1
|
Iddrisu I, Monteagudo-Mera A, Poveda C, Shahzad M, Walton GE, Andrews SC. A review of the effect of iron supplementation on the gut microbiota of children in developing countries and the impact of prebiotics. Nutr Res Rev 2025; 38:229-237. [PMID: 38586996 DOI: 10.1017/s0954422424000118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Iron is essential for many physiological functions of the body, and it is required for normal growth and development. Iron deficiency (ID) is the most common form of micronutrient malnutrition and is particularly prevalent in infants and young children in developing countries. Iron supplementation is considered the most effective strategy to combat the risk of ID and ID anaemia (IDA) in infants, although iron supplements cause a range of deleterious gut-related problems in malnourished children. The purpose of this review is to assess the available evidence on the effect of iron supplementation on the gut microbiota during childhood ID and to further assess whether prebiotics offer any benefits for iron supplementation. Prebiotics are well known to improve gut-microbial health in children, and recent reports indicate that prebiotics can mitigate the adverse gut-related effects of iron supplementation in children with ID and IDA. Thus, provision of prebiotics alongside iron supplements has the potential for an enhanced strategy for combatting ID and IDA among children in the developing world. However, further understanding is required before the benefit of such combined treatments of ID in nutritionally deprived children across populations can be fully confirmed. Such enhanced understanding is of high relevance in resource-poor countries where ID, poor sanitation and hygiene, alongside inadequate access to good drinking water and poor health systems, are serious public health concerns.
Collapse
Affiliation(s)
- Ishawu Iddrisu
- Rose Ward, Prospect Park Hospital, Berkshire Healthcare NHS Foundation Trust, Reading, RG30 4EJ, UK
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| | - Andrea Monteagudo-Mera
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Muhammed Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
- Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Simon C Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| |
Collapse
|
2
|
Li F, Peng X, Li W. The interaction between various food components and intestinal microbiota improves human health through the gut-X axis: independently or synergistically. Food Funct 2025; 16:2172-2193. [PMID: 39996355 DOI: 10.1039/d4fo04430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Food contains various components that improve health by affecting the gut microbiota, primarily by modulating its abundance or altering its diversity. Active substances in food have different effects on the gut microbiota when they act alone or in synergy, resulting in varying impacts on health. The bioactive compounds in food exert different effects on various gut microbiota through multiple pathways, thereby delaying or preventing different kinds of disease. The combination of two or more active compounds may have a synergistic effect, which can more effectively alter the gut microbiota and alleviate diseases through the microbiota-gut-organ axis. According to reports, multiple different food components have similar effects, some of which have been shown to have a synergistic effect on the gut microbiota to promote health. However, there is currently no systematic review of its synergistic effects and mechanisms. There may be more compounds with synergistic effects that have not yet been discovered, while their mechanisms of synergy and ways of impacting host health through the gut microbiota deserve further investigation. The purpose of this review is to systematically summarize the effects of different food components on intestinal flora and health, and further analyze the potential synergies between different food components. PubMed and Google Scholar databases were searched in this review.
Collapse
Affiliation(s)
- Fenfa Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenzhi Li
- Infinitus (China) Company Ltd, Guangzhou 510405, China.
| |
Collapse
|
3
|
Liu S, Yin J, Wan D, Yin Y. The Role of Iron in Intestinal Mucus: Perspectives from Both the Host and Gut Microbiota. Adv Nutr 2024; 15:100307. [PMID: 39341502 PMCID: PMC11533511 DOI: 10.1016/j.advnut.2024.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
Although research on the role of iron in host immunity has a history spanning decades, it is only relatively recently that attention has been directed toward the biological effects of iron on the intestinal mucus layer, prompted by an evolving understanding of the role of this material in immune defense. The mucus layer, secreted by intestinal goblet cells, covers the intestinal epithelium, and given its unique location, interactions between the host and gut microbiota, as well as among constituent microbiota, occur frequently within the mucus layer. Iron, as an essential nutrient for the vast majority of life forms, regulates immune responses from both the host and microbial perspectives. In this review, we summarize the iron metabolism of both the host and gut microbiota and describe how iron contributes to intestinal mucosal homeostasis via the intestinal mucus layer with respect to both host and constituent gut microbiota. The findings described herein offer a new perspective on iron-mediated intestinal mucosal barrier function.
Collapse
Affiliation(s)
- Shuan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Apalowo OE, Adegoye GA, Mbogori T, Kandiah J, Obuotor TM. Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods 2024; 13:1026. [PMID: 38611332 PMCID: PMC11011999 DOI: 10.3390/foods13071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A global epidemiological shift has been observed in recent decades, characterized by an increase in age-related disorders, notably non-communicable chronic diseases, such as type 2 diabetes mellitus, cardiovascular and neurodegenerative diseases, and cancer. An appreciable causal link between changes in the gut microbiota and the onset of these maladies has been recognized, offering an avenue for effective management. Kefir, a probiotic-enriched fermented food, has gained significance in this setting due to its promising resource for the development of functional or value-added food formulations and its ability to reshape gut microbial composition. This has led to increasing commercial interest worldwide as it presents a natural beverage replete with health-promoting microbes and several bioactive compounds. Given the substantial role of the gut microbiota in human health and the etiology of several diseases, we conducted a comprehensive synthesis covering a total of 33 investigations involving experimental animal models, aimed to elucidate the regulatory influence of bioactive compounds present in kefir on gut microbiota and their potential in promoting optimal health. This review underscores the outstanding nutritional properties of kefir as a central repository of bioactive compounds encompassing micronutrients and amino acids and delineates their regulatory effects at deficient, adequate, and supra-nutritional intakes on the gut microbiota and their broader physiological consequences. Furthermore, an investigation of putative mechanisms that govern the regulatory effects of kefir on the gut microbiota and its connections with various human diseases was discussed, along with potential applications in the food industry.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
| | - Grace Adeola Adegoye
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Teresia Mbogori
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Jayanthi Kandiah
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | | |
Collapse
|
5
|
Krieg S, Loosen S, Krieg A, Luedde T, Roderburg C, Kostev K. Association between iron deficiency anemia and subsequent stomach and colorectal cancer diagnosis in Germany. J Cancer Res Clin Oncol 2024; 150:53. [PMID: 38289465 PMCID: PMC10827837 DOI: 10.1007/s00432-023-05534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/26/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE Iron deficiency anemia (IDA) is the most common form of anemia worldwide, resulting in a high burden of disease. Accumulating evidence suggests that IDA is associated with the development of gastrointestinal (GI) cancers. METHODS Data from the IDA database (IQVIA) of primary care practices in Germany of adult patients first diagnosed with IDA between January 2005 and December 2021 were retrospectively analyzed and compared with a 1:1 propensity score-adjusted cohort without IDA. Study outcomes were first stomach cancer or colorectal cancer (CRC) diagnosis up to 10 years after the index date as a function of IDA. RESULTS A total of 122,502 individuals with IDA and 122,502 individuals without IDA were included. The 10-year cumulative incidence of CRC was 1.4% in the IDA patients compared to 0.8% in the cohort without IDA (p < 0.001). Regression analysis revealed a significant association between IDA and subsequent CRC (HR 2.05; 95% CI 1.83-2.30). Stomach cancer was diagnosed in 0.3% of IDA patients compared to 0.2% in the non-IDA cohort during the 10-year follow-up period (p = 0.002). However, this was significant only in the age group > 80 years (HR 2.73; 95% CI 1.60-4.67) and in men (HR 1.90; 95% CI 1.38-2.61). CONCLUSION These findings add to the literature and suggest an association between IDA and GI cancers. The extent to which this association is due to GI bleeding or other pathophysiological processes that may be caused by IDA requires further investigation, particularly experimental studies.
Collapse
Affiliation(s)
- Sarah Krieg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Sven Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany.
| | | |
Collapse
|
6
|
Li W, Lv BM, Quan Y, Zhu Q, Zhang HY. Associations between Serum Mineral Nutrients, Gut Microbiota, and Risk of Neurological, Psychiatric, and Metabolic Diseases: A Comprehensive Mendelian Randomization Study. Nutrients 2024; 16:244. [PMID: 38257137 PMCID: PMC10818407 DOI: 10.3390/nu16020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Recent observational studies have reported associations between serum mineral nutrient levels, gut microbiota composition, and neurological, psychiatric, and metabolic diseases. However, the causal effects of mineral nutrients on gut microbiota and their causal associations with diseases remain unclear and require further investigation. This study aimed to identify the associations between serum mineral nutrients, gut microbiota, and risk of neurological, psychiatric, and metabolic diseases using Mendelian randomization (MR). We conducted an MR study using the large-scale genome-wide association study (GWAS) summary statistics of 5 serum mineral nutrients, 196 gut microbes at the phylum, order, family, and genus levels, and a variety of common neurological, psychiatric, and metabolic diseases. Initially, the independent causal associations of mineral nutrients and gut microbiota with diseases were examined by MR. Subsequently, the causal effect of mineral nutrients on gut microbiota was estimated to investigate whether specific gut microbes mediated the association between mineral nutrients and diseases. Finally, we performed sensitivity analyses to assess the robustness of the study results. After correcting for multiple testing, we identified a total of 33 causal relationships among mineral nutrients, gut microbiota, and diseases. Specifically, we found 4 causal relationships between 3 mineral nutrition traits and 3 disease traits, 15 causal associations between 14 gut microbiota traits and 6 disease traits, and 14 causal associations involving 4 mineral nutrition traits and 15 gut microbiota traits. Meanwhile, 118 suggestive associations were identified. The current study reveals multiple causal associations between serum mineral nutrients, gut microbiota, risk of neurological, psychiatric, and metabolic diseases, and potentially provides valuable insights for subsequent nutritional therapies.
Collapse
Affiliation(s)
- Wang Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
| | - Bo-Min Lv
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
- Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
| | - Qiang Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
- Key Laboratory of Smart Farming for Agricultural Animals, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
| |
Collapse
|
7
|
Momo Cabrera P, Rachmühl C, Derrien M, Bourdet-Sicard R, Lacroix C, Geirnaert A. Comparative prebiotic potential of galacto- and fructo-oligosaccharides, native inulin, and acacia gum in Kenyan infant gut microbiota during iron supplementation. ISME COMMUNICATIONS 2024; 4:ycae033. [PMID: 38774131 PMCID: PMC11107946 DOI: 10.1093/ismeco/ycae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/10/2024] [Indexed: 05/24/2024]
Abstract
Iron fortification to prevent anemia in African infants increases colonic iron levels, favoring the growth of enteropathogens. The use of prebiotics may be an effective strategy to reduce these detrimental effects. Using the African infant PolyFermS gut model, we compared the effect of the prebiotics short-chain galacto- with long-chain fructo-oligosaccharides (scGOS/lcFOS) and native inulin, and the emerging prebiotic acacia gum, a branched-polysaccharide-protein complex consisting of arabinose and galactose, during iron supplementation on four Kenyan infant gut microbiota. Iron supplementation did not alter the microbiota but promoted Clostridioides difficile in one microbiota. The prebiotic effect of scGOS/lcFOS and inulin was confirmed during iron supplementation in all investigated Kenyan infant gut microbiota, leading to higher abundance of bifidobacteria, increased production of acetate, propionate, and butyrate, and a significant shift in microbiota composition compared to non-supplemented microbiota. The abundance of the pathogens Clostridium difficile and Clostridium perfringens was also inhibited upon addition of the prebiotic fibers. Acacia gum had no effect on any of the microbiota. In conclusion, scGOS/lcFOS and inulin, but not acacia gum, showed a donor-independent strong prebiotic potential in Kenyan infant gut microbiota. This study demonstrates the relevance of comparing fibers in vitro prior to clinical studies.
Collapse
Affiliation(s)
- Paula Momo Cabrera
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Carole Rachmühl
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Muriel Derrien
- Danone Global Research & Innovation Center, 91190 Gif sur Yvette, France
- Present address: Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute KU, 3000 Leuven, Belgium
| | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Loveikyte R, Bourgonje AR, van Goor H, Dijkstra G, van der Meulen-de Jong AE. The effect of iron therapy on oxidative stress and intestinal microbiota in inflammatory bowel diseases: A review on the conundrum. Redox Biol 2023; 68:102950. [PMID: 37918126 PMCID: PMC10643537 DOI: 10.1016/j.redox.2023.102950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023] Open
Abstract
One in five patients with Inflammatory Bowel Disease (IBD) suffers from anemia, most frequently caused by iron deficiency. Anemia and iron deficiency are associated with worse disease outcomes, reduced quality of life, decreased economic participation, and increased healthcare costs. International guidelines and consensus-based recommendations have emphasized the importance of treating anemia and iron deficiency. In this review, we draw attention to the rarely discussed effects of iron deficiency and iron therapy on the redox status, the intestinal microbiota, and the potential interplay between them, focusing on the clinical implications for patients with IBD. Current data are scarce, inconsistent, and do not provide definitive answers. Nevertheless, it is imperative to rule out infections and discern iron deficiency anemia from other types of anemia to prevent untargeted oral or intravenous iron supplementation and potential side effects, including oxidative stress. Further research is necessary to establish the clinical significance of changes in the redox status and the intestinal microbiota following iron supplementation.
Collapse
Affiliation(s)
- R Loveikyte
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - A R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - H van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - G Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - A E van der Meulen-de Jong
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
10
|
SHI J, XIE Y, LI Y, REN D, ZHANG Y, SHAO H, LIU Y, WANG X, LI Y. Effects of food-grade iron(III) oxide nanoparticles on cecal digesta- and mucosa-associated microbiota and short-chain fatty acids in rats. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:43-54. [PMID: 38188661 PMCID: PMC10767317 DOI: 10.12938/bmfh.2023-012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/21/2023] [Indexed: 01/09/2024]
Abstract
Although iron(III) oxide nanoparticles (IONPs) are widely used in diverse applications ranging from food to biomedicine, the effects of IONPs on different locations of gut microbiota and short-chain fatty acids (SCFAs) are unclear. So, a subacute repeated oral toxicity study on Sprague Dawley (SD) rats was performed, administering low (50 mg/kg·bw), medium (100 mg/kg·bw), and high (200 mg/kg·bw) doses of IONPs. In this study, we found that a high dose of IONPs increased animal weight, and 16S rRNA sequencing revealed that IONPs caused intestinal flora disorders in both the cecal digesta- and mucosa-associated microbiota. However, only high-dose IONP exposure changed the abundance and composition of the mucosa-associated microbiota. IONPs increased the relative abundances of Firmicutes, Ruminococcaceae_UCG-014, Ruminiclostridium_9, Romboutsia, and Bilophila and decreased the relative abundance of Bifidobacterium, and many of these microorganisms are associated with weight gain, obesity, inflammation, diabetes, and mucosal damage. Functional analysis showed that changes in the gut microbiota induced by a high dose of IONPs were mainly related to metabolism, infection, immune, and endocrine disease functions. IONPs significantly elevated the levels of valeric, isobutyric, and isovaleric acid, promoting the absorption of iron. This is the first description of intestinal microbiota dysbiosis in SD rats caused by IONPs, and the effects and mechanisms of action of IONPs on intestinal and host health need to be further studied and confirmed.
Collapse
Affiliation(s)
- Jiangchun SHI
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Yumeng XIE
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Yulin LI
- Department of Hospital-acquired Infection Management, Guizhou
Provincial People’s Hospital, Guiyang 550002, China
| | - Dongxia REN
- Department of Blood Transfusion, Tangdu Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Yiqi ZHANG
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Huangfang SHAO
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Yang LIU
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Xue WANG
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Yun LI
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
- Provincial Key Laboratory of Food Safety Monitoring and Risk
Assessment of Sichuan, Chengdu 610041, China
| |
Collapse
|
11
|
Yu D, Zhu L, Gao M, Yin Z, Zhang Z, Zhu L, Zhan X. A Comparative Study of the Effects of Whole Cereals and Refined Cereals on Intestinal Microbiota. Foods 2023; 12:2847. [PMID: 37569116 PMCID: PMC10418403 DOI: 10.3390/foods12152847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cereals are one of the most important foods on which human beings rely to sustain basic life activities and are closely related to human health. This study investigated the effects of different steamed buns on intestinal microbiota. Three steamed buns were prepared using refined flour (RF), 1:1 mixed flour (MF), and whole wheat flour (WF). In vitro digestion simulations were conducted using a bionic gastrointestinal reactor (BGR) to examine their influence on intestinal microbiota. The results showed that at 0.5% addition, butyric acid and short-chain fatty acids in WF were significantly different from those in RF and MF (p < 0.05). WF also promoted the proliferation of beneficial microbiota, such as Megamonas and Subdoligranulum. At 0.5%, 1.0%, and 1.5% additions of WF, acetic acid and short-chain fatty acids at 1.5% WF increased by 1167.5% and 11.4% from 0.5% WF, respectively, and by 20.2% and 7.6% from 1.0% WF, respectively. WF also promoted the proliferation of Bifidobacterium, Lactobacillus, and Bacteroides and inhibited the growth of pathogenic microbiota, such as Streptococcus, Enterococcus, and Klebsiella. These findings support the consumption of whole cereals and offer insights into the development of new functional foods derived from wheat.
Collapse
Affiliation(s)
- Dan Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
- A & F Biotech. Ltd., Burnaby, BC V5A 3P6, Canada
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Zhongwei Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Zijian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Ling Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| |
Collapse
|
12
|
Zhang YY, Stockmann R, Ng K, Ajlouni S. Hydrolysis of pea protein differentially modulates its effect on iron bioaccessibility, sulfur availability, composition and activity of gut microbial communities in vitro. Food Funct 2023. [PMID: 37191062 DOI: 10.1039/d3fo00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Both plant proteins and iron supplements can demonstrate high susceptibility to escape small intestinal digestion and absorption, hence are often present throughout colonic fermentation. Whilst colonic iron delivery may adversely affect the gut microbiota and epithelial integrity, nascent evidence suggests that pea proteins may possess beneficial prebiotic and antioxidant effects during gut fermentation. This study investigated the interaction between exogenously added iron and pea protein isolate (PPI) or pea protein hydrolysate (PPH) during in vitro gastrointestinal digestion and colonic fermentation. Results revealed that enzymatic hydrolysis mitigated the crude protein's inhibitory effects on iron solubility during small intestinal digestion. Colonic fermentation of iron-containing treatments led to an increase in iron bioaccessibility and was characterized by a loss of within-species diversity, a marked increase in members of Proteobacteria, and eradication of some species of Lactobacillaceae. Although these patterns were also observed with pea proteins, the extent of the effects differed. Only PPI displayed significantly higher levels of total short-chain fatty acids in the presence of iron, accompanied by greater abundance of Propionibacteriaceae relative to other treatments. Additionally, we provide evidence that the iron-induced changes in the gut microbiome may be associated with its effect on endogenous sulfur solubility. These findings highlight the potential trade-off between protein-induced enhancements in fortified iron bioaccessibility and effects on the gut microbiome, and the role of iron in facilitating colonic sulfur delivery.
Collapse
Affiliation(s)
- Yianna Y Zhang
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Regine Stockmann
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
13
|
Duncan SH, Conti E, Ricci L, Walker AW. Links between Diet, Intestinal Anaerobes, Microbial Metabolites and Health. Biomedicines 2023; 11:biomedicines11051338. [PMID: 37239009 DOI: 10.3390/biomedicines11051338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A dense microbial community resides in the human colon, with considerable inter-individual variability in composition, although some species are relatively dominant and widespread in healthy individuals. In disease conditions, there is often a reduction in microbial diversity and perturbations in the composition of the microbiota. Dietary complex carbohydrates that reach the large intestine are important modulators of the composition of the microbiota and their primary metabolic outputs. Specialist gut bacteria may also transform plant phenolics to form a spectrum of products possessing antioxidant and anti-inflammatory activities. Consumption of diets high in animal protein and fat may lead to the formation of potentially deleterious microbial products, including nitroso compounds, hydrogen sulphide, and trimethylamine. Gut anaerobes also form a range of secondary metabolites, including polyketides that may possess antimicrobial activity and thus contribute to microbe-microbe interactions within the colon. The overall metabolic outputs of colonic microbes are derived from an intricate network of microbial metabolic pathways and interactions; however, much still needs to be learnt about the subtleties of these complex networks. In this review we consider the multi-faceted relationships between inter-individual microbiota variation, diet, and health.
Collapse
Affiliation(s)
- Sylvia H Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Elena Conti
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Liviana Ricci
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Alan W Walker
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
14
|
Huynh U, Zastrow ML. Metallobiology of Lactobacillaceae in the gut microbiome. J Inorg Biochem 2023; 238:112023. [PMID: 36270041 PMCID: PMC9888405 DOI: 10.1016/j.jinorgbio.2022.112023] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022]
Abstract
Lactobacillaceae are a diverse family of lactic acid bacteria found in the gut microbiota of humans and many animals. These bacteria exhibit beneficial effects on intestinal health, including modulating the immune system and providing protection against pathogens, and many species are frequently used as probiotics. Gut bacteria acquire essential metal ions, like iron, zinc, and manganese, through the host diet and changes to the levels of these metals are often linked to alterations in microbial community composition, susceptibility to infection, and gastrointestinal diseases. Lactobacillaceae are frequently among the organisms increased or decreased in abundance due to changes in metal availability, yet many of the molecular mechanisms underlying these changes have yet to be defined. Metal requirements and metallotransporters have been studied in some species of Lactobacillaceae, but few of the mechanisms used by these bacteria to respond to metal limitation or excess have been investigated. This review provides a current overview of these mechanisms and covers how iron, zinc, and manganese impact Lactobacillaceae in the gut microbiota with an emphasis on their biochemical roles, requirements, and homeostatic mechanisms in several species.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, TX, USA
| | | |
Collapse
|
15
|
Si J, Vázquez-Castellanos JF, Gregory AC, Decommer L, Rymenans L, Proost S, Centelles Lodeiro J, Weger M, Notdurfter M, Leitner C, Santer P, Rungger G, Willeit J, Willeit P, Pechlaner R, Grabherr F, Kiechl S, Tilg H, Raes J. Long-term life history predicts current gut microbiome in a population-based cohort study. NATURE AGING 2022; 2:885-895. [PMID: 37118287 PMCID: PMC10154234 DOI: 10.1038/s43587-022-00286-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 04/30/2023]
Abstract
Extensive scientific and clinical microbiome studies have explored contemporary variation and dynamics of the gut microbiome in human health and disease1-3, yet the role of long-term life history effects has been underinvestigated. Here, we analyzed the current, quantitative microbiome composition in the older adult Bruneck Study cohort (Italians, Bruneck, n = 304 (male, 154; female, 150); age 65-98 years) with extensive clinical, demographic, lifestyle and nutritional data collected over the past 26 years4. Multivariate analysis of historical variables indicated that medication history, historical physical activity, past dietary habits and specific past laboratory blood parameters explain a significant fraction of current quantitative microbiome variation in older adults, enlarging the explanatory power of contemporary covariates by 33.4%. Prediction of current enterotype by a combination of past and contemporary host variables revealed good levels of predictability (area under the curve (AUC), 0.78-0.83), with Prevotella and dysbiotic Bacteroides 2 being the best predicted enterotypes. These findings demonstrate long-term life history effects on the microbiota and provide insights into lifestyle variables and their role in maintaining a healthy gut microbiota in later life.
Collapse
Affiliation(s)
- Jiyeon Si
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Jorge F Vázquez-Castellanos
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ann C Gregory
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Lindsey Decommer
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Leen Rymenans
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Sebastian Proost
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Javier Centelles Lodeiro
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Martin Weger
- Medizinische Klinik II, Klinikum Ingolstadt, Ingolstadt, Germany
| | | | - Christoph Leitner
- Department of Internal Medicine, Hospital of Bruneck, Bruneck, Italy
| | - Peter Santer
- Department of Laboratory Medicine, Hospital of Bruneck, Bruneck, Italy
| | | | - Johann Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Peter Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Clinical Epidemiology Team, Institute of Health Economics, Medical University of Innsbruck, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Raimund Pechlaner
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria.
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium.
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| |
Collapse
|
16
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
17
|
Malesza IJ, Bartkowiak-Wieczorek J, Winkler-Galicki J, Nowicka A, Dzięciołowska D, Błaszczyk M, Gajniak P, Słowińska K, Niepolski L, Walkowiak J, Mądry E. The Dark Side of Iron: The Relationship between Iron, Inflammation and Gut Microbiota in Selected Diseases Associated with Iron Deficiency Anaemia—A Narrative Review. Nutrients 2022; 14:nu14173478. [PMID: 36079734 PMCID: PMC9458173 DOI: 10.3390/nu14173478] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Iron is an indispensable nutrient for life. A lack of it leads to iron deficiency anaemia (IDA), which currently affects about 1.2 billion people worldwide. The primary means of IDA treatment is oral or parenteral iron supplementation. This can be burdened with numerous side effects such as oxidative stress, systemic and local-intestinal inflammation, dysbiosis, carcinogenic processes and gastrointestinal adverse events. Therefore, this review aimed to provide insight into the physiological mechanisms of iron management and investigate the state of knowledge of the relationship between iron supplementation, inflammatory status and changes in gut microbiota milieu in diseases typically complicated with IDA and considered as having an inflammatory background such as in inflammatory bowel disease, colorectal cancer or obesity. Understanding the precise mechanisms critical to iron metabolism and the awareness of serious adverse effects associated with iron supplementation may lead to the provision of better IDA treatment. Well-planned research, specific to each patient category and disease, is needed to find measures and methods to optimise iron treatment and reduce adverse effects.
Collapse
Affiliation(s)
- Ida J. Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Jakub Winkler-Galicki
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Aleksandra Nowicka
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Marta Błaszczyk
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Paulina Gajniak
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Karolina Słowińska
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Leszek Niepolski
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Correspondence:
| |
Collapse
|
18
|
Alteration in Gut Microbiota Associated with Zinc Deficiency in School-Age Children. Nutrients 2022; 14:nu14142895. [PMID: 35889856 PMCID: PMC9319427 DOI: 10.3390/nu14142895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Zinc deficiency could lead to a dynamic variation in gut microbial composition and function in animals. However, how zinc deficiency affects the gut microbiome in school-age children remains unclear. The purpose of this study was to profile the dynamic shifts in the gut microbiome of school-age children with zinc deficiency, and to determine whether such shifts are associated with dietary intake. A dietary survey, anthropometric measurements, and serum tests were performed on 177 school-age children, and 67 children were selected to explore the gut microbial community using amplicon sequencing. School-age children suffered from poor dietary diversity and insufficient food and nutrient intake, and 32% of them were zinc deficient. The inflammatory cytokines significantly increased in the zinc deficiency (ZD) group compared to that in the control (CK) group (p < 0.05). There was no difference in beta diversity, while the Shannon index was much higher in the ZD group (p < 0.05). At the genus level, Coprobacter, Acetivibrio, Paraprevotella, and Clostridium_XI were more abundant in the ZD group (p < 0.05). A functional predictive analysis showed that the metabolism of xenobiotics by cytochrome P450 was significantly depleted in the ZD group (p < 0.05). In conclusion, gut microbial diversity was affected by zinc deficiency with some specific bacteria highlighted in the ZD group, which may be used as biomarkers for further clinical diagnosis of zinc deficiency.
Collapse
|
19
|
Mirzaei R, Dehkhodaie E, Bouzari B, Rahimi M, Gholestani A, Hosseini-Fard SR, Keyvani H, Teimoori A, Karampoor S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed Pharmacother 2022; 145:112352. [PMID: 34840032 DOI: 10.1016/j.biopha.2021.112352] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of documents shows microbiota produce metabolites such as short-chain fatty acids (SCFAs) as crucial executors of diet-based microbial influence the host and bacterial pathogens. The production of SCFAs depends on the metabolic activity of intestinal microflora and is also affected by dietary changes. SCFAs play important roles in maintaining colonic health as an energy source, as a regulator of gene expression and cell differentiation, and as an anti-inflammatory agent. Additionally, the regulated expression of virulence genes is critical for successful infection by an intestinal pathogen. Bacteria rely on sensing environmental signals to find preferable niches and reach the infectious state. This review will present data supporting the diverse functional roles of microbiota-derived butyrate, propionate, and acetate on host cellular activities such as immune modulation, energy metabolism, nervous system, inflammation, cellular differentiation, and anti-tumor effects, among others. On the other hand, we will discuss and summarize data about the role of these SCFAs on the virulence factor of bacterial pathogens. In this regard, receptors and signaling routes for SCFAs metabolites in host and pathogens will be introduced.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Elahe Dehkhodaie
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rahimi
- Department of Pathology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Gholestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Shi XQ, Zhu ZH, Yue SJ, Tang YP, Chen YY, Pu ZJ, Tao HJ, Zhou GS, Duan JA. Studies on blood enrichment and anti-tumor effects of combined Danggui Buxue Decoction, Fe and rhEPO based on colon cancer-related anemia model and gut microbiota modulation. Chin J Nat Med 2021; 19:422-431. [PMID: 34092293 DOI: 10.1016/s1875-5364(21)60041-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/17/2022]
Abstract
Colon cancer-related anemia (CCRA) is mainly caused by systemic inflammation, intestinal bleeding, iron deficiency and chemotherapy-induced myelosuppression in colon cancer. However, the best therapeutic schedule and related mechanism on CCRA were still uncertain. Studies on blood enrichment and anti-tumor effects of combined Danggui Buxue Decoction (DBD), Fe and rhEPO based on CCRA and gut microbiota modulation were conducted in this paper. Here, CCRA model was successfully induced by subcutaneous inoculation of CT-26 and i.p. oxaliplatin, rhEPO + DBD high dosage + Fe (EDF) and rhEPO + DBD high dosage (ED) groups had the best blood enrichment effect. Attractively, EDF group also showed antitumor activity. The sequencing results of gut microbiota showed that compared to P group, the relative abundances of Lachnospiraceae and opportunistic pathogen (Odoribacter) in ED and EDF groups were decreased. Interestingly, EDF also decreased the relative abundances of cancer-related bacteria (Helicobacter, Lactococcus, Alloprevotella) and imbalance-inducing bacteria (Escherichia-Shigella and Parabacteroides) and increased the relative abundances of butyrate-producing bacteria (Ruminococcaceae_UCG-014), however, ED showed the opposite effects to EDF, this might be the reason of the smaller tumor volume in EDF group. Our findings proposed the best treatment combination of DBD, rhEPO and Fe in CCRA and provided theoretical basis and literature reference for CCRA-induced intestinal flora disorder and the regulatory mechanism of EDF.
Collapse
Affiliation(s)
- Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen-Hua Zhu
- Institute of Mental Health, Suzhou Psychiatric Hospital, Soochow University Affiliated Guangji Hospital, Suzhou 215100, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Yan-Yan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Zong-Jin Pu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
21
|
Ribeiro M, Fonseca L, Anjos JS, Capo-Chichi JCC, Borges NA, Burrowes J, Mafra D. Oral iron supplementation in patients with chronic kidney disease: Can it be harmful to the gut microbiota? Nutr Clin Pract 2021; 37:81-93. [PMID: 33979013 DOI: 10.1002/ncp.10662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have several pathophysiological alterations, including anemia, one of the first changes in CKD patients. More recently, researchers have observed that the intestinal microbiota alterations are also another complication in these patients. The most common treatment for anemia is oral (mainly ferrous sulfate) or intravenous iron supplementation. Despite being a necessary treatment, recent studies have reported that supplementation with oral iron may increase its availability in the intestine, leading to disturbance in the gut microbiota and also to oxidative stress in the enterocytes, which may change the permeability and the microbiota profile. Although it is a therapy routinely used in patients with CKD, supplementation with oral iron on the gut microbiota has been rarely studied in these patients. Thus, this review will discuss the relationship between iron and the gut microbiota and the possible effects of oral iron supplementation on gut microbiota in patients with CKD.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil
| | - Larissa Fonseca
- Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Juliana S Anjos
- Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Jean C C Capo-Chichi
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Natália A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | | | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Botta A, Barra NG, Lam NH, Chow S, Pantopoulos K, Schertzer JD, Sweeney G. Iron Reshapes the Gut Microbiome and Host Metabolism. J Lipid Atheroscler 2021; 10:160-183. [PMID: 34095010 PMCID: PMC8159756 DOI: 10.12997/jla.2021.10.2.160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Compelling studies have established that the gut microbiome is a modifier of metabolic health. Changes in the composition of the gut microbiome are influenced by genetics and the environment, including diet. Iron is a potential node of crosstalk between the host-microbe relationship and metabolic disease. Although iron is well characterized as a frequent traveling companion of metabolic disease, the role of iron is underappreciated because the mechanisms of iron's influence on host metabolism are poorly characterized. Both iron deficiency and excessive amounts leading to iron overload can have detrimental effects on cardiometabolic health. Optimal iron homeostasis is critical for regulation of host immunity and metabolism in addition to regulation of commensal and pathogenic enteric bacteria. In this article we review evidence to support the notion that altering composition of the gut microbiome may be an important route via which iron impacts cardiometabolic health. We discuss reshaping of the microbiome by iron, the physiological significance and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Amy Botta
- Department of Biology, York University, Toronto, ON, Canada
| | - Nicole G. Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Nhat Hung Lam
- Department of Biology, York University, Toronto, ON, Canada
| | - Samantha Chow
- Department of Biology, York University, Toronto, ON, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
23
|
Aksan A, Farrag K, Aksan S, Schroeder O, Stein J. Flipside of the Coin: Iron Deficiency and Colorectal Cancer. Front Immunol 2021; 12:635899. [PMID: 33777027 PMCID: PMC7991591 DOI: 10.3389/fimmu.2021.635899] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Iron deficiency, with or without anemia, is the most frequent hematological manifestation in individuals with cancer, and is especially common in patients with colorectal cancer. Iron is a vital micronutrient that plays an essential role in many biological functions, in the context of which it has been found to be intimately linked to cancer biology. To date, however, whereas a large number of studies have comprehensively investigated and reviewed the effects of excess iron on cancer initiation and progression, potential interrelations of iron deficiency with cancer have been largely neglected and are not well-defined. Emerging evidence indicates that reduced iron intake and low systemic iron levels are associated with the pathogenesis of colorectal cancer, suggesting that optimal iron intake must be carefully balanced to avoid both iron deficiency and iron excess. Since iron is vital in the maintenance of immunological functions, insufficient iron availability may enhance oncogenicity by impairing immunosurveillance for neoplastic changes and potentially altering the tumor immune microenvironment. Data from clinical studies support these concepts, showing that iron deficiency is associated with inferior outcomes and reduced response to therapy in patients with colorectal cancer. Here, we elucidate cancer-related effects of iron deficiency, examine preclinical and clinical evidence of its role in tumorigenesis, cancer progression and treatment response. and highlight the importance of adequate iron supplementation to limit these outcomes.
Collapse
Affiliation(s)
- Aysegül Aksan
- Institute of Nutritional Science, Justus-Liebig University, Giessen, Germany
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
| | - Karima Farrag
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
- DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Sami Aksan
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
- DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Oliver Schroeder
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
- DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Jürgen Stein
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
- DGD Kliniken Sachsenhausen, Frankfurt, Germany
| |
Collapse
|
24
|
Li CY, Li XY, Shen L, Ji HF. Regulatory effects of transition metals supplementation/deficiency on the gut microbiota. Appl Microbiol Biotechnol 2021; 105:1007-1015. [PMID: 33449129 DOI: 10.1007/s00253-021-11096-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/13/2022]
Abstract
Transition metal ions are essential micronutrients for all living organisms and exert a wide range of effects on human health. The uptake of transition metal ions occurs primarily in the gastrointestinal tract, which is colonized by trillions of bacterial cells. In recent years, increasing studies have indicated that transition metals have regulatory effects on the gut microbiota. In view of the significant effect of the gut microbiota on human health and involvement in the pathogenesis of a wide range of diseases, in this paper, we provide a comprehensive discussion on the regulatory effects of four kinds of transition metal ions on the gut microbiota. A total of 20 animal model and human studies concerning the regulatory effects of four types of transition metal ions (i.e., iron, copper, zinc, and manganese) on gut microbiota were summarized. Both the deficiency and supplementation of these transition metal ions on the gut microbiota were considered. Furthermore, the potential mechanisms governing the regulatory effects of transition metal ions on the gut microbiota were also discussed. KEY POINTS : • Regulatory effects of iron, copper, zinc, and manganese on gut microbiota were reviewed. • Both deficiency and supplementation of metal ions on gut microbiota were considered. • Mechanisms governing effects of metal ions on gut microbiota were discussed.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Xin-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
25
|
Seyoum Y, Baye K, Humblot C. Iron homeostasis in host and gut bacteria - a complex interrelationship. Gut Microbes 2021; 13:1-19. [PMID: 33541211 PMCID: PMC7872071 DOI: 10.1080/19490976.2021.1874855] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 02/08/2023] Open
Abstract
Iron deficiency is the most frequent nutritional deficiency in the world with an estimated 1.4 billion people affected. The usual way to fight iron deficiency is iron fortification, but this approach is not always effective and can have undesirable side effects including an increase in the growth and virulence of gut bacterial pathogens responsible for diarrhea and gut inflammation. Iron is mainly absorbed in the duodenum and is tightly regulated in mammals. Unabsorbed iron enters the colonic lumen where many microorganisms, referred to as gut microbiota, reside. Iron is essential for these bacteria, and its availability consequently affects this microbial ecosystem. The aim of this review is to provide further insights into the complex relationship between iron and gut microbiota. Given that overcoming anemia caused by iron deficiency is still a challenge today, gut microbiota could help identify more efficient ways to tackle this public health problem.
Collapse
Affiliation(s)
- Yohannes Seyoum
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kaleab Baye
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| |
Collapse
|
26
|
He H, Teng H, Huang Q, He D, An F, Chen L, Song H. Beneficial effects of AOS-iron supplementation on intestinal structure and microbiota in IDA rats. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Iguchi A, Yamamoto S, Oda A, Tanaka K, Kazama JJ, Saeki T, Yamazaki H, Ishioka K, Suzutani T, Narita I. Effect of sucroferric oxyhydroxide on gastrointestinal microbiome and uremic toxins in patients with chronic kidney disease undergoing hemodialysis. Clin Exp Nephrol 2020; 24:725-733. [PMID: 32285213 DOI: 10.1007/s10157-020-01892-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND In patients with chronic kidney disease (CKD), dysbiosis in the gastrointestinal microbiome is thought to be associated with increased production of uremic toxins, such as indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Sucroferric oxyhydroxide (SFO), an iron-based phosphate binder, may affect the gastrointestinal microbiome and the production of uremic toxins. We aimed to examine whether SFO administration affected distribution of gastrointestinal microbiome and serum uremic toxin levels in CKD patients undergoing hemodialysis. METHODS In this single-center, open-label, interventional study, 18 maintenance hemodialysis patients with hyperphosphatemia were prescribed with SFO. We collected serum samples before and after 3 months of administration, and serum levels of IS and PCS were measured. A control group of 20 hemodialysis patients without SFO was evaluated. We evaluated gastrointestinal microbiome of patients pre- and post-SFO administration by 16S rDNA sequencing and bioinformatics analysis. RESULTS Serum IS and PCS levels were significantly elevated after administration of SFO (IS before 2.52 ± 1.60 mg/dl vs. after 3.13 ± 1.51 mg/dl, P = 0.008; PCS before 2.32 ± 2.44 mg/dl vs. after 3.45 ± 2.11 mg/dl, P = 0.002), while serum IS and PCS levels did not change in the control group. Microbiome analysis in the SFO group showed no significant change in diversity and major components in phylum, class, order, family, gene, and species. CONCLUSION Administration of SFO increased the serum levels of IS and PCS with no change of major components of gastrointestinal microbiome.
Collapse
Affiliation(s)
- Akira Iguchi
- Department of Internal Medicine, Nagaoka Red-Cross Hospital, 2-297-1 Sensyu, Nagaoka, Niigata, 940-2085, Japan.
| | - Suguru Yamamoto
- Division of Blood Purification Therapy, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Akira Oda
- Department of Nephrology and Hypertension, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan
| | - Kenichi Tanaka
- Department of Nephrology and Hypertension, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan
| | - Junichiro James Kazama
- Department of Nephrology and Hypertension, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan
| | - Takako Saeki
- Department of Internal Medicine, Nagaoka Red-Cross Hospital, 2-297-1 Sensyu, Nagaoka, Niigata, 940-2085, Japan
| | - Hajime Yamazaki
- Department of Internal Medicine, Nagaoka Red-Cross Hospital, 2-297-1 Sensyu, Nagaoka, Niigata, 940-2085, Japan
| | - Ken Ishioka
- Department of Microbiology, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| |
Collapse
|
28
|
Abstract
In recent years, the importance of the gut microbiota in human health has been revealed and many publications have highlighted its role as a key component of human physiology. Owing to the use of modern sequencing approaches, the characterisation of the microbiome in healthy individuals and in disease has demonstrated a disturbance of the microbiota, or dysbiosis, associated with pathological conditions. The microbiota establishes a symbiotic crosstalk with their host: commensal microbes benefit from the nutrient-rich environment provided by the gut and the microbiota produces hundreds of proteins and metabolites that modulate key functions of the host, including nutrient processing, maintenance of energy homoeostasis and immune system development. Many bacteria-derived metabolites originate from dietary sources. Among them, an important role has been attributed to the metabolites derived from the bacterial fermentation of dietary fibres, namely SCFA linking host nutrition to intestinal homoeostasis maintenance. SCFA are important fuels for intestinal epithelial cells (IEC) and regulate IEC functions through different mechanisms to modulate their proliferation, differentiation as well as functions of subpopulations such as enteroendocrine cells, to impact gut motility and to strengthen the gut barrier functions as well as host metabolism. Recent findings show that SCFA, and in particular butyrate, also have important intestinal and immuno-modulatory functions. In this review, we discuss the mechanisms and the impact of SCFA on gut functions and host immunity and consequently on human health.
Collapse
|
29
|
Boran P, Baris HE, Kepenekli E, Erzik C, Soysal A, Dinh DM. The impact of vitamin B12 deficiency on infant gut microbiota. Eur J Pediatr 2020; 179:385-393. [PMID: 31761973 DOI: 10.1007/s00431-019-03517-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/15/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Abstract
Although physiologic and neurologic consequences of micronutrient deficiencies have been addressed extensively, less is known about their impact on developing gut microbiota. Vitamin B12 deficiency is a common micronutrient deficiency in infants. We aimed to analyze the gut microbial composition of exclusively breastfed infants aged between 4 and 6 months with and without vitamin B12 deficiency by 16S rRNA gene sequencing. In a subgroup of infants with vitamin B12 deficiency, stool samples are recollected and reanalyzed after vitamin B12 supplementation. A total of 88 infants' stool samples (median age 4 months [IQR 4-5], 50% males) were analyzed, of which 28 (31.8%) were vitamin B12 sufficient and 60 (68.2%) were vitamin B12 insufficient. Comparisons between vitamin B12-sufficient and vitamin B12-insufficient infants revealed no evidence of differences in the microbiota. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the most abundant phyla in all groups. There was no difference between the pre- and post-treatment composition of gut microbiota.Conclusion: Vitamin B12-deficient infants have similar gut microbial composition as vitamin B12-sufficient infants. Since the samples were collected at an early period of life and the exposure to deficiency was relatively short, it may be possible that the effects were not fully established.What is Known: • Vitamin B12 is an essential vitamin for humans and also a crucial compound for human gut microbiota. • Vitamin B12 deficiency is common in exclusively breastfed infants. • In contrast to the adult gut microbiota, infant gut microbiota has been shown to have decreased capacity for de novo synthesis of vitamin B12 and depend on dietary source of vitamin B12.What is New: • There is no difference in the gut microbial composition of vitamin B12-deficient and vitamin B12-sufficient infants.
Collapse
Affiliation(s)
- Perran Boran
- Department of Pediatrics, Division of Social Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Hatice Ezgi Baris
- Department of Pediatrics, Division of Social Pediatrics, Marmara University School of Medicine, Istanbul, Turkey.
| | - Eda Kepenekli
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Marmara University School of Medicine, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ahmet Soysal
- Pediatric Infectious Diseases, Memorial Hospital, Istanbul, Turkey
| | | |
Collapse
|
30
|
Bernabé BP, Tussing-Humphreys L, Rackers HS, Welke L, Mantha A, Kimmel MC. Improving Mental Health for the Mother-Infant Dyad by Nutrition and the Maternal Gut Microbiome. Gastroenterol Clin North Am 2019; 48:433-445. [PMID: 31383280 DOI: 10.1016/j.gtc.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Perinatal mood and anxiety disorders (PMAD) have significant negative impacts on mother and child, yet treatments are limited. Adequate nutrition during the perinatal period is essential to maternal and infant health, including maternal mental health and the child's neurologic and neuropsychiatric development. Nutrition holds promise to improve prevention and treatment of PMAD. The ability to manipulate the gut microbiota composition and structure through host nutrition and to harness the gut microbes for improved individualized nutrition may be an important new direction for prevention and treatment of PMAD, thus improving the mental health of mother and child.
Collapse
Affiliation(s)
- Beatriz Peñalver Bernabé
- Department of Surgery, Microbiome Center, University of Chicago, 5841 S. Maryland Street, Chicago, IL 60637, USA; Division of Academic Internal Medicine, Department of Medicine, Institute for Health Research and Policy Cancer Center, University of Illinois at Chicago, 1747 W. Roosevelt Road, Chicago, IL 60608, USA
| | - Lisa Tussing-Humphreys
- Division of Academic Internal Medicine, Department of Medicine, Institute for Health Research and Policy Cancer Center, University of Illinois at Chicago, 1747 W. Roosevelt Road, Chicago, IL 60608, USA
| | - Hannah S Rackers
- Department of Psychiatry, UNC School of Medicine Campus Box 7160, Chapel Hill, NC 27599-7160, USA
| | - Lauren Welke
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W. Taylor Street, Chicago, IL 60612, USA
| | - Alina Mantha
- Department of Maternal and Child Health, UNC Gillings School of Global Public Health, 401 Rosenau Hall, CB #7445, Chapel Hill, NC 27599-7445, USA
| | - Mary C Kimmel
- Department of Psychiatry, UNC School of Medicine Campus Box 7160, Chapel Hill, NC 27599-7160, USA.
| |
Collapse
|
31
|
Knight LC, Wang M, Donovan SM, Dilger RN. Early-Life Iron Deficiency and Subsequent Repletion Alters Development of the Colonic Microbiota in the Pig. Front Nutr 2019; 6:120. [PMID: 31440513 PMCID: PMC6692694 DOI: 10.3389/fnut.2019.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/19/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Iron deficiency is the most prevalent micronutrient deficiency worldwide, affecting over two billion people. Early-life iron deficiency may alter the developing microbiota, which may or may not be reversible with subsequent dietary iron repletion. Thus, the aim of this study was to determine whether early-life iron deficiency and subsequent repletion alter colonic microbial composition and fermentation end-product concentrations in pigs. Methods: Forty-two male pigs received either control (CONT, 21.3 mg Fe/L) or iron-deficient (ID, 2.72 mg Fe/L) milk replacer treatments from postnatal day (PND) 2 to 32. Subsequently, 20 pigs continued through a series of age-appropriate, iron-adequate diets from PND 33 to 61. Contents from the ascending colon (AC) and rectum (feces) were collected at PND 32 and/or 61. Assessments included microbiota composition by 16S rRNA sequencing and volatile fatty acid (VFA) concentrations by gas chromatography methods. Data were analyzed using a 1-way ANOVA and PERMANOVA to assess the main effects of early-life iron status on all outcomes. Results: In AC samples, 15 genera differed (P < 0.05) between ID and CONT pigs, while 27 genera differed (P < 0.05) in fecal samples at PND 32. Early-life ID pigs had higher (P = 0.012) relative abundance of Lactobacillus in AC samples compared with CONT pigs. In feces, ID pigs had lower (P < 0.05) relative abundances of Bacteroides and Clostridium from the families of Clostridiaceae, Lachnospiraceae, and Ruminococcaceae. At PND 61, only two genera differed between treatment groups in AC samples, with ID pigs having a higher (P = 0.043) relative abundance of Bifidobacterium and lower (P = 0.047) relative abundance of Prevotella. Beta diversity differed at PND 32 in both AC and feces between CONT and ID pigs but no differences remained at PND 61. At PND 32, the total VFA concentration was higher in ID pigs compared with CONT pigs in both AC (P = 0.003) and feces (P = 0.001), but no differences in VFA concentrations persisted to PND 61. Conclusion: Early-life iron status influenced microbial composition and VFA concentrations within the large intestine, but these differences were largely normalized following subsequent dietary iron repletion.
Collapse
Affiliation(s)
- Laura C. Knight
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Sharon M. Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Ryan N. Dilger
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
32
|
Ellermann M, Gharaibeh RZ, Maharshak N, Peréz-Chanona E, Jobin C, Carroll IM, Arthur JC, Plevy SE, Fodor AA, Brouwer CR, Sartor RB. Dietary iron variably modulates assembly of the intestinal microbiota in colitis-resistant and colitis-susceptible mice. Gut Microbes 2019; 11:32-50. [PMID: 31179826 PMCID: PMC6973310 DOI: 10.1080/19490976.2019.1599794] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2019] [Accepted: 03/05/2019] [Indexed: 02/03/2023] Open
Abstract
Iron deficiency, a common comorbidity of gastrointestinal inflammatory disorders such as inflammatory bowel diseases (IBD), is often treated with oral iron supplementation. However, the safety of oral iron supplementation remains controversial because of its association with exacerbated disease activity in a subset of IBD patients. Because iron modulates bacterial growth and function, one possible mechanism by which iron may exacerbate inflammation in susceptible hosts is by modulating the intestinal microbiota. We, therefore, investigated the impact of dietary iron on the intestinal microbiota, utilizing the conventionalization of germ-free mice as a model of a microbial community in compositional flux to recapitulate the instability of the IBD-associated intestinal microbiota. Our findings demonstrate that altering intestinal iron availability during community assembly modulated the microbiota in non-inflamed wild type (WT) and colitis-susceptible interleukin-10-deficient (Il10-/-) mice. Depletion of luminal iron availability promoted luminal compositional changes associated with dysbiotic states irrespective of host genotype, including an expansion of Enterobacteriaceae such as Escherichia coli. Mechanistic in vitro growth competitions confirmed that high-affinity iron acquisition systems in E. coli enhance its abundance over other bacteria in iron-restricted conditions, thereby enabling pathobiont iron scavenging during dietary iron restriction. In contrast, distinct luminal community assembly was observed with dietary iron supplementation in WT versus Il10-/- mice, suggesting that the effects of increased iron on the microbiota differ with host inflammation status. Taken together, shifts in dietary iron intake during community assembly modulate the ecological structure of the intestinal microbiota and is dependent on host genotype and inflammation status.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Raad Z Gharaibeh
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Nitsan Maharshak
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, USA
| | - Ernesto Peréz-Chanona
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA
| | - Ian M Carroll
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Scott E Plevy
- Immunology Research and Development, Janssen Pharmaceuticals, Spring House, PA, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Cory R Brouwer
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - R Balfour Sartor
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Shannon MC, Hill GM. Trace Mineral Supplementation for the Intestinal Health of Young Monogastric Animals. Front Vet Sci 2019; 6:73. [PMID: 30918894 PMCID: PMC6424858 DOI: 10.3389/fvets.2019.00073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/19/2019] [Indexed: 01/21/2023] Open
Abstract
Growth performance and feed efficiency are essential parameters when evaluating profitability of livestock. However, animal performance does not always reflect optimal gut health. Decades of research have supported the theory that improved animal performance such as average daily gain and feed efficiency can be impacted by intestinal health or the ability of the intestinal mucosa to absorb nutrients, but dysfunction may be found when the animal is stressed. Most of the early research focused on enteric infections causing diarrhea and nutritional alternatives to antibiotics which has led to findings related to pharmacological supplementation of trace minerals above the nutrient requirements for non-ruminants. While pharmacological concentrations of copper (Cu) have been shown to enhance growth, the mechanism in the gut is elusive. High concentrations of zinc (Zn) fed to newly weaned nursery pigs reduced the incidence of diarrhea from the proliferation of enterotoxigenic Escherichia coli (E. coli) and Clostridium and improve gut morphology. There are numerous publications where pharmacological supplementation of Zn as zinc oxide (ZnO) were fed to newly weaned pigs. Pharmacological Zn has been reported to shape the intestinal microflora as well as the diversity of the microflora during the first 2 weeks post-weaning. Both Fe deficiency and fortification impact bacterial growth in the intestine. Therefore, this paper will focus on the role of trace minerals that potentially impact optimal gut health of young monogastric animals.
Collapse
Affiliation(s)
| | - Gretchen Myers Hill
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
34
|
Parmanand BA, Kellingray L, Le Gall G, Basit AW, Fairweather-Tait S, Narbad A. A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria; an in vitro colonic fermentation study. J Nutr Biochem 2019; 67:20-27. [PMID: 30831460 PMCID: PMC6546957 DOI: 10.1016/j.jnutbio.2019.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
Iron supplements are widely consumed; however most of the iron is not absorbed and enters the colon where potentially pathogenic bacteria can utilise it for growth. This study investigated the effect of iron availability on human gut microbial composition and function using an in vitro colonic fermentation model inoculated with faecal microbiota from healthy adult donors, as well as examining the effect of iron on the growth of individual gut bacteria. Batch fermenters were seeded with fresh faecal material and supplemented with the iron chelator, bathophenanthroline disulphonic acid (BPDS). Samples were analysed at regular intervals to assess impact on the gut bacterial communities. The growth of Escherichia coli and Salmonella typhimurium was significantly impaired when cultured independently in iron-deficient media. In contrast, depletion of iron did not affect the growth of the beneficial species, Lactobacillus rhamnosus, when cultured independently. Analysis of the microbiome composition via 16S-based metataxonomics indicated that under conditions of iron chelation, the relative abundance decreased for several taxa, including a 10% decrease in Escherichia and a 15% decrease in Bifidobacterium. Metabolomics analysis using 1 H-NMR indicated that the production of SCFAs was reduced under iron-limited conditions. These results support previous studies demonstrating the essentiality of iron for microbial growth and metabolism, but, in addition, they indicate that iron chelation changes the gut microbiota profile and influences human gut microbial homeostasis through both compositional and functional changes.
Collapse
Affiliation(s)
- Bhavika A Parmanand
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, NR4 7UA, UK; Faculty of Medicine and Health, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Lee Kellingray
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, NR4 7UA, UK
| | - Gwenaelle Le Gall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, NR4 7UA, UK
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK; Intract Pharma, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | | | - Arjan Narbad
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, NR4 7UA, UK
| |
Collapse
|
35
|
Wang X, Kolba N, Liang J, Tako E. Alterations in gut microflora populations and brush border functionality following intra-amniotic administration (Gallus gallus) of wheat bran prebiotic extracts. Food Funct 2019; 10:4834-4843. [DOI: 10.1039/c9fo00836e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wheat bran is the by-product of milling wheat flour which is one of the richest sources of dietary fiber, and cellulase that can be used for increasing the soluble dietary fiber.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Nikolai Kolba
- USDA-ARS
- Robert W. Holley Center for Agriculture and Health
- Cornell University
- Ithaca
- USA
| | - Jianfen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Elad Tako
- USDA-ARS
- Robert W. Holley Center for Agriculture and Health
- Cornell University
- Ithaca
- USA
| |
Collapse
|
36
|
Muleviciene A, D’Amico F, Turroni S, Candela M, Jankauskiene A. Iron deficiency anemia-related gut microbiota dysbiosis in infants and young children: A pilot study. Acta Microbiol Immunol Hung 2018; 65:551-564. [PMID: 30418043 DOI: 10.1556/030.65.2018.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nutritional iron deficiency (ID) causes not only anemia but also malfunction of the entire human organism. Recently, a role of the gut microbiota has been hypothesized, but limited data are available especially in infants. Here, we performed a pilot study to explore the gut microbiota in 10 patients with iron deficiency anemia (IDA) and 10 healthy controls aged 6-34 months. Fresh stool samples were collected from diapers, and the fecal microbiota was profiled by next-generation sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. Except for diet diversity, the breastfeeding status at the enrollment, the exclusive breastfeeding duration, and the introduction of complementary foods did not differ between groups. Distinct microbial signatures were found in IDA patients, with increased relative abundance of Enterobacteriaceae (mean relative abundance, patients vs. controls, 4.4% vs. 3.0%) and Veillonellaceae (13.7% vs. 3.6%), and reduced abundance of Coriobacteriaceae (3.5% vs. 8.8%) compared to healthy controls. A decreased Bifidobacteriaceae/Enterobacteriaceae ratio was observed in IDA patients. Notwithstanding the low sample size, our data highlight microbiota dysbalance in IDA worth for further investigations, aimed at unraveling the ID impact on the microbiome trajectory in early life, and the possible long-term consequences.
Collapse
Affiliation(s)
- Audrone Muleviciene
- 1 Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Federica D’Amico
- 2 Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- 2 Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Candela
- 2 Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Augustina Jankauskiene
- 1 Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
37
|
Marzocco S, Fazeli G, Di Micco L, Autore G, Adesso S, Dal Piaz F, Heidland A, Di Iorio B. Supplementation of Short-Chain Fatty Acid, Sodium Propionate, in Patients on Maintenance Hemodialysis: Beneficial Effects on Inflammatory Parameters and Gut-Derived Uremic Toxins, A Pilot Study (PLAN Study). J Clin Med 2018; 7:jcm7100315. [PMID: 30274359 PMCID: PMC6210519 DOI: 10.3390/jcm7100315] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In end-stage renal disease (ESRD), gut-derived uremic toxins play a crucial role in the systemic inflammation and oxidative stress promoting the excess morbidity and mortality. The biochemical derangement is in part a consequence of an insufficient generation of short-chain fatty acids (SCFA) due to the dysbiosis of the gut and an insufficient consumption of the fermentable complex carbohydrates. AIM OF THE STUDY The primary end-point was to evaluate the potential efficacy of SCFA (specifically, sodium propionate (SP)) for patients on maintenance hemodialysis (MHD) on systemic inflammation. Secondary end-points included potential attenuation of oxidative stress markers, insulin resistance and production of gut-derived uremic toxins indoxyl sulfate and p-cresol sulfate, as well as health status after SP supplementation. STUDY DESIGN We performed a single-center non-randomized pilot study in 20 MHD patients. They received the food additive SP with a daily intake of 2 × 500 mg in the form of capsules for 12 weeks. Pre-dialysis blood samples were taken at the beginning, after six weeks and at the end of the administration period, as well as four weeks after withdrawal of the treatment. RESULTS The subjects revealed a significant decline of inflammatory parameters C-reactive protein (-46%), interleukin IL-2 (-27%) and IL-17 (-15%). The inflammatory parameters IL-6 and IFN-gamma showed a mild non-significant reduction and the anti-inflammatory cytokine IL-10 increased significantly (+71%). While the concentration of bacterial endotoxins and TNF-α remained unchanged, the gut-derived uremic toxins, indoxyl sulfate (-30%) and p-cresyl sulfate (-50%), revealed a significant decline. The SP supplementation reduced the parameters of oxidative stress malondialdehyde (-32%) and glutathione peroxidase activity (-28%). The serum insulin levels dropped by 30% and the HOMA-index by 32%. The reduction of inflammatory parameters was associated with a lowering of ferritin and a significant increase in transferrin saturation (TSAT). Four weeks after the end of the treatment phase, all improved parameters deteriorated again. Evaluation of the psycho-physical performance with the short form 36 (SF-36) questionnaire showed an enhancement in the self-reported physical functioning, general health, vitality and mental health. The SP supplementation was well tolerated and without important side effects. No patient had left the study due to intolerance to the medication. The SP supplementation in MHD patients reduced pro-inflammatory parameters and oxidative stress and improved insulin resistance and iron metabolism. Furthermore, SP effectively lowered the important gut-derived uremic toxins indoxyl and p-cresol sulfate. These improvements were associated with a better quality of life. Further controlled studies are required in a larger cohort to evaluate the clinical outcome.
Collapse
Affiliation(s)
- Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy.
| | - Gholamreza Fazeli
- Rudolf Virchow Center, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Lucia Di Micco
- UOC Nephrology, A. Landolfi Hospital, 83029 Solofra (AV), Italy.
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy.
| | - Simona Adesso
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy.
| | - Fabrizio Dal Piaz
- Department of Medicine and Surgery, University of Salerno, 84084 Fisciano (SA), Italy.
| | - August Heidland
- Department of Internal Medicine and KfH Kidney Center, University of Würzburg, KfH Kidney Center Würzburg, 97080 Würzburg, Germany.
| | - Biagio Di Iorio
- UOC Nephrology, A. Landolfi Hospital, 83029 Solofra (AV), Italy.
| |
Collapse
|
38
|
Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, Soares JW. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front Microbiol 2018; 9:2013. [PMID: 30258412 PMCID: PMC6143810 DOI: 10.3389/fmicb.2018.02013] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Stress, a ubiquitous part of daily human life, has varied biological effects which are increasingly recognized as including modulation of commensal microorganisms residing in the gastrointestinal tract, the gut microbiota. In turn, the gut microbiota influences the host stress response and associated sequelae, thereby implicating the gut microbiota as an important mediator of host health. This narrative review aims to summarize evidence concerning the impact of psychological, environmental, and physical stressors on gut microbiota composition and function. The stressors reviewed include psychological stress, circadian disruption, sleep deprivation, environmental extremes (high altitude, heat, and cold), environmental pathogens, toxicants, pollutants, and noise, physical activity, and diet (nutrient composition and food restriction). Stressors were selected for their direct relevance to military personnel, a population that is commonly exposed to these stressors, often at extremes, and in combination. However, the selected stressors are also common, alone or in combination, in some civilian populations. Evidence from preclinical studies collectively indicates that the reviewed stressors alter the composition, function and metabolic activity of the gut microbiota, but that effects vary across stressors, and can include effects that may be beneficial or detrimental to host health. Translation of these findings to humans is largely lacking at present. This gap precludes concluding with certainty that transient or cumulative exposures to psychological, environmental, and physical stressors have any consistent, meaningful impact on the human gut microbiota. However, provocative preclinical evidence highlights a need for translational research aiming to elucidate the impact of stressors on the human gut microbiota, and how the gut microbiota can be manipulated, for example by using nutrition, to mitigate adverse stress responses.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Adrienne M. Hatch
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Steven M. Arcidiacono
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Sarah C. Pearce
- Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Ida G. Pantoja-Feliciano
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Laurel A. Doherty
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Jason W. Soares
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
39
|
Abstract
Transition metals are required cofactors for many proteins that are critical for life, and their concentration within cells is carefully maintained to avoid both deficiency and toxicity. To defend against bacterial pathogens, vertebrate immune proteins sequester metals, in particular zinc, iron, and manganese, as a strategy to limit bacterial acquisition of these necessary nutrients in a process termed "nutritional immunity." In response, bacteria have evolved elegant strategies to access metals and counteract this host defense. In mammals, metal abundance can drastically shift due to changes in dietary intake or absorption from the intestinal tract, disrupting the balance between host and pathogen in the fight for metals and altering susceptibility to disease. This review describes the current understanding of how dietary metals modulate host-microbe interactions and the subsequent impact on the outcome of disease.
Collapse
Affiliation(s)
- Christopher A Lopez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
40
|
Iron supplementation has minor effects on gut microbiota composition in overweight and obese women in early pregnancy. Br J Nutr 2018; 120:283-289. [PMID: 29789023 DOI: 10.1017/s0007114518001149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fe is an essential nutrient for many bacteria, and Fe supplementation has been reported to affect the composition of the gut microbiota in both Fe-deficient and Fe-replete individuals outside pregnancy. This study examined whether the dose of Fe in pregnancy multivitamin supplements affects the overall composition of the gut microbiota in overweight and obese pregnant women in early pregnancy. Women participating in the SPRING study with a faecal sample obtained at 16 weeks' gestation were included in this substudy. For each subject, the brand of multivitamin used was recorded. Faecal microbiome composition was assessed by 16S rRNA sequencing and analysed with the QIIME software suite. Dietary intake of Fe was assessed using a FFQ at 16 weeks' gestation. Women were grouped as receiving low (<60 mg/d, n 94) or high (≥60 mg/d; n 65) Fe supplementation. The median supplementary Fe intake in the low group was 10 (interquartile range (IQR) 5-10) v. 60 (IQR 60-60) mg/d in the high group (P<0·001). Dietary Fe intake did not differ between the groups (10·0 (IQR 7·4-13·3) v. 9·8 (IQR 8·2-13·2) mg/d). Fe supplementation did not significantly affect the composition of the faecal microbiome at any taxonomic level. Network analysis showed that the gut microbiota in the low Fe supplementation group had a higher predominance of SCFA producers. Pregnancy multivitamin Fe content has a minor effect on the overall composition of the gut microbiota of overweight and obese pregnant women at 16 weeks' gestation.
Collapse
|
41
|
Zohora F, Bidad K, Pourpak Z, Moin M. Biological and Immunological Aspects of Iron Deficiency Anemia in Cancer Development: A Narrative Review. Nutr Cancer 2018; 70:546-556. [PMID: 29697284 DOI: 10.1080/01635581.2018.1460685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron Deficiency Anemia (IDA) is a universal health problem and a risk factor for the development of cancer. IDA changes the microenvironment of the human body by affecting both the biological and immunological systems. It increases DNA damage and genomic instability by different mechanisms. IDA is one of the leading causes of the imbalance between different antioxidant enzymes as well as enzymes involved in DNA damage and DNA repair systems of the body. It can affect the biogenesis/expression of microRNAs. IDA interrupts the oxidative phosphorylation energy metabolism and intestinal Cytochrome-P450 systems. It also disturbs multicellular signaling pathways involved in cell survival and helps in tumor angiogenesis. Moreover, IDA is also responsible for the functional deterioration of innate and adaptive immune systems that lead to immunological dysfunctions against invading pathogens. Genomic instability and immunological dysfunctions are the hallmarks of cancer development. In this review, we will review the evidence linking IDA to increased cancer risk.
Collapse
Affiliation(s)
- Fatema Zohora
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Katayoon Bidad
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Zahra Pourpak
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Mostafa Moin
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| |
Collapse
|
42
|
Chieppa M, Giannelli G. Immune Cells and Microbiota Response to Iron Starvation. Front Med (Lausanne) 2018; 5:109. [PMID: 29721497 PMCID: PMC5915481 DOI: 10.3389/fmed.2018.00109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Metal ions are essential for life on Earth, mostly as crucial components of all living organisms; indeed, they are necessary for bioenergetics functions as crucial redox catalysts. Due to the essential role of iron in biological processes, body iron content is finely regulated and is the battlefield of a tug-of-war between the host and the microbiota.
Collapse
Affiliation(s)
- Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| |
Collapse
|
43
|
Chung SY, Ravel J, Regan M. Clinical Relevance of Gastrointestinal Microbiota During Pregnancy: A Primer for Nurses. Biol Res Nurs 2018; 20:84-102. [PMID: 28954525 PMCID: PMC5942499 DOI: 10.1177/1099800417732412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emerging evidence about the human microbiome, a collective term for all the microorganisms living in and on the human body, consistently demonstrates the critical influence it has on host physiology and disease risk. The microbiota in the gastrointestinal (GI) tract has the most significant and far-reaching effect on human physiology. The maternal GI microbiota can decrease the risk of adverse pregnancy outcomes by modulating energy extraction, glucose metabolism, vitamin production, and host immunity essential for optimal maternal and neonatal health. Moreover, the maternal GI microbiota is thought to influence colonization of the fetus and neonate that may predispose them to different health trajectories. This article provides a basic understanding about the influence of the structure of the maternal GI microbiota, the fundamental role it plays during pregnancy, and the factors that influence the structure, and subsequently function, of the GI microbiota in the general and pregnant population. While only a small number of studies have examined this topic during pregnancy, the preponderance of the evidence supports the need to clarify baseline structure and function of GI microbiota and its associations with pregnancy outcomes. In addition, the results from the studies conducted in the general population can be extrapolated to pregnancy in many cases. This knowledge is essential for clinicians who need to understand the implications of the microbiota for disease and wellness in order to address the care factors that may adversely influence the GI microbiota during pregnancy.
Collapse
Affiliation(s)
- Seon-Yoon Chung
- Mennonite College of Nursing, Illinois State University, Normal, IL, USA
| | - Jacques Ravel
- School of Medicine, Institute for Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - Mary Regan
- School of Nursing, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
44
|
La Fata G, Rastall RA, Lacroix C, Harmsen HJM, Mohajeri MH, Weber P, Steinert RE. Recent Development of Prebiotic Research-Statement from an Expert Workshop. Nutrients 2017; 9:E1376. [PMID: 29261110 PMCID: PMC5748826 DOI: 10.3390/nu9121376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/22/2022] Open
Abstract
A dietary prebiotic is defined as 'a substrate that is selectively utilized by host microorganisms conferring a health benefit'. Although this definition evolved concomitantly with the knowledge and technological developments that accrued in the last twenty years, what qualifies as prebiotic continues to be a matter of debate. In this statement, we report the outcome of a workshop where academic experts working in the field of prebiotic research met with scientists from industry. The workshop covered three main topics: (i) evolution of the prebiotic concept/definition; (ii) the gut modeling in vitro technology PolyFermS to study prebiotic effects; and (iii) the potential novel microbiome-modulating effects associated with vitamins. The future of prebiotic research is very promising. Indeed, the technological developments observed in recent years provide scientists with powerful tools to investigate the complex ecosystem of gut microbiota. Combining multiple in vitro approaches with in vivo studies is key to understanding the mechanisms of action of prebiotics consumption and their potential beneficial effects on the host.
Collapse
Affiliation(s)
- Giorgio La Fata
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002 Basel, Switzerland.
| | - Robert A Rastall
- Department of Food and Nutritional Science, The University of Reading, Whiteknights Campus, Reading RG6 6AP, UK.
| | - Christophe Lacroix
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, CH-8092 Zürich, Switzerland.
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands.
| | - M Hasan Mohajeri
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002 Basel, Switzerland.
| | - Peter Weber
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002 Basel, Switzerland.
| | - Robert E Steinert
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002 Basel, Switzerland.
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, 8091 Zürich, Switzerland.
| |
Collapse
|
45
|
Roth-Walter F, Pacios LF, Bianchini R, Jensen-Jarolim E. Linking iron-deficiency with allergy: role of molecular allergens and the microbiome. Metallomics 2017; 9:1676-1692. [PMID: 29120476 DOI: 10.1039/c7mt00241f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atopic individuals tend to develop a Th2 dominant immune response, resulting in hyperresponsiveness to harmless antigens, termed allergens. In the last decade, epidemiological studies have emerged that connected allergy with a deficient iron-status. Immune activation under iron-deficient conditions results in the expansion of Th2-, but not Th1 cells, can induce class-switching in B-cells and hampers the proper activation of M2, but not M1 macrophages. Moreover, many allergens, in particular with the lipocalin and lipocalin-like folds, seem to be capable of binding iron indirectly via siderophores harboring catechol moieties. The resulting locally restricted iron-deficiency may then lead during immune activation to the generation of Th2-cells and thus prepare for allergic sensitization. Moreover, iron-chelators seem to also influence clinical reactivity: mast cells accumulate iron before degranulation and seem to respond differently depending on the type of the encountered siderophore. Whereas deferoxamine triggers degranulation of connective tissue-type mast cells, catechol-based siderophores reduce activation and degranulation and improve clinical symptoms. Considering the complex interplay of iron, siderophores and immune molecules, it remains to be determined whether iron-deficiencies are the cause or the result of allergy.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Rodolfo Bianchini
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
| | - Erika Jensen-Jarolim
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria. and Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Reed S, Neuman H, Glahn RP, Koren O, Tako E. Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based diet. PLoS One 2017; 12:e0182431. [PMID: 28796793 PMCID: PMC5552115 DOI: 10.1371/journal.pone.0182431] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Biofortification is a plant breeding method that introduces increased concentrations of minerals in staple food crops (e.g., legumes, cereal grains), and has shown success in alleviating insufficient Fe intake in various human populations. Unlike other strategies utilized to alleviate Fe deficiency, studies of the gut microbiota in the context of Fe biofortification have not yet been reported, although the consumption of Fe biofortified staple food crops has increased significantly over time. Hence, in this study, we performed a 6-week feeding trial in Gallus gallus (n = 14), aimed to investigate the alterations in the gut microbiome following administration of an Fe biofortified bean-based diet (biofortified, BFe) versus a bean based diet with poorly-bioavailable Fe (standard, SFe). Cream seeded carioca bean based diets were designed in an identical fashion to those used in a recent human clinical trial of Fe biofortified beans in Rwanda. We hypothesized that the different dietary Fe contents in the beans based diets will alter the composition and function of the intestinal microbiome. The primary outcomes were changes in the gut microbiome composition and function analyzed by 16S rRNA gene sequencing. We observed no significant changes in phylogenetic diversity between groups. There were significant differences in the composition of the microbiota between groups, with the BFe group harboring fewer taxa participating in bacterial Fe uptake, increased abundance of bacteria involved in phenolic catabolism, and increased abundance of beneficial butyrate-producing bacteria. Additionally, depletion of key bacterial pathways responsible for bacterial viability and Fe uptake suggest that improvements in Fe bioavailability, in addition to increases in Fe-polyphenol and Fe-phytate complexes due to biofortification, led to decreased concentrations of cecal Fe available for bacterial utilization. Our findings demonstrate that Fe biofortification may improve Fe status without negatively altering the structure and function of the gut microbiota, as is observed with other nutritional methods of Fe supplementation. These results may be used to further improve the efficacy and safety of future biofortification efforts in eradicating global Fe deficiency.
Collapse
Affiliation(s)
- Spenser Reed
- USDA-ARS Robert W. Holley Center for Agriculture & Health, Cornell University, Ithaca, NY, United States of America
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States of America
| | - Hadar Neuman
- Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Raymond P. Glahn
- USDA-ARS Robert W. Holley Center for Agriculture & Health, Cornell University, Ithaca, NY, United States of America
| | - Omry Koren
- Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Elad Tako
- USDA-ARS Robert W. Holley Center for Agriculture & Health, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
47
|
Statovci D, Aguilera M, MacSharry J, Melgar S. The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Front Immunol 2017; 8:838. [PMID: 28804483 PMCID: PMC5532387 DOI: 10.3389/fimmu.2017.00838] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Recent findings point toward diet having a major impact on human health. Diets can either affect the gut microbiota resulting in alterations in the host’s physiological responses or by directly targeting the host response. The microbial community in the mammalian gut is a complex and dynamic system crucial for the development and maturation of both systemic and mucosal immune responses. Therefore, the complex interaction between available nutrients, the microbiota, and the immune system are central regulators in maintaining homeostasis and fighting against invading pathogens at mucosal sites. Westernized diet, defined as high dietary intake of saturated fats and sucrose and low intake of fiber, represent a growing health risk contributing to the increased occurrence of metabolic diseases, e.g., diabetes and obesity in countries adapting a westernized lifestyle. Inflammatory bowel diseases (IBD) and asthma are chronic mucosal inflammatory conditions of unknown etiology with increasing prevalence worldwide. These conditions have a multifactorial etiology including genetic factors, environmental factors, and dysregulated immune responses. Their increased prevalence cannot solely be attributed to genetic considerations implying that other factors such as diet can be a major contributor. Recent reports indicate that the gut microbiota and modifications thereof, due to a consumption of a diet high in saturated fats and low in fibers, can trigger factors regulating the development and/or progression of both conditions. While asthma is a disease of the airways, increasing evidence indicates a link between the gut and airways in disease development. Herein, we provide a comprehensive review on the impact of westernized diet and associated nutrients on immune cell responses and the microbiota and how these can influence the pathology of IBD and asthma.
Collapse
Affiliation(s)
- Donjete Statovci
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Mònica Aguilera
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - John MacSharry
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
48
|
Iron Supplements Modulate Colon Microbiota Composition and Potentiate the Protective Effects of Probiotics in Dextran Sodium Sulfate-induced Colitis. Inflamm Bowel Dis 2017; 23:753-766. [PMID: 28368910 DOI: 10.1097/mib.0000000000001089] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Iron is an important nutrient for both the host and colonizing bacteria. Oral iron supplementation may impact the composition of the microbiota and can be particularly damaging to patients suffering from inflammatory bowel disease (IBD). However, patients with IBD may require iron supplementation to treat their anemia. METHODS We fed mice with diets supplemented with ferrous sulfate at different doses (5, 50, and 500 mg of iron/kg chow) and with different iron formulations (ferrous sulfate, ferrous bisglycinate and ferric ethylenediaminetetraacetic acid [FEDTA]), and analyzed the effects on the composition of the gut microbiota by 16S ribosomal RNA gene sequencing. Using the dextran sodium sulfate (DSS)-induced colitis mouse model, we investigated the effects of iron supplementation in colitis severity, as well as the use of the probiotic Escherichia coli Nissle 1917 (EcN) in combination with iron supplementation. RESULTS Iron supplementation at different doses induced shifts in the gut microbial communities and inferred metabolic pathways. However, depending on the iron formulation used in the diets, iron supplementation during dextran sodium sulfate-induced colitis was either beneficial (ferrous bisglycinate) or highly detrimental (FEDTA). Finally, the beneficial effect of the probiotic EcN in the dextran sodium sulfate-induced colitis model was potentiated by oral iron supplementation with ferrous sulfate. CONCLUSIONS These results show that the iron formulations used to treat iron deficiency influence the gut microbiota and colitis in mice and suggest that distinct iron compounds may be of particular relevance to patients with IBD. In addition, the beneficial action of probiotics in IBD may be enhanced by oral iron supplementation.
Collapse
|
49
|
Ellermann M, Arthur JC. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med 2017; 105:68-78. [PMID: 27780750 PMCID: PMC5401654 DOI: 10.1016/j.freeradbiomed.2016.10.489] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
Iron is an essential micronutrient for most life forms including the majority of resident bacteria of the microbiota and their mammalian hosts. Bacteria have evolved numerous mechanisms to competitively acquire iron within host environments, such as the secretion of small molecules known as siderophores that can solubilize iron for bacterial use. However, siderophore biosynthesis and acquisition is not a capability equally harbored by all resident bacteria. Moreover, the structural diversity of siderophores creates variability in the susceptibility to host mechanisms that serve to counteract siderophore-mediated iron acquisition and limit bacterial growth. As a result, the differential capabilities to acquire iron among members of a complex microbial community carry important implications for the growth and function of resident bacteria. Siderophores can also directly influence host function by modulating cellular iron homeostasis, further providing a mechanism by which resident bacteria may influence their local environment at the host-microbial interface. This review will explore the putative mechanisms by which siderophore production by resident bacteria in the intestines may influence microbial community dynamics and host-bacterial interactions with important implications for pathogen- and microbiota-driven diseases including infection, inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
50
|
Yu H, Wu B, Zhang XX, Liu S, Yu J, Cheng S, Ren HQ, Ye L. Arsenic Metabolism and Toxicity Influenced by Ferric Iron in Simulated Gastrointestinal Tract and the Roles of Gut Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7189-97. [PMID: 27280682 DOI: 10.1021/acs.est.6b01533] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iron (Fe) is a common trace element in drinking water. However, little is known about how environmental concentrations of Fe affect the metabolism and toxicity of arsenic (As) in drinking water. In this study, influence of Fe at drinking water-related concentrations (0.1, 0.3, and 3 mg Fe (total)/L) on As metabolism and toxicity, and the roles of gut microbiota during this process were investigated by using in vitro Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Results showed that Fe had ability to decrease bioaccessible As by coflocculation in small intestine. 0.1 and 0.3 mg/L Fe significantly increased As methylation in simulated transverse and descending colon. Gut microbiota played an important role in alteration of As species, and Fe could affect As metabolism by changing the gut microbiota. Bacteroides, Clostridium, Alistipes, and Bilophila had As resistance and potential ability to methylate As. Cytotoxicity assays of effluents from simulated colons showed that the low levels of Fe decreased As toxicity on human hepatoma cell line HepG2, which might be due to the increase of methylated As. When assessing the health risk of As in drinking water, the residual Fe should be considered.
Collapse
Affiliation(s)
- Haiyan Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Shupei Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| |
Collapse
|