1
|
Velasco-Gutierrez JA, de Alvarez-Buylla ER, Montero S, Rodríguez-Hernández A, Miranda SL, Martínez-Santillan K, Álvarez-Valadez MDR, Lemus M, Flores-Silva A, Virgen-Ortiz A. TrkB Receptor Antagonism Enhances Insulin Secretion and Increases Pancreatic Islet Size in Rats Fed a Cafeteria-Style Diet. Biomedicines 2025; 13:126. [PMID: 39857710 PMCID: PMC11763071 DOI: 10.3390/biomedicines13010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: In recent years, the role of neurotrophins and their receptors in peripheral tissues has been of great interest. At a metabolic level, the brain-derived neurotrophic factor (BDNF) and its receptor trkB have been reported to participate in insulin secretion from the pancreas in response to increases in circulating blood glucose. Objetive: To determines the role of the BDNF-trkB pathway in insulin secretion and pancreatic morphology in rats fed a cafeteria-style diet for 16 weeks. Methods: For the study, male rats of the Wistar strain were divided into three groups as follows: (1) control group (standard diet), (2) CAF group (cafeteria-style diet) and (3) CAF group treated with ANA-12 (TrkB receptor antagonist). After 4 months of intervention, the glucose and insulin tolerance curves, serum insulin levels, body fat and hematoxylin-eosin staining pancreas were evaluated. Results: The results showed that the cafeteria-style diet induced an increase in the amount of body fat, alterations in the glucose tolerance curve, increased insulin circulation levels, increased HOMA indices and increased pancreatic islet size. The antagonism of the trkB receptor in the rats fed a cafeteria-style diet enhanced some effects such as the accumulation of body fat and insulin secretion and induced a greater increase in the pancreas islet size. Conclusions: Under conditions of cafeteria-style diet-induced obesity, the antagonism of the BDNF-trkB pathway had no enhanced effect on the increase in insulin secretion or pancreatic islet size.
Collapse
Affiliation(s)
| | | | - Sergio Montero
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| | | | - Saraí Limón Miranda
- Facultad Interdisciplinaria de Ciencias Biológicas y de Salud, Departamento de Ciencias Químico Biológicas y Agropecuarias, Unidad Regional Sur, Universidad de Sonora, Navojoa 85800, Sonora, Mexico
| | | | | | - Mónica Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| | - Alejandra Flores-Silva
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| | - Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| |
Collapse
|
2
|
Binayi F, Saeidi B, Farahani F, Sadat Izadi M, Eskandari F, Azarkish F, Sahraei M, Ghasemi R, Khodagholi F, Zardooz H. Sustained feeding of a diet high in fat resulted in a decline in the liver's insulin-degrading enzyme levels in association with the induction of oxidative and endoplasmic reticulum stress in adult male rats: Evaluation of 4-phenylbutyric acid. Heliyon 2024; 10:e32804. [PMID: 38975085 PMCID: PMC11226834 DOI: 10.1016/j.heliyon.2024.e32804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The current study explored the impact of high fat diet (HFD) on hepatic oxidative and endoplasmic reticulum (ER) stress and its insulin degrading enzyme (IDE) content with the injection of 4-phenyl butyric acid (4-PBA) in adult male rats. Following the weaning period, male offspring were distributed among six distinct groups. The corresponding diet was used for 20 weeks, subsequently 4-PBA was administered for three consecutive days. Plasma glucose and insulin levels, HOMA-β (homeostasis model assessment of β-cell), hepatic ER and oxidative stress biomarkers and IDE protein content were assessed. Long-term ingestion of HFD (31 % cow butter) induced oxidative and ER stress in the liver tissue. Accordingly, a rise in the malondialdehyde (MDA) content and catalase enzyme activity and a decrease in the glutathione (GSH) content were detected within the liver of the HFD and HFD + DMSO groups. Consumption of this diet elevated the liver expression of binding immunoglobulin protein (BIP) and C/enhancer-binding protein homologous protein (CHOP) levels while reduced its IDE content. The HOMA-β decreased significantly. The injection of the 4-PBA moderated all the induced changes. Findings from this study indicated that prolonged HFD consumption led to a reduction in plasma insulin levels, likely attributed to pancreatic β cell malfunction, as evidenced by a decline in the HOMA-β index. Also, the HFD appears to have triggered oxidative and ER stress in the liver, along with a decrease in its IDE content.
Collapse
Affiliation(s)
- Fateme Binayi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Saeidi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Farahani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Sadat Izadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Eskandari
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Azarkish
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sahraei
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Miguéns-Gómez A, Sierra-Cruz M, Blay MT, Rodríguez-Gallego E, Beltrán-Debón R, Terra X, Pinent M, Ardévol A. GSPE Pre-Treatment Exerts Long-Lasting Preventive Effects against Aging-Induced Changes in the Colonic Enterohormone Profile of Female Rats. Int J Mol Sci 2023; 24:ijms24097807. [PMID: 37175514 PMCID: PMC10177949 DOI: 10.3390/ijms24097807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The impact that healthy aging can have on society has raised great interest in understanding aging mechanisms. However, the effects this biological process may have on the gastrointestinal tract (GIT) have not yet been fully described. Results in relation to changes observed in the enteroendocrine system along the GIT are controversial. Grape seed proanthocyanidin extracts (GSPE) have been shown to protect against several pathologies associated with aging. Based on previous results, we hypothesized that a GSPE pre-treatment could prevent the aging processes that affect the enteroendocrine system. To test this hypothesis, we treated 21-month-old female rats with GSPE for 10 days. Eleven weeks after the treatment, we analyzed the effects of GSPE by comparing these aged animals with young animals. Aging induced a greater endocrine response to stimulation in the upper GIT segments (cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1)), a decrease in the mRNA abundance of GLP-1, peptide YY (PYY) and chromogranin A (ChgA) in the colon, and an increase in colonic butyrate. GSPE-treated rats were protected against a decrease in enterohormone expression in the colon. This effect is not directly related to the abundance of microbiome or short-chain fatty acids (SCFA) at this location. GSPE may therefore be effective in preventing a decrease in the colonic abundance of enterohormone expression induced by aging.
Collapse
Affiliation(s)
- Alba Miguéns-Gómez
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Marta Sierra-Cruz
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| |
Collapse
|
4
|
Su Q, Huang J, Chen X, Wang Y, Shao M, Yan H, Chen C, Ren H, Zhang F, Ni Y, Jose PA, Zhong J, Yang J. Long-Term High-Fat Diet Decreases Renal Insulin-Degrading Enzyme Expression and Function by Inhibiting the PPARγ Pathway. Mol Nutr Food Res 2023; 67:e2200589. [PMID: 36726048 PMCID: PMC10085830 DOI: 10.1002/mnfr.202200589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/29/2022] [Indexed: 02/03/2023]
Abstract
SCOPE Long-term high-fat diet (HFD) causes insulin resistance, which is a primary etiological factor in the development of obesity and type 2 diabetes mellitus. Impaired insulin clearance is not only a consequence but also a cause of insulin resistance. The kidney is a major site of insulin clearance, where the insulin-degrading enzyme (IDE) plays a vital role in the proximal tubule. Thus, the study investigates the role of renal IDE in the regulation of insulin resistance in HFD-induced obese mice. METHODS AND RESULTS Twenty four-weeks of HFD in C57BL/6 mice causes insulin resistance and impaires insulin clearance, accompanied by a decrease in renal IDE expression and activity. Palmitic acid decreases IDE mRNA and protein expressions in HK-2 cells. RNA-Seq analysis found that the PPAR pathway is involved. 24-weeks of HFD decreases renal PPARγ, but not PPARα or PPARβ/δ mRNA expression. The inhibition of IDE expression by palmitic acid is prevented by the PPARγ agonist rosiglitazone. The amount of PPARγ bound to the promoters of IDE is decreased in palmitic acid-treated cells. Rosiglitazone improves insulin clearance and insulin resistance and increases renal IDE expression in HFD fed-mice. CONCLUSION Long-term HFD decreases renal IDE expression and activity, and causes insulin resistance, which involves PPARγ.
Collapse
Affiliation(s)
- Qian Su
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Chen
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yijie Wang
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Muqing Shao
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjia Yan
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinxing Ni
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Jian Zhong
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Miguéns-Gómez A, Sierra-Cruz M, Pérez-Vendrell AM, Rodríguez-Gallego E, Beltrán-Debón R, Terra X, Ardévol A, Pinent M. Differential effects of a cafeteria diet and GSPE preventive treatments on the enterohormone secretions of aged vs. young female rats. Food Funct 2022; 13:10491-10500. [PMID: 36148543 DOI: 10.1039/d2fo02111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grape seed derived procyanidins (GSPE) have been shown to effectively prevent intestinal disarrangements induced by a cafeteria diet in young rats. However, little is known about the effects of procyanidins and cafeteria diet on enterohormone secretion in aged rats, as the ageing processes modify these effects. To study these effects in aged rats, we subjected 21-month-old and young 2-month-old female rats to two sub-chronic preventive GSPE treatments. After three months of cafeteria diet administration, we analysed the basal and stimulated secretion and mRNA expression of CCK, PYY and GLP-1, caecal SCFA and intestinal sizes. We found that the effects of a cafeteria diet on the basal duodenal CCK secretion are age dependent. GLP-1 in the ileum was not modified regardless of the rat's age, and GSPE preventive effects differed in the two age groups. GSPE pre-treatment reduced GLP-1, PYY and ChgA in mRNA in aged ileum tissue, while the cafeteria diet increased these in aged colon. The GSPE treatments only modified low-abundance SCFAs. The cafeteria diet in aged rats increases the caecum size differently from that in young rats and GSPE pre-treatment prevents this increase. Therefore, ageing modifies nutrient sensing, and the cafeteria diet acts mainly on the duodenum and colon, while procyanidins have a larger effect on the ileum.
Collapse
Affiliation(s)
- Alba Miguéns-Gómez
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Marta Sierra-Cruz
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Anna Maria Pérez-Vendrell
- Monogastric Nutrition, Centre Mas de Bover, IRTA, Ctra. Reus-El Morell Km 3.8, 43120 Constantí, Spain
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Ximena Terra
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| |
Collapse
|
6
|
de Souza Nunes Faria MS, Pimentel VE, Helaehil JV, Bertolo MC, Santos NTH, da Silva-Neto PV, Thomazini BF, de Oliveira CA, do Amaral MEC. Caloric restriction overcomes pre-diabetes and hypertension induced by a high fat diet and renal artery stenosis. Mol Biol Rep 2022; 49:5883-5895. [PMID: 35344116 DOI: 10.1007/s11033-022-07370-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Calorie restriction (CR) is a type of dietary intervention that is essential in weight loss through modulation of critical metabolic control pathways, is well established and understood in cases of systemic arterial hypertension, however, its role in renovascular hypertension is still unclear. METHODS Rats were divided into three groups: SHAM, and two groups that underwent surgery to clip the left renal artery and induce renovascular hypertension (OH and OHR). The SHAM diet was as follows: 14 weeks normolipidic diet; OH: 2 weeks normolipidic diet + 12 weeks hyperlipidic diet, both ad libitum; OHR, 2 weeks normolipidic diet + 8 weeks ad libitum high-fat diet + 4 weeks 40% calorie-restricted high-fat diet. RESULTS Rats in the OHR group had decreased blood pressure, body weight, and glucose levels. Reductions in insulinemia and in lipid and islet fibrotic areas in the OHR group were observed, along with increased insulin sensitivity and normalization of insulin-degrading enzyme levels. The expression of nicotinamide phosphoribosyltransferase (NAMPT), insulin receptor (IR), sirtuin 1 (SIRT1), and complex II proteins were increased in the liver tissue of the OHR group. Strong correlations, whether positive or negative, were evaluated via Spearman's model between SIRT1, AMPK, NAMPT, PGC-1α, and NNMT expressions with the restoration of normal blood pressure, weight loss, glycemic and lipid panel, and mitochondrial adaptation. CONCLUSION CR provided short-term beneficial effects to recover the physiological parameters induced by a high-fat diet and renal artery stenosis in obese and hypertensive animals. These benefits, even in the short term, can provide physiological benefits in the long term.
Collapse
Affiliation(s)
| | - Vinicíus Eduardo Pimentel
- Programa de Pós-Graduação em Imunologia Básica e Aplicada da Faculdade de Medicina de Ribeirão Preto, Ribeirão Prêto, São Paulo, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Biomedical College, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | - Júlia Venturini Helaehil
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil.,Biomedical College, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | - Mayara Correa Bertolo
- Biomedical College, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | | | - Pedro Vieira da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, Amazonas, Brazil
| | - Bruna Fontana Thomazini
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | - Camila Andréa de Oliveira
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | | |
Collapse
|
7
|
Franco ES, Nascimento E, Vasconcelos DA, Silva PA, Novaes TL, Feitosa MG, Silva AA, Maia MB. Polar fraction from Parkinsonia aculeata aerial parts extract improves imbalanced metabolic profile and reduces proinflammatory interleukin levels in white adipose tissue in obese rats induced by western diet. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114557. [PMID: 34481874 DOI: 10.1016/j.jep.2021.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinsonia aculeata L. (Cesalpineaceae) is a medium tree found in the Xingó region (semi-arid area) in Northeast of Brazil, recognised by local population as an antidiabetic agent. According information from local community, the commonly traditional preparation is prepared as an infusion of the aerial part of the plant and consumed over the day to manage diabetes-related complications. Previous studies have described Parkinsonia aculeate as a product with both hypoglycemic and hypotriglyceridemic effects. AIM OF THE STUDY The objective of this study was to evaluate the effects of polar fraction obtained from the hydroethanolic extract of Parkinsonia aculeata (PfrHEPA) on the lipid profile of animals that consumed a westernized diet. MATERIALS AND METHODS Thirty-six Wistar rats (45-55 g) were fed either with standard control(C) or westernized diet(W) for 120 days. The food intake, body weight evolution and body size were also analyzed. From 120 to 150 days, they were orally treated according to their group with vehicle (distillated water, 10 mL/kg), PfrHEPA at three doses (35, 70 and 140 mg/kg/day) or Gemfibrozil (140 mg/kg/day) for 30 days. RESULTS The animals fed with westernized diet showed dyslipidemia when compared to animals receiving a standard diet. Treatment with PfrHEPA (140 mg/kg), even with the continued consumption of westernized diet by animals (from 120 to 150 days) promoted a significant reduction in total cholesterol, LDL and triglyceride levels, in relation to untreated W group. PfrHEPA 140 mg/kg reduced the key serum lipids and glycaemia as well as inflammatory cytokines known as important risk factors of cardiovascular diseases. CONCLUSIONS The observed evidence may contribute to the control of metabolic parameters as dyslipidemia corroborating the ethnopharmacological information concerning the antihyperlipidemic and hypoglycemic activities of P. aculeata.
Collapse
Affiliation(s)
- Eryvelton S Franco
- Department of Physiology and Pharmacology, Center of Biological Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária, 50670-901, Recife, PE, Brazil
| | - Elizabeth Nascimento
- Department of Nutrition, Center of Health Sciences, Federal University of Pernambuco (UFPE), Cidade Universitaria, 50670-901, Recife, PE, Brazil.
| | - Diogo Aa Vasconcelos
- Department of Nutrition, Center of Health Sciences, Federal University of Pernambuco (UFPE), Cidade Universitaria, 50670-901, Recife, PE, Brazil
| | - Priscila Aa Silva
- Department of Physiology and Pharmacology, Center of Biological Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária, 50670-901, Recife, PE, Brazil
| | - Taciana L Novaes
- Department of Physiology and Pharmacology, Center of Biological Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária, 50670-901, Recife, PE, Brazil
| | - Maria Gs Feitosa
- Department of Physiology and Pharmacology, Center of Biological Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária, 50670-901, Recife, PE, Brazil
| | - Amanda Am Silva
- Postgraduate Program in Health Sciences, Faculty of Medical Sciences, University of Pernambuco (UPE), Santo Amaro Campus, 500100-010, Recife, PE, Brazil
| | - Maria Bs Maia
- Department of Physiology and Pharmacology, Center of Biological Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária, 50670-901, Recife, PE, Brazil
| |
Collapse
|
8
|
González-Casimiro CM, Cámara-Torres P, Merino B, Diez-Hermano S, Postigo-Casado T, Leissring MA, Cózar-Castellano I, Perdomo G. Effects of Fasting and Feeding on Transcriptional and Posttranscriptional Regulation of Insulin-Degrading Enzyme in Mice. Cells 2021; 10:cells10092446. [PMID: 34572095 PMCID: PMC8467815 DOI: 10.3390/cells10092446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a highly conserved and ubiquitously expressed Zn2+-metallopeptidase that regulates hepatic insulin sensitivity, albeit its regulation in response to the fasting-to-postprandial transition is poorly understood. In this work, we studied the regulation of IDE mRNA and protein levels as well as its proteolytic activity in the liver, skeletal muscle, and kidneys under fasting (18 h) and refeeding (30 min and 3 h) conditions, in mice fed a standard (SD) or high-fat (HFD) diets. In the liver of mice fed an HFD, fasting reduced IDE protein levels (~30%); whereas refeeding increased its activity (~45%) in both mice fed an SD and HFD. Likewise, IDE protein levels were reduced in the skeletal muscle (~30%) of mice fed an HFD during the fasting state. Circulating lactate concentrations directly correlated with hepatic IDE activity and protein levels. Of note, L-lactate in liver lysates augmented IDE activity in a dose-dependent manner. Additionally, IDE protein levels in liver and muscle tissues, but not its activity, inversely correlated (R2 = 0.3734 and 0.2951, respectively; p < 0.01) with a surrogate marker of insulin resistance (HOMA index). Finally, a multivariate analysis suggests that circulating insulin, glucose, non-esterified fatty acids, and lactate levels might be important in regulating IDE in liver and muscle tissues. Our results highlight that the nutritional regulation of IDE in liver and skeletal muscle is more complex than previously expected in mice, and that fasting/refeeding does not strongly influence the regulation of renal IDE.
Collapse
Affiliation(s)
- Carlos M. González-Casimiro
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, 47003 Valladolid, Spain; (C.M.G.-C.); (P.C.-T.); (B.M.); (T.P.-C.); (I.C.-C.)
| | - Patricia Cámara-Torres
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, 47003 Valladolid, Spain; (C.M.G.-C.); (P.C.-T.); (B.M.); (T.P.-C.); (I.C.-C.)
| | - Beatriz Merino
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, 47003 Valladolid, Spain; (C.M.G.-C.); (P.C.-T.); (B.M.); (T.P.-C.); (I.C.-C.)
| | - Sergio Diez-Hermano
- Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, 34004 Palencia, Spain;
| | - Tamara Postigo-Casado
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, 47003 Valladolid, Spain; (C.M.G.-C.); (P.C.-T.); (B.M.); (T.P.-C.); (I.C.-C.)
| | - Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697-4545, USA;
| | - Irene Cózar-Castellano
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, 47003 Valladolid, Spain; (C.M.G.-C.); (P.C.-T.); (B.M.); (T.P.-C.); (I.C.-C.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, 47003 Valladolid, Spain; (C.M.G.-C.); (P.C.-T.); (B.M.); (T.P.-C.); (I.C.-C.)
- Correspondence: ; Tel.: +34-983-184-805
| |
Collapse
|
9
|
Grau-Bové C, Ginés I, Beltrán-Debón R, Terra X, Blay MT, Pinent M, Ardévol A. Glucagon Shows Higher Sensitivity than Insulin to Grapeseed Proanthocyanidin Extract (GSPE) Treatment in Cafeteria-Fed Rats. Nutrients 2021; 13:nu13041084. [PMID: 33810265 PMCID: PMC8066734 DOI: 10.3390/nu13041084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
The endocrine pancreas plays a key role in metabolism. Procyanidins (GSPE) targets β-cells and glucagon-like peptide-1 (GLP-1)-producing cells; however, there is no information on the effects of GSPE on glucagon. We performed GSPE preventive treatments administered to Wistar rats before or at the same time as they were fed a cafeteria diet during 12 or 17 weeks. We then measured the pancreatic function and GLP-1 production. We found that glucagonemia remains modified by GSPE pre-treatment several weeks after the treatment has finished. The animals showed a higher GLP-1 response to glucose stimulation, together with a trend towards a higher GLP-1 receptor expression in the pancreas. When the GSPE treatment was administered every second week, the endocrine pancreas behaved differently. We show here that glucagon is a more sensitive parameter than insulin to GSPE treatments, with a secretion that is highly linked to GLP-1 ileal functionality and dependent on the type of treatment.
Collapse
|
10
|
Khan N, Laudermilk L, Ware J, Rosa T, Mathews K, Gay E, Amato G, Maitra R. Peripherally Selective CB1 Receptor Antagonist Improves Symptoms of Metabolic Syndrome in Mice. ACS Pharmacol Transl Sci 2021; 4:757-764. [PMID: 33860199 DOI: 10.1021/acsptsci.0c00213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) is a complex disorder that stems from the additive effects of multiple underlying causes such as obesity, insulin resistance, and chronic low-grade inflammation. The endocannabinoid system plays a central role in appetite regulation, energy balance, lipid metabolism, insulin sensitivity, and β-cell function. The type 1 cannabinoid receptor (CB1R) antagonist SR141716A (rimonabant) showed promising antiobesity effects, but its use was discontinued due to adverse psychiatric events in some users. These adverse effects are due to antagonism of CB1R in the central nervous system (CNS). As such, CNS-sparing CB1R antagonists are presently being developed for various indications. In this study, we report that a recently described compound, 3-{1-[8-(2-chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]piperidin-4-yl}-1-[6-(difluoromethoxy)pyridin-3-yl]urea (RTI1092769), a pyrazole based weak inverse agonist/antagonist of CB1 with very limited brain exposure, improves MetS related complications. Treatment with RTI1092769 inhibited weight gain and improved glucose utilization in obese mice maintained on a high fat diet. Hepatic triglyceride content and steatosis significantly improved with treatment. These phenotypes were supported by improvement in several biomarkers associated with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). These results reinforce the idea that CB1 antagonists with limited brain exposure should be pursued for MetS and other important indications.
Collapse
Affiliation(s)
- Nayaab Khan
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Lucas Laudermilk
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Jalen Ware
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Taylor Rosa
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Kelly Mathews
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Elaine Gay
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - George Amato
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Rangan Maitra
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
11
|
Merino B, Fernández-Díaz CM, Parrado-Fernández C, González-Casimiro CM, Postigo-Casado T, Lobatón CD, Leissring MA, Cózar-Castellano I, Perdomo G. Hepatic insulin-degrading enzyme regulates glucose and insulin homeostasis in diet-induced obese mice. Metabolism 2020; 113:154352. [PMID: 32916153 PMCID: PMC8616598 DOI: 10.1016/j.metabol.2020.154352] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
UNLABELLED The insulin-degrading enzyme (IDE) is a metalloendopeptidase with a high affinity for insulin. Human genetic polymorphisms in Ide have been linked to increased risk for T2DM. In mice, hepatic Ide ablation causes glucose intolerance and insulin resistance when mice are fed a regular diet. OBJECTIVE These studies were undertaken to further investigate its regulatory role in glucose homeostasis and insulin sensitivity in diet-induced obesity. METHODS To this end, we have compared the metabolic effects of loss versus gain of IDE function in mice fed a high-fat diet (HFD). RESULTS We demonstrate that loss of IDE function in liver (L-IDE-KO mouse) exacerbates hyperinsulinemia and insulin resistance without changes in insulin clearance but in parallel to an increase in pancreatic β-cell function. Insulin resistance was associated with increased FoxO1 activation and a ~2-fold increase of GLUT2 protein levels in the liver of HFD-fed mice in response to an intraperitoneal injection of insulin. Conversely, gain of IDE function (adenoviral delivery) improves glucose tolerance and insulin sensitivity, in parallel to a reciprocal ~2-fold reduction in hepatic GLUT2 protein levels. Furthermore, in response to insulin, IDE co-immunoprecipitates with the insulin receptor in liver lysates of mice with adenoviral-mediated liver overexpression of IDE. CONCLUSIONS We conclude that IDE regulates hepatic insulin action and whole-body glucose metabolism in diet-induced obesity via insulin receptor levels.
Collapse
Affiliation(s)
- Beatriz Merino
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | | | - Cristina Parrado-Fernández
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain; AlzeCure Pharma AB, Huddinge, Sweden
| | | | - Tamara Postigo-Casado
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain.
| | - Carmen D Lobatón
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain.
| | - Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA, USA.
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Germán Perdomo
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain; Departamento de Ciencias de la Salud, Universidad de Burgos, Burgos, Spain.
| |
Collapse
|
12
|
De Faveri A, De Faveri R, Broering MF, Bousfield IT, Goss MJ, Muller SP, Pereira RO, de Oliveira E Silva AM, Machado ID, Quintão NLM, Santin JR. Effects of passion fruit peel flour (Passiflora edulis f. flavicarpa O. Deg.) in cafeteria diet-induced metabolic disorders. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112482. [PMID: 31866512 DOI: 10.1016/j.jep.2019.112482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Passiflora edulis f. flavicarpa O. Deg. is a native Brazilian fruit known as sour or yellow passion fruit. From its peel, mainly in the northeast of Brazil, is produced a flour that is largely used as folk medicine to treat diabetes and other metabolic conditions. AIM OF THE STUDY The aim of the study was to show the effects of P. edulis peel flour (PEPF) in metabolic disorders caused by cafeteria diet in mice. MATERIAL AND METHODS The antioxidant activity in vitro of PEPF extract was determined by ferric reducing/antioxidant power, β-carotene/linoleic acid system and nitric oxide scavenging activity assay. C57BL/6 mice divided in 3 groups: Control group, fed on a standard diet (AIN); Cafeteria diet (CAF) group, fed on a cafeteria diet, and PEPF group, fed on a cafeteria diet containing 15% of PEPF, during 16 weeks. The glucose tolerance and insulin sensitivity were evaluated through the glucose tolerance test (GTT) and the insulin tolerance test (ITT). After the intervention period, blood, hepatic, pancreatic and adipose tissues were collected for biochemical and histological analysis. Cholesterol, triglyceride, interleukins and antioxidant enzymes were measured in the liver tissue. RESULTS PEPF extract presented antioxidant activity in the higher concentrations in the performed assays. The PEPF intake decreased the body weight gain, fat deposition, predominantly in the liver, improved the glucose tolerance and insulin sensitivity in metabolic changes caused by cafeteria diet. CONCLUSION Together, the data herein obtained points out that P. edulis peel flour supplementation in metabolic syndrome condition induced by CAF-diet, prevents insulin and glucose resistance, hepatic steatosis and adiposity.
Collapse
Affiliation(s)
- Aline De Faveri
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Renata De Faveri
- Biomedicine Course, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Milena Fronza Broering
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Izabel Terranova Bousfield
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Marina Jagielski Goss
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Samuel Paulo Muller
- Postgraduate Program in Biodiversity, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Raquel Oliveira Pereira
- Nutrition Department (DNUT), Universidade Federal de Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | | | - Isabel Daufenback Machado
- Postgraduate Program in Biodiversity, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Nara Lins Meira Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - José Roberto Santin
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil.
| |
Collapse
|
13
|
Esmaeili Mohsen Abadi S, Balouchzadeh R, Uzun G, Ko HS, Lee HF, Park S, Kwon G. Tracking changes of the parameters of glucose-insulin homeostasis during the course of obesity in B6D2F1 mice. Heliyon 2020; 6:e03251. [PMID: 32042976 PMCID: PMC7002827 DOI: 10.1016/j.heliyon.2020.e03251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is one of the primary causes of type 2 diabetes mellitus (T2DM). To better understand how obesity impairs glucose-insulin homeostasis, we tracked fasting blood glucose and insulin levels and the key components of glucose-insulin homeostasis for 7 months in high fat diet (HFD; 45% fat) fed mice (n = 8). Every 2 weeks we measured body weight, fasting blood glucose and insulin levels, and estimated 5 key rate constants of glucose-insulin homeostasis using the methods established previously (Heliyon 3: e00310, 2017). Mice gained weight steadily, more than doubling their weights after 7 months (23.6 ± 0.5 to 52.3 ± 1.4 g). Fasting (basal) insulin levels were elevated (221.3 ± 16.7 to 1043.1 ± 90.5 pmol l-1) but fasting blood glucose levels unexpectedly returned to the baseline levels (152.8 ± 7.0 to 152.0 ± 7.2 mg/dl) despite significantly elevated levels (216.8 ± 44.9 mg/dl, average of 3 highest values for 8 mice) during the experimental period. After 7 months of HFD feeding, the rate constants for insulin secretion (k1), insulin-independent glucose uptake (k3), and insulin concentration where liver switches from glucose uptake to release (Ipi) were significantly elevated. Insulin-dependent glucose uptake (k2) and rate constant of liver glucose transfer (k4) were lowered but no statistical significance was reached. The novel and key finding of this study is the wide range of fluctuations of the rate constants during the course of obesity, reflecting the body's compensatory responses against metabolic alterations caused by obesity.
Collapse
Affiliation(s)
| | - Ramin Balouchzadeh
- School of Engineering, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, United States
| | - Guney Uzun
- School of Engineering, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, United States
| | - Hoo Sang Ko
- School of Engineering, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, United States
| | - H Felix Lee
- School of Engineering, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, United States
| | - Sarah Park
- Library and Information Services, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, United States
| | - Guim Kwon
- School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, United States
| |
Collapse
|
14
|
Ginés I, Gil-Cardoso K, Serrano J, Casanova-Marti À, Lobato M, Terra X, Blay MT, Ardévol A, Pinent M. Proanthocyanidins Limit Adipose Accrual Induced by a Cafeteria Diet, Several Weeks after the End of the Treatment. Genes (Basel) 2019; 10:genes10080598. [PMID: 31398921 PMCID: PMC6723337 DOI: 10.3390/genes10080598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022] Open
Abstract
A dose of proanthocyanidins with satiating properties proved to be able to limit body weight increase several weeks after administration under exposure to a cafeteria diet. Here we describe some of the molecular targets and the duration of the effects. We treated rats with 500 mg grape seed proanthocyanidin extract (GSPE)/kg BW for ten days. Seven or seventeen weeks after the last GSPE dose, while animals were on a cafeteria diet, we used reverse transcriptase-polymerase chain reaction (RT-PCR) to measure the mRNA of the key energy metabolism enzymes from the liver, adipose depots and muscle. We found that a reduction in the expression of adipose Lpl might explain the lower amount of adipose tissue in rats seven weeks after the last GSPE dose. The liver showed increased expression of Cpt1a and Hmgs2 together with a reduction in Fasn and Dgat2. In addition, muscle showed a higher fatty oxidation (Oxct1 and Cpt1b mRNA). However, after seventeen weeks, there was a completely different gene expression pattern. At the conclusion of the study, seven weeks after the last GSPE administration there was a limitation in adipose accrual that might be mediated by an inhibition of the gene expression of the adipose tissue Lpl. Concomitantly there was an increase in fatty acid oxidation in liver and muscle.
Collapse
Affiliation(s)
- Iris Ginés
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Katherine Gil-Cardoso
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Àngela Casanova-Marti
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Maria Lobato
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| |
Collapse
|
15
|
Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34:198-215. [PMID: 30968756 DOI: 10.1152/physiol.00048.2018] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Upon its secretion from pancreatic β-cells, insulin reaches the liver through the portal circulation to exert its action and eventually undergo clearance in the hepatocytes. In addition to insulin secretion, hepatic insulin clearance regulates the homeostatic level of insulin that is required to reach peripheral insulin target tissues to elicit proper insulin action. Receptor-mediated insulin uptake followed by its degradation constitutes the basic mechanism of insulin clearance. Upon its phosphorylation by the insulin receptor tyrosine kinase, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) takes part in the insulin-insulin receptor complex to increase the rate of its endocytosis and targeting to the degradation pathways. This review summarizes how this process is regulated and how it is associated with insulin-degrading enzyme in the liver. It also discusses the physiological implications of impaired hepatic insulin clearance: Whereas reduced insulin clearance cooperates with increased insulin secretion to compensate for insulin resistance, it can also cause hepatic insulin resistance. Because chronic hyperinsulinemia stimulates hepatic de novo lipogenesis, impaired insulin clearance also causes hepatic steatosis. Thus impaired insulin clearance can underlie the link between hepatic insulin resistance and hepatic steatosis. Delineating these regulatory pathways should lead to building more effective therapeutic strategies against metabolic syndrome.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences, Ohio University , Athens, Ohio.,Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos , Burgos , Spain
| |
Collapse
|
16
|
Venturini PR, Thomazini BF, Oliveira CA, Alves AA, Camargo TF, Domingues CEC, Barbosa-Sampaio HCL, do Amaral MEC. Vitamin E supplementation and caloric restriction promotes regulation of insulin secretion and glycemic homeostasis by different mechanisms in rats. Biochem Cell Biol 2018; 96:777-785. [PMID: 30481061 DOI: 10.1139/bcb-2018-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin E and caloric restriction have antioxidant effects in mammals. The aim of this study was to evaluate effects of vitamin E supplementation and caloric restriction upon insulin secretion and glucose homeostasis in rats. Male Wistar rats were distributed among the following groups: C, control group fed ad libitum; R, food quantity reduction of 40%; CV, control group supplemented with vitamin E [30 mg·kg-1·day-1]; and RV, food-restricted group supplemented with vitamin E. The experiments ran for 21 days. Glucose tolerance and insulin sensitivity was higher in the CV, R, and RV groups. Insulin secretion stimulated with different glucose concentrations was lower in the R and RV groups, compared with C and CV. In the presence of glucose and secretagogues, insulin secretion was higher in the CV group and was lower in the R and RV groups. An increase in insulin receptor occurred in the fat pad and muscle tissue of groups CV, R, and RV. Levels of hepatic insulin receptor and phospho-Akt protein were higher in groups R and RV, compared with C and CV, while muscle phospho-Akt was increased in the CV group. There was a reduction in hepatic RNA levels of the hepatocyte growth factor gene and insulin degrading enzyme in the R group, and increased levels of insulin degrading enzyme in the CV and RV groups. Thus, vitamin E supplementation and caloric restriction modulate insulin secretion by different mechanisms to maintain glucose homeostasis.
Collapse
Affiliation(s)
- Paula R Venturini
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Bruna Fontana Thomazini
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Camila Andréa Oliveira
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Armindo A Alves
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Thaís Furtado Camargo
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Caio E C Domingues
- School of Biology, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Helena C L Barbosa-Sampaio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, São Paulo, Brazil
| | - Maria Esméria C do Amaral
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| |
Collapse
|
17
|
Li F, Yang J, Villar VAM, Asico LD, Ma X, Armando I, Sanada H, Yoneda M, Felder RA, Jose PA, Wang X. Loss of renal SNX5 results in impaired IDE activity and insulin resistance in mice. Diabetologia 2018; 61:727-737. [PMID: 29080975 PMCID: PMC6342204 DOI: 10.1007/s00125-017-4482-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/02/2017] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that renal sorting nexin 5 (SNX5) regulates the insulin-degrading enzyme (IDE) and, thus, circulating insulin levels. We therefore studied the dynamic interaction between SNX5 and IDE in human renal proximal tubule cells (hRPTCs), as well as in rat and mouse kidneys. METHODS The regulation of IDE by SNX5 expressed in the kidney was studied in vitro and in vivo. Snx5 or mock siRNA was added to immortalised hRPTCs (passage <20) in culture or selectively infused, via osmotic mini-pump, into the remnant kidney of uninephrectomised mice and rats. RESULTS SNX5 co-localised with IDE at the plasma membrane and perinuclear area of hRPTCs and in the brush border membrane of proximal tubules of human, rat, and mouse kidneys. Insulin increased the co-localisation and co-immunoprecipitation of SNX5 and IDE in hRPTCs. Silencing SNX5 in hRPTCs decreased IDE expression and activity. Renal-selective silencing of Snx5 (SNX5 protein: 100 ± 25 vs 29 ± 10, p < 0.05 [% of control]) in C57Bl/6J mice decreased IDE protein (100 ± 13 vs 57 ± 6, p < 0.05 [% of control]) and urinary insulin excretion, impaired the responses to insulin and glucose, and increased blood insulin and glucose levels. Spontaneously hypertensive rats (SHRs) had increased blood insulin and glucose levels and decreased renal SNX5 (100 ± 27 vs 29 ± 6, p < 0.05 [% of control]) and IDE (100 ± 5 vs 75 ± 4, p < 0.05 [% of control]) proteins, compared with normotensive Wistar-Kyoto (WKY) rats. Kidney Snx5-depleted WKY rats also had increased blood insulin and glucose levels. The expression of SNX5 and IDE was decreased in RPTCs from SHRs and hypertensive humans compared with cells from normotensive volunteers, indicating a common cause for hyperinsulinaemia and hypertension. CONCLUSIONS/INTERPRETATION Renal SNX5 positively regulates IDE expression and function. This study is the first to demonstrate the novel and crucial role of renal SNX5 in insulin and glucose metabolism.
Collapse
Affiliation(s)
- Fengmin Li
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| | - Jian Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Van Anthony M Villar
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA
| | - Laureano D Asico
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA
| | - Xiaobo Ma
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA
| | - Hironobu Sanada
- Division of Health Science Research, Fukushima Welfare Federation of Agricultural Cooperatives, Fukushima, Japan
| | - Minoru Yoneda
- Division of Health Science Research, Fukushima Welfare Federation of Agricultural Cooperatives, Fukushima, Japan
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Xiaoyan Wang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA.
| |
Collapse
|
18
|
Viskochil R, Malin SK, Blankenship JM, Braun B. Exercise training and metformin, but not exercise training alone, decreases insulin production and increases insulin clearance in adults with prediabetes. J Appl Physiol (1985) 2017; 123:243-248. [PMID: 28473613 DOI: 10.1152/japplphysiol.00790.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/17/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023] Open
Abstract
Adding metformin to exercise does not augment the effect of training alone to boost whole body insulin sensitivity and lower circulating insulin concentrations. Although lower insulin concentrations (lower supply) following lifestyle and/or pharmacological interventions are primarily attributed to reductions in insulin secretion that match increases in peripheral insulin sensitivity (lower demand), it is unclear whether exercise and/or metformin exert direct effects on insulin production, extraction, or clearance. Thirty-six middle-aged, obese, sedentary adults with prediabetes were randomized to placebo (P), metformin (M), exercise and placebo (E+P), or exercise and metformin (E+M) for 12 wk. Fasting plasma proinsulin (an indicator of insulin production), C-peptide, insulin, and glucose were collected before and after the intervention. Peripheral insulin sensitivity (euglycemic clamp), hepatic insulin extraction, insulin clearance, body weight, and cardiorespiratory fitness were also measured. Fasting proinsulin was unchanged following P (19.4 ± 10.1 vs. 22.6 ± 15.0 pmol/l), E+P (15.1 ± 7.4 vs. 15.5 ± 7.4 pmol/l), or M (24.8 ± 18.9 vs. 16.7 ± 20.3 pmol/l) but was significantly reduced after E+M (18.6 ± 11.9 vs. 13.9 ± 6.7 pmol/l; P = 0.04). Insulin clearance was significantly greater following M (384.6 ± 19.4 vs. 477.4 ± 49.9; P = 0.03) and E+M (400.1 ± 32.0 vs. 482.9 ± 33.9; P = 0.02) but was unchanged in P or E+P. In this study, metformin combined with exercise training reduced circulating proinsulin, and both groups taking metformin increased insulin clearance. This suggests that adding metformin to exercise may augment or attenuate training effects depending on the outcome or organ system being assessed.NEW & NOTEWORTHY Exercise is increasingly viewed as medication, creating a need to understand its interactions with other common medications. Research suggests metformin, a widely prescribed diabetes medication, may diminish the benefits of exercise when used in combination. In this study, however, metformin combined with exercise training, but not exercise alone, lowered proinsulin concentrations and increased insulin clearance in adults with prediabetes. This may directly influence personalized prescriptions of lifestyle and/or pharmacology to reduce diabetes risk.
Collapse
Affiliation(s)
- Richard Viskochil
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Steven K Malin
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia.,Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia; and
| | | | - Barry Braun
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts; .,Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
19
|
Interleukin-6 increases the expression and activity of insulin-degrading enzyme. Sci Rep 2017; 7:46750. [PMID: 28429777 PMCID: PMC5399448 DOI: 10.1038/srep46750] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/21/2017] [Indexed: 12/23/2022] Open
Abstract
Impairment of the insulin-degrading enzyme (IDE) is associated with obesity and type 2 diabetes mellitus (T2DM). Here, we used 4-mo-old male C57BL/6 interleukin-6 (IL-6) knockout mice (KO) to investigate the role of this cytokine on IDE expression and activity. IL-6 KO mice displayed lower insulin clearance in the liver and skeletal muscle, compared with wild type (WT), due to reduced IDE expression and activity. We also observed that after 3-h incubation, IL-6, 50 and 100 ng ml−1, increased the expression of IDE in HEPG2 and C2C12 cells, respectively. In addition, during acute exercise, the inhibition of IL-6 prevented an increase in insulin clearance and IDE expression and activity, mainly in the skeletal muscle. Finally, IL-6 and IDE concentrations were significantly increased in plasma from humans, after an acute exercise, compared to pre-exercise values. Although the increase in plasma IDE activity was only marginal, a positive correlation between IL-6 and IDE activity, and between IL-6 and IDE protein expression, was observed. Our outcomes indicate a novel function of IL-6 on the insulin metabolism expanding the possibilities for new potential therapeutic strategies, focused on insulin degradation, for the treatment and/or prevention of diseases related to hyperinsulinemia, such as obesity and T2DM.
Collapse
|
20
|
Ulsenheimer BH, Confortim HD, Jeronimo LC, Centenaro LA, Guimarães ATB, Bonfleur ML, Balbo SL, Matheus SMM, Torrejais MM. Effects of duodenal-jejunal bypass on structure of diaphragm in western diet obese rats. Acta Cir Bras 2017; 32:1-13. [DOI: 10.1590/s0102-865020170101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/18/2016] [Indexed: 01/18/2023] Open
|
21
|
Methanolic seed extract of Vitis vinifera ameliorates oxidative stress, inflammation and ATPase dysfunction in infarcted and non-infarcted heart of streptozotocin-nicotinamide induced male diabetic rats. Int J Cardiol 2016; 222:850-865. [PMID: 27522389 DOI: 10.1016/j.ijcard.2016.07.250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND We hypothesized that consumption of Vitis vinifera seed by diabetics could help to ameliorate myocardial damage. Therefore, in this study, we investigated effects of V. vinifera seed methanolic extract (VVSME) on parameters related to myocardial damage in diabetes with or without myocardial infarction (MI). METHODS Streptozotocin-nicotinamide induced diabetic rats received oral VVSME for 28days. MI was induced by intraperitoneal injection of isoproterenol on last two days. Prior to sacrifice, blood was collected and fasting blood glucose (FBG), glycated hemoglobin (HbA1c), lipid profile and insulin levels were measured. Levels of serum cardiac injury marker (troponin-I and CK-MB) were determined and histopathological changes in the heart were observed following harvesting. Levels of oxidative stress (LPO, SOD, CAT, GPx and RAGE), inflammation (NF-κB, TNF-α, IL-1β and IL-6) and cardiac ATPases (Na(+)/K(+)-ATPase and Ca(2+)-ATPase) were determined in heart homogenates. LC-MS was used to identify constituents in the extracts. RESULTS Consumption of VVSME by diabetic rats with or without MI improved the metabolic profiles while decreased the cardiac injury marker levels with lesser myocardial damage observed. Additionally, VVSME consumption reduced the levels of LPO, RAGE, TNF-α, Iκκβ, NF-κβ, IL-1β and IL-6 while increased the levels of SOD, CAT, GPx, Na(+)/K(+)-ATPase and Ca(2+)-ATPase in the infarcted and non-infarcted heart of diabetic rats (p<0.05). LC-MS analysis revealed 17 major compounds in VVSME which might be responsible for the observed effects. CONCLUSIONS Consumption of VVSME by diabetics helps to ameliorate damage to the infarcted and non-infarcted myocardium by decreasing oxidative stress, inflammation and cardiac ATPases dysfunctions.
Collapse
|
22
|
Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice. PLoS One 2016; 11:e0160239. [PMID: 27467214 PMCID: PMC4965115 DOI: 10.1371/journal.pone.0160239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
Abstract
The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60-70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe.
Collapse
|
23
|
Kurauti MA, Costa-Júnior JM, Ferreira SM, Dos Santos GJ, Protzek AOP, Nardelli TR, de Rezende LF, Boschero AC. Acute exercise restores insulin clearance in diet-induced obese mice. J Endocrinol 2016; 229:221-32. [PMID: 27000684 DOI: 10.1530/joe-15-0483] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/21/2016] [Indexed: 01/19/2023]
Abstract
The aim of this study was to investigate the insulin clearance in diet-induced obese (DIO) mice submitted to acute endurance exercise (3h of treadmill exercise at 60-70% VO2max). Glucose-stimulated insulin secretion in isolated islets; ipGTT; ipITT; ipPTT; in vivo insulin clearance; protein expression in liver, skeletal muscle, and adipose tissue (insulin degrading enzyme (IDE), insulin receptor subunitβ(IRβ), phospho-Akt (p-Akt) and phospho-AMPK (p-AMPK)), and the activity of IDE in the liver and skeletal muscle were accessed. In DIO mice, acute exercise reduced fasting glycemia and insulinemia, improved glucose and insulin tolerance, reduced hepatic glucose production, and increased p-Akt protein levels in liver and skeletal muscle and p-AMPK protein levels in skeletal muscle. In addition, insulin secretion was reduced, whereas insulin clearance and the expression of IDE and IRβ were increased in liver and skeletal muscle. Finally, IDE activity was increased only in skeletal muscle. In conclusion, we propose that the increased insulin clearance and IDE expression and activity, primarily, in skeletal muscle, constitute an additional mechanism, whereby physical exercise reduces insulinemia in DIO mice.
Collapse
Affiliation(s)
- Mirian A Kurauti
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - José M Costa-Júnior
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Sandra M Ferreira
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Gustavo J Dos Santos
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - André O P Protzek
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Tarlliza R Nardelli
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Luiz F de Rezende
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
24
|
Oliva L, Baron C, Fernández-López JA, Remesar X, Alemany M. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet. PeerJ 2015. [PMID: 26213657 PMCID: PMC4512766 DOI: 10.7717/peerj.1101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet. Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC) membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate. Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls). In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight). The detected levels of glucose in RBC were lower than those of plasma, even when expressed in molal units, and were practically nil in cafeteria-diet fed rats compared with controls; there was no effect of sex. Conclusions. RBC membrane glycosylation is a sensitive indicator of developing metabolic syndrome-related hyperglycemia, more sensitive than the general measurement of plasma or RBC protein glycosylation. The extensive glycosylation of blood proteins does not seem to be markedly affected by sex; and could be hardly justified from an assumedly sustained plasma hyperglycemia. The low levels of glucose found within RBC, especially in rats under the cafeteria diet, could hardly justify the extensive glycosylation of hemoglobin and the lack of differences with controls, which contained sizeable levels of intracellular glucose. Additional studies are needed to study the dynamics of glucose in vivo in the RBC to understand how such extensive protein glycosylation could take place.
Collapse
Affiliation(s)
- Laia Oliva
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain
| | - Cristian Baron
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain
| | - José-Antonio Fernández-López
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain ; Institute of Biomedicine of the University of Barcelona , Barcelona , Spain ; CIBER OBN , Barcelona , Spain
| | - Xavier Remesar
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain ; Institute of Biomedicine of the University of Barcelona , Barcelona , Spain ; CIBER OBN , Barcelona , Spain
| | - Marià Alemany
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain ; Institute of Biomedicine of the University of Barcelona , Barcelona , Spain ; CIBER OBN , Barcelona , Spain
| |
Collapse
|
25
|
Zeeni N, Dagher-Hamalian C, Dimassi H, Faour WH. Cafeteria diet-fed mice is a pertinent model of obesity-induced organ damage: a potential role of inflammation. Inflamm Res 2015; 64:501-12. [DOI: 10.1007/s00011-015-0831-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/21/2022] Open
|
26
|
Gan L, Meng ZJ, Xiong RB, Guo JQ, Lu XC, Zheng ZW, Deng YP, Luo BD, Zou F, Li H. Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice. Acta Pharmacol Sin 2015; 36:597-605. [PMID: 25891086 DOI: 10.1038/aps.2015.11] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/27/2015] [Indexed: 12/14/2022]
Abstract
AIM Epigallocatechin-3-gallate (EGCG) is a major polyphenol in green tea. In this study, we investigated the effects of EGCG on insulin resistance and insulin clearance in non-alcoholic fatty liver disease (NAFLD) mice. METHODS Mice were fed on a high-fat diet for 24 weeks. During the last 4 weeks, the mice were injected with EGCG (10, 20 and 40 mg·kg(-1)·d(-1), ip). Glucose tolerance, insulin tolerance and insulin clearance were assessed. After the mice were euthanized, blood samples and tissue specimens were collected. Glucose-stimulated insulin secretion was examined in isolated pancreatic islets. The progression of NAFLD was evaluated histologically and by measuring lipid contents. Insulin-degrading enzyme (IDE) protein expression and enzyme activity were detected using Western blot and immunocapture activity assays, respectively. RESULTS The high-fat diet significantly increased the body weight and induced grade 2 or 3 liver fatty degeneration (steatosis, lobular inflammation and ballooning) accompanied by severe hyperlipidemia, hyperglycemia, hyperinsulinemia and insulin resistance in the model mice. Administration of EGCG dose-dependently ameliorated the hepatic morphology and function, reduced the body weight, and alleviated hyperlipidemia, hyperglycemia, hyperinsulinemia and insulin resistance in NAFLD mice. Furthermore, EGCG dose-dependently enhanced insulin clearance and upregulated IDE protein expression and enzyme activity in the liver of NAFLD mice. CONCLUSION EGCG dose-dependently improves insulin resistance in NAFLD mice not only by reducing body weight but also through enhancing the insulin clearance by hepatic IDE. The results suggest that IDE be a potential drug target for the treatment of NAFLD.
Collapse
|
27
|
Salvadó MJ, Casanova E, Fernández-Iglesias A, Arola L, Bladé C. Roles of proanthocyanidin rich extracts in obesity. Food Funct 2015; 6:1053-71. [DOI: 10.1039/c4fo01035c] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity is a multifactorial disorder involving an abnormal or excessive amount of body fat.
Collapse
Affiliation(s)
- M. Josepa Salvadó
- Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- Tarragona
- Spain
| | - Ester Casanova
- Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- Tarragona
- Spain
| | | | - Lluis Arola
- Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- Tarragona
- Spain
| | - Cinta Bladé
- Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- Tarragona
- Spain
| |
Collapse
|
28
|
Marineli RDS, Moura CS, Moraes ÉA, Lenquiste SA, Lollo PCB, Morato PN, Amaya-Farfan J, Maróstica MR. Chia (Salvia hispanica L.) enhances HSP, PGC-1α expressions and improves glucose tolerance in diet-induced obese rats. Nutrition 2014; 31:740-8. [PMID: 25837222 DOI: 10.1016/j.nut.2014.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/02/2014] [Accepted: 11/17/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of chia seed and chia oil on heat shock protein (HSP) and related parameters in diet-induced obese rats. METHODS Animals were divided in six groups: control, high-fat and high-fructose diet (HFF), and HFF with chia seed or chia oil in short (6-wk) and long (12-wk) treatments. Plasma indicators of glucose tolerance and liver damage, skeletal muscle expression of antioxidant enzymes, and proteins controlling oxidative energy metabolism were determined. The limit of significance was set at P < 0.05. RESULTS The HFF diet induced glucose intolerance, insulin resistance, oxidative stress, and altered parameters related to obesity complications. The consumption of chia seed or chia oil did not reduce body weight gain or abdominal fat accumulation. However, chia seed and chia oil in both treatments improved glucose and insulin tolerance. Chia oil in both treatments induced expression of HSP70 and HSP25 in skeletal muscle. Short treatment with chia seed increased expression of HSP70, but not HSP25. Chia oil in both treatments restored superoxide dismutase and glutathione peroxidase expression. Extended treatment with chia seed and short treatment with chia oil restored peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression. CONCLUSION Chia oil restored the antioxidant system and induced the expression of a higher number of proteins than chia seed. The present study demonstrated new properties and molecular mechanisms associated with the beneficial effects of chia seed and chia oil consumption in diet-induced obese rats.
Collapse
Affiliation(s)
- Rafaela da Silva Marineli
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Carolina Soares Moura
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Érica Aguiar Moraes
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Sabrina Alves Lenquiste
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Priscila Neder Morato
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Jaime Amaya-Farfan
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Mário Roberto Maróstica
- Food and Nutrition Department, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
29
|
Wei X, Ke B, Zhao Z, Ye X, Gao Z, Ye J. Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice. PLoS One 2014; 9:e95399. [PMID: 24740421 PMCID: PMC3989328 DOI: 10.1371/journal.pone.0095399] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/26/2014] [Indexed: 12/23/2022] Open
Abstract
Insulin degrading enzyme (IDE) is a potential drug target in the treatment of type 2 diabetes (T2D). IDE controls circulating insulin through a degradation-dependent clearance mechanism in multiple tissues. However, there is not sufficient information about IDE regulation in obesity. In this study, we test obesity-associated factors and pioglitazone in the regulation of IDE in diet-induced obese (DIO) C57BL/6 mice. The enzyme activity and protein level of IDE were increased in the liver of DIO mice. Pioglitazone (10 mg/kg/day) administration for 2 months significantly enhanced the enzyme activity (75%), protein (180%) and mRNA (100%) of IDE in DIO mice. The pioglitazone-induced changes were coupled with 50% reduction in fasting insulin and 20% reduction in fasting blood glucose. The mechanism of IDE regulation in liver was investigated in the mouse hepatoma cell line (Hepa 1c1c7 cells), in which pioglitazone (5 µM) increased IDE protein and mRNA in a time-dependent manner in an 8 h study. Free fatty acid (palmitate 300 µM) induced IDE protein, but reduced the mRNA. Glucagon induced, and TNF-α decreased IDE protein. Insulin did not exhibit any activity in the same condition. In summary, pioglitazone, FFA and glucagon directly increased, but TNF-α decreased the IDE activity in hepatocytes. The results suggest that IDE activity is regulated in liver by multiple factors in obesity and pioglitazone may induce IDE activity in the control of T2D.
Collapse
Affiliation(s)
- Xiuqing Wei
- Department of Digestive Disease, Third Affiliated Hospital, Sun Yet-Sen University, Guangzhou, China
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Bilun Ke
- Department of Digestive Disease, Third Affiliated Hospital, Sun Yet-Sen University, Guangzhou, China
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Zhiyun Zhao
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Xin Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Zhanguo Gao
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
30
|
Effects of exposure to a cafeteria diet during gestation and after weaning on the metabolism and body weight of adult male offspring in rats. Br J Nutr 2013; 111:1499-506. [DOI: 10.1017/s0007114513003838] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the present study, we investigated whether maternal exposure to a cafeteria diet affects the metabolism and body composition of offspring and whether such an exposure has a cumulative effect during the lifetime of the offspring. Female rats were fed a control (CON) or a cafeteria (CAF) diet from their own weaning to the weaning of their offspring. At 21 d of age, male offspring were divided into four groups by diet during gestation and after weaning (CON-CON, CON-CAF, CAF-CON and CAF-CAF). Blood was collected from dams (after weaning) and pups (at 30 and 120 d of age) by decapitation. CAF dams had significantly greater body weight and adipose tissue weight and higher concentrations of total cholesterol, insulin and leptin than CON dams (Student's t test). The energy intake of CAF rats was higher than that of CON rats regardless of the maternal diet (two-way ANOVA). Litters had similar body weights at weaning and at 30 d of age, but at 120 d, CON-CAF rats were heavier. At both ages, CAF rats had greater adipose tissue weight than CON rats regardless of the maternal diet, and the concentrations of TAG and cholesterol were similar between the two groups, as were blood glucose concentrations at 30 d of age. However, at 120 d of age, CAF rats were hyperglycaemic, hyperinsulinaemic and hyperleptinaemic regardless of the maternal diet. These findings suggest that maternal obesity does not modulate the metabolism of male offspring independently, modifying body weight only when associated with the intake of a cafeteria diet by the offspring.
Collapse
|
31
|
Cedó L, Castell-Auví A, Pallarès V, Macià A, Blay M, Ardévol A, Motilva MJ, Pinent M. Gallic acid is an active component for the anticarcinogenic action of grape seed procyanidins in pancreatic cancer cells. Nutr Cancer 2013; 66:88-96. [PMID: 24325191 DOI: 10.1080/01635581.2014.851714] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of the present work was to evaluate the effects of a grape seed procyanidin extract (GSPE) on proliferation and apoptosis in the pancreatic adenocarcinoma cell line MIA PaCa-2 and identify the components of the extract with higher activity. The effects of the extract were analyzed on the proliferation and apoptosis processes in MIA PaCa-2 cells, as well as in the levels of the apoptosis markers Bcl-2 and Bax, the mitochondrial membrane potential, and reactive oxygen species levels. Finally, the components of the extract with higher effects were elucidated using enriched fractions of the extract and pure compounds. The results showed that GSPE inhibits cell proliferation and increases apoptosis in MIA PaCa-2 cells, which is primarily mediated by the downregulation of the antiapoptotic protein Bcl-2 and the depolarization of the mitochondrial membrane. GSPE also reduced the formation of reactive oxygen species. The component of the extract that possesses the highest antiproliferative and proapoptotic activity was gallic acid. In conclusion, GSPE acts as anticarcinogenic in MIA PaCa-2 cells, with gallic acid as the major single active constituent of the extract.
Collapse
Affiliation(s)
- Lídia Cedó
- a Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia , Universitat Rovira i Virgili , Tarragona , Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Brandimarti P, Costa-Júnior JM, Ferreira SM, Protzek AO, Santos GJ, Carneiro EM, Boschero AC, Rezende LF. Cafeteria diet inhibits insulin clearance by reduced insulin-degrading enzyme expression and mRNA splicing. J Endocrinol 2013; 219:173-82. [PMID: 23959080 DOI: 10.1530/joe-13-0177] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin clearance plays a major role in glucose homeostasis and insulin sensitivity in physiological and/or pathological conditions, such as obesity-induced type 2 diabetes as well as diet-induced obesity. The aim of the present work was to evaluate cafeteria diet-induced obesity-induced changes in insulin clearance and to explain the mechanisms underlying these possible changes. Female Swiss mice were fed either a standard chow diet (CTL) or a cafeteria diet (CAF) for 8 weeks, after which we performed glucose tolerance tests, insulin tolerance tests, insulin dynamics, and insulin clearance tests. We then isolated pancreatic islets for ex vivo glucose-stimulated insulin secretion as well as liver, gastrocnemius, visceral adipose tissue, and hypothalamus for subsequent protein analysis by western blot and determination of mRNA levels by real-time RT-PCR. The cafeteria diet induced insulin resistance, glucose intolerance, and increased insulin secretion and total insulin content. More importantly, mice that were fed a cafeteria diet demonstrated reduced insulin clearance and decay rate as well as reduced insulin-degrading enzyme (IDE) protein and mRNA levels in liver and skeletal muscle compared with the control animals. Furthermore, the cafeteria diet reduced IDE expression and alternative splicing in the liver and skeletal muscle of mice. In conclusion, a cafeteria diet impairs glucose homeostasis by reducing insulin sensitivity, but it also reduces insulin clearance by reducing IDE expression and alternative splicing in mouse liver; however, whether this mechanism contributes to the glucose intolerance or helps to ameliorate it remains unclear.
Collapse
Affiliation(s)
- P Brandimarti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), PO Box 6109, Campinas, SP, CEP 13083-865, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Grape Seed Procyanidin Extract Improves Insulin Production but Enhances Bax Protein Expression in Cafeteria-Treated Male Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2013; 2013:875314. [PMID: 26904613 PMCID: PMC4745494 DOI: 10.1155/2013/875314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/14/2013] [Accepted: 03/28/2013] [Indexed: 11/18/2022]
Abstract
In a previous study, the administration of a grape seed procyanidin extract (GSPE) in female Wistar rats improved insulin resistance, reduced insulin production, and modulated apoptosis biomarkers in the pancreas. Considering that pharmacokinetic and pharmacodynamic parameters in females are different from these parameters in males, the aim of the present study was to evaluate the effects of GSPE on male Wistar cafeteria-induced obese rats. The results have confirmed that the cafeteria model is a robust model mimicking a prediabetic state, as these rats display insulin resistance, increased insulin synthesis and secretion, and increased apoptosis in the pancreas. In addition, GSPE treatment (25 mg/kg of GSPE for 21 days) in male rats improves insulin resistance and counteracts the cafeteria-induced effects on insulin synthesis. However, the administration of the extract enhances the cafeteria-induced increase in Bax protein levels, suggesting increased apoptosis. This result contradicts previous results from cafeteria-fed female rats, in which GSPE seemed to counteract the increased apoptosis induced by the cafeteria diet.
Collapse
|