improve understanding of determinants of waning. Methods Systematic review of PubMed, medRxiv and the WHO-International Vaccine Access Center database summarizing VE studies on 31 December 2022. Studies were those presenting primary adult VE data from hybrid immunity or third/fourth mRNA COVID-19 monovalent vaccine doses [due to limited data with other vaccines] against Omicron, compared with unvaccinated individuals or individuals eligible for corresponding booster doses but who did not receive them. We used meta-regression models, adjusting for confounders, with weeks since vaccination as a restricted cubic spline, to estimate VE over time since vaccination. Results We identified 55 eligible studies reporting 269 VE estimates. Most estimates (180/269; 67 %) described effectiveness of third dose vaccination; with 48 (18 %) and 41 (15 %) describing hybrid immunity and fourth dose effectiveness, respectively, mostly (200; 74 %) derived from test-negative design studies. Most estimates (176/269; 65 %) reported VE compared with unvaccinated comparison groups. Estimated VE against mild outcomes declined following third dose vaccination from 62 % (95 % CI: 58 % - 66 %) after 4 weeks to 48 % (41 % - 55 %) after 20 weeks. Fourth dose VE against mild COVID-19 declined from 48 % (41 % - 56 %) after 4 weeks to 47 % (19 % - 65 %) after 20 weeks. VE for severe outcomes was higher and declined in the three-dose group from 90 % (87 % - 92 %) after 4 weeks to 70 % (65 - 74 %) after 20 weeks. Conclusions Time-since vaccination is an important determinant of booster dose VE, a finding which may support seasonal COVID-19 booster doses. Integration of VE and immunological parameters - and longer-term data including from other vaccine types - are needed to better-understand determinants of clinical protection.
Collapse
Affiliation(s)
- Joshua Nealon
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yonatan M Mefsin
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Martina E. McMenamin
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kylie E.C. Ainslie
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Benjamin J. Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| |
Collapse
|
8
|
Ismail NF, Rahman AE, Kulkarni D, Zhu F, Wang X, del Carmen Morales G, Srivastava A, Allen KE, Spinardi J, Kyaw MH, Nair H. Incidence and outcome of SARS-CoV-2 reinfection in the pre-Omicron era: A global systematic review and meta-analysis. J Glob Health 2023; 13:06051. [PMID: 37994839 PMCID: PMC10667793 DOI: 10.7189/jogh.13.06051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Background With the emergence of new variants and sub-lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), reinfections can significantly impact herd immunity, vaccination policies, and decisions on other public health measures. We conducted a systematic review and meta-analysis to synthesise the global evidence on SARS-CoV-2 reinfections in the pre-Omicron era. Methods We searched five global databases (MEDLINE, Embase, CINAHL Plus, Global Health, WHO COVID-19) on 12 May 2022 and 28 July 2023 and three Chinese databases (CNKI, Wanfang, CQvip) on 16 October 2022 for articles reporting incidence and outcomes of SARS-CoV-2 reinfection before the period of Omicron (B.1.1.529) predominance. We assessed risk of bias using Joanna Briggs Institute critical appraisal tools and conducted meta-analyses with random effects models to estimate the proportion of SARS-CoV-2 reinfection among initially infected cases and hospitalisation and mortality proportions among reinfected ones. Results We identified 7593 studies and extracted data from 64 included ones representing 21 countries. The proportion of SARS-CoV-2 reinfection was 1.16% (95% confidence interval (CI) = 1.01-1.33) based on 11 639 247 initially infected cases, with ≥45 days between the two infections. Healthcare providers (2.28%; 95% CI = 1.37-3.40) had a significantly higher risk of reinfection than the general population (1.00%; 95% CI = 0.81-1.20), while young adults aged 18 to 35 years (1.01%; 95% CI = 0.8-1.25) had a higher reinfection burden than other age groups (children <18 years old: 0.57%; 95% CI = 0.39-0.79, older adults aged 36-65 years old: 0.53%; 95% CI = 0.41-0.65, elderly >65 years old: 0.37%; 95% CI = 0.15-0.66). Among the reinfected cases, 8.12% (95% CI = 5.30-11.39) were hospitalised, 1.31% (95% CI = 0.29-2.83) were admitted to the intensive care unit, and 0.71% (95% CI = 0.02-2.01) died. Conclusions Our data suggest a relatively low risk of SARS-CoV-2 reinfection in the pre-Omicron era, but the risk of hospitalisation was relatively high among the reinfected cases. Considering the possibility of underdiagnosis, the reinfection burden may be underestimated. Registration PROSPERO: CRD42023449712.
Collapse
Affiliation(s)
- Nabihah Farhana Ismail
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
- Communicable Disease Control Unit, Public Health Department, Johor State, Malaysia
| | - Ahmed Ehsanur Rahman
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
- International Centre for Diarrhoeal Diseases Research, Bangladesh
| | - Durga Kulkarni
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Fuyu Zhu
- School of Public Health, Nanjing Medical University, Jiangsu, China
| | - Xin Wang
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
- School of Public Health, Nanjing Medical University, Jiangsu, China
| | | | - Amit Srivastava
- Pfizer, Vaccines, Emerging Markets
- Orbital Therapeutics, United States of America
| | | | | | | | - Harish Nair
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
- School of Public Health, Nanjing Medical University, Jiangsu, China
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Choudhry S, Rowland TAJ, McClelland K, Renz E, Iyanger N, Chow JY, Aiano F, Ladhani SN, Jeffery-Smith A, Andrews NJ, Zambon M. Protection from infection and reinfection due to the Omicron BA.1 variant in care homes. Front Immunol 2023; 14:1186134. [PMID: 37936695 PMCID: PMC10627010 DOI: 10.3389/fimmu.2023.1186134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Following the emergence of SARS-CoV-2 in 2020, care homes were disproportionately impacted by high mortality and morbidity of vulnerable elderly residents. Non-pharmaceutical interventions (NPIs) and improved infection control measures together with vaccination campaigns have since improved outcomes of infection. We studied the utility of past infection status, recent vaccination and anti-S antibody titres as possible correlates of protection against a newly emergent Omicron variant infection. Methods Prospective longitudinal surveillance of nine sentinel London care homes from April 2020 onwards found that all experienced COVID-19 outbreaks due to Omicron (BA.1) during December 2021 and January 2022, despite extensive prior SARS-CoV-2 exposure and high COVID-19 vaccination rates, including booster vaccines (>70% residents, >40% staff). Results Detailed investigation showed that 46% (133/288) of Omicron BA.1 infections were SARS-CoV-2 reinfections. Two and three COVID-19 vaccine doses were protective against Omicron infection within 2-9 weeks of vaccination, though protection waned from 10 weeks post-vaccination. Prior infection provided additional protection in vaccinated individuals, approximately halving the risk of SARS-CoV-2 infection. Discussion Anti-S antibody titre showed a dose-dependent protective effect but did not fully account for the protection provided by vaccination or past infection, indicating that other mechanisms of protection are also involved.
Collapse
Affiliation(s)
- Saher Choudhry
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | | | - Kamil McClelland
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | - Erik Renz
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | - Nalini Iyanger
- London Coronavirus Response Centre, UK Health Security Agency, London, United Kingdom
| | - J Yimmy Chow
- London Coronavirus Response Centre, UK Health Security Agency, London, United Kingdom
| | - Felicity Aiano
- Immunisations and Countermeasures Division, UK Health Security Agency, London, United Kingdom
| | - Shamez N. Ladhani
- Immunisations and Countermeasures Division, UK Health Security Agency, London, United Kingdom
| | - Anna Jeffery-Smith
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | - Nick J. Andrews
- Statistics, Modelling and Economics Unit, UK Health Security Agency, London, United Kingdom
| | - Maria Zambon
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
| |
Collapse
|
10
|
Rick AM, Laurens MB, Huang Y, Yu C, Martin TCS, Rodriguez CA, Rostad CA, Maboa RM, Baden LR, El Sahly HM, Grinsztejn B, Gray GE, Gay CL, Gilbert PB, Janes HE, Kublin JG, Huang Y, Leav B, Hirsch I, Struyf F, Dunkle LM, Neuzil KM, Corey L, Goepfert PA, Walsh SR, Follmann D, Kotloff KL. Risk of COVID-19 after natural infection or vaccination. EBioMedicine 2023; 96:104799. [PMID: 37738833 PMCID: PMC10518569 DOI: 10.1016/j.ebiom.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. METHODS In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7-15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. FINDINGS Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05-0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01-0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. INTERPRETATION Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Anne-Marie Rick
- Department of Pediatrics, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Matthew B Laurens
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ying Huang
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Chenchen Yu
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Thomas C S Martin
- Department of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
| | - Carina A Rodriguez
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Christina A Rostad
- Department of Pediatrics, Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | - Beatriz Grinsztejn
- Evandro Chagas National Institute of Infectious Diseases-Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Glenda E Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Cynthia L Gay
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | | | - Yunda Huang
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Ian Hirsch
- AstraZeneca BioPharmaceuticals, Cambridge, UK
| | | | | | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Paul A Goepfert
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Stephen R Walsh
- Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Breznik JA, Rahim A, Zhang A, Ang J, Stacey HD, Bhakta H, Clare R, Liu LM, Kennedy A, Hagerman M, Kajaks T, Miller MS, Nazy I, Bramson JL, Costa AP, Bowdish DM. Early Omicron infection is associated with increased reinfection risk in older adults in long-term care and retirement facilities. EClinicalMedicine 2023; 63:102148. [PMID: 37753447 PMCID: PMC10518514 DOI: 10.1016/j.eclinm.2023.102148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/28/2023] Open
Abstract
Background Older adults are at increased risk of SARS-CoV-2 Omicron infection and severe disease, especially those in congregate living settings, despite high SARS-CoV-2 vaccine coverage. It is unclear whether hybrid immunity (combined vaccination and infection) after one Omicron infection provides increased protection against subsequent Omicron reinfection in older adults. Methods Incidence of SARS-CoV-2 Omicron infection was examined in 750 vaccinated residents of long-term care and retirement homes in the observational cohort COVID in Long-Term Care Study in Ontario, Canada, within a 75-day period (July to September 2022). Risk of infection was assessed by Cox proportional hazards regression. Serum anti-spike and anti-RBD SARS-CoV-2 IgG and IgA antibodies, microneutralization titres, and spike-specific T cell memory responses, were examined in a subset of 318 residents within the preceding three months. Findings 133 of 750 participants (17.7%) had a PCR-confirmed Omicron infection during the observation period. Increased infection risk was associated with prior Omicron infection (at 9-29 days: 47.67 [23.73-95.76]), and this was not attributed to days since fourth vaccination (1.00 [1.00-1.01]) or residence outbreaks (>6 compared to ≤6: 0.95 [0.37-2.41]). Instead, reinfected participants had lower serum neutralizing antibodies to ancestral and Omicron BA.1 SARS-CoV-2, and lower anti-RBD IgG and IgA antibodies, after their initial Omicron infection. Interpretation Counterintuitively, SARS-CoV-2 Omicron infection was associated with increased risk of Omicron reinfection in residents of long-term care and retirement homes. Less robust humoral hybrid immune responses in older adults may contribute to risk of Omicron reinfection. Funding COVID-19 Immunity Task Force of the Public Health Agency of Canada.
Collapse
Affiliation(s)
- Jessica A. Breznik
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| | - Ahmad Rahim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jann Ang
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Hannah D. Stacey
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Hina Bhakta
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rumi Clare
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Li-Min Liu
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Allison Kennedy
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Megan Hagerman
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Tara Kajaks
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Matthew S. Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Ishac Nazy
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan L. Bramson
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Andrew P. Costa
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
- Centre for Integrated Care, St. Joseph's Health System, Hamilton, Ontario, Canada
| | - Dawn M.E. Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute of Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ebraham L, Xu C, Wang A, Hernandez C, Siclari N, Rajah D, Walter L, Marras SAE, Tyagi S, Fine DH, Daep CA, Chang TL. Oral Epithelial Cells Expressing Low or Undetectable Levels of Human Angiotensin-Converting Enzyme 2 Are Susceptible to SARS-CoV-2 Virus Infection In Vitro. Pathogens 2023; 12:843. [PMID: 37375533 DOI: 10.3390/pathogens12060843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The oral cavity is thought to be one of the portals for SARS-CoV-2 entry, although there is limited evidence of active oral infection by SARS-CoV-2 viruses. We assessed the capacity of SARS-CoV-2 to infect and replicate in oral epithelial cells. Oral gingival epithelial cells (hTERT TIGKs), salivary gland epithelial cells (A-253), and oral buccal epithelial cells (TR146), which occupy different regions of the oral cavity, were challenged with replication-competent SARS-CoV-2 viruses and with pseudo-typed viruses expressing SARS-CoV-2 spike proteins. All oral epithelial cells expressing undetectable or low levels of human angiotensin-converting enzyme 2 (hACE2) but high levels of the alternative receptor CD147 were susceptible to SARS-CoV-2 infection. Distinct viral dynamics were seen in hTERT TIGKs compared to A-253 and TR146 cells. For example, levels of viral transcripts were sustained in hTERT TIGKs but were significantly decreased in A-253 and TR146 cells on day 3 after infection. Analysis of oral epithelial cells infected by replication-competent SARS-CoV-2 viruses expressing GFP showed that the GFP signal and SARS-CoV-2 mRNAs were not evenly distributed. Furthermore, we found cumulative SARS-CoV-2 RNAs from released viruses in the media from oral epithelial cells on day 1 and day 2 after infection, indicating productive viral infection. Taken together, our results demonstrated that oral epithelial cells were susceptible to SARS-CoV-2 viruses despite low or undetectable levels of hACE2, suggesting that alternative receptors contribute to SARS-CoV-2 infection and may be considered for the development of future vaccines and therapeutics.
Collapse
Affiliation(s)
- Laith Ebraham
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Chuan Xu
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Nicholas Siclari
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Divino Rajah
- Global Technology Center, Colgate-Palmolive Company, Piscataway, NJ 08855, USA
| | - Lewins Walter
- Global Technology Center, Colgate-Palmolive Company, Piscataway, NJ 08855, USA
| | - Salvatore A E Marras
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Daniel H Fine
- Department of Oral Biology, School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Carlo Amorin Daep
- Global Technology Center, Colgate-Palmolive Company, Piscataway, NJ 08855, USA
| | - Theresa L Chang
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
14
|
Cai C, Li Y, Hu T, Liang R, Wang K, Guo C, Li Y, Zhang M, Kang M. The Associated Factors of SARS-CoV-2 Reinfection by Omicron Variant - Guangdong Province, China, December 2022 to January 2023. China CDC Wkly 2023; 5:391-396. [PMID: 37197174 PMCID: PMC10184471 DOI: 10.46234/ccdcw2023.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
What is already known about this topic? Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection by variants is being reported commonly and has caused waves of epidemic in many countries. Because of dynamic zero policy, the SARS-CoV-2 reinfection was less reported in China. What is added by this report? SARS-CoV-2 reinfections were observed in Guangdong Province between December 2022 and January 2023. This study estimated that the reinfection incidence was 50.0% for the original strain primary infections, 35.2% for the Alpha or Delta variants, and 18.4% for the Omicron variant; The reinfection incidence within 3-6 months after primary infection by Omicron variant was 4.0%. Besides, 96.2% reinfection cases were symptomatic while only 7.7% sought medical attention. What are the implications for public health practice? These findings suggest a reduced likelihood of an Omicron-driven epidemic resurgence in the short term but emphasize the importance of maintaining vigilant surveillance of emerging SARS-CoV-2 variants and conducting population-based antibody level surveys to inform response preparedness.
Collapse
Affiliation(s)
- Chunsheng Cai
- Guangdong Field Epidemiology Training Program, Guangzhou City, Guangdong Province, China
- Zhongshan Center for Disease Control and Prevention, Zhongshan City, Guangdong Province, China
| | - Yihong Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou City, Guangdong Province, China
| | - Ting Hu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou City, Guangdong Province, China
| | - Rongwei Liang
- Guangdong Field Epidemiology Training Program, Guangzhou City, Guangdong Province, China
- Huaiji County Center for Disease Control and Prevention, Zhaoqing City, Guangdong Province, China
| | - Kaibin Wang
- Guangdong Field Epidemiology Training Program, Guangzhou City, Guangdong Province, China
- Tianhe District Center for Disease Control and Prevention, Guangzhou City, Guangdong Province, China
| | - Congrui Guo
- Guangdong Field Epidemiology Training Program, Guangzhou City, Guangdong Province, China
- Futian District Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, China
| | - Yan Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou City, Guangdong Province, China
| | - Meng Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou City, Guangdong Province, China
| | - Min Kang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou City, Guangdong Province, China
- Min Kang,
| |
Collapse
|
15
|
Ukwishaka J, Ndayishimiye Y, Destine E, Danwang C, Kirakoya-Samadoulougou F. Global prevalence of coronavirus disease 2019 reinfection: a systematic review and meta-analysis. BMC Public Health 2023; 23:778. [PMID: 37118717 PMCID: PMC10140730 DOI: 10.1186/s12889-023-15626-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/07/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged with a high transmissibility rate and resulted in numerous negative impacts on global life. Preventive measures such as face masks, social distancing, and vaccination helped control the pandemic. Nonetheless, the emergence of SARS-CoV-2 variants, such as Omega and Delta, as well as coronavirus disease 2019 (COVID-19) reinfection, raise additional concerns. Therefore, this study aimed to determine the overall prevalence of reinfection on global and regional scales. METHODS A systematic search was conducted across three databases, PubMed, Scopus, and ProQuest Central, including all articles pertaining to COVID-19 reinfection without language restriction. After critical appraisal and qualitative synthesis of the identified relevant articles, a meta-analysis considering random effects was used to pool the studies. RESULTS We included 52 studies conducted between 2019 and 2022, with a total sample size of 3,623,655 patients. The overall prevalence of COVID-19 reinfection was 4.2% (95% confidence interval [CI]: 3.7-4.8%; n = 52), with high heterogeneity between studies. Africa had the highest prevalence of 4.7% (95% CI: 1.9-7.5%; n = 3), whereas Oceania and America had lower estimates of 0.3% (95% CI: 0.2-0.4%; n = 1) and 1% (95% CI: 0.8-1.3%; n = 7), respectively. The prevalence of reinfection in Europe and Asia was 1.2% (95% CI: 0.8-1.5%; n = 8) and 3.8% (95% CI: 3.4-4.3%; n = 43), respectively. Studies that used a combined type of specimen had the highest prevalence of 7.6% (95% CI: 5.8-9.5%; n = 15) compared with those that used oropharyngeal or nasopharyngeal swabs only that had lower estimates of 6.7% (95% CI: 4.8-8.5%; n = 8), and 3.4% (95% CI: 2.8-4.0%; n = 12) respectively. CONCLUSION COVID-19 reinfection occurs with varying prevalence worldwide, with the highest occurring in Africa. Therefore, preventive measures, including vaccination, should be emphasized to ensure control of the pandemic.
Collapse
Affiliation(s)
- Joyeuse Ukwishaka
- Maternal Child and Community Health Division, Rwanda Bio-Medical Center, Kigali, Rwanda.
- IntraHealth International, Kigali, Rwanda.
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium.
| | - Yves Ndayishimiye
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | - Esmeralda Destine
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Fati Kirakoya-Samadoulougou
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
16
|
Gallian P, Hozé N, Brisbarre N, Saba Villarroel PM, Nurtop E, Isnard C, Pastorino B, Richard P, Morel P, Cauchemez S, de Lamballerie X. SARS-CoV-2 IgG seroprevalence surveys in blood donors before the vaccination campaign, France 2020-2021. iScience 2023; 26:106222. [PMID: 36818722 PMCID: PMC9930380 DOI: 10.1016/j.isci.2023.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/20/2022] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
We conducted a cross-sectional study for SARS-CoV-2 anti-S1 IgG prevalence in French blood donors (n = 32605), from March-2020 to January-2021. A mathematical model combined seroprevalence with a daily number of hospital admissions to estimate the probability of hospitalization upon infection and determine the number of infections while correcting for antibody decay. There was an overall seroprevalence increase over the study period and we estimate that ∼15% of the French population had been infected by SARS-CoV-2 by January-2021. The infection/hospitalization ratio increased with age, from 0.31% (18-30yo) to 4.5% (61-70yo). Half of the IgG-S1 positive individuals had no detectable antibodies 4 to 5 months after infection. The seroprevalence in group O donors (7.43%) was lower (p = 0.003) than in A, B, and AB donors (8.90%). We conclude, based on seroprevalence data and mathematical modeling, that a large proportion of the French population was unprotected against severe disease prior to the vaccination campaign.
Collapse
Affiliation(s)
- Pierre Gallian
- Établissement Français du Sang, La Plaine Saint Denis 93218, France
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
| | - Nathanaël Hozé
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000, CNRS, 75015 Paris, France
| | - Nadège Brisbarre
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
- Établissement Français du Sang Provence Alpes Côte d'Azur et Corse, 13005 Marseille France
| | | | - Elif Nurtop
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
| | - Christine Isnard
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
- Établissement Français du Sang Provence Alpes Côte d'Azur et Corse, 13005 Marseille France
| | - Boris Pastorino
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
| | - Pascale Richard
- Établissement Français du Sang, La Plaine Saint Denis 93218, France
| | - Pascal Morel
- Établissement Français du Sang, La Plaine Saint Denis 93218, France
- UMR RIGHT 1098, Inserm, Établissement Français du Sang, University of Franche-Comté, 25000 Besançon, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000, CNRS, 75015 Paris, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
| |
Collapse
|
17
|
Nguyen NN, Nguyen YN, Hoang VT, Million M, Gautret P. SARS-CoV-2 Reinfection and Severity of the Disease: A Systematic Review and Meta-Analysis. Viruses 2023; 15:v15040967. [PMID: 37112949 PMCID: PMC10145185 DOI: 10.3390/v15040967] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Since the discovery of SARS-CoV-2, changes in genotype and reinfection with different variants have been observed in COVID-19-recovered patients, raising questions around the clinical pattern and severity of primary infection and reinfection. In this systematic review, we summarize the results of 23 studies addressing SARS-CoV-2 reinfections. A total of 23,231 reinfected patients were included, with pooled estimated reinfection rates ranging from 0.1 to 6.8%. Reinfections were more prevalent during the Omicron variant period. The mean age of reinfected patients was 38.0 ± 6. years and females were predominant among reinfected patients (M/F = 0.8). The most common symptoms during the first and second infection were fever (41.1%), cough (35.7% and 44.6%), myalgia (34.5% and 33.3%), fatigue (23.8% and 25.6%), and headaches (24.4% and 21.4%). No significant differences of clinical pattern were observed between primary infection and reinfection. No significant differences in the severity of infection were observed between primary infection and reinfection. Being female, being a patient with comorbidities, lacking anti-nucleocapsid IgG after the first infection, being infected during the Delta and Omicron wave, and being unvaccinated were associated with a higher risk of reinfection. Conflicting age-related findings were found in two studies. Reinfection with SARS-CoV-2 suggests that natural immunity is not long-lasting in COVID-19 patients.
Collapse
Affiliation(s)
- Nhu Ngoc Nguyen
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | | | - Van Thuan Hoang
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Matthieu Million
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Gautret
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
18
|
Antibody Persistence After Primary SARS-CoV-2 Infection and Protection Against Future Variants Including Omicron in Adolescents: National, Prospective Cohort Study. Pediatr Infect Dis J 2023; 42:496-502. [PMID: 36916856 DOI: 10.1097/inf.0000000000003890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Antibodies are a measure of immunity after primary infection, which may help protect against further SARS-CoV-2 infections. They may also provide some cross-protection against SARS-CoV-2 variants. There are limited data on antibody persistence and, especially, cross-reactivity against different SARS-CoV-2 variants after primary infection in children. METHODS We initiated enhanced surveillance in 18 secondary schools to monitor SARS-CoV-2 infection and transmission in September 2020. Students and Staff provided longitudinal blood samples to test for variant-specific SARS-CoV-2 antibodies using in-house receptor binding domain assays. We recruited 1189 students and 1020 staff; 160 (97 students, 63 staff) were SARS-CoV-2 nucleocapsid-antibody positive at baseline and had sufficient serum for further analysis. RESULTS Most participants developed sustained antibodies against their infecting [wild-type (WT)] strain as well as cross-reactive antibodies against the Alpha, Beta and Delta variants but at lower titers than WT. Staff had significantly lower antibodies titers against WT as cross-reactive antibodies against the Alpha, Beta and Delta variants than students (all P < 0.01). In participants with sufficient sera, only 2.3% (1/43) students and 17.2% (5/29) staff had cross-reactive antibodies against the Omicron variant; they also had higher antibody titers against WT (3042.5; 95% confidence interval: 769.0-12,036.2) than those who did not have cross-reactive antibodies against the Omicron variant (680.7; 534.2-867.4). CONCLUSIONS We found very high rates of antibody persistence after primary infection with WT in students and staff. Infection with WT induced cross-reactive antibodies against Alpha, Beta and Delta variants, but not Omicron. Primary infection with WT may not be cross-protective against the Omicron variant.
Collapse
|
19
|
Bobrovitz N, Ware H, Ma X, Li Z, Hosseini R, Cao C, Selemon A, Whelan M, Premji Z, Issa H, Cheng B, Abu Raddad LJ, Buckeridge DL, Van Kerkhove MD, Piechotta V, Higdon MM, Wilder-Smith A, Bergeri I, Feikin DR, Arora RK, Patel MK, Subissi L. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression. THE LANCET. INFECTIOUS DISEASES 2023; 23:556-567. [PMID: 36681084 PMCID: PMC10014083 DOI: 10.1016/s1473-3099(22)00801-5] [Citation(s) in RCA: 355] [Impact Index Per Article: 177.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The global surge in the omicron (B.1.1.529) variant has resulted in many individuals with hybrid immunity (immunity developed through a combination of SARS-CoV-2 infection and vaccination). We aimed to systematically review the magnitude and duration of the protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against infection and severe disease caused by the omicron variant. METHODS For this systematic review and meta-regression, we searched for cohort, cross-sectional, and case-control studies in MEDLINE, Embase, Web of Science, ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, the WHO COVID-19 database, and Europe PubMed Central from Jan 1, 2020, to June 1, 2022, using keywords related to SARS-CoV-2, reinfection, protective effectiveness, previous infection, presence of antibodies, and hybrid immunity. The main outcomes were the protective effectiveness against reinfection and against hospital admission or severe disease of hybrid immunity, hybrid immunity relative to previous infection alone, hybrid immunity relative to previous vaccination alone, and hybrid immunity relative to hybrid immunity with fewer vaccine doses. Risk of bias was assessed with the Risk of Bias In Non-Randomized Studies of Interventions Tool. We used log-odds random-effects meta-regression to estimate the magnitude of protection at 1-month intervals. This study was registered with PROSPERO (CRD42022318605). FINDINGS 11 studies reporting the protective effectiveness of previous SARS-CoV-2 infection and 15 studies reporting the protective effectiveness of hybrid immunity were included. For previous infection, there were 97 estimates (27 with a moderate risk of bias and 70 with a serious risk of bias). The effectiveness of previous infection against hospital admission or severe disease was 74·6% (95% CI 63·1-83·5) at 12 months. The effectiveness of previous infection against reinfection waned to 24·7% (95% CI 16·4-35·5) at 12 months. For hybrid immunity, there were 153 estimates (78 with a moderate risk of bias and 75 with a serious risk of bias). The effectiveness of hybrid immunity against hospital admission or severe disease was 97·4% (95% CI 91·4-99·2) at 12 months with primary series vaccination and 95·3% (81·9-98·9) at 6 months with the first booster vaccination after the most recent infection or vaccination. Against reinfection, the effectiveness of hybrid immunity following primary series vaccination waned to 41·8% (95% CI 31·5-52·8) at 12 months, while the effectiveness of hybrid immunity following first booster vaccination waned to 46·5% (36·0-57·3) at 6 months. INTERPRETATION All estimates of protection waned within months against reinfection but remained high and sustained for hospital admission or severe disease. Individuals with hybrid immunity had the highest magnitude and durability of protection, and as a result might be able to extend the period before booster vaccinations are needed compared to individuals who have never been infected. FUNDING WHO COVID-19 Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations.
Collapse
Affiliation(s)
- Niklas Bobrovitz
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada; Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Harriet Ware
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xiaomeng Ma
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Zihan Li
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Reza Hosseini
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Christian Cao
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anabel Selemon
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mairead Whelan
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, BC, Canada
| | - Hanane Issa
- Institute of Health Informatics, University College London, London, UK
| | - Brianna Cheng
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Laith J Abu Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
| | - David L Buckeridge
- Department of Epidemiology and Biostatistics, School of Population and Global Health, McGill University, Montreal, QC, Canada
| | | | - Vanessa Piechotta
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Melissa M Higdon
- International Vaccine Access Center, Department of International Health, John Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Annelies Wilder-Smith
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland; Heidelberg Institute of Global Health, University of Heidelberg, Germany
| | - Isabel Bergeri
- Health Emergencies Programme, World Health Organization, Geneva, Switzerland
| | - Daniel R Feikin
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Rahul K Arora
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Minal K Patel
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Lorenzo Subissi
- Health Emergencies Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
20
|
Semelka CT, DeWitt ME, Blevins MW, Holbrook BC, Sanders JW, Alexander-Miller MA. Frailty impacts immune responses to Moderna COVID-19 mRNA vaccine in older adults. Immun Ageing 2023; 20:4. [PMID: 36650551 PMCID: PMC9843107 DOI: 10.1186/s12979-023-00327-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Immune responses to COVID-19 mRNA vaccines have not been well characterized in frail older adults. We postulated that frailty is associated with impaired antibody and cellular mRNA vaccine responses. METHODS We followed older adults in a retirement facility with longitudinal clinical and serological samples from the first Moderna mRNA-1273 vaccine dose starting in February 2021 through their 3rd (booster) vaccine dose. Outcomes were antibody titers, antibody avidity, and AIM+ T cell function and phenotype. Statistical analysis used linear regression with clustered error for antibody titers over multiple timepoints with clinical predictors including, age, sex, prior infection status, and clinical frailty scale (CFS) score. T cell function analysis used linear regression models with clinical predictors and cellular memory phenotype variables. RESULTS Participants (n = 15) had median age of 90 years and mild, moderate, or severe frailty scores (n = 3, 7, or 5 respectively). Over the study time course, anti-spike antibody titers were 10-fold higher in individuals with lower frailty status (p = 0.001 and p = 0.005, unadjusted and adjusted for prior COVID-19 infection). Following the booster, titers to spike protein improved regardless of COVID-19 infection or degree of frailty (p = 0.82 and p = 0.29, respectively). Antibody avidity significantly declined over 6 months in all participants following 2 vaccine doses (p < 0.001), which was further impaired with higher frailty (p = 0.001). Notably, avidity increased to peak levels after the booster (p < 0.001). Overall antibody response was inversely correlated with a phenotype of immune-senescent T cells, CD8 + CD28- TEMRA cells (p = 0.036, adjusted for COVID-19 infection). Furthermore, there was increased detection of CD8 + CD28- TEMRA cells in individuals with greater frailty (p = 0.056, adjusted for COVID-19). CONCLUSIONS We evaluated the immune responses to the Moderna COVID-19 mRNA vaccine in frail older adults in a retirement community. A higher degree of frailty was associated with diminished antibody quantity and quality. However, a booster vaccine dose at 6 months overcame these effects. Frailty was associated with an increased immune-senescence phenotype that may contribute to the observed changes in the vaccine response. While the strength of our conclusions was limited by a small cohort, these results are important for guiding further investigation of vaccine responses in frail older adults.
Collapse
Affiliation(s)
- Charles T Semelka
- Section on Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA.
| | - Michael E DeWitt
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Maria W Blevins
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - John W Sanders
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
21
|
Dynamics of Antibody and T Cell Immunity against SARS-CoV-2 Variants of Concern and the Impact of Booster Vaccinations in Previously Infected and Infection-Naïve Individuals. Vaccines (Basel) 2022; 10:vaccines10122132. [PMID: 36560542 PMCID: PMC9784197 DOI: 10.3390/vaccines10122132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Despite previous coronavirus disease 2019 (COVID-19) vaccinations and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, SARS-CoV-2 still causes a substantial number of infections due to the waning of immunity and the emergence of new variants. Here, we assessed the SARS-CoV-2 spike subunit 1 (S1)-specific T cell responses, anti-SARS-CoV-2 receptor-binding domain (RBD) IgG serum concentrations, and the neutralizing activity of serum antibodies before and one, four, and seven months after the BNT162b2 or mRNA-1273 booster vaccination in a cohort of previously infected and infection-naïve healthcare workers (HCWs). Additionally, we assessed T cell responses against the spike protein of the SARS-CoV-2 Delta, Omicron BA.1 and BA.2 variants of concern (VOC). We found that S1-specific T cell responses, anti-RBD IgG concentrations, and neutralizing activity significantly increased one month after booster vaccination. Four months after booster vaccination, T cell and antibody responses significantly decreased but levels remained steady thereafter until seven months after booster vaccination. After a similar number of vaccinations, previously infected individuals had significantly higher S1-specific T cell, anti-RBD IgG, and neutralizing IgG responses than infection-naïve HCWs. Strikingly, we observed overall cross-reactive T cell responses against different SARS-CoV-2 VOC in both previously infected and infection-naïve HCWs. In summary, COVID-19 booster vaccinations induce strong T cell and neutralizing antibody responses and the presence of T cell responses against SARS-CoV-2 VOC suggest that vaccine-induced T cell immunity offers cross-reactive protection against different VOC.
Collapse
|
22
|
Liu WD, Wang JT, Chao TL, Ieong SM, Tsai YM, Kuo PH, Tsai MJ, Chen YJ, Li GC, Ho SY, Chen HH, Huang YS, Hung CC, Chen YC, Chang SY, Chang SC. Evolution of neutralizing antibodies and cross-activity against different variants of SARS-CoV-2 in patients recovering from COVID-19. J Formos Med Assoc 2022:S0929-6646(22)00436-3. [PMID: 36496300 PMCID: PMC9705194 DOI: 10.1016/j.jfma.2022.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Patients recovering from COVID-19 may need vaccination against SARS-CoV-2 because acquired immunity from primary infection may wane, given the emergence of new SARS-CoV-2 variants. Understanding the trends of anti-spike IgG and neutralizing antibody titers in patients recovering from COVID-19 may inform the decision made on the appropriate interval between recovery and vaccination. METHODS Participants aged 20 years or older and diagnosed with COVID-19 between January and December, 2020 were enrolled. Serum specimens were collected every three months from 10 days to 12 months after the onset of symptom for determinations of anti-spike IgG and neutralizing antibody titers against SARS-CoV-2 Wuhan strain with D614G mutation, alpha, gamma and delta variants. RESULTS Of 19 participants, we found a decreasing trend of geometric mean titers of anti-spike IgG from 560.9 to 217 and 92 BAU/mL after a 4-month and a 7-month follow-up, respectively. The anti-spike IgG titers declined more quickly in the ten participants with severe or critical disease than the nine participants with only mild to moderate disease between one month and seven months after SARS-CoV-2 infection (-8.49 vs - 2.34-fold, p < 0.001). The neutralizing activity of the convalescent serum specimens collected from participants recovering from wild-type SARS-CoV-2 infection against different variants was lower, especially against the delta variants (p < 0.01 for each variant with Wuhan strain as reference). CONCLUSION Acquired immunity from primary infection with SARS-CoV-2 waned within 4-7 months in COVID-19 patients, and neutralizing cross-activities against different SARS-CoV-2 variants were lower compared with those against wild-type strain.
Collapse
Affiliation(s)
- Wang-Da Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan,Corresponding author. Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Rd., Taipei City 10002, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Si-Man Ieong
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Min Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Hsien Kuo
- Department of Internal Medicine, National Taiwan University Hospital Biomedical Park Hospital, Hsinchu, Taiwan
| | - Ming-Jui Tsai
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan
| | - Yi-Jie Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Guei-Chi Li
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Yuan Ho
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui-Hou Chen
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Ching Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan,Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan,Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,Corresponding author. Department of Laboratory Medicine, National Taiwan University Hospital, 7 Chung-Shan South Rd., Taipei City 10002, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan,School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
23
|
Ando W, Horii T, Jimbo M, Uematsu T, Atsuda K, Hanaki H, Otori K. Smoking cessation in the elderly as a sign of susceptibility to symptomatic COVID-19 reinfection in the United States. Front Public Health 2022; 10:985494. [PMID: 36504971 PMCID: PMC9733529 DOI: 10.3389/fpubh.2022.985494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background We aimed to clarify the relationship between coronavirus disease 2019 (COVID-19) reinfection and basic disease and smoking status. Methods The electronic health records of 165,320 patients with COVID-19 from January 1, 2020, to August 27, 2021, were analyzed. Data on age, race, sex, smoking status (never, current, former), and basic disease were analyzed using Cox proportional hazard models. Results In total, 6,133 patients (3.7%) were reinfected. The overall reinfection rate for never, current, and former smokers was 4.2, 3.5, and 5.7%, respectively. Although the risk of reinfection was highest among former smokers aged ≥65 years (7.7% [422/5,460]), the reinfection rate among current smokers aged ≥65 years was 6.2% (341/5,543). Among reinfected patients, the number of basic diseases was higher in former smokers (2.41 ± 1.16) than in current (2.28 ± 1.07, P = 0.07) and never smokers (2.07 ± 1.05, P < 0.001). Former smokers who are older may have been exposed to factors that increase their risk of symptomatic COVID-19 reinfection.
Collapse
Affiliation(s)
- Wataru Ando
- Department of Clinical Pharmacy, Center for Clinical Pharmacy and Sciences, Kitasato University School of Pharmacy, Shirokane, Japan,Department of Pharmacy, Kitasato University Medical Center, Kitamoto, Japan,*Correspondence: Wataru Ando
| | - Takeshi Horii
- Laboratory of Pharmacy Practice and Science 1, Division of Clinical Pharmacy, Research and Education Center for Clinical Pharmacy, Kitasato University School of Pharmacy, Sagamihara, Japan
| | - Mitsuki Jimbo
- Department of Clinical Pharmacy, Center for Clinical Pharmacy and Sciences, Kitasato University School of Pharmacy, Shirokane, Japan
| | - Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Koichiro Atsuda
- Laboratory of Pharmacy Practice and Science 1, Division of Clinical Pharmacy, Research and Education Center for Clinical Pharmacy, Kitasato University School of Pharmacy, Sagamihara, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, Omura Satoshi Memorial Institute, Kitasato University, Shirokane, Japan
| | - Katsuya Otori
- Department of Clinical Pharmacy, Center for Clinical Pharmacy and Sciences, Kitasato University School of Pharmacy, Shirokane, Japan,Department of Pharmacy, Kitasato University Medical Center, Kitamoto, Japan
| |
Collapse
|
24
|
ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses 2022; 14:v14112535. [PMID: 36423144 PMCID: PMC9692829 DOI: 10.3390/v14112535] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and remains a major public health challenge despite the availability of effective vaccines. SARS-CoV-2 enters cells through the binding of its spike receptor-binding domain (RBD) to the human angiotensin-converting enzyme 2 (ACE2) receptor in concert with accessory receptors/molecules that facilitate viral attachment, internalization, and fusion. Although ACE2 plays a critical role in SARS-CoV-2 replication, its expression profiles are not completely associated with infection patterns, immune responses, and clinical manifestations. Additionally, SARS-CoV-2 infects cells that lack ACE2, and the infection is resistant to monoclonal antibodies against spike RBD in vitro, indicating that some human cells possess ACE2-independent alternative receptors, which can mediate SARS-CoV-2 entry. Here, we discuss these alternative receptors and their interactions with SARS-CoV-2 components for ACE2-independent viral entry. These receptors include CD147, AXL, CD209L/L-SIGN/CLEC4M, CD209/DC-SIGN/CLEC4L, CLEC4G/LSECtin, ASGR1/CLEC4H1, LDLRAD3, TMEM30A, and KREMEN1. Most of these receptors are known to be involved in the entry of other viruses and to modulate cellular functions and immune responses. The SARS-CoV-2 omicron variant exhibits altered cell tropism and an associated change in the cell entry pathway, indicating that emerging variants may use alternative receptors to escape the immune pressure against ACE2-dependent viral entry provided by vaccination against RBD. Understanding the role of ACE2-independent alternative receptors in SARS-CoV-2 viral entry and pathogenesis may provide avenues for the prevention of infection by SARS-CoV-2 variants and for the treatment of COVID-19.
Collapse
|
25
|
Atti A, Insalata F, Carr EJ, Otter AD, Castillo-Olivares J, Wu M, Harvey R, Howell M, Chan A, Lyall J, Temperton N, Cantoni D, da Costa K, Nadesalingam A, Taylor-Kerr A, Hettiarachchi N, Tranquillini C, Hewson J, Cole MJ, Foulkes S, Munro K, Monk EJM, Milligan ID, Linley E, Chand MA, Brown CS, Islam J, Semper A, Charlett A, Heeney JL, Beale R, Zambon M, Hopkins S, Brooks T, Hall V. Antibody correlates of protection from SARS-CoV-2 reinfection prior to vaccination: A nested case-control within the SIREN study. J Infect 2022; 85:545-556. [PMID: 36089104 PMCID: PMC9458758 DOI: 10.1016/j.jinf.2022.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection. METHODS We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N). Results were analysed using fixed effect linear regression and fitted into conditional logistic regression models. RESULTS We identified 23 cases and 92 controls. First infections occurred before November 2020; reinfections occurred before February 2021, pre-vaccination. Anti-S levels, LV-N and PV-N titres were significantly lower among cases; no difference was found for anti-N levels. Increasing anti-S levels were associated with reduced risk of reinfection (OR 0·63, CI 0·47-0·85), but no association for anti-N levels (OR 0·88, CI 0·73-1·05). Titres >40 were correlated with protection against reinfection for LV-N Wuhan (OR 0·02, CI 0·001-0·31) and LV-N Alpha (OR 0·07, CI 0·009-0·62). For PV-N, titres >100 were associated with protection against Wuhan (OR 0·14, CI 0·03-0·64) and Alpha (0·06, CI 0·008-0·40). CONCLUSIONS Before vaccination, protection against SARS-CoV-2 reinfection was directly correlated with anti-S levels, PV-N and LV-N titres, but not with anti-N levels. Detectable LV-N titres were sufficient for protection, whilst PV-N titres >100 were required for a protective effect. TRIAL REGISTRATION NUMBER ISRCTN11041050.
Collapse
Affiliation(s)
- Ana Atti
- UK Health Security Agency, Smith Square, London SW1P, UK.
| | | | - Edward J Carr
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Ashley D Otter
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
| | - Mary Wu
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Ruth Harvey
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Andrew Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
| | - Jonathan Lyall
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Central Ave, Gillingham, Chatham ME4 4BF, UK
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Central Ave, Gillingham, Chatham ME4 4BF, UK
| | - Kelly da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Central Ave, Gillingham, Chatham ME4 4BF, UK
| | - Angalee Nadesalingam
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
| | | | | | | | | | | | - Sarah Foulkes
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Katie Munro
- UK Health Security Agency, Smith Square, London SW1P, UK
| | | | | | - Ezra Linley
- Manchester Royal Infirmary, UK Health Security Agency, Oxford Road, Manchester M139WL, UK
| | - Meera A Chand
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Colin S Brown
- UK Health Security Agency, Smith Square, London SW1P, UK; The National Institute for Health Research Health Protection Research (NIHR) Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK
| | - Jasmin Islam
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Amanda Semper
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Andre Charlett
- UK Health Security Agency, Smith Square, London SW1P, UK; NIHR Health Protection Research Unit in Behavioural Science and Evaluation at University of Bristol in partnership with Public Health England, Queens Road, Bristol BS8 1QU, UK; NIHR Health Protection Research Unit in Immunisation at the London School of Hygiene and Tropical Medicine in partnership with Public Health England, Keppel St, London WC1E 7HT, UK
| | | | - Rupert Beale
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Maria Zambon
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Susan Hopkins
- UK Health Security Agency, Smith Square, London SW1P, UK; The National Institute for Health Research Health Protection Research (NIHR) Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK
| | - Tim Brooks
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Victoria Hall
- UK Health Security Agency, Smith Square, London SW1P, UK; The National Institute for Health Research Health Protection Research (NIHR) Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK
| |
Collapse
|
26
|
Flacco ME, Acuti Martellucci C, Baccolini V, De Vito C, Renzi E, Villari P, Manzoli L. Risk of reinfection and disease after SARS-CoV-2 primary infection: Meta-analysis. Eur J Clin Invest 2022; 52:e13845. [PMID: 35904405 PMCID: PMC9353414 DOI: 10.1111/eci.13845] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION A precise estimate of the frequency and severity of SARS-CoV-2 reinfections would be critical to optimize restriction and vaccination policies for the hundreds of millions previously infected subjects. We performed a meta-analysis to evaluate the risk of reinfection and COVID-19 following primary infection. METHODS We searched MedLine, Scopus and preprint repositories for cohort studies evaluating the onset of new infections among baseline SARS-CoV-2-positive subjects. Random-effect meta-analyses of proportions were stratified by gender, exposure risk, vaccination status, viral strain, time between episodes, and reinfection definition. RESULTS Ninety-one studies, enrolling 15,034,624 subjects, were included. Overall, 158,478 reinfections were recorded, corresponding to a pooled rate of 0.97% (95% CI: 0.71%-1.27%), with no substantial differences by definition criteria, exposure risk or gender. Reinfection rates were still 0.66% after ≥12 months from first infection, and the risk was substantially lower among vaccinated subjects (0.32% vs. 0.74% for unvaccinated individuals). During the first 3 months of Omicron wave, the reinfection rates reached 3.31%. Overall rates of severe/lethal COVID-19 were very low (2-7 per 10,000 subjects according to definition criteria) and were not affected by strain predominance. CONCLUSIONS A strong natural immunity follows the primary infection and may last for more than one year, suggesting that the risk and health care needs of recovered subjects might be limited. Although the reinfection rates considerably increased during the Omicron wave, the risk of a secondary severe or lethal disease remained very low. The risk-benefit profile of multiple vaccine doses for this subset of population needs to be carefully evaluated.
Collapse
Affiliation(s)
- Maria Elena Flacco
- Department of Environmental and Preventive Sciences, University of Ferrara, Ferrara, Italy
| | | | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Erika Renzi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Lamberto Manzoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Collins E, Galipeau Y, Arnold C, Bosveld C, Heiskanen A, Keeshan A, Nakka K, Shir-Mohammadi K, St-Denis-Bissonnette F, Tamblyn L, Vranjkovic A, Wood LC, Booth R, Buchan CA, Crawley AM, Little J, McGuinty M, Saginur R, Langlois MA, Cooper CL. Cohort profile: Stop the Spread Ottawa (SSO) -a community-based prospective cohort study on antibody responses, antibody neutralisation efficiency and cellular immunity to SARS-CoV-2 infection and vaccination. BMJ Open 2022; 12:e062187. [PMID: 36691221 PMCID: PMC9461086 DOI: 10.1136/bmjopen-2022-062187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/16/2022] [Indexed: 01/27/2023] Open
Abstract
PURPOSE To investigate the robustness and longevity of SARS-CoV-2 immune responses conferred by natural infection and vaccination among priority populations such as immunocompromised individuals and people with post-acute sequelae of COVID-19 in a prospective cohort study (Stop the Spread Ottawa-SSO) in adults living in the Ottawa region. In this paper, we describe the study design, ongoing data collection and baseline characteristics of participants. PARTICIPANTS Since October 2020, participants who tested positive for COVID-19 (convalescents) or at high risk of exposure to the virus (under surveillance) have provided monthly blood and saliva samples over a 10-month period. As of 2 November 2021, 1026 adults had completed the baseline survey and 976 had attended baseline bloodwork. 300 participants will continue to provide bimonthly blood samples for 24 additional months (ie, total follow-up of 34 months). FINDINGS TO DATE The median age of the baseline sample was 44 (IQR 23, range: 18-79) and just over two-thirds (n=688; 67.1%) were female. 255 participants (24.9%) had a history of COVID-19 infection confirmed by PCR and/or serology. Over 600 participants (60.0%) work in high-risk occupations (eg, healthcare, teaching and transportation). 108 participants (10.5%) reported immunocompromising conditions or treatments at baseline (eg, cancer, HIV, other immune deficiency, and/or use of immunosuppressants). FUTURE PLANS SSO continues to yield rich research potential, given the collection of pre-vaccine baseline data and samples from the majority of participants, recruitment of diverse subgroups of interest, and a high level of participant retention and compliance with monthly sampling. The 24-month study extension will maximise opportunities to track SARS-CoV-2 immunity and vaccine efficacy, detect and characterise emerging variants, and compare subgroup humoral and cellular response robustness and persistence.
Collapse
Affiliation(s)
- Erin Collins
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cameron Bosveld
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Aliisa Heiskanen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kiran Nakka
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Khatereh Shir-Mohammadi
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laura Tamblyn
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Agatha Vranjkovic
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Leah C Wood
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ronald Booth
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Immunology Section, Eastern Ontario Regional Laboratory Association (EORLA), Ottawa, Ontario, Canada
| | - C Arianne Buchan
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angela M Crawley
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, Ontario, Canada
| | - Michaeline McGuinty
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Raphael Saginur
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Health Science Network Research Ethics Board (OHSN-REB), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Curtis L Cooper
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
SARS-CoV-2 Reinfection Rate and Outcomes in Saudi Arabia: A National Retrospective Study. Int J Infect Dis 2022; 122:758-766. [PMID: 35840098 PMCID: PMC9364818 DOI: 10.1016/j.ijid.2022.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The characterization of reinfection with SARS-CoV-2 has been a subject of concern and controversy, especially with the surge of infections with highly transmissible variants worldwide. METHODS This retrospective national study used comorbidities, vaccination status, SARS-CoV-2 variants of concern, and demographics data to profile participants who were reinfected with SARS-CoV-2, defined as having two reverse transcriptase-polymerase chain reaction-positive SARS-CoV-2 tests within at least 90 days apart. A multivariate logistic regression model assessed the risk factors associated with reinfection . Two control groups were selected: nonreinfected participants reporting a positive test (control group one) and those reporting a negative test (control group two). RESULTS Between March 2020 and December 2021, 4454 reinfected participants were identified in Saudi Arabia (0.8%, 95% confidence interval [CI] 0.7-0.8). The majority (67.3%) were unvaccinated (95% CI 65.9-68.7) and 0.8% (95% CI 0.6-1.1) had severe or fatal SARS-CoV-2 disease. COVID-19 vaccines were 100% effective against mortality in reinfected individuals who received at least one dose, whereas it conferred 61% (odds ratio [OR] 0.4, 95% CI 0.1-1.0) additional protection against severe disease after the first dose and 100% after the second dose. In the risk factor analysis, reinfection was highly associated with comorbidities, such as HIV (OR 2.5, 95% CI 1.3-5.2; P = 0.009), obesity (OR 2.3, 95% CI 1.3-3.9; P = 0.003), pregnancy (OR 3.2, 95% CI 1.4-7.4; P = 0.005), and working in health care facilities (OR 6.1, 95% CI 3.1-12.9; P <0.0001). The delta variant (B.1.617.2) was the most frequent variant of concern among the reinfected cohort. CONCLUSION This in-depth study of the reinfection profile identified risk factors and highlighted the associated SARS-CoV-2 variants. Results showed that naturally acquired immunity to SARS-CoV-2 through multiple reinfections together with vaccine-induced immunity provided substantial protection against severe SARS-CoV-2 disease and mortality.
Collapse
|
29
|
Racey CS, Booth A, Albert A, Smith LW, Krajden M, Murray MCM, Côté HCF, Gottschlich A, Goldfarb DM, Sadarangani M, Galea LAM, Kaida A, Brotto LA, Ogilvie GS. Seropositivity of SARS-CoV-2 in an unvaccinated cohort in British Columbia, Canada: a cross-sectional survey with dried blood spot samples. BMJ Open 2022; 12:e062567. [PMID: 36038173 PMCID: PMC9438102 DOI: 10.1136/bmjopen-2022-062567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Gathering population-based data on prevalence of SARS-CoV-2 infection is vital to the public health response and planning. Current seroprevalence data in BC are limited with respect to considerations of how socioeconomic and demographic factors, such as age, sex, gender, income, identifying as a visibility minority and occupation, are related to SARS-CoV-2 antibody detection due to infection-acquired immunity. We aimed to estimate the SARS-CoV-2 seropositivity in a cohort of British Columbians, using at-home self-collected dried blood spot (DBS) samples. DESIGN This cross-sectional study included online surveys that collected sociodemographic and COVID-19 vaccine receipt information, and an at-home DBS collection kit. SETTING British Columbia (BC), Canada. PARTICIPANTS Eligible participants were aged 25-69 years and residents of BC. PRIMARY OUTCOME MEASURE SARS-CoV-2 anti-spike IgG antibody detection in unvaccinated individuals. Adjusted incidence rate ratios (aIRR) explored factors associated with seropositivity. RESULTS SARS-CoV-2 serology was performed on a total of 4048 unvaccinated participants 25-69 years of age who submitted DBS samples taken from November 2020 to June 2021. A total of 118 seropositive cases were identified, for an estimated overall seropositivity of 2.92% (95% CI 2.42% to 3.48%). Participants identifying as a visible minority had a higher seropositivity, 5.1% vs 2.6% (p=0.003), compared with non-visible minority participants. After adjustment by age and sex, identifying as a visible minority (aIRR=1.85, 95% CI 1.20 to 2.84) remained the only significant factor associated with SARS-CoV-2 antibody detection in this cohort of unvaccinated individuals. CONCLUSIONS SARS-CoV-2 seropositivity in the BC population due to infection-acquired immunity was low. Seropositivity indicated that among those unvaccinated, visible minority communities have been most impacted. Continued monitoring of SARS-CoV-2 serology due to both infection-acquired and vaccine-acquired immunity will be vital in public health planning and pandemic response.
Collapse
Affiliation(s)
- C Sarai Racey
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
| | - Amy Booth
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
| | - Arianne Albert
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
| | - Laurie W Smith
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Mel Krajden
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Melanie C M Murray
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
- Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hélène C F Côté
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Anna Gottschlich
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
| | - David M Goldfarb
- Pathology and Laboratory Medicine, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Manish Sadarangani
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
- Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela Kaida
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lori A Brotto
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
- Department of Obstetrics & Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Gina S Ogilvie
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, British Columbia, Canada
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Chavda VP, Patel AB, Vora LK, Apostolopoulos V, Uhal BD. Dendritic cell-based vaccine: the state-of-the-art vaccine platform for COVID-19 management. Expert Rev Vaccines 2022; 21:1395-1403. [PMID: 35929957 DOI: 10.1080/14760584.2022.2110076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A correlation between new coronaviruses and host immunity, as well as the role of defective immune function in host response, would be extremely helpful in understanding coronavirus disease (COVID-19) pathogenicity, and a coherent structure of treatments and vaccines. As existing vaccines may be inadequate for new viral variants emerging in various regions of the world, it is a vital requirement for fresh and effective therapeutic alternatives. AREA COVERED Immunotherapy may give a viable protective option for COVID-19, a disease that is currently a big burden on global health and economic systems. Herein, we have outlined three dendritic cell (DC)-based vaccines for COVID-19 which are in human clinical trials and have shown encouraging outcomes. EXPERT OPINION With existing knowledge of the virus, and the nature of DC, DC-based vaccines may be proven to be effective in inducing long-lasting protective immunity, especially T cell responses.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad - 380009, Gujarat, India
| | - Aayushi B Patel
- Pharmacy Section, LM College of Pharmacy, Ahmedabad - 380058, Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
31
|
Love NK, Ready DR, Turner C, Yardley L, Rubin GJ, Hopkins S, Oliver I. The acceptability of testing contacts of confirmed COVID-19 cases using serial, self-administered lateral flow devices as an alternative to self-isolation. J Med Microbiol 2022; 71. [PMID: 35947525 DOI: 10.1099/jmm.0.001567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction. Evidence suggests that although people modify their behaviours, full adherence to self-isolation guidance in England may be suboptimal, which may have a detrimental impact on COVID-19 transmission rates.Hypothesis. Testing asymptomatic contacts of confirmed COVID-19 cases for the presence of SARS-CoV-2 could reduce onward transmission by improving case ascertainment and lessen the impact of self-isolation on un-infected individuals.Aim. This study investigated the feasibility and acceptability of implementing a 'test to enable approach' as part of England's tracing strategy.Methodology. Contacts of confirmed COVID-19 cases were offered serial testing as an alternative to self-isolation using daily self-performed lateral flow device (LFD) tests for the first 7 days post-exposure. Asymptomatic participants with a negative LFD result were given 24 h of freedom from self-isolation between each test. A self-collected confirmatory PCR test was performed on testing positive or at the end of the LFD testing period.Results. Of 1760 contacts, 882 consented to daily testing, of whom 812 individuals were within 48 h of exposure and were sent LFD testing packs. Of those who declined to participate, 39.1% stated they had already accessed PCR testing. Of the 812 who were sent LFD packs, 570 (70.2%) reported one or more LFD results; 102 (17.9%) tested positive. Concordance between reported LFD result and a supplied LFD image was 97.1%. In total, 82.8% of PCR-positive samples and 99.6% of PCR-negative samples were correctly detected by LFD. The proportion of secondary cases from contacts of those who participated in the study and tested positive (6.3%; 95% CI: 3.4-11.1%) was comparable to a comparator group who self-isolated (7.6%; 95% CI: 7.3-7.8%).Conclusion. This study shows a high acceptability, compliance and positivity rates when using self-administered LFDs among contacts of confirmed COVID-19 cases. Offering routine testing as a structured part of the contact tracing process is likely to be an effective method of case ascertainment.
Collapse
Affiliation(s)
| | - Derren R Ready
- UK Health Security Agency, England, UK.,Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| | | | - Lucy Yardley
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,School of Psychological Science, University of Bristol, Bristol, UK.,Department of Psychology, University of Southampton, Southampton, UK
| | - G James Rubin
- Health Protection Research Unit in Emergency Preparedness and Response, King's College London, London, UK
| | | | - Isabel Oliver
- UK Health Security Agency, England, UK.,Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| |
Collapse
|
32
|
Semelka CT, DeWitt ME, Blevins MW, Holbrook BC, Sanders JW, Alexander-Miller MA. Frailty and Age Impact Immune Responses to Moderna COVID-19 mRNA Vaccine. RESEARCH SQUARE 2022:rs.3.rs-1883093. [PMID: 35982657 PMCID: PMC9387536 DOI: 10.21203/rs.3.rs-1883093/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Immune responses to COVID-19 mRNA vaccines have not been well characterized in frail older adults. We postulated that frailty is associated with impaired antibody and cellular mRNA vaccine responses. METHODS We followed older adults in a retirement facility with longitudinal clinical and serological samples from the first Moderna mRNA-1273 vaccine dose starting in February 2021 through their 3rd (booster) vaccine dose. Outcomes were antibody titers, antibody avidity, and AIM+ T cell function and phenotype. Statistical analysis used antibody titers in linear mixed-effects linear regression with clinical predictors including, age, sex, prior infection status, and clinical frailty scale (CFS) score. T cell function analysis used clinical predictors and cellular phenotype variables in linear regression models. RESULTS Participants (n=15) had median age of 90 years and mild, moderate, or severe frailty scores (n=3, 7, or 5 respectively). After 2 vaccine doses, anti-spike antibody titers were higher in 5-fold higher in individuals with mild frailty compared to severe frailty and 9-fold higher in individuals with prior COVID-19 infection compared to uninfected (p=0.02 and p<0.001). Following the booster, titers improved regardless of COVID-19 infection or frailty. Antibody avidity significantly declined following 2 vaccine doses regardless of frailty status, but reached maximal avidity after the booster. Spike-specific CD4+ T cell responses were modulated by frailty and terminally differentiated effector memory TEMRA cells, and spike-specific TFH cell responses were inversely correlated with age. Additionally, an immune-senescent memory T cell phenotype was correlated with frailty and functional decline. CONCLUSIONS We described the separate influences of frailty and age on adaptive immune responses to the Moderna COVID-19 mRNA vaccine. Though overall antibody responses were robust, higher frailty diminished initial antibody quantity, and all older adults had impaired antibody avidity. Following the booster, antibody responses improved, overcoming the effects of age and frailty. CD4+ T cell responses were independently impacted by age, frailty, and burden of immune-senescence. Frailty was correlated with increased burden of immune-senescence, suggesting an immune-mediated mechanism for physiological decline.
Collapse
|
33
|
Rothberg MB, Kim P, Shrestha NK, Kojima L, Tereshchenko LG. Protection Against the Omicron Variant Offered by Previous Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Retrospective Cohort Study. Clin Infect Dis 2022; 76:e142-e147. [PMID: 35867678 PMCID: PMC9384480 DOI: 10.1093/cid/ciac604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides strong protection against future infection. There is limited evidence on whether such protection extends to the Omicron variant. METHODS This retrospective cohort study included 635 341 patients tested for SARS-CoV-2 via polymerase chain reaction from 9 March 2020 to 1 March 2022. Patients were analyzed according to the wave in which they were initially infected. The primary outcome was reinfection during the Omicron period (20 December 2021-1 March 2022). We used a multivariable model to assess the effects of prior infection and vaccination on hospitalization. RESULTS Among the patients tested during the Omicron wave, 30.6% tested positive. Protection of prior infection against reinfection with Omicron ranged from 18.0% (95% confidence interval [CI], 13.0-22.7) for patients infected in wave 1 to 69.2% (95% CI, 63.4-74.1) for those infected in the Delta wave. In adjusted models, previous infection reduced hospitalization by 28.5% (95% CI, 19.1-36.7), whereas full vaccination plus a booster reduced it by 59.2% (95% CI, 54.8-63.1). CONCLUSIONS Previous infection offered less protection against Omicron than was observed in past waves. Immunity against future waves will likely depend on the degree of similarity between variants.
Collapse
Affiliation(s)
- Michael B Rothberg
- Corresponding Author: Michael B. Rothberg, MD, MPH Center for Value-Based Care Research 9500 Euclid Ave, Mail Code G10 Cleveland, OH 44195 United States of America
| | - Priscilla Kim
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Nabin K Shrestha
- Department of Infectious Disease, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lisa Kojima
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
34
|
Pilz S, Theiler-Schwetz V, Trummer C, Krause R, Ioannidis JPA. SARS-CoV-2 reinfections: Overview of efficacy and duration of natural and hybrid immunity. ENVIRONMENTAL RESEARCH 2022; 209:112911. [PMID: 35149106 PMCID: PMC8824301 DOI: 10.1016/j.envres.2022.112911] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 05/13/2023]
Abstract
Seroprevalence surveys suggest that more than a third and possibly more than half of the global population has been infected with SARS-CoV-2 by early 2022. As large numbers of people continue to be infected, the efficacy and duration of natural immunity in terms of protection against SARS-CoV-2 reinfections and severe disease is of crucial significance for the future. This narrative review provides an overview on epidemiological studies addressing this issue. National surveys covering 2020-2021 documented that a previous SARS-CoV-2 infection is associated with a significantly reduced risk of reinfections with efficacy lasting for at least one year and only relatively moderate waning immunity. Importantly, natural immunity showed roughly similar effect sizes regarding protection against reinfection across different SARS-CoV-2 variants, with the exception of the Omicron variant for which data are just emerging before final conclusions can be drawn. Risk of hospitalizations and deaths was also reduced in SARS-CoV-2 reinfections versus primary infections. Observational studies indicate that natural immunity may offer equal or greater protection against SARS-CoV-2 infections compared to individuals receiving two doses of an mRNA vaccine, but data are not fully consistent. The combination of a previous SARS-CoV-2 infection and a respective vaccination, termed hybrid immunity, seems to confer the greatest protection against SARS-CoV-2 infections, but several knowledge gaps remain regarding this issue. Natural immunity should be considered for public health policy regarding SARS-CoV-2.
Collapse
Affiliation(s)
- Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036, Graz, Austria.
| | - Verena Theiler-Schwetz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036, Graz, Austria
| | - Christian Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036, Graz, Austria
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, Medical University of Graz, 8036, Graz, Austria
| | - John P A Ioannidis
- Departments of Medicine, Epidemiology and Population Health, Biomedical Data Science, and Statistics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
35
|
Akkız H. The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern. Front Med (Lausanne) 2022; 9:849217. [PMID: 35669924 PMCID: PMC9163346 DOI: 10.3389/fmed.2022.849217] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuing to evolve, emerging novel variants with spike protein mutations. Although most mutations emerged in the SARS-CoV-2 genome are neutral or mildly deleterious, a small number of mutations can affect virus phenotype that confers the virus a fitness advantage. These mutations can enhance viral replication, raise the risk of reinfection and blunt the potency of neutralizing antibodies triggered by previous infection and vaccination. Since December 2020, the SARS-CoV-2 has emerged five quickly spreading strains, designated variants of concern (VOCs), including the Alpha (B.1.1.7) variant, the Beta (B.1.351) variant, the Gamma (P.1) variant, the Delta (B.1.617.2) variant and the Omicron (B.1.1.529) variant. These variants have a high number of the mutations in the spike protein that promotes viral cell entry through the angiotensin-converting enzyme -2 (ACE2). Mutations that have arisen in the receptor binding domain (RBD) of the spike protein are of great concern due to their potential to evade neutralizing antibodies triggered by previous infection and vaccines. The Alpha variant emerged in the United Kingdom in the second half of 2020 that has spread quickly globally and acquired the E484K mutation in the United Kingdom and the United States. The Beta and Gamma variants emerged in South Africa and Brazil, respectively, that have additional mutations at positions E484 and K417 in the RBD. SARS-CoV-2 variants containing the combination of N501Y, E484K, and K417N/T mutations exhibit remarkably decreased sensitivity to neutralizing antibodies mediated by vaccination or previous infection. The Gamma variant may result in more severe disease than other variants do even in convalescent individuals. The Delta variant emerged in India in December 2020 and has spread to many countries including the United States and the United Kingdom. The Delta variant has 8 mutations in the spike protein, some of which can influence immune responses to the key antigenic regions of RBD. In early November 2021, the Omicron (B.1.1.529) variant was first detected in Botswana and South Africa. The Omicron variant harbors more than 30 mutations in the spike protein, many of which are located within the RBD, which have been associated with increased transmissibility and immune evasion after previous infection and vaccination. Additionally, the Omicron variant contains 3 deletions and one insertion in the spike protein. Recently, the Omicron variant has been classified into three sublineages, including BA.1, BA.2, and BA.3, with strikingly different genetic characteristics. The Omicron BA.2 sublineage has different virological landscapes, such as transmissibility, pathogenicity and resistance to the vaccine-induced immunity compared to BA.1 and BA.3 sublineages. Mutations emerged in the RBD of the spike protein of VOCs increase viral replication, making the virus more infectious and more transmissible and enable the virus to evade vaccine-elicited neutralizing antibodies. Unfortunately, the emergence of novel SARS-CoV-2 VOCs has tempered early optimism regarding the efficacy of COVID-19 vaccines. This review addresses the biological and clinical significance of SARS-CoV-2 VOCs and their impact on neutralizing antibodies mediated by existing COVID-19 vaccines.
Collapse
Affiliation(s)
- Hikmet Akkız
- Department of Gastroenterology and Hepatology, The University of Çukurova, Adana, Turkey
| |
Collapse
|
36
|
Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, Gower C, Kall M, Groves N, O'Connell AM, Simons D, Blomquist PB, Zaidi A, Nash S, Iwani Binti Abdul Aziz N, Thelwall S, Dabrera G, Myers R, Amirthalingam G, Gharbia S, Barrett JC, Elson R, Ladhani SN, Ferguson N, Zambon M, Campbell CNJ, Brown K, Hopkins S, Chand M, Ramsay M, Lopez Bernal J. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med 2022; 386:1532-1546. [PMID: 35249272 DOI: 10.1101/2021.12.14.21267615] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
BACKGROUND A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).
Collapse
Affiliation(s)
- Nick Andrews
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Julia Stowe
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Freja Kirsebom
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Samuel Toffa
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Tim Rickeard
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Eileen Gallagher
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Charlotte Gower
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Meaghan Kall
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Natalie Groves
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Anne-Marie O'Connell
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - David Simons
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Paula B Blomquist
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Asad Zaidi
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Sophie Nash
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Nurin Iwani Binti Abdul Aziz
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Simon Thelwall
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Gavin Dabrera
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Richard Myers
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Gayatri Amirthalingam
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Saheer Gharbia
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Jeffrey C Barrett
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Richard Elson
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Shamez N Ladhani
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Neil Ferguson
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Maria Zambon
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Colin N J Campbell
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Kevin Brown
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Susan Hopkins
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Meera Chand
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Mary Ramsay
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Jamie Lopez Bernal
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| |
Collapse
|
37
|
Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, Gower C, Kall M, Groves N, O'Connell AM, Simons D, Blomquist PB, Zaidi A, Nash S, Iwani Binti Abdul Aziz N, Thelwall S, Dabrera G, Myers R, Amirthalingam G, Gharbia S, Barrett JC, Elson R, Ladhani SN, Ferguson N, Zambon M, Campbell CNJ, Brown K, Hopkins S, Chand M, Ramsay M, Lopez Bernal J. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med 2022; 386:1532-1546. [PMID: 35249272 PMCID: PMC8908811 DOI: 10.1056/nejmoa2119451] [Citation(s) in RCA: 1571] [Impact Index Per Article: 523.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).
Collapse
Affiliation(s)
- Nick Andrews
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Julia Stowe
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Freja Kirsebom
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Samuel Toffa
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Tim Rickeard
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Eileen Gallagher
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Charlotte Gower
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Meaghan Kall
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Natalie Groves
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Anne-Marie O'Connell
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - David Simons
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Paula B Blomquist
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Asad Zaidi
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Sophie Nash
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Nurin Iwani Binti Abdul Aziz
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Simon Thelwall
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Gavin Dabrera
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Richard Myers
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Gayatri Amirthalingam
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Saheer Gharbia
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Jeffrey C Barrett
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Richard Elson
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Shamez N Ladhani
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Neil Ferguson
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Maria Zambon
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Colin N J Campbell
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Kevin Brown
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Susan Hopkins
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Meera Chand
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Mary Ramsay
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| | - Jamie Lopez Bernal
- From the U.K. Health Security Agency (N.A., J.S., F.K., S. Toffa, T.R., E.G., C.G., M.K., N.G., A.-M.O., D.S., P.B.B., A.Z., S.N., N.I.B.A.A., S. Thelwall, G.D., R.M., G.A., S.G., R.E., S.N.L., M.Z., C.N.J.C., K.B., S.H., M.C., M.R., J.L.B.), the National Institute for Health Research (NIHR) Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine (N.A., G.A., C.N.J.C., K.B., M.R., J.L.B.), the Paediatric Infectious Diseases Research Group, St. George's University of London (R.M., S.N.L.), the Medical Research Council Centre for Global Infectious Disease Analysis (N.F.) and the NIHR Health Protection Research Unit in Respiratory Infections (N.F., M.Z., J.L.B.), Imperial College London, and Guy's and St. Thomas's Hospital NHS Trust (M.C.), London, Wellcome Sanger Institute, Hinxton (J.C.B.), and Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford (S.H.) - all in the United Kingdom
| |
Collapse
|
38
|
Emani VR, Reddy R, Emani SR, Goswami KK, Maddula KR, Reddy NK, Nakka AS, Reddy NK, Nandanoor D, Goswami S. Changing dynamics of COVID-19 deaths during the SARS-CoV2 B.1.617.2 (Delta variant) outbreak in England and Wales: Reduced COVID-19 deaths among the Care Home residents. J Am Med Dir Assoc 2022; 23:950-953. [PMID: 35504325 PMCID: PMC9005382 DOI: 10.1016/j.jamda.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
|
39
|
Muena NA, García-Salum T, Pardo-Roa C, Avendaño MJ, Serrano EF, Levican J, Almonacid LI, Valenzuela G, Poblete E, Strohmeier S, Salinas E, Muñoz A, Haslwanter D, Dieterle ME, Jangra RK, Chandran K, González C, Riquelme A, Krammer F, Tischler ND, Medina RA. Induction of SARS-CoV-2 neutralizing antibodies by CoronaVac and BNT162b2 vaccines in naïve and previously infected individuals. EBioMedicine 2022; 78:103972. [PMID: 35366624 PMCID: PMC8965458 DOI: 10.1016/j.ebiom.2022.103972] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A major challenge of the SARS-CoV-2 pandemic is to better define "protective thresholds" to guide the global response. We aimed to characterize the longitudinal dynamics of the antibody responses in naturally infected individuals in Chile and compared them to humoral responses induced after immunization with CoronaVac-based on an inactivated whole virus -or the BNT162b2- based on mRNA-vaccines. We also contrasted them with the respective effectiveness and efficacy data available for both vaccines. METHODS We determined and compared the longitudinal neutralizing (nAb) and anti-nucleocapsid (anti-N) antibody responses of 74 COVID-19 individuals (37 outpatient and 37 hospitalized) during the acute disease and convalescence. We also assessed the antibody boosting of 36 of these individuals who were immunized after convalescence with either the CoronaVac (n = 30) or the BNT162b2 (n = 6) vaccines. Antibody titres were also measured for 50 naïve individuals immunized with two doses of CoronaVac (n = 35) or BNT162b2 (n = 15) vaccines. The neutralizing level after vaccination was compared to those of convalescent individuals and the predicted efficacy was estimated. FINDINGS SARS-CoV-2 infection induced robust nAb and anti-N antibody responses lasting >9 months, but showing a rapid nAb decay. After convalescence, nAb titres were significantly boosted by vaccination with CoronaVac or BNT162b2. In naïve individuals, the calculated mean titre induced by two doses of CoronaVac or BNT162b2 was 0·2 times and 5.2 times, respectively, that of convalescent individuals, which has been proposed as threshold of protection. CoronaVac induced no or only modest anti-N antibody responses. Using two proposed logistic models, the predicted efficacy of BNT162b2 was estimated at 97%, in close agreement with phase 3 efficacy studies, while for CoronaVac it was ∼50% corresponding to the lowest range of clinical trials and below the real-life data from Chile (from February 2 through May 1, 2021 during the predominant circulation of the Gamma variant), where the estimated vaccine effectiveness to prevent COVID-19 was 62·8-64·6%. INTERPRETATION The decay of nAbs titres in previously infected individuals over time indicates that vaccination is needed to boost humoral memory responses. Immunization of naïve individuals with two doses of CoronaVac induced nAbs titres that were significantly lower to that of convalescent patients, and similar to vaccination with one dose of BTN162b2. The real life effectiveness for CoronaVac in Chile was higher than estimated; indicating that lower titres and additional cellular immune responses induced by CoronaVac might afford protection in a highly immunized population. Nevertheless, the lower nAb titre induced by two doses of CoronaVac as compared to the BTN162b2 vaccine in naïve individuals, highlights the need of booster immunizations over time to maintain protective levels of antibody, particularly with the emergence of new SARS-CoV-2 variants. FUNDING FONDECYT 1161971, 1212023, 1181799, FONDECYT Postdoctorado 3190706 and 3190648, ANID Becas/Doctorado Nacional 21212258, PIA ACT 1408, CONICYT REDES180170, Centro Ciencia & Vida, FB210008, Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia grants from the Agencia Nacional de Investigación y Desarrollo (ANID) of Chile; NIH-NIAD grants U19AI135972, R01AI132633 and contracts HHSN272201400008C and 75N93019C00051; the JPB Foundation, the Open Philanthropy Project grant 2020-215611 (5384); and by anonymous donors. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Nicolás A Muena
- Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago, Chile
| | - Tamara García-Salum
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Pardo-Roa
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María José Avendaño
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eileen F Serrano
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Levican
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo I Almonacid
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Valenzuela
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Estefany Poblete
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erick Salinas
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andres Muñoz
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA; Department of Microbiology and Immunology, Louisiana State University Health Science Center-Shreveport, Shreveport, LA, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Claudia González
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Otorhinolaryngology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arnoldo Riquelme
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Florian Krammer
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole D Tischler
- Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Rafael A Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Nunhofer V, Weidner L, Hoeggerl AD, Zimmermann G, Badstuber N, Grabmer C, Jungbauer C, Lindlbauer N, Held N, Pascariuc M, Ortner T, Rohde E, Laner-Plamberger S. Persistence of Naturally Acquired and Functional SARS-CoV-2 Antibodies in Blood Donors One Year after Infection. Viruses 2022; 14:v14030637. [PMID: 35337044 PMCID: PMC8953712 DOI: 10.3390/v14030637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Abstract
The developmental course of antibodies produced after a SARS-CoV-2 infection has been insufficiently investigated so far. Therefore, the aim of this study was to investigate the dynamics of SARS-CoV-2 antibody levels against the viral nucleocapsid- and spike-protein among Austrian blood donors as a representative group of a supposedly healthy population within the first year after a SARS-CoV-2 infection. The impact of age, sex, vaccination status, AB0-blood group and awareness about the infection was evaluated. Our study shows that the level of anti-N antibodies is declining, while anti-S antibody levels remain stable. Antibodies detected were functional in vitro. Age, sex and blood group do not influence antibody dynamics. However, blood group AB shows significantly lower antibody levels and in vitro functionality compared to other blood groups. Our data reveal that one out of five individuals was not aware of a previous SARS-CoV-2 infection and that the disease course neither affects the level of antibody production nor the in vitro functionality. We also found that 14% of participants show persisting COVID-19-related symptoms for up to nine months. Our results provide valuable insights into the dynamics of the immune response after a SARS-CoV-2 infection in a representative cohort of adult blood donors in Central Europe.
Collapse
Affiliation(s)
- Verena Nunhofer
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Müllner-Hauptstraße 48, 5020 Salzburg, Austria; (V.N.); (A.D.H.); (C.G.); (N.L.); (N.H.); (M.P.); (E.R.)
| | - Lisa Weidner
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Wiedner Hauptstraße 32, 1040 Vienna, Austria; (L.W.); (C.J.)
| | - Alexandra Domnica Hoeggerl
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Müllner-Hauptstraße 48, 5020 Salzburg, Austria; (V.N.); (A.D.H.); (C.G.); (N.L.); (N.H.); (M.P.); (E.R.)
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria;
- Research and Innovation Management, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
| | - Natalie Badstuber
- Department of Psychological Assessment, Institute of Psychology, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria; (N.B.); (T.O.)
| | - Christoph Grabmer
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Müllner-Hauptstraße 48, 5020 Salzburg, Austria; (V.N.); (A.D.H.); (C.G.); (N.L.); (N.H.); (M.P.); (E.R.)
| | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Wiedner Hauptstraße 32, 1040 Vienna, Austria; (L.W.); (C.J.)
| | - Nadja Lindlbauer
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Müllner-Hauptstraße 48, 5020 Salzburg, Austria; (V.N.); (A.D.H.); (C.G.); (N.L.); (N.H.); (M.P.); (E.R.)
| | - Nina Held
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Müllner-Hauptstraße 48, 5020 Salzburg, Austria; (V.N.); (A.D.H.); (C.G.); (N.L.); (N.H.); (M.P.); (E.R.)
| | - Monica Pascariuc
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Müllner-Hauptstraße 48, 5020 Salzburg, Austria; (V.N.); (A.D.H.); (C.G.); (N.L.); (N.H.); (M.P.); (E.R.)
| | - Tuulia Ortner
- Department of Psychological Assessment, Institute of Psychology, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria; (N.B.); (T.O.)
| | - Eva Rohde
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Müllner-Hauptstraße 48, 5020 Salzburg, Austria; (V.N.); (A.D.H.); (C.G.); (N.L.); (N.H.); (M.P.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Centre Salzburg, PMU Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Sandra Laner-Plamberger
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Müllner-Hauptstraße 48, 5020 Salzburg, Austria; (V.N.); (A.D.H.); (C.G.); (N.L.); (N.H.); (M.P.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Centre Salzburg, PMU Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
41
|
A case of COVID-19 reinfection in a hemodialysis patient: the role of antibody in SARS-CoV-2 infection. CEN Case Rep 2022; 11:422-427. [PMID: 35266095 PMCID: PMC8906520 DOI: 10.1007/s13730-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 11/07/2022] Open
Abstract
Hemodialysis patients are vulnerable to severe and lethal COVID-19, and their protective immunity against COVID-19 is not yet fully understood. Therefore, we report a case of COVID-19 reinfection in a hemodialysis patient 81 days after the first episode and discuss the role of antibodies in SARS-CoV-2 infection. A hemodialysis patient developed asymptomatic COVID-19 due to an outbreak in a hospital on October 29th, 2020. As he was hospitalized and did not develop any symptoms, he was discharged on November 9th. On January 18th, he presented with symptomatic COVID-19 due to close household contact. Then, he developed respiratory failure and was transferred to National Center for Global Health and Medicine if he would need intensive care. He recovered with oxygen inhalation, favipiravir, and steroid treatment, and was discharged on February 12th. To evaluate anti-SARS-CoV-2 antibodies during two hospital stays, we measured immunoglobulin (Ig) G specific for S1 subunit of Spike (S) protein of SARS-CoV-2 (IgG-S1) , IgG specific for the full-length S protein (anti-Spike IgG) and neutralizing antibodies. No seroconversion occurred 5 days after initial infection, the seroconversion of IgG-S1 was observed 10 days after the second infection. Similar to IgG-S1 antibody titer results, anti-Spike IgG and neutralizing antibodies increased from 12 days after the second infection. In conclusion, we experienced a case of COVID-19 reinfection in a hemodialysis patient 81 days after the first episode and showed the kinetics and role of antibodies in SARS-CoV-2 infection. Further studies are needed to understand SARS-CoV-2 reinfection risk in hemodialysis patients and its clinical significance.
Collapse
|
42
|
Lippi G, Adeli K, Plebani M. Commercial immunoassays for detection of anti-SARS-CoV-2 spike and RBD antibodies: urgent call for validation against new and highly mutated variants. Clin Chem Lab Med 2022; 60:338-342. [PMID: 34911171 DOI: 10.1515/cclm-2021-1287] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
Measuring the level of protection conferred by anti-SARS-CoV-2 (trimeric) spike or RBD (receptor binding domain) antibodies (especially total and IgG) is a suitable and reliable approach for predicting biological protection against the risk of infection and severe coronavirus disease 2019 (COVID-19) illness. Nonetheless, SARS-CoV-2 has undergone a broad process of recombination since the identification of the prototype lineage in 2019, introducing a huge number of mutations in its genome and generating a vast array of variants of interest (VoI) and concern (VoC). Many of such variants developed several mutations in spike protein and RBD, with the new Omicron (B.1.1.529) clade displaying over 30 changes, 15 of which concentrated in the RBD. Besides their impact on virus biology, as well as on the risk of detection failure with some molecular techniques (i.e., S gene dropout), recent evidence suggests that these mutations may also jeopardize the reliability of currently available commercial immunoassays for detecting anti-SARS-CoV-2 antibodies. The antigen (either spike or RBD) and epitopes of the prototype SARS-CoV-2 coated in some immunoassays may no longer reflect the sequence of circulating variants. On the other hand, anti-SARS-CoV-2 antibodies elicited by highly mutated SARS-CoV-2 variants may no longer be efficiently recognized by the currently available commercial immunoassays. Therefore, beside the compelling need to regularly re-evaluate and revalidate all commercially available immunoassays against live virus neutralization assays based on emerging VoCs or VoIs, diagnostic companies may also consider to redevelop their methods, replacing former SARS-CoV-2 antigens and epitopes with those of the new variants.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
- IFCC Task Force on COVID-19, Milano, Italy
| | - Khosrow Adeli
- IFCC Task Force on COVID-19, Milano, Italy
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|
43
|
Sengpiel V, Carlsson Y, Liljeqvist J, Elfvin A, Fyhr I, Lundgren A, Nyström K, Bemark M, Gisslen M, Ringlander J. Confirmed reinfection with SARS-CoV-2 during a pregnancy: A case report. Clin Case Rep 2022; 10:e05400. [PMID: 35223007 PMCID: PMC8847408 DOI: 10.1002/ccr3.5400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Pregnancy might impact immunity after SARS-CoV-2 infection and/or vaccination. We describe the first case of reinfection with SARS-CoV-2 during a pregnancy. While the mother lacked detectable antibodies 2 months after the first infection, both mother and baby had IgG antibodies at delivery. Infection did not cause any adverse pregnancy outcome.
Collapse
Affiliation(s)
- Verena Sengpiel
- Region Västra GötalandDepartment of Obstetrics and GynaecologySahlgrenska University HospitalGothenburgSweden
- Department of Obstetrics and Gynaecology, Institute for Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ylva Carlsson
- Region Västra GötalandDepartment of Obstetrics and GynaecologySahlgrenska University HospitalGothenburgSweden
- Department of Obstetrics and Gynaecology, Institute for Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan‐Åke Liljeqvist
- Department of Infectious DiseasesInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Region Västra GötalandDepartment of Infectious DiseasesSahlgrenska University HospitalGothenburgSweden
| | - Anders Elfvin
- Department of PaediatricsInstitute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Region Västra GötalandDepartment of PaediatricsSahlgrenska University Hospital, Queen Silvia Children’s HospitalGothenburgSweden
| | - Ing‐Marie Fyhr
- Region Västra GötalandDepartment of PathologySahlgrenska University HospitalGothenburgSweden
| | - Anna Lundgren
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Region Västra GötalandDepartment of Clinical Immunology and Transfusion MedicineSahlgrenska University HospitalUniversity of GothenburgGothenburgSweden
| | - Kristina Nyström
- Region Västra GötalandDepartment of Clinical MicrobiologySahlgrenska University HospitalGothenburgSweden
- Department of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Mats Bemark
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Region Västra GötalandDepartment of Clinical Immunology and Transfusion MedicineSahlgrenska University HospitalUniversity of GothenburgGothenburgSweden
| | - Magnus Gisslen
- Department of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Region Västra GötalandDepartment of Infectious DiseasesSahlgrenska University HospitalGothenburgSweden
| | - Johan Ringlander
- Region Västra GötalandDepartment of Clinical MicrobiologySahlgrenska University HospitalGothenburgSweden
- Department of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
44
|
Mendiola-Pastrana IR, López-Ortiz E, Río de la Loza-Zamora JG, González J, Gómez-García A, López-Ortiz G. SARS-CoV-2 Variants and Clinical Outcomes: A Systematic Review. Life (Basel) 2022; 12:life12020170. [PMID: 35207458 PMCID: PMC8879159 DOI: 10.3390/life12020170] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background: From the start of the COVID-19 pandemic, new SARS-CoV-2 variants have emerged that potentially affect transmissibility, severity, and immune evasion in infected individuals. In the present systematic review, the impact of different SARS-CoV-2 variants on clinical outcomes is analyzed. Methods: A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. Two databases (PubMed and ScienceDirect) were searched for original articles published from 1 January 2020 to 23 November 2021. The articles that met the selection criteria were appraised according to the Newcastle–Ottawa Quality Assessment Scale. Results: Thirty-three articles were included, involving a total of 253,209 patients and 188,944 partial or complete SARS-CoV-2 sequences. The most reported SARS-CoV-2 variants showed changes in the spike protein, N protein, RdRp and NSP3. In 28 scenarios, SARS-CoV-2 variants were found to be associated with a mild to severe or even fatal clinical outcome, 15 articles reported such association to be statistically significant. Adjustments in eight of them were made for age, sex and other covariates. Conclusions: SARS-CoV-2 variants can potentially have an impact on clinical outcomes; future studies focused on this topic should consider several covariates that influence the clinical course of the disease.
Collapse
Affiliation(s)
- Indira R. Mendiola-Pastrana
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - Eduardo López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - José G. Río de la Loza-Zamora
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Anel Gómez-García
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58351, Mexico;
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
- Correspondence:
| |
Collapse
|
45
|
Comparison of Dental Anxiety While Visiting Dental Clinics before and after Getting Vaccinated in Midst of COVID-19 Pandemic. Vaccines (Basel) 2022; 10:vaccines10010115. [PMID: 35062777 PMCID: PMC8777748 DOI: 10.3390/vaccines10010115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccination is critical to control the rate of coronavirus transmission and infectivity. Dental practices are a high-risk area for contracting coronavirus; this fact generates psychological disturbances amongst patients. In this study, we aimed to assess the levels of anxiety of patients while visiting dental practices before and after getting vaccinated. This cross-sectional study was carried out between March and December 2021. An electronic survey was distributed among the vaccinated individuals who visited dental clinics before and after getting vaccinated. The survey consisted of the following four parts: demographic characteristics, questions related to coronavirus, and anxiety scores before and after getting vaccinated. SPSS-25 was used to perform the statistical analysis, where paired t-test was used to compare the anxiety scores, and Mann–Whitney U test to assess the association of gender with anxiety scores. A p-value of ≤0.05 was considered to be statistically significant. A total of 400 vaccinated individuals participated in this study, with a response rate of 88.23%. The majority of the respondents (71.0%) did not test positive for coronavirus. More than half of the participants (54.0%) reported to not be suffering from any coronavirus-related symptoms. About 100 (25.0%) of the individuals stated that dental clinics are an environment in which there is a high risk of contracting coronavirus. In regards to the comparison of the mean MDAS scores of the participants before and after getting vaccinated, a significant difference (p = 0.001) was found. Vaccination has been recommended for all eligible individuals to control the transmission and infectivity of coronavirus. Vaccinations have decreased the dental anxiety of patients while visiting dental clinics. However, the protective measures are still valid and should be followed, regardless of the vaccination status.
Collapse
|
46
|
Delory T, Arino J, Haÿ PE, Klotz V, Boëlle PY. SARS-CoV-2 in Nursing Homes: Analysis of Routine Surveillance Data in Four European Countries. Aging Dis 2022; 14:325-330. [PMID: 37008047 PMCID: PMC10017157 DOI: 10.14336/ad.2022.0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Transmission of SARS-CoV-2 in nursing homes is poorly documented. Using surveillance data of 228 European private nursing homes, we estimated weekly SARS-CoV-2 incidences among 21,467 residents and 14,371 staff members, compared to that in the general population, between August 3, 2020, and February 20, 2021. We studied the outcomes of "episodes of introduction" where one case was first detected and computed attack rates, reproduction ratio (R), and dispersion parameter (k). Out of 502 episodes of SARS-CoV-2 introduction, 77.1% (95%CI, 73.2%-80.6%) led to additional cases. Attack rates were highly variable, ranging from 0.4% to 86.5%. The R was 1.16 (95%CI, 1.11-1.22) with k at 2.5 (95%CI, 0.5-4.5). The timing of viral circulation in nursing homes did not mirror that in the general population (p-values<0.001). We estimated the impact of vaccination in preventing SARS-CoV-2 transmission. Before vaccination's roll-out, a cumulated 5,579 SARS-CoV-2 infections were documented among residents and 2,321 among staff. Higher staffing ratio and previous natural immunization reduced the probability of an outbreak following introduction. Despite strong preventive measures, transmission likely occurred, regardless of building characteristics. Vaccination started on January 15, 2021, and coverage reached 65.0% among residents, and 42.0% among staff by February 20, 2021. Vaccination yielded a 92% reduction (95%CI, 71%-98%) of outbreak probability, and lowered R to 0.87 (95%CI, 0.69-1.10). In the post-pandemic era, much attention will have to be paid to multi-lateral collaboration, policy making, and prevention plans.
Collapse
Affiliation(s)
- Tristan Delory
- Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique, IPLESP, F-75012, Paris, France.
- Centre Hospitalier Annecy Genevois, France.
- Correspondence should be addressed to: Dr. Tristan Delory, DRCI, Centre Hospitalier Annecy Genevois, 1 avenue de l’hôpital, 74290 Epagny - Metz - Tessy, France. .
| | - Julien Arino
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | - Pierre-Yves Boëlle
- Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique, IPLESP, F-75012, Paris, France.
| |
Collapse
|
47
|
Altmann DM, Boyton RJ. SARS-Cov-2 immune waning and reinfection in care-home settings. THE LANCET. HEALTHY LONGEVITY 2021; 2:e776-e777. [PMID: 34873591 PMCID: PMC8635455 DOI: 10.1016/s2666-7568(21)00276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Daniel M Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK
- Lung Division, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|