1
|
Hernández-Ruiz RG, Olivares-Ochoa XC, Salinas-Varela Y, Guajardo-Espinoza D, Roldán-Flores LG, Rivera-Leon EA, López-Quintero A. Phenolic Compounds and Anthocyanins in Legumes and Their Impact on Inflammation, Oxidative Stress, and Metabolism: Comprehensive Review. Molecules 2025; 30:174. [PMID: 39795230 PMCID: PMC11722078 DOI: 10.3390/molecules30010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation, oxidative stress, and metabolic diseases are intricately linked in a complex, self-reinforcing relationship. Inflammation can induce oxidative stress, while oxidative stress can trigger inflammatory responses, creating a cycle that contributes to the development and progression of metabolic disorders; in addition, these effects can be observed at systemic and local scales. Both processes lead to cellular damage, mitochondrial dysfunction, and insulin resistance, particularly affecting adipose tissue, the liver, muscles, and the gastrointestinal tract. This results in impaired metabolic function and energy production, contributing to conditions such as type 2 diabetes, obesity, and metabolic syndrome. Legumes are a good source of phenolic compounds and anthocyanins that exert an antioxidant effect-they directly neutralize reactive oxygen species and free radicals, reducing oxidative stress. In vivo, in vitro, and clinical trial studies demonstrate that these compounds can modulate key cellular signaling pathways involved in inflammation and metabolism, improving insulin sensitivity and regulating lipid and glucose metabolism. They also exert anti-inflammatory effects by inhibiting proinflammatory enzymes and cytokines. Additionally, anthocyanins and phenolics may positively influence the gut microbiome, indirectly affecting metabolism and inflammation.
Collapse
Affiliation(s)
- Rocio Guadalupe Hernández-Ruiz
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | - Xochitl Citalli Olivares-Ochoa
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | - Yahatziri Salinas-Varela
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | | | | | - Edgar Alfonso Rivera-Leon
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico;
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos (CUAltos), UdeG, Tepatitlán de Morelos 47620, Jalisco, Mexico
| | - Andres López-Quintero
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico;
| |
Collapse
|
2
|
Lutsiv T, Neil ES, McGinley JN, Didinger C, Fitzgerald VK, Weir TL, Hussan H, Hartman TJ, Thompson HJ. Impact of a Pulse-Enriched Human Cuisine on Functional Attributes of the Gut Microbiome Using a Preclinical Model of Dietary-Induced Chronic Diseases. Nutrients 2024; 16:3178. [PMID: 39339778 PMCID: PMC11434987 DOI: 10.3390/nu16183178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Introducing grain legumes, i.e., pulses, into any food pattern effectively increases dietary fiber and other bioactive food components of public health concern; however, the impact depends on the amount consumed. Given the convergence of preclinical and clinical data indicating that intake of at least 300 g (1.5 cup) of cooked pulse per day has clinically observable benefit, the feasibility for a typical consumer was demonstrated by creation of a fourteen-day menu plan that met this criterion. This menu plan, named Bean Cuisine, was comprised of a combination of five cooked pulses: dry beans, chickpeas, cowpeas, dry peas, and lentils. As reported herein, the impact of each menu day of the fourteen-day plan on gut microbial composition and predicted function was evaluated in female C57BL/6J mice, a strain commonly used in studies of metabolic dysfunction-associated chronic diseases. We report that pulse-related effects were observed across a wide variety of food item combinations. In comparison to a pulse-free human cuisine, all pulse menu days enriched for a gut ecosystem were associated with changes in predicted metabolic pathways involving amino acids (lysine, tryptophan, cysteine), short-chain fatty acids (butyrate, acetate), and vitamins (B1, B6, B9, B12, K2) albeit via different combinations of microbiota, according to the PICRUSt2 estimates. The predicted metabolic functions correlating with the various pulses in the menus, indicate the value of a food pattern comprised of all pulse types consumed on a regular basis. This type of multi-pulse food pattern has the potential to enhance the taxonomic and functional diversity of the gut microbiome as a means of strengthening the resilience of the gut ecosystem to the challenges associated with the daily activities of living.
Collapse
Affiliation(s)
- Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth S Neil
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - John N McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Chelsea Didinger
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Vanessa K Fitzgerald
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Tiffany L Weir
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Hisham Hussan
- Department of Internal Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Terryl J Hartman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Upadhyaya B, Moreau R, Majumder K. Antioxidant and Anti-Inflammatory Capacities of Three Dry Bean Varieties after Cooking and In Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18445-18454. [PMID: 39110605 DOI: 10.1021/acs.jafc.4c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The present study delved into the chemical composition, antioxidant, and anti-inflammatory properties of three dry edible beans: Black (BL), Great Northern (GN), and Pinto (PN). The beans were soaked, cooked, and subjected to in vitro gastrointestinal (GI) digestion. BL bean exhibited significantly higher gastric (42%) and intestinal (8%) digestion rates. Comparative assessment of soluble GI-digested fractions (<3 kDa) revealed that the GN bean exhibited the highest abundance of dipeptides (P < 0.05). The BL bean fraction displayed a 4-fold increase in tripeptides (P < 0.05). Both BL and PN bean fractions are high in essential free amino acids, flavonols, and derivatives of hydroxybenzoic acid when compared to the GN bean. All the beans exhibited the ability to mitigate TNF-α-induced pro-inflammatory signaling; however, the BL bean fraction was the most effective at lowering AAPH-induced oxidative stress in HT-29 cells, followed by the GN bean (P < 0.05). In contrast, a low antioxidant effect was observed with PN beans.
Collapse
Affiliation(s)
- Bikram Upadhyaya
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68588-6205, United States
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
| | - Regis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68588-6205, United States
| |
Collapse
|
4
|
Speciale A, Molonia MS, Muscarà C, Cristani M, Salamone FL, Saija A, Cimino F. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function. Fitoterapia 2024; 175:105953. [PMID: 38588905 DOI: 10.1016/j.fitote.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, Messina 98100, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
5
|
Bowen MB, Helmink BA, Wargo JA, Yates MS. TIME for Bugs: The Immune Microenvironment and Microbes in Precancer. Cancer Prev Res (Phila) 2023; 16:497-505. [PMID: 37428011 PMCID: PMC10542944 DOI: 10.1158/1940-6207.capr-23-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Major advances in our understanding of the tumor immune microenvironment (TIME) in established cancer have been made, including the influence of host-intrinsic (host genomics) and -extrinsic factors (such as diet and the microbiome) on treatment response. Nonetheless, the immune and microbiome milieu across the spectrum of precancerous tissue and early neoplasia is a growing area of interest. There are emerging data describing the contribution of the immune microenvironment and microbiota on benign and premalignant tissues, with opportunities to target these factors in cancer prevention and interception. Throughout this review, we provide rationale for not only the critical need to further elucidate the premalignant immune microenvironment, but also for the utility of pharmacologic and lifestyle interventions to alter the immune microenvironment of early lesions to reverse carcinogenesis. Novel research methodologies, such as implementing spatial transcriptomics and proteomics, in combination with innovative sampling methods will advance precision targeting of the premalignant immune microenvironment. Additional studies defining the continuum of immune and microbiome evolution, which emerges in parallel with tumor development, will provide novel opportunities for cancer interception at the earliest steps in carcinogenesis.
Collapse
Affiliation(s)
- Mikayla Borthwick Bowen
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Beth A Helmink
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Melinda S Yates
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
6
|
Nosworthy MG, Medina G, Lu ZH, House JD. Plant Proteins: Methods of Quality Assessment and the Human Health Benefits of Pulses. Foods 2023; 12:2816. [PMID: 37569085 PMCID: PMC10417564 DOI: 10.3390/foods12152816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
As countries increase their standard of living and individual income levels rise, there is a concomitant increase in the demand for animal-based protein. However, there are alternative sources. One of the alternatives available is that of increased direct human consumption of plant proteins. The quality of a dietary protein is an important consideration when discussing the merits of one protein source over another. The three most commonly used methods to express protein quality are the protein efficiency ratio (PER), a weight gain measurement; protein digestibility-corrected amino acid score (PDCAAS); and the digestible indispensable amino acid score (DIAAS). The possibility that alterations in the quality and quantity of protein in the diet could generate specific health outcomes is one being actively researched. Plant-based proteins may have additional beneficial properties for human health when compared to animal protein sources, including reductions in risk factors for cardiovascular disease and contributions to increased satiety. In this paper, the methods for the determination of protein quality and the potential beneficial qualities of plant proteins to human health will be described.
Collapse
Affiliation(s)
- Matthew G. Nosworthy
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Gerardo Medina
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada;
| | - Zhan-Hui Lu
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
| | - James D. House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Richardson Centre for Food Technology and Research, 196 Innovation Drive, Winnipeg, MB R3T 2N2, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Cid-Gallegos MS, Jiménez-Martínez C, Sánchez-Chino XM, Madrigal-Bujaidar E, Vásquez-Garzón VR, Baltiérrez-Hoyos R, Álvarez-González I. Chemopreventive Effect of Cooked Chickpea on Colon Carcinogenesis Evolution in AOM/DSS-Induced Balb/c Mice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2317. [PMID: 37375942 PMCID: PMC10304688 DOI: 10.3390/plants12122317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Chickpeas are one of the most widely consumed legumes worldwide and they might prevent diseases such as cancer. Therefore, this study evaluates the chemopreventive effect of chickpea (Cicer arietinum L.) on the evolution of colon carcinogenesis induced with azoxymethane (AOM) and dextran sodium sulfate (DSS) in a mice model at 1, 7, and 14 weeks after induction. Accordingly, the expression of biomarkers-such as argyrophilic nucleolar organizing regions (AgNOR), cell proliferation nuclear antigen (PCNA), β-catenin, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2)-was assessed in the colon of BALB/c mice fed diets supplemented with 10 and 20% cooked chickpea (CC). The results showed that a 20% CC diet significantly reduced tumors and biomarkers of proliferation and inflammation in AOM/DSS-induced colon cancer mice. Moreover, body weight loss decreased and the disease activity index (DAI) was lower than the positive control. Lastly, tumor reduction was more evident at week 7 in the groups fed a 20% CC diet. In conclusion, both diets (10% and 20% CC) exert a chemopreventive effect.
Collapse
Affiliation(s)
- María Stephanie Cid-Gallegos
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Xariss M. Sánchez-Chino
- Catedra-CONAHCYT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Tabasco 86280, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Verónica R. Vásquez-Garzón
- Catedra-CONAHCYT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (V.R.V.-G.); (R.B.-H.)
| | - Rafael Baltiérrez-Hoyos
- Catedra-CONAHCYT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (V.R.V.-G.); (R.B.-H.)
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| |
Collapse
|
8
|
Vieira NM, Peghinelli VV, Monte MG, Costa NA, Pereira AG, Seki MM, Azevedo PS, Polegato BF, de Paiva SAR, Zornoff LAM, Minicucci MF. Beans comsumption can contribute to the prevention of cardiovascular disease. Clin Nutr ESPEN 2023; 54:73-80. [PMID: 36963901 DOI: 10.1016/j.clnesp.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Cardiovascular diseases (CVD) are the major cause of global mortality, accounting for 31% of deaths worldwide. Healthy eating habits based on the consumption of bioactive molecules present in plant-based diets can contribute to the prevention of CVD. In this context, the consumption of common beans (Phaseolus vulgaris L.) is relevant. There are several species of beans, all of which provide proteins, carbohydrates, dietary fiber, vitamins, minerals, and phenolic compounds. More recently, the complexity of phytochemical components has expanded, including the role of antinutritional factors in nutrient bioavailability and immune responses. Experimental and clinical studies have shown that the consumption of beans results in less food consumption, control of body weight, and improvement of metabolic biochemical parameters. Thus, the consumption of beans is associated with a decrease in CVD risk factors. To date, there have been no interventional studies assessing CVD outcomes, such as hospitalization, infarction, and mortality, in the context of bean consumption. Furthermore, studies on the effect of bean consumption on metabolomics and intestinal microbiota are lacking. The purpose of this review is to explore the nutritional properties of beans and discuss the main effects of the consumption of beans on cardiovascular health. In conclusion, eating habits based on the consumption of bioactive molecules present in beans can contribute to the prevention of cardiovascular disease. Furthermore, there is a large gap in the literature regarding the consumption of beans associated with clinical outcomes, such as hospitalization and mortality.
Collapse
Affiliation(s)
- Nayane Maria Vieira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | | | - Marina Gaiato Monte
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Nara Aline Costa
- Faculty of Nutrition, UFG - Univ Federal de Goiás, Goiânia, Brazil.
| | - Amanda Gomes Pereira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Marcos Mitsuo Seki
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Paula Schmidt Azevedo
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | - Bertha Furlan Polegato
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| | | | | | - Marcos Ferreira Minicucci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil.
| |
Collapse
|
9
|
Cuevas-Cianca SI, Romero-Castillo C, Gálvez-Romero JL, Juárez ZN, Hernández LR. Antioxidant and Anti-Inflammatory Compounds from Edible Plants with Anti-Cancer Activity and Their Potential Use as Drugs. Molecules 2023; 28:molecules28031488. [PMID: 36771154 PMCID: PMC9920972 DOI: 10.3390/molecules28031488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Food is our daily companion, performing numerous beneficial functions for our bodies. Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive bibliographic search is conducted in various databases to update information on unprocessed foods with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer. The current state of knowledge on inflammatory processes involving some interleukins and tumor necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce inflammation and oxidative stress, both of which are important factors in cancer development. Many studies are still needed to take full advantage of the food products we use daily.
Collapse
Affiliation(s)
- Sofía Isabel Cuevas-Cianca
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Cristian Romero-Castillo
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - José Luis Gálvez-Romero
- ISSTE Puebla Hospital Regional, Boulevard 14 Sur 4336, Colonia Jardines de San Manuel, Puebla 72570, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| |
Collapse
|
10
|
Huang R, Lu Y, Jin M, Liu Y, Zhang M, Xian S, Chang Z, Wang L, Zhang W, Lu J, Tong X, Wang S, Zhu Y, Huang J, Jiang L, Gu M, Huang Z, Wu M, Ji S. A bibliometric analysis of the role of microbiota in trauma. Front Microbiol 2023; 14:1091060. [PMID: 36819034 PMCID: PMC9932281 DOI: 10.3389/fmicb.2023.1091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Over the last several decades, the gut microbiota has been implicated in the formation and stabilization of health, as well as the development of disease. With basic and clinical experiments, scholars are gradually understanding the important role of gut microbiota in trauma, which may offer novel ideas of treatment for trauma patients. In this study, we purposed to summarize the current state and access future trends in gut microbiota and trauma research. Methods We retrieved relevant documents and their published information from the Web of Science Core Collection (WoSCC). Bibliometrix package was responsible for the visualized analysis. Results Totally, 625 documents were collected and the number of annual publications kept increasing, especially from 2016. China published the most documents while the USA had the highest local citations. The University of Colorado and Food & Function are respectively the top productive institution and journal, as PLOS One is the most local cited journal. With the maximum number of articles and local citations, Deitch EA is supported to be the most contributive author. Combining visualized analysis of keywords and documents and literature reading, we recognized two key topics: bacteria translocation in trauma and gut microbiota's effect on inflammation in injury, especially in nervous system injury. Discussion The impact of gut microbiota on molecular and pathological mechanism of inflammation is the focus now. In addition, the experiments of novel therapies based on gut microbiota's impact on trauma are being carried out. We hope that this study can offer a birds-eye view of this field and promote the gradual improvement of it.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyuan Xian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Lei Wang
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Zongqiang Huang ✉
| | - Minjuan Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Minjuan Wu ✉
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Shizhao Ji ✉
| |
Collapse
|
11
|
do Nascimento RDP, da Rocha Alves M, Noguera NH, Lima DC, Marostica Junior MR. Cereal grains and vegetables. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:103-172. [DOI: 10.1016/b978-0-323-99111-7.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Papoutsis D, Rocha SDC, Herfindal AM, Kjølsrud Bøhn S, Carlsen H. Intestinal effect of faba bean fractions in WD-fed mice treated with low dose of DSS. PLoS One 2022; 17:e0272288. [PMID: 35939489 PMCID: PMC9359607 DOI: 10.1371/journal.pone.0272288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Rodent studies have shown that legumes can reduce chemical induced colonic inflammation, but the role of faba bean fractions for colon health has not been described. We have investigated the role of protein and fiber fractions of faba beans for colonic health and microbiota composition in a low-grade inflammation mice-model when incorporated in a Western diet (WD). The diet of sixty C57BL/6JRj male mice was standardized to a WD (41% fat, 43% carbohydrates) before were randomly assigned to four groups (n = 12) receiving either 1) WD with 30% of the protein replaced with faba-bean proteins, 2) WD with 7% of the fiber replaced with faba-bean fibers, 3) WD with protein and fiber fractions or 4) plain WD (n = 24). Low-grade inflammation was induced by 1% dextran sodium sulfate (DSS) given to mice for the last six days of the trial. Half (n = 12) in group 4) were given only water (controls). Prior to DSS, body weight, energy intake, glucose and insulin tolerance assays were performed. Inflammatory status in the colon was assessed by biomarkers of inflammation and qRT-PCR analyses of inflammatory related genes. Fecal microbiota composition was assessed by 16S rRNA gene sequencing. 1% DSS treatment increased levels in fecal lipocalin-2 and induced disease activity index score, but the presence of faba bean fractions in WD did not influence these indicators nor the expression level of inflammatory associated genes. However, the mice that had faba-bean proteins had a lower amount of Proteobacteria compared the group on plain WD. The Actinobacteria abundance was also lower in the group that had fiber fraction from faba-beans. Overall, outcomes indicated that in a low-grade inflammation model, replacement of protein and or fiber in a WD with faba bean fractions had marginal effects on inflammatory parameters and colonic microbiota.
Collapse
Affiliation(s)
- Dimitrios Papoutsis
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sérgio Domingos Cardoso Rocha
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Siv Kjølsrud Bøhn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| |
Collapse
|
13
|
Mitigation of DSS-Induced Colitis Potentially via Th1/Th2 Cytokine and Immunological Function Balance Induced by Phenolic-Enriched Buckwheat (Fagopyrum esculentum Moench) Bee Pollen Extract. Foods 2022; 11:foods11091293. [PMID: 35564016 PMCID: PMC9105923 DOI: 10.3390/foods11091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Colitis is an inflammatory disease that results from the overactivation of effector immune cells, producing a high quantity of pro-inflammatory cytokines. Our study aimed to explore whether buckwheat (F. esculentum) bee pollen extract (FBPE) could inhibit the progression of dextran sulfate sodium (DSS)-induced colitis via regulating immune function. We isolated and identified six main phenolic compounds of FBPE such as luteolin (9.46 mg/g) by column chromatography, HPLC-DAD, ESI-MS and NMR spectroscopy, then assessed their effects on colonic mucosal injury by clinical symptoms, histomorphology and immunohistochemistry examinations. The results showed that FBPE at 25.2 g/kg body weight (g/kg BW) changed the clinical symptoms of colitis, the ICAM-1 expression in colon, the activity of related inflammatory mediators in colon tissue and helped restore the immune system. Compared with the model group (40.28%), the CD4 positivity was significantly reduced in the HD (High-dose group: 25.2 g FBPE/kg BW/day) group (20.45%). Administration of 25.2 g/kg BW of FBPE decreased the IFN-γ, TNF-α and IL-4 levels, while enhancing the IL-10 level, and significantly inhibited the abnormally decreased IgG (Model: 13.25 mg/mL, HD: 14.06 mg/mL), showing a reversal effect on the Th1/Th2 levels in colitis. These findings suggested that FBPE at 25.2 g/kg BW had the effects of alleviating colitis and immunomodulation, which can help in the development of safe and effective immune therapy.
Collapse
|
14
|
O’Mahony C, Amamou A, Ghosh S. Diet-Microbiota Interplay: An Emerging Player in Macrophage Plasticity and Intestinal Health. Int J Mol Sci 2022; 23:3901. [PMID: 35409260 PMCID: PMC8998881 DOI: 10.3390/ijms23073901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract with an increasing prevalence worldwide. Targeted therapies for IBD are limited by several factors, including the therapeutic ceiling and the high incidence of non-responders or loss-of-response. In order to improve therapeutic efficacy, there is critical need to decipher disease pathogenesis, currently not well understood. Macrophages, innate immune cells that exhibit high plasticity, perpetuate inflammatory signalling in IBD through excessive release of inflammatory mediators. In recent years, pioneering research has revealed the importance of the interplay between macrophages and gut microbiota in maintaining intestinal homeostasis. Particular attention is focusing on microbiota-derived metabolites, believed to possess immunomodulatory properties capable of manipulating macrophage plasticity. Microbiota-derived short-chain fatty acids (SCFAs) and indole compounds, along with dietary sourced omega-3 (ω-3) polyunsaturated fatty acids (PUFA), exert anti-inflammatory effects, attributable to interactions with macrophages. Before we can effectively incorporate these metabolites into IBD therapies, a deeper understanding of microbiota-macrophage interactions at a molecular level is necessary. Therefore, the aim of this review is firstly to detail current knowledge regarding how diet and microbiota-derived metabolites modify macrophage plasticity. Later, we discuss the concept of therapeutic strategies directed at microbiota-macrophage interactions, which could be highly valuable for IBD therapies in the future.
Collapse
Affiliation(s)
- Cian O’Mahony
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (A.A.); (S.G.)
| | | | | |
Collapse
|
15
|
Liu J, Hefni ME, Witthöft CM, Bergström M, Burleigh S, Nyman M, Hållenius F. Effects of Whole Brown Bean and Its Isolated Fiber Fraction on Plasma Lipid Profile, Atherosclerosis, Gut Microbiota, and Microbiota-Dependent Metabolites in Apoe-/- Mice. Nutrients 2022; 14:nu14050937. [PMID: 35267913 PMCID: PMC8912725 DOI: 10.3390/nu14050937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
The health benefits of bean consumption are widely recognized and are largely attributed to the dietary fiber content. This study investigated and compared the effects of whole brown beans and an isolated bean dietary fiber fraction on the plasma lipid profile, atherosclerotic plaque amount, gut microbiota, and microbiota-dependent metabolites (cecal short-chain fatty acids (SCFAs) and plasma methylamines) in Apoe−/− mice fed high fat diets for 10.5 weeks. The results showed that both whole bean and the isolated fiber fraction had a tendency to lower atherosclerotic plaque amount, but not plasma lipid concentration. The whole bean diet led to a significantly higher diversity of gut microbiota compared with the high fat diet. Both bean diets resulted in a lower Firmicutes/Bacteroidetes ratio, higher relative abundance of unclassified S24-7, Prevotella, Bifidobacterium, and unclassified Clostridiales, and lower abundance of Lactobacillus. Both bean diets resulted in higher formation of all cecal SCFAs (higher proportion of propionic acid and lower proportion of acetic acid) and higher plasma trimethylamine N-oxide concentrations compared with the high fat diet. Whole beans and the isolated fiber fraction exerted similar positive effects on atherosclerotic plaque amount, gut microbiota, and cecal SCFAs in Apoe−/− mice compared with the control diets.
Collapse
Affiliation(s)
- Jiyun Liu
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
- Correspondence: ; Tel.: +46-072-451-6957
| | - Mohammed E. Hefni
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
- Food Industries Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Cornelia M. Witthöft
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
| | - Maria Bergström
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
| | - Stephen Burleigh
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| | - Margareta Nyman
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| | - Frida Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| |
Collapse
|
16
|
Polak-Szczybyło E, Tabarkiewicz J. IL-17A, IL-17E and IL-17F as Potential Biomarkers for the Intensity of Low-Grade Inflammation and the Risk of Cardiovascular Diseases in Obese People. Nutrients 2022; 14:nu14030643. [PMID: 35277002 PMCID: PMC8839991 DOI: 10.3390/nu14030643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Low-grade inflammation is a factor that predisposes to many obesity-related comorbidities. The immune mechanisms controlling the inflammatory response related to the secretory activity of adipocytes and its consequences for the organism are still under investigation. METHODS 84 obese adult volunteers (BMI ≥ 30 kg/m2) were tested by BIA. Serum samples were collected to analyze the concentrations of interleukins IL-17A, IL-17E and IL-17F. The subjects completed the original questionnaire, the FFQ-6 food consumption frequency questionnaire and the food diary. RESULTS The level of IL-17E and IL-17F was positively correlated with the BMI value and the level of IL-17E increased with the content of subcutaneous fat. Its increased blood concentration was also observed in individuals who declared that they were diagnosed with atherosclerosis and/or were taking beta-blockers. Products that were related with a low level of the above-mentioned interleukins were vegetables, groats, eggs, red meat, fast-food and alcohol. The level of these interleukins was positively correlated with the frequent consumption of confectionery and breakfast cereals. Nutrients that decreased the concentrations of IL-17 isoforms were potassium, iron, vitamins B6 and C, and folic acid. CONCLUSIONS Both IL-17E and IL-17F may be closely related to the intensity of low-grade inflammation and be biomarkers of cardiovascular disease risk. Food products or the nutrients they contain may affect the levels of the above-mentioned interleukins as well as IL-17A.
Collapse
Affiliation(s)
- Ewelina Polak-Szczybyło
- Department of Dietetics, Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Jacek Tabarkiewicz
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszow, 35-959 Rzeszow, Poland
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, University of Rzeszow, 35-959 Rzeszow, Poland
- Correspondence:
| |
Collapse
|
17
|
Li S, Jin Y, Fu W, Cox AD, Lee D, Reddivari L. Intermittent antibiotic treatment accelerated the development of colitis in IL-10 knockout mice. Biomed Pharmacother 2022; 146:112486. [PMID: 34891113 DOI: 10.1016/j.biopha.2021.112486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND AIMS Many epidemiological studies suggest an association between antibiotic exposure and the development of inflammatory bowel disease [IBD]. However, the majority of these studies are observational and still the question remains, "Does the specific antibiotic administration regimen play a role in the development of colitis?" This study aimed to compare the possible effects of continuous and intermittent antibiotic exposure on the development of colitis using a colitis-susceptible IL-10 knockout [IL-10-/-] mouse model. METHODS IL-10-/- mice [C57BL/6] were randomly assigned to a non-antibiotic group, continuous antibiotic group and intermittent antibiotic group, and observed for 30 weeks. The antibiotic cocktail was given via the drinking water. The differential response to antibiotics was assessed. RESULTS Intermittent antibiotic treatment resulted in severe colitis with early disease onset in IL-10-/- mice. Higher unit colon weight and spleen weight were observed in intermittent antibiotic-treated mice but not in the continuous antibiotic group. Moreover, intermittent antibiotic treatment aggravated epithelial damage and colonic inflammation, mucosal barrier dysfunction and colonic allergic sensitization in IL-10-/- mice, whereas continuous antibiotic treatment ameliorated these symptoms. Male IL-10-/- mice with intermittent antibiotic exposure were more susceptible to colonic inflammation and allergic response than females. CONCLUSIONS In summary, intermittent antibiotic exposure accelerated the development of severe colitis more than continuous antibiotic exposure in IL-10-/- male mice. In addition to the colonic damage and impaired barrier function, stimulation of allergic response may play a role in accelerating the development of colitis in genetically susceptible mice.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Yusong Jin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wenyi Fu
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Abigail D Cox
- College of Veterinary Medicine, Purdue University, 625 Harrison Street West Lafayette, IN 47907, USA
| | - Dale Lee
- Seattle Children's Hospital, University of Washington, Seattle, WA 98105, USA
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
18
|
Moreno-García KL, Antunes-Ricardo M, Martínez-Ávila M, Milán-Carrillo J, Guajardo-Flores D. Evaluation of the antioxidant, anti-inflammatory and antihyperglycemic activities of black bean (Phaseolus vulgaris L.) by-product extracts obtained by supercritical CO2. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Chen W, Wang P, Chen H, Xing Y, Liu C, Pan G, Dou Z, Han L. The composition differences between small black beans and big black beans from different habitats and its effects on the processing of Polygonum multiflorum. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:767-779. [PMID: 33336449 DOI: 10.1002/pca.3022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The roots of Polygonum multiflorum (PM) serve as a classical traditional Chinese medicine (TCM), which has multiple biological activities. However, many cases of hepatotoxicity in PM have been reported in recent years. Processing PM with black beans decoction is one of the typical processing methods to reduce the hepatotoxicity of PM since ancient times. OBJECTIVES To find potential effective constituents, as well as the optimal variety and origin of black beans for the processing of PM. METHODS Based on ultrahigh-performance liquid chromatography Q-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap-MS) analysis, we measured the contents of the two potential toxic compounds (emodin-8-O-glucoside and torachrysone-O-hexose) in raw PM (R-PM), PM processed with big black beans (B-PM) and PM processed with small black beans (S-PM). The flow cytometry method analysed the effects of different processed products of PM on apoptosis of L02 cells in different drug concentration. Proton nuclear magnetic resonance (1 H-NMR) and UHPLC-Q-Orbitrap-MS together with multivariate statistical analysis were used to systematically analyse the different components between small black beans (Small-BB) and big black beans (Big-BB) from 30 different habitats. RESULTS The toxicity was ranked from small to large: S-PM < B-PM < R-PM. Processing PM with black beans could significantly decrease the apoptosis rate of L02 cells, especially when the drug concentration is 80 μg/mL. Besides, we find five differential compounds (α-arabinose, α-galactose, proline, isomer of daidzein and isomer of genistein) may be potential active ingredients. In terms of the black beans collected from 30 producing areas, we find that Small-BB from Weifang in Shandong province was optimum to processing PM, followed by Shangqiu in Henan province, Jilin and Liaoning province. CONCLUSION The ingredients that affect the processing of PM may be attributed to α-arabinose, α-galactose, proline, isomer of daidzein and isomer of genistein in black beans. When the drug concentration is higher, the effect of reducing the hepatotoxicity of PM is better. Besides, Small-BB was more effective than Big-BB for reducing the toxicity of PM, especially Small-BB from Weifang in Shandong, Shangqiu in Henan province and northeast China.
Collapse
Affiliation(s)
- Wanning Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Piao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongxi Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, The Chinese Academy of Sciences, Wuhan, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiying Dou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Gao Y, Ping H, Li B, Li Y, Zhao F, Ma Z. Characterization of free, conjugated, and bound phenolics in early and late ripening kiwifruit cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4743-4750. [PMID: 33491781 DOI: 10.1002/jsfa.11120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Kiwifruit (Actinidia) has long been called the 'king of fruits' because of its unique flavor and the wide range of bioactive compounds which contains ascorbic acid, phenolics and minerals. These bioactivities are influenced by species and cultivar. However, to date few studies are concerned with the effect of ripening time on fruit quality. Here, early and late ripening kiwifruits were investigated to determine their content of ascorbic acid, organic acid, and phenolic compounds. RESULTS Early ripening cultivars contained higher quinic acid and malic acid, while citric acid were found in large amounts in late ripening kiwifruits. Most of the early ripening cultivars contained higher free phenolic fractions than the late ripening fruits, mainly due to the high levels of epicatechin. However, conjugated phenolics, mainly including caffeic and 2,3,4-trihydroxybenzoic acid, achieved higher levels in the late ripening cultivars. Free phenolics were higher than conjugated phenolics in the early ripening cultivars. Principal component analysis revealed some key compounds that differentiated the kiwifruits, and all the kiwifruits were divided into two subgroups as early and late ripening cultivars. CONCLUSION Ripening time had a great impact on the accumulation of bioactive compounds. The early ripening cultivars, compared to the late ripening ones, were characterized by higher levels of free neochlorogenic acid and epicatechin, while the late ripening kiwifruits contained higher amounts of conjugated phenolics. Results from this study provide further insights into the health-promoting phenolic compounds in kiwifruit, and also provide good evidence to aid consumer selection. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hua Ping
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bingru Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yang Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fang Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhihong Ma
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
21
|
Méndez-Flores OG, Ochoa-Díaz López H, Castro-Quezada I, Olivo-Vidal ZE, García-Miranda R, Rodríguez-Robles U, Irecta-Nájera CA, López-Ramírez G, Sánchez-Chino XM. The Milpa as A Supplier of Bioactive Compounds: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- OG Méndez-Flores
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - H Ochoa-Díaz López
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - I Castro-Quezada
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - ZE Olivo-Vidal
- Health Department, El Colegio De La Frontera Sur, Villahermosa, Tabasco, México
| | - R García-Miranda
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
- Escuela De Lenguas-Campus III San Cristóbal, Universidad Autónoma De Chiapas, San Cristóbal De Las Casas, Chiapas, México
| | - U Rodríguez-Robles
- Departamento De Ecología Y Recursos Naturales. Centro Universitario De La Costa Sur. Universidad De Guadalajara, Autlán De Navarro, Jalisco, México
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, México
| | - CA Irecta-Nájera
- Health Department, El Colegio De La Frontera Sur, Villahermosa, Tabasco, México
| | - G López-Ramírez
- Departamento De Fisiología, Biofísica Y Neurociencias, Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad De México, México
| | - XM Sánchez-Chino
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, México
| |
Collapse
|
22
|
Price TR, Baskaran SA, Moncada KL, Minamoto Y, Klemashevich C, Jayuraman A, Sucholdoski JS, Tedeschi LO, Steiner JM, Pillai SD, Walzem RL. Whole and Isolated Protein Fractions Differentially Affect Gastrointestinal Integrity Markers in C57Bl/6 Mice Fed Diets with a Moderate-Fat Content. Nutrients 2021; 13:nu13041251. [PMID: 33920187 PMCID: PMC8069602 DOI: 10.3390/nu13041251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Various proteins or protein fractions reportedly positively affect gastrointestinal integrity and inflammation in diets providing >45% energy as fat. This study tested whether benefits were seen in diets providing 30% of energy as fat. Purified diets (PD) with isolated soy protein (ISP), dried whole milk powder (DWMP), milk fat globule membrane (MFGM), or milk protein concentrate (MPC) as protein sources were fed to C57BL/6J mice (n = 15/diet group) for 13 weeks. MFGM-fed mice were heaviest (p < 0.005) but remained within breeder norms. Growth rates and gut motility were similar for all PD-fed mice. FITC-dextran assessed gut permeability was lowest in DWMP and MFGM (p = 0.054); overall, plasma endotoxin and unprovoked circulating cytokines indicated a non-inflammatory state for all PD-fed mice. Despite differences in cecal butyrate and intestinal gene expression, all PDs supported gastrointestinal health. Whole milk provided more positive effects compared to its fractions. However, ISP-fed mice showed a >370%, (p < 0.006) increase in colonic myeloperoxidase activity indicative of tissue neutrophil infiltration. Surprisingly, FITC-dextran and endotoxin outcomes were many folds better in PD-fed mice than mice (strain, vendor, age and sex matched) fed a “chow-type” nutritionally adequate non-PD. Additional variables within a diet’s matrix appear to affect routine indicators or gastrointestinal health.
Collapse
Affiliation(s)
- Tara R. Price
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Sangeetha A. Baskaran
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Kristin L. Moncada
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Yasushi Minamoto
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Cory Klemashevich
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Arul Jayuraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Jan S. Sucholdoski
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Suresh D. Pillai
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Rosemary L. Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Correspondence:
| |
Collapse
|
23
|
Navy Bean Supplementation in Established High-Fat Diet-Induced Obesity Attenuates the Severity of the Obese Inflammatory Phenotype. Nutrients 2021; 13:nu13030757. [PMID: 33652785 PMCID: PMC7996849 DOI: 10.3390/nu13030757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cooked common beans (Phaseolus vulgaris) improve intestinal health in lean mice and attenuate intestinal dysbiosis and inflammation when consumed concurrent with obesity development. We determined the effects of a high-fat (HF) bean supplemented diet in mice with established obesity (induced by 12 weeks of HF diet (60% fat as kcal)) compared to obese mice consuming a HF or low-fat (LF) weight loss control diet. Obese C57BL/6 male mice remained consuming HF for eight weeks or were randomly switched from HF to an isocaloric HF with 15.7% cooked navy bean powder diet (HF→HFB) or LF (11% fat as kcal; HF→LF) (n = 12/group). HF→HFB improved the obese phenotype, including (i) fecal microbiome (increased Prevotella, Akkermansia muciniphila, and short-chain fatty acid levels), (ii) intestinal health (increased ZO-1, claudin-2, Muc2, Relmβ, and Reg3γ expression), and (iii) reduced adipose tissue (AT) inflammatory proteins (NFκBp65, STAT3, IL-6, MCP-1, and MIP-1α), versus HF (p < 0.05). Conversely, HF→LF reduced body weight and circulating hormones (leptin, resistin, and PAI-1) versus HF and HF→HFB (p < 0.05); however, AT inflammation and intestinal health markers were not improved to the same degree as HF→HFB (p < 0.05). Despite remaining on a HF obesogenic diet, introducing beans in established obesity improved the obese phenotype (intestinal health and adipose inflammation) more substantially than weight loss alone.
Collapse
|
24
|
Lin Y, Luo L, Lin H, Li X, Huang R. Potential therapeutic targets and molecular details of anthocyan-treated inflammatory bowel disease: a systematic bioinformatics analysis of network pharmacology. RSC Adv 2021; 11:8239-8249. [PMID: 35423341 PMCID: PMC8695082 DOI: 10.1039/d0ra09117k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Anthocyans, containing anthocyanins and anthocyanidins, play a crucial role in preventing and treating inflammatory bowel disease (IBD). Most anthocyanins and their basic elements, namely anthocyanidins have been recognized for the effective treatment of IBD, but the key biomarkers of anthocyan-treated IBD remain unclear. In this study, a bioinformatics analysis based on network pharmacology was performed to demonstrate the core-targets, biological functions, and signaling pathways of most common anthocyanidins that existed in anthocyans to reveal their potential or major mechanisms. The network pharmacology of the multi-target drug molecular design with specific signal nodes was selected, which was used to analyse core targets and complete the bioinformatics analysis of core targets. The network assays indicated 44 common targeted genes, 5 of which were core targets of both six most common anthocyanidins and IBD. These 44 common targets related to major signaling mechanisms of the six most common anthocyanidins in IBD may involve following processes: promotion of intracellular metabolism and proliferation, inhibition of cell necrosis, anti-inflammation and regulation of intestinal epithelial survival mainly via pathways such as, the EGFR tyrosine kinase inhibitor resistance pathway, platelet activation, microRNAs in cancer, arachidonic acid metabolism and the cGMP-PKG signaling pathway. Thus, our findings may provide other molecular details about anthocyans in the treatment of IBD and contribute towards the use of anthocyanidins, which will be meaningful shedding light on the action mechanisms of anthocyanidins in treating IBD.
Collapse
Affiliation(s)
- Yuqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| | - Haowen Lin
- The First Clinical College, Guangdong Medical University Zhanjiang 524023 China
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University Zhanjiang 524023 China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
25
|
Mullins AP, Arjmandi BH. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021; 13:519. [PMID: 33562498 PMCID: PMC7915747 DOI: 10.3390/nu13020519] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, claiming over 650,000 American lives annually. Typically not a singular disease, CVD often coexists with dyslipidemia, hypertension, type-2 diabetes (T2D), chronic system-wide inflammation, and obesity. Obesity, an independent risk factor for both CVD and T2D, further worsens the problem, with over 42% of adults and 18.5% of youth in the U.S. categorized as such. Dietary behavior is a most important modifiable risk factor for controlling the onset and progression of obesity and related disease conditions. Plant-based eating patterns that include beans and legumes support health and disease mitigation through nutritional profile and bioactive compounds including phytochemical. This review focuses on the characteristics of beans and ability to improve obesity-related diseases and associated factors including excess body weight, gut microbiome environment, and low-grade inflammation. Additionally, there are growing data that link obesity to compromised immune response and elevated risk for complications from immune-related diseases. Body weight management and nutritional status may improve immune function and possibly prevent disease severity. Inclusion of beans as part of a plant-based dietary strategy imparts cardiovascular, metabolic, and colon protective effects; improves obesity, low-grade inflammation, and may play a role in immune-related disease risk management.
Collapse
Affiliation(s)
- Amy P. Mullins
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA;
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
- Department of Family and Consumer Sciences--Leon County Extension Services, University of Florida Institute of Food and Agricultural Sciences, Tallahassee, FL 32301, USA
| | - Bahram H. Arjmandi
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA;
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
26
|
Zheng S, Zhang H, Liu R, Huang CL, Li H, Deng ZY, Tsao R. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects? – New insights from a TNF-α-induced Caco-2 cell model. Food Res Int 2021; 139:109833. [DOI: 10.1016/j.foodres.2020.109833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
|
27
|
Zhang B, Zhang Y, Li H, Deng Z, Tsao R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Arya VS, Kanthlal SK, Linda G. The role of dietary polyphenols in inflammatory bowel disease: A possible clue on the molecular mechanisms involved in the prevention of immune and inflammatory reactions. J Food Biochem 2020; 44:e13369. [PMID: 32885438 DOI: 10.1111/jfbc.13369] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is one of the major complications of the gastrointestinal tract, characterized by chronic inflammation, which disturbs the quality of life of the affected individuals. Genetic predisposition, immune, inflammatory, and enzyme-mediated signaling cascades are the primary mechanisms involved in the pathogenesis of the disease. Currently, the treatment strategy involves the maintenance of remission and induction of inflammation by anti-inflammatory agents and immune suppressants. Polyphenol-containing diets, including fruits and vegetables of regular use, possess anti-inflammatory, and antioxidant potential through the inhibition of major contributing pathways to IBD. This review discusses the role of these dietary polyphenols in downregulating the major signaling cascades in IBD. Our review encourages the development of nutritional strategies to improve the efficiency of current therapies for IBD and reduce the risks of side effects associated with conventional therapy. PRACTICAL APPLICATIONS: At present, almost every third person in society is under stress and having chronic disorders like diabetes, arthritis, allergy, cardiovascular disease, IBD, etc. This insists on the direct/indirect role of changes in the lifestyle for such deterioration in society. This review would emphasize the medicinal value of polyphenols present in fruits and vegetables for chronic inflammatory disorders. This concept portrays the food components which have the potential to promote health, improve general well-being, and reduce the risk of IBD. We propose to add fruits with bioactive polyphenols in the regular diet to help in preventing the immune-mediated intestinal chronic inflammatory syndrome and reduce the risks of colorectal cancer development.
Collapse
Affiliation(s)
- V S Arya
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - S K Kanthlal
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Geevarghese Linda
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
29
|
Cid-Gallegos MS, Sánchez-Chino XM, Álvarez-González I, Madrigal-Bujaidar E, Vásquez-Garzón VR, Baltiérrez-Hoyos R, Villa-Treviño S, Dávila-Ortíz G, Jiménez-Martínez C. Modification of In Vitro and In Vivo Antioxidant Activity by Consumption of Cooked Chickpea in a Colon Cancer Model. Nutrients 2020; 12:E2572. [PMID: 32854249 PMCID: PMC7551972 DOI: 10.3390/nu12092572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chickpea has been classified as a nutraceutical food due to its phytochemical compounds, showing antioxidant, anti-inflammatory, and anticancer activity. To investigate this, we evaluated the effect of cooking on the nutritional and non-nutritional composition and the in vitro and in vivo antioxidant activity of chickpea seed. The latter was determined by the variation in the concentration of nitric oxide (NO), oxidized carbonyl groups (CO), malondialdehyde (MDA), and the expression of 4-hydroxy-2-nonenal (4-HNE) in the colon of male BALB/c mice fed with a standard diet with 10 and 20% cooked chickpea (CC). We induced colon cancer in mice by administering azoxymethane/dextran sulfate sodium (AOM/DSS); for the evaluation, these were sacrificed 1, 7, and 14 weeks after the induction. Results show that cooking does not significantly modify (p < 0.05) nutritional compounds; however, it decreases the concentration of non-nutritional ones and, consequently, in vitro antioxidant activity. The in vivo evaluation showed that animals administered with AOM/DSS presented higher concentrations of NO, CO, MDA, and 4-HNE than those in animals without AOM/DSS administration. However, in the three evaluated times, these markers were significantly reduced (p < 0.05) with CC consumption. The best effect on the oxidation markers was with the 20% CC diet, demonstrating the antioxidant potential of CC.
Collapse
Affiliation(s)
- María S. Cid-Gallegos
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (M.S.C.-G.); (G.D.-O.)
| | - Xariss M. Sánchez-Chino
- Catedra-CONACyT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Tabasco 86280, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Verónica R. Vásquez-Garzón
- Catedra-CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (V.R.V.-G.); (R.B.-H.)
| | - Rafael Baltiérrez-Hoyos
- Catedra-CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (V.R.V.-G.); (R.B.-H.)
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Gloria Dávila-Ortíz
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (M.S.C.-G.); (G.D.-O.)
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (M.S.C.-G.); (G.D.-O.)
| |
Collapse
|
30
|
Rondanelli M, Lamburghini S, Faliva MA, Peroni G, Riva A, Allegrini P, Spadaccini D, Gasparri C, Iannello G, Infantino V, Alalwan TA, Perna S, Miccono A. A food pyramid, based on a review of the emerging literature, for subjects with inflammatory bowel disease. ACTA ACUST UNITED AC 2020; 68:17-46. [PMID: 32499202 DOI: 10.1016/j.endinu.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Emerging literature suggests that diet plays an important modulatory role in inflammatory bowel disease (IBD) through the management of inflammation and oxidative stress. The aim of this narrative review is to evaluate the evidence collected up till now regarding optimum diet therapy for IBD and to design a food pyramid for these patients. The pyramid shows that carbohydrates should be consumed every day (3 portions), together with tolerated fruits and vegetables (5 portions), yogurt (125ml), and extra virgin olive oil; weekly, fish (4 portions), white meat (3 portions), eggs (3 portions), pureed legumes (2 portions), seasoned cheeses (2 portions), and red or processed meats (once a week). At the top of the pyramid, there are two pennants: the red one means that subjects with IBD need some personalized supplementation and the black one means that there are some foods that are banned. The food pyramid makes it easier for patients to decide what they should eat.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia 27100, Italy
| | - Silvia Lamburghini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Milena A Faliva
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Gabriella Peroni
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Antonella Riva
- Research and Development Unit, Indena, Milan 20146, Italy
| | | | - Daniele Spadaccini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Clara Gasparri
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona "Istituto Santa Margherita", Pavia 27100, Italy
| | - Vittoria Infantino
- University of Bari Aldo Moro, Department of Biomedical Science and Human Oncology, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy.
| | - Tariq A Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Alessandra Miccono
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| |
Collapse
|
31
|
Sun Y, Deng Z, Liu R, Zhang H, Zhu H, Jiang L, Tsao R. A comprehensive profiling of free, conjugated and bound phenolics and lipophilic antioxidants in red and green lentil processing by-products. Food Chem 2020; 325:126925. [PMID: 32387929 DOI: 10.1016/j.foodchem.2020.126925] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
A systemic approach was taken in profiling the hydrophilic and lipophilic antioxidants in lentil hulls using a combination of HPLC, LC-ESI-MS2 and GC techniques. A total of 37 phenolics were tentatively identified in the hydrophilic fractions, while four carotenoids and three tocopherols were found in the lipophilic fraction. Results showed that in addition to the high free extractable phenolics, phenolic compounds in conjugated and bound forms also exist in similar amounts. Information on conjugated and bound phenolics are particularly important as these forms of phenolics often go unnoticed by chromatographic profiling of extractables. All phenolic, carotenoid and tocopherol fractions contributed to antioxidant activities. Information about bioactives from lentil hulls, specifically conjugated and bound phenolics are reported here for the first time. The comprehensive profiling of these bioactives lays a good foundation for further assessment of the value-added uses of lentil hulls which are by-products of pulse processing.
Collapse
Affiliation(s)
- Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Ronghua Liu
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Hua Zhang
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada; Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Honghui Zhu
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
32
|
Khan MS, Ikram M, Park JS, Park TJ, Kim MO. Gut Microbiota, Its Role in Induction of Alzheimer's Disease Pathology, and Possible Therapeutic Interventions: Special Focus on Anthocyanins. Cells 2020; 9:cells9040853. [PMID: 32244729 PMCID: PMC7226756 DOI: 10.3390/cells9040853] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
The human gut is a safe environment for several microbes that are symbiotic and important for the wellbeing of human health. However, studies on gut microbiota in different animals have suggested that changes in the composition and structure of these microbes may promote gut inflammation by releasing inflammatory cytokines and lipopolysaccharides, gut-wall leakage, and may affect systemic inflammatory and immune mechanisms that are important for the normal functioning of the body. There are many factors that aid in the gut’s dysbiosis and neuroinflammation, including high stress levels, lack of sleep, fatty and processed foods, and the prolonged use of antibiotics. These neurotoxic mechanisms of dysbiosis may increase susceptibility to Alzheimer’s disease (AD) and other neurodegenerative conditions. Therefore, studies have recently been conducted to tackle AD-like conditions by specifically targeting gut microbes that need further elucidation. It was suggested that gut dyshomeostasis may be regulated by using available options, including the use of flavonoids such as anthocyanins, and restriction of the use of high-fatty-acid-containing food. In this review, we summarize the gut microbiota, factors promoting it, and possible therapeutic interventions especially focused on the therapeutic potential of natural dietary polyflavonoid anthocyanins. Our study strongly suggests that gut dysbiosis and systemic inflammation are critically involved in the development of neurodegenerative disorders, and the natural intake of these flavonoids may provide new therapeutic opportunities for preclinical or clinical studies.
Collapse
Affiliation(s)
- Muhammad Sohail Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Muhammad Ikram
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Jun Sung Park
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Tae Ju Park
- Paul O’Gorman Leukaemia Research, Centre Institute of Cancer, Sciences University of Glasgow, 0747 657 5394 Glasgow, UK;
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
33
|
Luzardo-Ocampo I, Campos-Vega R, Gonzalez de Mejia E, Loarca-Piña G. Consumption of a baked corn and bean snack reduced chronic colitis inflammation in CD-1 mice via downregulation of IL-1 receptor, TLR, and TNF-α associated pathways. Food Res Int 2020; 132:109097. [PMID: 32331643 DOI: 10.1016/j.foodres.2020.109097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a condition that has been rising in the number of cases around the world. Food products made from natural ingredients such as corn and common bean might serve as alternatives for the treatment of UC. This study aimed to assess the anti-inflammatory effect of the consumption of a baked corn and bean snack (CBS) in an in vivo model of UC using 2% dextran sodium sulfate (DSS) as inductor of colitis. CD-1 mice (45, n = 9/group) were randomly separated into 5 groups, treated for 6-weeks as follows: G1 (basal diet, BD), G2 (2% DSS), G3 (20 g CBS/body weight BW/day + BD), G4 (40 g CBS/BW/day + BD) and G5 (60 g CBS/BW/day + BD). BW, Disease Activity Index (DAI), and feces were collected throughout the treatment. After euthanasia, organs (spleen, liver, and colon) were excised and weighed. Feces were analyzed for β-glucuronidase (β-GLUC) activity and gas-chromatography. The colons were analyzed for histopathology, myeloperoxidase (MPO) activity, and gene analysis. At the end of treatments, among the DSS-induced groups, G3 exhibited the lowest BW losses (11.5%), MPO activity (10.4%) and β-GLUC (8.6%). G4 presented the lowest DAI (0.88), relative spleen weight, and histological inflammation score (p < 0.05). Compared to G2, CBS consumption significantly (p < 0.05) reduced serum TNF-α, IL-10, and MCP-1 levels. The fecal metabolome analysis ranked 9-decenoic acid, decane, and butyric acid as the main contributors of pathways associated with the β-oxidation of fatty acids. G4 showed the highest fecal/cecal contents of short-chain fatty acids among all the DSS-induced groups. For the gene expression, G4 was clustered with G1, showing a differential inhibition of the pro-inflammatory genes Il1r1, Il1a, Tlr4, Tlr2, and Tnfrsf1b. In conclusion, CBS consumption decreased the inflammatory state and reduced the expression of the IL-1 receptor, TLR, and TNF-α-associated pathways in DSS-induced UC in CD-1 mice.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Queretaro, Mexico; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 228-230 ERML, 1201 W. Gregory Dr., Urbana, IL 61801, United States.
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Queretaro, Mexico.
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 228-230 ERML, 1201 W. Gregory Dr., Urbana, IL 61801, United States.
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Queretaro, Mexico.
| |
Collapse
|
34
|
Fermented foods and inflammation: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2020; 35:30-39. [DOI: 10.1016/j.clnesp.2019.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
|
35
|
Perez-Hernandez LM, Nugraheni K, Benohoud M, Sun W, Hernández-Álvarez AJ, Morgan MRA, Boesch C, Orfila C. Starch Digestion Enhances Bioaccessibility of Anti-Inflammatory Polyphenols from Borlotti Beans ( Phaseolus vulgaris). Nutrients 2020; 12:E295. [PMID: 31978996 PMCID: PMC7070432 DOI: 10.3390/nu12020295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
The consumption of beans has been associated with chronic disease prevention which may be attributed to the polyphenols present in the seed coat and endosperm. However, their bioaccessibility is likely to be limited by interactions with bean matrix components, including starch, protein and fibre. The aim of this project was to evaluate the effect of domestic processing and enzymatic digestion on the bioaccessibility of polyphenols from Borlotti beans (Phaseolus vulgaris) and to test their anti-inflammatory properties in a macrophage cell model. In vitro digestion of cooked beans released twenty times more polyphenols (40.4 ± 2.5 mg gallic acid equivalents (GAE)/g) than domestic processing (2.22 ± 0.1 mg GAE/g), with starch digestion contributing to the highest release (30.9 ± 0.75 mg GAE/g). Fluorescence microscopy visualization of isolated bean starch suggests that polyphenols are embedded within the granule structure. LC-MS analysis showed that cooked Borlotti bean contain flavonoids, flavones and hydroxycinnamic acids, and cooked bean extracts exerted moderate anti-inflammatory effects by decreasing mRNA levels of IL1β and iNOS by 25% and 40%, respectively. In conclusion, the bioaccessibility of bean polyphenols is strongly enhanced by starch digestion. These polyphenols may contribute to the health benefits associated with bean consumption.
Collapse
Affiliation(s)
- Lucia Margarita Perez-Hernandez
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | - Kartika Nugraheni
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | | | - Wen Sun
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | - Alan Javier Hernández-Álvarez
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | - Michael R. A. Morgan
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | - Christine Boesch
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | - Caroline Orfila
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| |
Collapse
|
36
|
Phytochemicals and Gastrointestinal Cancer: Cellular Mechanisms and Effects to Change Cancer Progression. Biomolecules 2020; 10:biom10010105. [PMID: 31936288 PMCID: PMC7022462 DOI: 10.3390/biom10010105] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevailing global health disease with a high incidence rate which varies by region. It is a huge economic burden on health care providers. GI cancer affects different organs in the body such as the gastric organs, colon, esophagus, intestine, and pancreas. Internal and external factors like smoking, obesity, urbanization, genetic mutations, and prevalence of Helicobacter pylori and Hepatitis B and Hepatitis C viral infections could increase the risk of GI cancer. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in fruits, grains, and vegetables. Consumption of phytochemicals may protect against chronic diseases like cardiovascular disease, neurodegenerative disease, and cancer. Multiple studies have assessed the chemoprotective effect of selected phytochemicals in GI cancer, offering support to their potential towards reducing the pathogenesis of the disease. The aim of this review was to summarize the current knowledge addressing the anti-cancerous effects of selected dietary phytochemicals on GI cancer and their molecular activities on selected mechanisms, i.e., nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), detoxification enzymes, adenosine monophosphate activated protein kinase (AMPK), wingless-related integration site/β-catenin (wingless-related integration site (Wnt) β-catenin, cell apoptosis, phosphoinositide 3-kinases (PI3K)/ protein kinase B AKT/ mammalian target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK). In this review phytochemicals were classified into four main categories: (i) carotenoids, including lutein, lycopene, and β-carotene; (ii) proanthocyanidins, including quercetin and ellagic acid; (iii) organosulfur compounds, including allicin, allyl propyl disulphide, asparagusic acid, and sulforaphane; and (iv) other phytochemicals including pectin, curcumins, p-coumaric acid and ferulic acid. Overall, phytochemicals improve cancer prognosis through the downregulation of β-catenin phosphorylation, therefore enhancing apoptosis, and upregulation of the AMPK pathway, which supports cellular homeostasis. Nevertheless, more studies are needed to provide a better understanding of the mechanism of cancer treatment using phytochemicals and possible side effects associated with this approach.
Collapse
|
37
|
Bao N, Chen F, Dai D. The Regulation of Host Intestinal Microbiota by Polyphenols in the Development and Prevention of Chronic Kidney Disease. Front Immunol 2020; 10:2981. [PMID: 31969882 PMCID: PMC6960133 DOI: 10.3389/fimmu.2019.02981] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are essential antioxidants in our regular diet, and have shown potential antibacterial effects. Other important biological effects, such as anticancer or antibacterial activities, have been demonstrated by some polyphenols. In recent years, the benefits of polyphenols to human health have attracted increasing attention from the scientific community. Recent studies have shown that polyphenols such as anthocyanin, catechin, chlorogenic acid, and resveratrol can inhibit pathogenic bacteria such as Escherichia coli and Salmonella to help regulate intestinal microflora. An imbalance of intestinal microflora and the destruction of intestinal barrier function have been found to have a potential relationship with the occurrence of chronic kidney disease (CKD). Specifically, they can aberrantly trigger the immune system to cause inflammation, increase the production of uremic toxins, and further worsen the condition of CKD. Therefore, the maintenance of intestinal microflora and the intestinal tract in a stable and healthy state may be able to "immunize" patients against CKD, and treat pre-existing disease. The use of common antibiotics may lead to drug resistance in pathogens, and thus beneficial polyphenols may be suitable natural substitutes for antibiotics. Herein we review the ability of different polyphenols, such as anthocyanin, catechin, chlorogenic acid, and resveratrol, to regulate intestinal microorganisms, inhibit pathogenic bacteria, and improve inflammation. In addition, we review the ability of different polyphenols to reduce kidney injury, as described in recent studies.
Collapse
Affiliation(s)
- Naren Bao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Fangjie Chen
- Department of Medical Genetics, School of Life Sciences, China Medical University, Shenyang, China
| | - Di Dai
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Aranda-Olmedo I, Rubio LA. Dietary legumes, intestinal microbiota, inflammation and colorectal cancer. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
39
|
Red lentil supplementation reduces the severity of dextran sodium sulfate-induced colitis in C57BL/6 male mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
40
|
Soluble Fiber and Insoluble Fiber Regulate Colonic Microbiota and Barrier Function in a Piglet Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7809171. [PMID: 31950054 PMCID: PMC6944961 DOI: 10.1155/2019/7809171] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/04/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
Abstract
The main purpose of the present study was to assess the effect of soluble and insoluble fiber on colonic bacteria and intestinal barrier function in a piglet model. A total of 24 piglets (25 ± 1 d old; 7.50 ± 0.31 kg) were randomly allotted to 4 treatments: basal diet (control, CON), 1% insoluble dietary fiber (IDF) diet, 1% soluble dietary fiber (SDF) diet, and 0.5% insoluble fiber + 0.5% soluble dietary fiber (MDF) diet. The trial lasted 28 days. SDF-fed piglets showed a higher (P < 0.05) bacterial a-diversity (observed_species, chao1, and ACE) and a higher relative abundance of Proteobacteria and Actinobacteria, Solobacterium, Succinivibrio, Blautia, and Atopobium in colonic digesta than CON, IDF, and MDF groups (P < 0.05). At the same time, Bacteroidetes, Euryarchaeota, Phascolarctobacterium, Coprococcus_1, and Prevotella_1 were significantly increased in the IDF group when compared with CON, SDF, and MDF groups (P < 0.05). Furthermore, Bacteroidetes and Enterobacteriaceae, Selenomonas, Phascolarctobacterium, and Alloprevotella(P < 0.05) were significantly higher in the MDF group than those in the other three groups (P < 0.05). SDF diet increased the concentrations of short-chain fatty acid (SCFA) in colonic digesta (P < 0.05) when compared with the CON group and enhanced weight index of the colon (P < 0.05) than the CON and IDF groups. Furthermore, compared with the CON group, SDF, IDF, and MDF diets all upregulated the mRNA expressions of claudin-1 (CLDN-1) in colonic mucosa (P < 0.05), SDF and IDF diets upregulated the mRNA expressions of mucin 2 (MUC2) (P < 0.05), SDF diet increased mRNA expressions of zonula occludens 1 (ZO-1) and occludin (OCLN), while the IDF group enhanced the secretory immunoglobulin A (sIgA) concentrations (P < 0.05), respectively. IDF and MDF diets decreased expressions of TNF-α(P < 0.05). We concluded that the influence of soluble fiber on colonic microbiota was more extensive than that of insoluble fiber. Moreover, soluble fiber could more effectively improve colonic barrier function by upregulating gene expressions of the gut barrier.
Collapse
|
41
|
Zhang X, Browman G, Siu W, Basen-Engquist KM, Hanash SM, Hoffman KL, Okhuysen PC, Scheet P, Petrosino JF, Kopetz S, Daniel CR. The BE GONE trial study protocol: a randomized crossover dietary intervention of dry beans targeting the gut microbiome of overweight and obese patients with a history of colorectal polyps or cancer. BMC Cancer 2019; 19:1233. [PMID: 31852462 PMCID: PMC6921460 DOI: 10.1186/s12885-019-6400-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mouse and human studies support the promise of dry beans to improve metabolic health and to lower cancer risk. In overweight/obese patients with a history of colorectal polyps or cancer, the Beans to Enrich the Gut microbiome vs. Obesity's Negative Effects (BE GONE) trial will test whether and how an increase in the consumption of pre-cooked, canned dry beans within the context of usual diet and lifestyle can enhance the gut landscape to improve metabolic health and reduce cancer risk. METHODS/DESIGN This randomized crossover trial is designed to characterize changes in (1) host markers spanning lipid metabolism, inflammation, and obesity-related cancer risk; (2) compositional and functional profiles of the fecal microbiome; and (3) host and microbial metabolites. With each subject serving as their own control, the trial will compare the participant's usual diet with (intervention) and without (control) dry beans. Canned, pre-cooked dry beans are provided to participants and the usual diet continually assessed and monitored. Following a 4-week run-in and equilibration period, each participant provides a total of 5 fasting blood and 6 stool samples over a total period of 16 weeks. The intervention consists of a 2-week ramp-up of dry bean intake to 1 cup/d, which is then continued for an additional 6 weeks. Intra- and inter-individual outcomes are assessed across each crossover period with consideration of the joint or modifying effects of the usual diet and baseline microbiome. DISCUSSION The BE GONE trial is evaluating a scalable dietary prevention strategy targeting the gut microbiome of high-risk patients to mitigate the metabolic and inflammatory effects of adiposity that influence colorectal cancer risk, recurrence, and survival. The overarching scientific goal is to further elucidate interactions between diet, the gut microbiome, and host metabolism. Improved understanding of the diet-microbiota interplay and effective means to target these relationships will be key to the future of clinical and public health approaches to cancer and other major diet- and obesity-related diseases. TRIAL REGISTRATION This protocol is registered with the U.S. National Institutes of Health trial registry, ClinicalTrials.gov, under the identifier NCT02843425. First posted July 25, 2016; last verified January 25, 2019.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
- Department of Medicine, Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, USA
| | - Gladys Browman
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
| | - Wesley Siu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen M Basen-Engquist
- Department of Behavioral Science, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control, and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA.
| |
Collapse
|
42
|
Chen D, Jin D, Huang S, Wu J, Xu M, Liu T, Dong W, Liu X, Wang S, Zhong W, Liu Y, Jiang R, Piao M, Wang B, Cao H. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett 2019; 469:456-467. [PMID: 31734354 DOI: 10.1016/j.canlet.2019.11.019] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Gut microbiota dysbiosis is closely involved in intestinal carcinogenesis. A marked reduction in butyrate-producing bacteria has been observed in patients with colorectal cancer (CRC); nevertheless, the potential benefit of butyrate-producing bacteria against intestinal tumor development has not been fully investigated. We found that Clostridium butyricum (C. butyricum, one of the commonly used butyrate-producing bacteria in clinical settings) significantly inhibited high-fat diet (HFD)-induced intestinal tumor development in Apcmin/+ mice. Moreover, intestinal tumor cells treated with C. butyricum exhibited decreased proliferation and increased apoptosis. Additionally, C. butyricum suppressed the Wnt/β-catenin signaling pathway and modulated the gut microbiota composition, as demonstrated by decreases in some pathogenic bacteria and bile acid (BA)-biotransforming bacteria and increases in some beneficial bacteria, including short-chain fatty acid (SCFA)-producing bacteria. Accordingly, C. butyricum decreased the fecal secondary BA contents, increased the cecal SCFA quantities, and activated G-protein coupled receptors (GPRs), such as GPR43 and GPR109A. The anti-proliferative effect of C. butyricum was blunted by GPR43 gene silencing using small interfering RNA (siRNA). The analysis of clinical specimens revealed that the expression of GPR43 and GPR109A gradually decreased from human normal colonic tissue to adenoma to carcinoma. Together, our results show that C. butyricum can inhibit intestinal tumor development by modulating Wnt signaling and gut microbiota and thus suggest the potential efficacy of butyrate-producing bacteria against CRC.
Collapse
Affiliation(s)
- Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Duochen Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Shumin Huang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Yi Liu
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, PR China; Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, PR China
| | - Ruihuan Jiang
- Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, PR China
| | - Meiyu Piao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China; Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, PR China.
| |
Collapse
|
43
|
Fish oil supplementation to a high-fat diet improves both intestinal health and the systemic obese phenotype. J Nutr Biochem 2019; 72:108216. [DOI: 10.1016/j.jnutbio.2019.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 12/25/2022]
|
44
|
Cooked Red Lentils Dose-Dependently Modulate the Colonic Microenvironment in Healthy C57Bl/6 Male Mice. Nutrients 2019; 11:nu11081853. [PMID: 31405019 PMCID: PMC6724071 DOI: 10.3390/nu11081853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Dietary pulses, including lentils, are protein-rich plant foods that are enriched in intestinal health-promoting bioactives, such as non-digestible carbohydrates and phenolic compounds. The aim of this study was to investigate the effect of diets supplemented with cooked red lentils on the colonic microenvironment (microbiota composition and activity and epithelial barrier integrity and function). C57Bl/6 male mice were fed one of five diets: a control basal diet (BD), a BD-supplemented diet with 5, 10 or 20% cooked red lentils (by weight), or a BD-supplemented diet with 0.7% pectin (equivalent soluble fiber level as found in the 20% lentil diet). Red lentil supplementation resulted in increased: (1) fecal microbiota α-diversity; (2) abundance of short-chain fatty acid (SCFA)-producing bacteria (e.g., Prevotella, Roseburia and Dorea spp.); (3) concentrations of fecal SCFAs; (4) mRNA expression of SCFA receptors (G-protein-coupled receptors (GPR 41 and 43) and tight/adherens junction proteins (Zona Occulden-1 (ZO-1), Claudin-2, E-cadherin). Overall, 20% lentil had the greatest impact on colon health outcomes, which were in part explained by a change in the soluble and insoluble fiber profile of the diet. These results support recent public health recommendations to increase consumption of plant-based protein foods for improved health, in particular intestinal health.
Collapse
|
45
|
Monk JM, Wu W, Lepp D, Wellings HR, Hutchinson AL, Liddle DM, Graf D, Pauls KP, Robinson LE, Power KA. Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype. J Nutr Biochem 2019; 70:91-104. [DOI: 10.1016/j.jnutbio.2019.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
|
46
|
Li S, Wu B, Fu W, Reddivari L. The Anti-inflammatory Effects of Dietary Anthocyanins against Ulcerative Colitis. Int J Mol Sci 2019; 20:E2588. [PMID: 31137777 PMCID: PMC6567294 DOI: 10.3390/ijms20102588] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
Ulcerative colitis (UC), which is a major form of inflammatory bowel disease (IBD), is a chronic relapsing disorder of the gastrointestinal tract affecting millions of people worldwide. Alternative natural therapies, including dietary changes, are being investigated to manage or treat UC since current treatment options have serious negative side effects. There is growing evidence from animal studies and human clinical trials that diets rich in anthocyanins, which are pigments in fruits and vegetables, protect against inflammation and increased gut permeability as well as improve colon health through their ability to alter bacterial metabolism and the microbial milieu within the intestines. In this review, the structure and bioactivity of anthocyanins, the role of inflammation and gut bacterial dysbiosis in UC pathogenesis, and their regulation by the dietary anthocyanins are discussed, which suggests the feasibility of dietary strategies for UC mitigation.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Binning Wu
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
- Department of Plant Science, Penn State University, University Park, PA 16802, USA.
| | - Wenyi Fu
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
47
|
Zhao C, Liu Y, Lai S, Cao H, Guan Y, San Cheang W, Liu B, Zhao K, Miao S, Riviere C, Capanoglu E, Xiao J. Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends Food Sci Technol 2019; 85:55-66. [DOI: 10.1016/j.tifs.2019.01.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
El-Akabawy G, El-Sherif NM. Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress. Biomed Pharmacother 2019; 111:841-851. [PMID: 30616083 DOI: 10.1016/j.biopha.2019.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis is a common intestinal inflammatory disease characterized by upregulation of pro-inflammatory cytokines and oxidative stress. Zeaxanthin is a nutritional carotenoid that belongs to the xanthophyll family of pigments. It exerts potent anti-inflammatory and antioxidative effects. The present study aimed to evaluate the effect of zeaxanthin on acetic acid-induced ulcerative colitis in rats. Rats were randomly categorized into five groups: control, zeaxanthin, acetic acid, acetic acid + zeaxanthin, and acetic acid + prednisolone groups. Zeaxanthin (50 mg/kg/day) or prednisolone (5 mg/kg/day) was orally administered for 14 days before induction of ulcerative colitis. On the 15th day, colitis was induced by transrectal administration of 3% acetic acid. The rats were sacrificed 24 h after rectal instillation and their colon tissues were examined. Pretreatment with zeaxanthin significantly reduced disease activity index, wet colon weight, ulcer area, macroscopic scores, and histological changes. Zeaxanthin also effectively downregulated the levels of myeloperoxidase and malondialdehyde, upregulated the enzymatic activity of superoxide dismutase and catalase, and raised glutathione levels. With regard to anti-inflammatory mechanisms, zeaxanthin suppressed tumor necrosis factor-alpha, interferon-gamma, interleukin-6, interleukin-1 beta, and nuclear transcription factor kappa B levels, and inhibited nitric oxide synthase and cyclooxygenase-2 protein expression. Our results indicate that oral administration of zeaxanthin ameliorates acetic acid-induced colitis in rats via antioxidative effects and modulation of pro-inflammatory cytokine and mediator activity. Therefore, zeaxanthin may be an effective therapeutic candidate for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt; Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, KSA, Saudi Arabia.
| | - Neveen M El-Sherif
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
49
|
Navy Beans Impact the Stool Metabolome and Metabolic Pathways for Colon Health in Cancer Survivors. Nutrients 2018; 11:nu11010028. [PMID: 30583518 PMCID: PMC6356708 DOI: 10.3390/nu11010028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States and emerging evidence supports that increased consumption of legumes, such as navy beans, can reduce risk. Navy bean consumption was previously shown to modulate host and microbiome metabolism, and this investigation was performed to assess the impact on the human stool metabolome, which includes the presence of navy bean metabolites. This 4-week, randomized-controlled trial with overweight and obese CRC survivors involved consumption of 1 meal and 1 snack daily. The intervention contained 35 g of cooked navy bean or macronutrient matched meals and snacks with 0 g of navy beans for the control group (n = 18). There were 30 statistically significant metabolite differences in the stool of participants that consumed navy bean at day 28 compared to the participants’ baseline (p ≤ 0.05) and 26 significantly different metabolites when compared to the control group. Of the 560 total metabolites identified from the cooked navy beans, there were 237 possible navy bean-derived metabolites that were identified in the stool of participants consuming navy beans, such as N-methylpipecolate, 2-aminoadipate, piperidine, and vanillate. The microbial metabolism of amino acids and fatty acids were also identified in stool after 4 weeks of navy bean intake including cadaverine, hydantoin-5 propionic acid, 4-hydroxyphenylacetate, and caprylate. The stool relative abundance of ophthalmate increased 5.25-fold for navy bean consumers that can indicate glutathione regulation, and involving cancer control mechanisms such as detoxification of xenobiotics, antioxidant defense, proliferation, and apoptosis. Metabolic pathways involving lysine, and phytochemicals were also modulated by navy bean intake in CRC survivors. These metabolites and metabolic pathways represent an acute response to increased navy bean intake, which merit further investigation for improving colonic health after long-term consumption.
Collapse
|
50
|
Monk JM, Wu W, McGillis LH, Wellings HR, Hutchinson AL, Liddle DM, Graf D, Robinson LE, Power KA. Chickpea supplementation prior to colitis onset reduces inflammation in dextran sodium sulfate-treated C57Bl/6 male mice. Appl Physiol Nutr Metab 2018; 43:893-901. [PMID: 29522694 DOI: 10.1139/apnm-2017-0689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The potential for a chickpea-supplemented diet (rich in fermentable nondigestible carbohydrates and phenolic compounds) to modify the colonic microenvironment and attenuate the severity of acute colonic inflammation was investigated. C57Bl/6 male mice were fed a control basal diet or basal diet supplemented with 20% cooked chickpea flour for 3 weeks prior to acute colitis onset induced by 7-day exposure to dextran sodium sulfate (DSS; 2% w/v in drinking water) and colon and serum levels of inflammatory mediators were assessed. Despite an equal degree of DSS-induced epithelial barrier histological damage and clinical symptoms between dietary groups, biomarkers of the ensuing inflammatory response were attenuated by chickpea pre-feeding, including reduced colon tissue activation of nuclear factor kappa B and inflammatory cytokine production (tumor necrosis factor alpha and interleukin (IL)-18). Additionally, colon protein expression of anti-inflammatory (IL-10) and epithelial repair (IL-22 and IL-27) cytokines were increased by chickpea pre-feeding. Furthermore, during acute colitis, chickpea pre-feeding increased markers of enhanced colonic function, including Relmβ and IgA gene expression. Collectively, chickpea pre-feeding modulated the baseline function of the colonic microenvironment, whereby upon induction of acute colitis, the severity of the inflammatory response was attenuated.
Collapse
Affiliation(s)
- Jennifer M Monk
- a Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Wenqing Wu
- a Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Laurel H McGillis
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hannah R Wellings
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Amber L Hutchinson
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Danyelle M Liddle
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniela Graf
- a Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lindsay E Robinson
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Krista A Power
- a Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|