1
|
Wang X, Zhou T, Huang S, Zhou H, Ling Y, Chen T, Zhang S, Wang W, Wu C, Yin W. Screening and validation of active components in Rosa roxburghii Tratt for anti-pulmonary fibrosis based on a spectrum-effect relationship. Int Immunopharmacol 2025; 153:114536. [PMID: 40154178 DOI: 10.1016/j.intimp.2025.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Rosa roxburghii Tratt (RRT), a fruit with dual medicinal and nutritional applications, exhibits therapeutic potential against pulmonary fibrosis, yet the specific bioactive constituents underlying this effect remain uncharacterized. This study employed an integrated spectrum-effect relationship to systematically identify RRT's principal anti-pulmonary fibrosis components. Our findings demonstrate that five different polar extracts of RRT (RRTEs) differentially attenuated bleomycin-induced pulmonary fibrosis in murine models, with the ethyl acetate fraction (EAE) showing superior therapeutic efficacy. HPLC-Q-Exactive Orbitrap MS identified 56 compounds, and screened out four active ingredients related to anti-pulmonary fibrosis by spectrum-effect relationship. In vitro experiments revealed that ellagic acid, gallic acid and syringic acid inhibited fibroblast migration, attenuated intracellular ROS overproduction, and downregulated the expression levels of α-SMA and collagen I. In summary, we established for the first time a spectrum-effect relationship between RRT and pulmonary fibrosis, elucidated the key components, and provided a foundation for future clinical applications.
Collapse
Affiliation(s)
- Xiaomeng Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shaolin Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Heting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yihan Ling
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Chen
- Chengdu Institute of Product Quality Inspection Co., Ltd, Chengdu 610015, China
| | - Shuwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenxi Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chuan Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Wu X, Xiao X, Su Y, Zhang Y, Li G, Wang F, Du Q, Yang H. Use quercetin for pulmonary fibrosis: a preclinical systematic review and meta-analysis. Inflammopharmacology 2025; 33:1879-1897. [PMID: 40038212 DOI: 10.1007/s10787-025-01678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an age-related interstitial lung disease, which lacks effective drug treatment at present. Quercetin has been shown to have favorable anti-inflammatory and anti-fibrotic properties, and preliminary evidence suggests its potential efficacy and tolerability in PF patients. However, a comprehensive systematic review and evaluation of the protective effects and potential mechanisms of quercetin in PF models remains to be completed. Therefore, we conducted this study. METHODS The PubMed, Cochrane Library, Embase, and Web of Science databases were searched up to the April 1, 2024. CAMARADES was the methodological quality assessment tool. And statistical analyses were conducted with R and Stata 16.0. Origin was used for a three-dimensional (3D) dosage-intervention duration-efficacy model for quercetin treatment of PF. RESULTS A total of 20 studies, encompassing 44 independent experiments and involving 1019 animals, were included in the analysis. Meta-analysis revealed that quercetin significantly mitigated lung pathological tissue scores and the expression of lung fibrosis markers in PF animal models. Furthermore, quercetin significantly ameliorated inflammatory responses, oxidative stress, epithelial-mesenchymal transition and myofibroblast activation, cell senescence and apoptosis, and the markers expression of extracellular matrix (ECM) deposition. Quercetin did not show significant hepatic and nephrotoxicity. The 3D dosage-intervention duration-efficacy model indicated that a dosing period over 20 days and dosages range of 5-100 mg/kg were appropriate modalities. CONCLUSION Herein, our study highlights the potential of quercetin in the treatment of PF and the available mechanisms.
Collapse
Affiliation(s)
- Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuchen Su
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuwei Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ganggang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Quanyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Han Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
3
|
Li Z, Yang Y, Gao F. Monomeric compounds from natural products for the treatment of pulmonary fibrosis: a review. Inflammopharmacology 2024; 32:2203-2217. [PMID: 38724690 DOI: 10.1007/s10787-024-01485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Pulmonary fibrosis (PF) is the end stage of lung injury and chronic lung diseases that results in diminished lung function, respiratory failure, and ultimately mortality. Despite extensive research, the pathogenesis of this disease remains elusive, and effective therapeutic options are currently limited, posing a significant clinical challenge. In addition, research on traditional Chinese medicine and naturopathic medicine is hampered by several complications due to complex composition and lack of reference compounds. Natural product monomers, possessing diverse biological activities and excellent safety profiles, have emerged as potential candidates for preventing and treating PF. The effective anti-PF ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, and alkaloids. Specifically, these monomeric compounds can attenuate inflammatory response, oxidative stress, and other physiopathological processes of the lung through many signaling pathways. They also improve pulmonary factors. Additionally, they ameliorate epithelial-mesenchymal transition (EMT) and fibroblast-myofibroblast transdifferentiation (FMT) by regulating multiple signal amplifiers in the lungs, thereby mitigating PF. This review highlights the significant role of monomer compounds derived from natural products in reducing inflammation, oxidative stress, and inhibiting EMT process. The article provides comprehensive information and serves as a solid foundation for further exploration of new strategies to harness the potential of botanicals in the treatment of PF.
Collapse
Affiliation(s)
- Zhuqing Li
- University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China
| | - Yanyong Yang
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| | - Fu Gao
- University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
4
|
Wu X, Li W, Luo Z, Chen Y. Exploring the efficacy and molecular mechanism of Danhong injection comprehensively in the treatment of idiopathic pulmonary fibrosis by combining meta-analysis, network pharmacology, and molecular docking methods. Medicine (Baltimore) 2024; 103:e38133. [PMID: 38728523 PMCID: PMC11081554 DOI: 10.1097/md.0000000000038133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Danhong injection, a compound injection of Chinese herbal medicine, has been widely used in idiopathic pulmonary fibrosis (IPF) at present as an adjuvant treatment. However, the clinical efficacy and molecular mechanism of IPF are still unclear. This study will evaluate and explore the clinical efficacy and molecular mechanism of Danhong injection in the treatment of IPF. METHODS In meta-analysis, the computer was used to search 8 databases (PubMed, EMbase, CENTRAL, MEDLINE, CBM, CNKI, WanFang, and VIP) to collect the RCTs, and RevMan 5.3 and Stata 14.0 were used for statistical analysis. It has been registered on PROSPERO: CRD42020221096. In network pharmacology, the main chemical components and targets of the chemical components of Danhong injection were obtained in TCMSP and Swiss Target Prediction databases. The main targets of IPF were obtained through Gencards, Disgenet, OMIM, TTD, and DRUGBANK databases. The String platform was used to construct PPI networks. Cytoscape 3.8.2 was used to construct the "Danhong components - IPF targets-pathways" network. The molecular docking verification was conducted by Auto Dock. RESULTS Twelve RCTs were finally included with a total of 896 patients. The meta-analysis showed that Danhong injection could improve the clinical efficiency ([OR] = 0.25, 95% CI [0.15, 0.41]), lung function, arterial blood gas analysis, inflammatory cytokines, and serum cytokines associated with pulmonary fibrosis of IPF patients, respectively (P < .05). The core active components of Danhong injection on IPF were Luteolin, Quercetin, and Kaempferol, and the core targets were PTGS2, AR, ESR1, PPARG, and RELA. Danhong injection mainly improved IPF through PD-L1 expression and PD-1 checkpoint path in cancer, pathways in cancer, PI3K-Akt signaling pathway, etc. CONCLUSION These results provided scientific basis for the clinical use of Danhong injection for the treatment of IPF, and provided a new direction to explore the potential mechanism of action of Danhong injection.
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhenliang Luo
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
5
|
Kabatas GS, Ertas B, Sen A, Sener G, Ercan F, Akakin D. Histological and biochemical effects of an ethanolic extract of Myrtus communis leaf on the pancreases of rats fed high fat diets. Biotech Histochem 2024; 99:204-215. [PMID: 38805000 DOI: 10.1080/10520295.2024.2355212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
We investigated the effects of an ethanolic extract of Myrtus communis subsp. communis (MC) leaves on the pancreases of rats fed with a high fat diet (HFD). Wistar albino rats were fed either with standard lab chow (Control group) or with a 45% fat diet (HFD and HFD+MC groups) for 4 months, with the MC extract (100 mg/kg) being administered by orogastric gavage to rats in the HFD+MC group during the last month. Blood and pancreas samples were collected from all experimental groups at the end of the study. Insulin and leptin levels, and the lipid profile, were analyzed in the blood serum. Pancreatic injury was assessed histologically. Insulin, nuclear factor kappa beta (NF-κB), and alpha-smooth muscle actin (α-SMA) were assessed using immunohistochemistry. Apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) immunohistochemistry. In addition, oxidant/antioxidant activity was analyzed by biochemical methods. Increased body weight, serum insulin and leptin levels, blood glucose level and pancreatic tissue malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, myeloperoxidase (MPO) activity and decreased tissue glutathione (GSH) level were observed in the HFD group compared to the Control group, in addition to dyslipidemia. An increased histopathological damage score, pancreatic islet area, insulin, TUNEL, NF-κB and α-SMA immunoreactivity were seen in animals from the HFD group compared to the Control group. However, such pathological changes were reduced in the HFD+MC group. Our data indicate further investigation of MC extract as a therapeutic adjuvant for HFD-induced pancreatic injury, acting via anti-inflammatory and antioxidant mechanisms, is worth carrying out.
Collapse
Affiliation(s)
- Gul Sinemcan Kabatas
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Busra Ertas
- Department of Pharmacology, School of Pharmacy, Marmara University, Istanbul, Turkey
| | - Ali Sen
- Department of Pharmacognosy, School of Pharmacy, Marmara University, Istanbul, Turkey
| | - Goksel Sener
- Department of Pharmacology, School of Pharmacy, Fenerbahce University, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Dilek Akakin
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Ivanov EV, Akhmetshina MR, Gizatulina AR, Gulyaev MV, Pavlova OS, Pirogov YA, Gavrilova SA. Dihydroquercetin-Loaded Liposomes Change Fibrous Tissue Distribution in the Bleomycin-Induced Fibrosis Model. Acta Naturae 2024; 16:40-49. [PMID: 39188264 PMCID: PMC11345094 DOI: 10.32607/actanaturae.27440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 08/28/2024] Open
Abstract
The effects of the antioxidant dihydroquercetin (DHQ) were studied in a model of pulmonary fibrosis. DHQ penetration into the lesion was facilitated by encapsulation into liposomes. Pulmonary fibrosis was modeled in rats by intratracheal injection of bleomycin. For the first 7 days, the rats in the treatment group received a liposomal emulsion with DHQ, while in the comparator group rats received saline. In the control group, intact rats did not receive any exposure. Thirty days after the initiation, lung function and the pathological lesion volume were assessed by 7T 1H MRI and the lungs were taken for histologic examination. The proportion of fibrous tissue was counted by Masson's trichrome staining. Both experimental groups were characterized by a significant functional pulmonary deficiency, with low mortality and a small lesion area. In the rats treated with DHQ, the distribution of fibrous tissue was significantly altered. Significantly more fibrous tissue was found in the center of the lesion, while significantly less was in the interstitial space of alveoli. Lung density at the same time was lower in the treated lungs. Dihydroquercetin encapsulated in liposomes affects the mechanisms of bleomycin-induced pulmonary fibrosis progression in rats. While accelerated fibrosis of the lesion can restrict inflammatory processes, delayed fibrosis of the interstitium can further improve the functional state of the lungs.
Collapse
Affiliation(s)
- E. V. Ivanov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - M. R. Akhmetshina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - A. R. Gizatulina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - M. V. Gulyaev
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - O. S. Pavlova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - Y. A. Pirogov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - S. A. Gavrilova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| |
Collapse
|
7
|
Reyes-Jiménez E, Ramírez-Hernández AA, Santos-Álvarez JC, Velázquez-Enríquez JM, González-García K, Carrasco-Torres G, Villa-Treviño S, Baltiérrez-Hoyos R, Vásquez-Garzón VR. Coadministration of 3'5-dimaleamylbenzoic acid and quercetin decrease pulmonary fibrosis in a systemic sclerosis model. Int Immunopharmacol 2023; 122:110664. [PMID: 37481854 DOI: 10.1016/j.intimp.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by microvascular compromise and fibrosis. Pulmonary fibrosis, a prominent pulmonary complication in SSc, results in impaired lung function due to excessive accumulation of extracellular matrix components. This study aimed to investigate the effects of coadministration of 3'5-dimaleamylbenzoic acid (AD) and quercetin (Q) on key events in the development and maintenance of pulmonary fibrosis in a bleomycin (BLM)-induced SSc mouse model. The model was induced in CD1 mice through BLM administration using osmotic mini pumps. Subsequently, mice were treated with AD (6 mg/kg) plus Q (10 mg/kg) and sacrificed at 21 and 28 days post BLM administration. Histopathological analysis was performed by hematoxylin and eosin staining and Masson's trichrome staining. Immunohistochemistry was used to determine the expression of proliferation, proinflammatory, profibrotic and oxidative stress markers. The coadministration of AD and Q during the fibrotic phase of the BLM-induced SSc model led to attenuated histological alterations and pulmonary fibrosis, reflected in the recovery of alveolar spaces (30 %, p < 0.01) and decreased collagen deposits (50 %, p < 0.001). This effect was achieved by decreasing the expression of the proliferative markers cyclin D1 (87 %, p < 0.0001) and PCNA (43 %, p < 0.0001), inflammatory markers COX-2 (71 %, p < 0.0001) and iNOS (84 %, p < 0.0001), profibrotic markers α-SMA (80 %, p < 0.0001) and TGF-β (81 %, p < 0.0001) and the lipid peroxidation marker 4-HNE (43 %, p < 0.01). The antifibrotic effect of this combined therapy is associated with the regulation of proliferation, inflammation and oxidative stress, mechanisms involved in the development and progression of the fibrotic process. Our novel therapeutic strategy is the first approach to propose the use of the combination of prooxidant and antioxidant compounds as a potential strategy for SSc-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Karina González-García
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Gabriela Carrasco-Torres
- Centro de Investigación en Ciencias Aplicadas y Tecnología Avanzada, Unidad Morelos, Instituto Politécnico Nacional, Morelos, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico.
| |
Collapse
|
8
|
Genovese T, Duranti A, Monaco F, Siracusa R, Fusco R, Impellizzeri D, D’Amico R, Cordaro M, Cuzzocrea S, Di Paola R. Inhibition of Fatty Acid Amide Hydrolase (FAAH) Regulates NF-kb Pathways Reducing Bleomycin-Induced Chronic Lung Inflammation and Pulmonary Fibrosis. Int J Mol Sci 2023; 24:10125. [PMID: 37373275 PMCID: PMC10298572 DOI: 10.3390/ijms241210125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The deadly interstitial lung condition known as idiopathic pulmonary fibrosis (IPF) worsens over time and for no apparent reason. The traditional therapy approaches for IPF, which include corticosteroids and immunomodulatory drugs, are often ineffective and can have noticeable side effects. The endocannabinoids are hydrolyzed by a membrane protein called fatty acid amide hydrolase (FAAH). Increasing endogenous levels of endocannabinoid by pharmacologically inhibiting FAAH results in numerous analgesic advantages in a variety of experimental models for pre-clinical pain and inflammation. In our study, we mimicked IPF by administering intratracheal bleomycin, and we administered oral URB878 at a dose of 5 mg/kg. The histological changes, cell infiltration, pro-inflammatory cytokine production, inflammation, and nitrosative stress caused by bleomycin were all reduced by URB878. Our data clearly demonstrate for the first time that the inhibition of FAAH activity was able to counteract not only the histological alteration bleomycin-induced but also the cascade of related inflammatory events.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, Italy
| | - Francesco Monaco
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
9
|
Ahmed S, Mansour M, Ishak RAH, Mortada ND. Customizable Resveratrol Spray-dried Micro-composites for Inhalation as a Promising Contender for Treatment of Idiopathic Pulmonary Fibrosis. Int J Pharm 2023:123117. [PMID: 37315636 DOI: 10.1016/j.ijpharm.2023.123117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
The past decades have witnessed tremendous expansion in utilization of plant-derived medicines as resveratrol (RES) in treating several diseases like idiopathic pulmonary fibrosis (IPF). RES can exhibit its role in treating IPF via its outstanding antioxidant and anti-inflammatory activities. The goal of this work was to formulate RES-loaded spray-dried composite microparticles (SDCMs) suitable for pulmonary delivery via dry powder inhaler (DPI). They were prepared by spray drying of a previously prepared RES-loaded bovine serum albumin nanoparticles (BSA NPs) dispersion using different carriers. RES-loaded BSA NPs, prepared by the desolvation technique, acquired suitable particle size of 177.67±0.95 nm and entrapment efficiency of 98.7±0.35% with perfectly uniform size distribution and high stability. Considering the attributes of the pulmonary route, NPs were co-spray dried with compatible carriers viz. mannitol, dextran, trehalose, leucine, glycine, aspartic acid, and glutamic acid to fabricate SDCMs. All formulations showed suitable mass median aerodynamic diameter less than 5 µm; that is suitable for deep lung deposition. However, the best aerosolization behavior was attained from using leucine with fine particle fraction (FPF) of 75.74%, followed by glycine with FPF of 54.7%. Finally, a pharmacodynamic study was conducted on bleomycin-induced mice, and it strongly revealed the role of the optimized formulations in alleviating PF through suppressing the levels of hydroxyproline, tumor necrosis factor-α and matrix metalloproteinase-9 with obvious improvements in the treated lung histopathology. These findings indicate that in addition to leucine, the glycine amino acid, which is not commonly used yet, is very promising in the formulation of DPIs.
Collapse
Affiliation(s)
- Sara Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Postal Code 11566, Cairo, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Postal Code 11566, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Postal Code 11566, Cairo, Egypt.
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Postal Code 11566, Cairo, Egypt
| |
Collapse
|
10
|
Liu X, Wang X, Chang J, Zhang H, Cao P. Landscape analysis and overview of the literature on oxidative stress and pulmonary diseases. Front Pharmacol 2023; 14:1190817. [PMID: 37305540 PMCID: PMC10250599 DOI: 10.3389/fphar.2023.1190817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress is caused by an imbalance in oxidant/antioxidant processes and is a critical process in pulmonary diseases. As no truly effective therapies exist for lung cancer, lung fibrosis and chronic obstructive pulmonary disease (COPD), at present, it is important to comprehensively study the relationship between oxidative stress and pulmonary diseases to identify truly effective therapeutics. Since there is no quantitative and qualitative bibliometric analysis of the literature in this area, this review provides an in-depth analysis of publications related to oxidative stress and pulmonary diseases over four periods, including from 1953 to 2007, 2008 to 2012, 2013 to 2017, and 2018 to 2022. Interest in many pulmonary diseases has increased, and the mechanisms and therapeutic drugs for pulmonary diseases have been well analyzed. Lung injury, lung cancer, asthma, COPD and pneumonia are the 5 most studied pulmonary diseases related to oxidative stress. Inflammation, apoptosis, nuclear factor erythroid 2 like 2 (NRF2), mitochondria, and nuclear factor-κB (NF-κB) are rapidly becoming the most commonly used top keywords. The top thirty medicines most studied for treating different pulmonary diseases were summarized. Antioxidants, especially those targeting reactive oxygen species (ROS) in specific organelles and certain diseases, may be a substantial and necessary choice in combined therapies rather than acting as a single "magic bullet" for the effective treatment of refractory pulmonary diseases.
Collapse
|
11
|
Franco GA, Interdonato L, Cordaro M, Cuzzocrea S, Di Paola R. Bioactive Compounds of the Mediterranean Diet as Nutritional Support to Fight Neurodegenerative Disease. Int J Mol Sci 2023; 24:7318. [PMID: 37108480 PMCID: PMC10139089 DOI: 10.3390/ijms24087318] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress, and neuronal depletion. They include selective malfunction and progressive loss of neurons, glial cells, and neural networks in the brain and spinal cord. There is an urgent need to develop new and more effective therapeutic strategies to combat these devastating diseases because, today, there is no treatment that can cure degenerative diseases; however, we have many symptomatic treatments. Current nutritional approaches are beginning to reflect a fundamental change in our understanding of health. The Mediterranean diet may have a protective effect on the neurodegenerative process because it is rich in antioxidants, fiber, and omega-3 polyunsaturated fatty acids. Increasing knowledge regarding the impact of diet on regulation at the genetic and molecular levels is changing the way we consider the role of nutrition, resulting in new dietary strategies. Natural products, thanks to their bioactive compounds, have recently undergone extensive exploration and study for their therapeutic potential for a variety of diseases. Targeting simultaneous multiple mechanisms of action and a neuroprotection approach with the diet could prevent cell death and restore function to damaged neurons. For these reasons, this review will be focused on the therapeutic potential of natural products and the associations between the Mediterranean-style diet (MD), neurodegenerative diseases, and markers and mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Gianluca Antonio Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
12
|
Shimada M, Koyama Y, Kobayashi Y, Kobayashi H, Shimada S. Effect of the new silicon-based agent on the symptoms of interstitial pneumonitis. Sci Rep 2023; 13:5707. [PMID: 37029197 PMCID: PMC10080516 DOI: 10.1038/s41598-023-32745-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Interstitial pneumonia (IP) is a collective term for diseases whose main lesion is fibrosis of the pulmonary interstitium, and the prognosis associated with acute exacerbation of these conditions is often poor. Therapeutic agents are limited to steroids, immunosuppressants, and antifibrotic drugs, which and have many side effects; therefore, the development of new therapeutic agents is required. Because oxidative stress contributes to lung fibrosis in IP, optimal antioxidants may be effective for the treatment of IP. Silicon (Si)-based agents, when administered orally, can continuously generate a large amount of antioxidant hydrogen in the intestinal tract. In this study, we investigated the effect of our Si-based agent on methotrexate-induced IP, using the IP mouse models. Pathological analysis revealed that interstitial hypertrophy was more significantly alleviated in the Si-based agent-treated group than in the untreated group (decreased by about 22%; P < 0.01). Moreover, additional morphological analysis demonstrated that infiltration of immune cells and fibrosis in the lungs were significantly inhibited by treatment with the Si-based agent. Furthermore, Si-based agent reduced oxidative stress associated with IP by increasing blood antioxidant activity. (increased by about 43%; P < 0.001). Taken together, these results suggest that Si-based agents can be effective therapeutic agents for IP.
Collapse
Affiliation(s)
- Masato Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| | | | | | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan
| |
Collapse
|
13
|
Mangiferin relieves CCl4-induced liver fibrosis in mice. Sci Rep 2023; 13:4172. [PMID: 36914687 PMCID: PMC10011547 DOI: 10.1038/s41598-023-30582-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Hepatic fibrosis is a late stage process of many chronic liver diseases. Blocking the fibrosis process will be beneficial to the treatment and recovery of the diseases. Mangiferin has many pharmacological activities. Recently, it has been reported that mangiferin may relieve tissue fibrosis, including renal, myocardial, pulmonary fibrosis via anti-inflammatory and anti-oxidative effects in animal models. Here, we investigate the effects of mangiferin on CCl4-induced liver fibrosis and the underlying mechanism in mice. Thirty-two male C57BL/6 mice were randomly divided into 4 groups (n = 8 in each group), injected with carbon tetrachloride (10% CCl4) for 8 weeks, and oral administrated with mangiferin (50 mg/kg or 100 mg/kg) from the fifth week. The serum levels of ALT, AST were analyzed to evaluate liver function. H&E, Masson's trichrome and Sirius red staining were used to assess liver morphology and the degree of liver fibrosis. Quantitative RT-PCR and Western blot were used to assay the gene expression and protein levels. The results showed that mangiferin alleviated the serum levels of AST, ALT, ALP, TBA and TBIL, reduced liver lesions, prevented hepatic parenchymal necrosis, and ameliorated collagen accumulation in the liver of CCl4-treated mice. Meanwhile, mangiferin inhibited the expression of inflammatory genes IL-6 and IL-1β, fibrogenic genes α-SMA, TGF-β and MMP-2 and bile acid metabolism genes ABCB4, ABCB11, SULT2A1 in the liver of CCl4-treated mice. Furthermore, mangiferin reduced collagen accumulation and HSCs activation, inhibited the p-IκB and p-p65 protein levels. Our results suggest that mangiferin could alleviate liver fibrosis in CCl4-treated mice through inhibiting NF-κB signaling, and mango consuming may have beneficial effects to hepatic fibrosis.
Collapse
|
14
|
Zhou Y, Chen L, Han H, Xiong B, Zhong R, Jiang Y, Liu L, Sun H, Tan J, Cheng X, Schroyen M, Gao Y, Zhao Y, Zhang H. Taxifolin increased semen quality of Duroc boars by improving gut microbes and blood metabolites. Front Microbiol 2022; 13:1020628. [PMID: 36312933 PMCID: PMC9614168 DOI: 10.3389/fmicb.2022.1020628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Taxifolin (TAX), as a natural flavonoid, has been widely focused on due to its strong anti-oxidation, anti-inflammation, anti-virus, and even anti-tumor activity. However, the effect of TAX on semen quality was unknown. The purpose of this study was to analyze the beneficial influences of adding feed additive TAX to boar semen in terms of its quality and potential mechanisms. We discovered that TAX increased sperm motility significantly in Duroc boars by the elevation of the protein levels such as ZAG, PKA, CatSper, and p-ERK for sperm quality. TAX increased the blood concentration of testosterone derivatives, antioxidants such as melatonin and betaine, unsaturated fatty acids such as DHA, and beneficial amino acids such as proline. Conversely, TAX decreased 10 different kinds of bile acids in the plasma. Moreover, TAX increased "beneficial" microbes such as Intestinimonas, Coprococcus, Butyrivibrio, and Clostridium_XlVa at the Genus level. However, TAX reduced the "harmful" intestinal bacteria such as Prevotella, Howardella, Mogibacterium, and Enterococcus. There was a very close correlation between fecal microbes, plasma metabolites, and semen parameters by the spearman correlation analysis. Therefore, the data suggest that TAX increases the semen quality of Duroc boars by benefiting the gut microbes and blood metabolites. It is supposed that TAX could be used as a kind of feed additive to increase the semen quality of boars to enhance production performance.
Collapse
Affiliation(s)
- Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bohui Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Jiang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, China
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, China
| | | | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, Jilin, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Chronic Exposure to Endocrine Disruptor Vinclozolin Leads to Lung Damage Via Nrf2–Nf-kb Pathway Alterations. Int J Mol Sci 2022; 23:ijms231911320. [PMID: 36232623 PMCID: PMC9569619 DOI: 10.3390/ijms231911320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting substances (EDS) are common and pervasive in our environment and pose a serious risk to both human and animal health. Endocrine-disrupting compounds (EDCs) have been associated with a variety of detrimental human health effects, including respiratory issues, as a result of their ability to disrupt cell physiology. Vinclozolin ((RS)-3-(3,5-Dichlorophenyl)-5-methyl-5-vinyloxazolidine-2,4-dione) is a common dicarboximide fungicide used to treat plant diseases. Several studies have analyzed the effects of vinclozolin exposure on the reproductive system, but less is known about its effect on other organs such as the lung. Mice were exposed for 28 days to orally administered vinclozolin at a dose of 100 mg/kg. Vinclozolin exposure induced histological alterations and collagen depositions in the lung. Additionally, vinclozolin induced inflammation and oxidative stress that led to lung apoptosis. Our study demonstrates for the first time that the toxicological effects of vinclozolin are not limited to the reproductive system but also involve other organs such as the lung.
Collapse
|
16
|
Cherrez-Ojeda I, Cortés-Telles A, Gochicoa-Rangel L, Camacho-Leon G, Mautong H, Robles-Velasco K, Faytong-Haro M. Challenges in the Management of Post-COVID-19 Pulmonary Fibrosis for the Latin American Population. J Pers Med 2022; 12:1393. [PMID: 36143178 PMCID: PMC9501763 DOI: 10.3390/jpm12091393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
This commentary aims to highlight some of the major issues (with possible solutions) that the Latin American region is currently dealing with in managing post-COVID-19 pulmonary fibrosis. Overall, there is little evidence for successful long-term COVID-19 follow-up treatment. The lack of knowledge regarding proper treatment is exacerbated in Latin America by a general lack of resources devoted to healthcare, and a lack of availability and access to multidisciplinary teams. The discussion suggests that better infrastructure (primarily multicenter cohorts of COVID-19 survivors) and well-designed studies are required to develop scientific knowledge to improve treatment for the increasing prevalence of pulmonary fibrosis in Latin America.
Collapse
Affiliation(s)
- Ivan Cherrez-Ojeda
- School of Health, Universidad de Especialidades Espíritu Santo, Samborondón 0901952, Guayas, Ecuador
- Respiralab Research Group, Guayaquil 090512, Guayas, Ecuador
| | - Arturo Cortés-Telles
- Departamento de Neumología y Cirugía de Tórax, Hospital Regional de Alta Especialidad de Yucatán, Mérida 97133, Mexico
| | - Laura Gochicoa-Rangel
- Department of Respiratory Physiology, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico
| | - Génesis Camacho-Leon
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL 33143, USA
| | - Hans Mautong
- School of Health, Universidad de Especialidades Espíritu Santo, Samborondón 0901952, Guayas, Ecuador
- Respiralab Research Group, Guayaquil 090512, Guayas, Ecuador
| | - Karla Robles-Velasco
- School of Health, Universidad de Especialidades Espíritu Santo, Samborondón 0901952, Guayas, Ecuador
- Respiralab Research Group, Guayaquil 090512, Guayas, Ecuador
| | - Marco Faytong-Haro
- School of Health, Universidad de Especialidades Espíritu Santo, Samborondón 0901952, Guayas, Ecuador
- Sociology and Demography Department, The Pennsylvania State University, University Park, PA 16802, USA
- Ecuadorian Development Research Lab, Daule 090656, Guayas, Ecuador
| |
Collapse
|
17
|
Wang H, Nie J, Li P, Zhang X, Wang Y, Zhang W, Zhang W, Tang B. Exploring Idiopathic Pulmonary Fibrosis Biomarker by Simultaneous Two-Photon Fluorescence Imaging of Cysteine and Peroxynitrite. Anal Chem 2022; 94:11272-11281. [PMID: 35924865 DOI: 10.1021/acs.analchem.2c01866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) has been characterized as a chronic inflammatory disease that leads to irreversible damage to pulmonary function. However, there is no specific IPF biomarker that can be used to distinguish IPF and not pneumonia. Endoplasmic reticulum (ER) stress is prominent in IPF. To search for a specific biomarker of IPF, we developed two ER-targeting two-photon (TP) fluorescent probes, TPER-ONOO and TPER-Cys, for peroxynitrite (ONOO-) and cysteine (Cys) imaging, respectively. A significant increase in Cys levels in the lungs was discovered only in mice with IPF, which implied that Cys might be an IPF biomarker candidate. Furthermore, we uncovered the mechanism of glutathione (GSH) deficiency in IPF, which was not due to Cys shortage but instead was attributable to impaired glutamate cysteine ligase and glutathione synthetase activities via ONOO--induced post-transcriptional modification. This work has potential to provide a new method for IPF early diagnosis and drug efficacy evaluation.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Junwei Nie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiaoting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
18
|
Oxidation Stress as a Mechanism of Aging in Human Erythrocytes: Protective Effect of Quercetin. Int J Mol Sci 2022; 23:ijms23147781. [PMID: 35887126 PMCID: PMC9323120 DOI: 10.3390/ijms23147781] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
Aging is a multi-factorial process developing through a complex net of interactions between biological and cellular mechanisms and it involves oxidative stress (OS) as well as protein glycation. The aim of the present work was to verify the protective role of Quercetin (Q), a polyphenolic flavonoid compound, in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. The anion-exchange capability through the Band 3 protein (B3p) measured by the rate constant of the SO42− uptake, thiobarbituric acid reactive substances (TBARS) levels—a marker of lipid peroxidation—total sulfhydryl (-SH) groups, glycated hemoglobin (A1c), and a reduced glutathione/oxidized glutathione (GSH-GSSG) ratio were determined following the exposure of erythrocytes to 100 mM d-Gal for 24 h, with or without pre-incubation with 10 µM Q. The results confirmed that d-Gal activated OS pathways in human erythrocytes, affecting both membrane lipids and proteins, as denoted by increased TBARS levels and decreased total sulfhydryl groups, respectively. In addition, d-Gal led to an acceleration of the rate constant of the SO42− uptake through the B3p. Both the alteration of the B3p function and oxidative damage have been improved by pre-treatment with Q, which preferentially ameliorated lipid peroxidation rather than protein oxidation. Moreover, Q prevented glycated A1c formation, while no protective effect on the endogenous antioxidant system (GSH-GSSG) was observed. These findings suggest that the B3p could be a novel potential target of antioxidant treatments to counteract aging-related disturbances. Further studies are needed to confirm the possible role of Q in pharmacological strategies against aging.
Collapse
|
19
|
Wang L, Zhu T, Feng D, Li R, Zhang C. Polyphenols from Chinese Herbal Medicine: Molecular Mechanisms and Therapeutic Targets in Pulmonary Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1063-1094. [PMID: 35475972 DOI: 10.1142/s0192415x22500434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pulmonary fibrosis (PF) is a highly confounding and fatal pathological process with finite treatment options. Multiple factors such as oxidative and immune/inflammation involve key pathological processes in chronic lung disease, and their intimate interactions mediate chronic lung damage, denudation of the alveolar epithelium, hyperproliferation of type II alveolar epithelial cells (AECIIs), proliferation and differentiation of fibroblasts, and the permeability of microvessels. We reviewed the classic mechanism of PF and highlighted a few emerging mechanisms for studying complex networks in lung disease pathology. Polyphenols, as a multi-target drug, has excellent potential in the treatment of pulmonary fibrosis. We then reviewed recent advances in discovering phenolic compounds from fruits, tea, and medical herbs with the bioactivities of simultaneously regulating multiple factors (e.g., oxidative stress, inflammation, autophagy, apoptosis, pyroptosis) for minimizing pulmonary fibrosis injury. These compounds include resveratrol, curcumin, salvianolic acid B, epigallocatechin-3-gallate, gallic acid, corilagin. Each phenolic compound can exert its anti-PF effect through various mechanisms, and the signaling pathways involved in different phenolic compounds are not the same. This review summarized the available evidence on phenolic compounds' effectiveness in pulmonary diseases and explored the molecular mechanisms and therapeutic targets of phenolic compounds from Chinese herbal medicine with the properties of inhibition of ongoing fibrogenesis and resolution of existing fibrosis.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ting Zhu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, P. R. China
| | - Deqin Feng
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
20
|
Yuan L, Sun Y, Zhou N, Wu W, Zheng W, Wang Y. Dihydroquercetin Attenuates Silica-Induced Pulmonary Fibrosis by Inhibiting Ferroptosis Signaling Pathway. Front Pharmacol 2022; 13:845600. [PMID: 35645837 PMCID: PMC9133504 DOI: 10.3389/fphar.2022.845600] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/27/2022] [Indexed: 01/25/2023] Open
Abstract
Silicosis is a fatal occupational lung disease which currently has no effective treatment. Dihydroquercetin (DHQ) is a flavonoid compound known for its anti-inflammatory, anti-oxidant and anti-cancer bioactivity. However, whether DHQ protects against silica-induced lung fibrosis remains unknown. Therefore, we aimed to investigate the effect of DHQ on silica-induced lung fibrosis and the underlying molecular mechanism in vivo and in vitro. Our results demonstrated that DHQ treatment markedly attenuated SiO2-induced inflammation and fibrosis degree of lung tissues in the C57BL/6 mice. Additionally, experiments in vitro also confirmed that conditioned medium from DHQ-treated human bronchial epithelial (HBE) cells significantly decreased expression of fibrosis markers of human fetal lung fibroblast cells (MRC-5), such as α-SMA, collagen1 and fibronectin. Interestingly, HBE cells treated by DHQ showed few morphological features of ferroptosis compared with SiO2-treated cells. Furthermore, DHQ treatment remarkably inhibited ferroptosis in activated HBE cells by decreasing the accumulation of iron and lipid peroxidation products, and increasing levels of glutathione (GSH) and glutathione peroxidase 4 (GPX4), whereas stimulation of ferroptosis by specific inducer erastin deeply impaired anti-fibrosis effect of DHQ in vitro. More importantly, our results showed that DHQ also evidently suppressed ferritinophagy by down-regulation of microtubule-associated protein 1A/1B-light chain 3 (LC3), and up-regulation of ferritin heavy chain 1 (FTH1), nuclear receptor co-activator 4 (NCOA4) in activated HBE cells. Nevertheless, activation of ferritinophagy by specific inducer rapamycin (Rapa) evidently blocked DHQ-inhibited HBE cells ferritinophagy and anti-fibrosis effect of DHQ. Overall, our research revealed that inhibition of ferritinophagy-mediated HBE cells ferroptosis was responsible for DHQ to ameliorate SiO2-induced lung fibrosis, which provided a preliminary theoretical basis for the clinical application of DHQ in the treatment of silicosis.
Collapse
Affiliation(s)
- Leyong Yuan
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Shenzhen, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Yan Sun
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Ning Zhou
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Weipeng Wu
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Weidong Zheng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
- *Correspondence: Weidong Zheng, ; Yukun Wang,
| | - Yukun Wang
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Shenzhen, China
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Weidong Zheng, ; Yukun Wang,
| |
Collapse
|
21
|
Genovese T, Duranti A, D’Amico R, Fusco R, Impellizzeri D, Peritore AF, Crupi R, Gugliandolo E, Cuzzocrea S, Di Paola R, Siracusa R, Cordaro M. Fatty Acid Amide Hydrolase (FAAH) Inhibition Plays a Key Role in Counteracting Acute Lung Injury. Int J Mol Sci 2022; 23:2781. [PMID: 35269926 PMCID: PMC8910911 DOI: 10.3390/ijms23052781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Acute lung injury (ALI) is a group of lung illnesses characterized by severe inflammation, with no treatment. The fatty acid amide hydrolase (FAAH) enzyme is an integral membrane protein responsible for the hydrolysis of the main endocannabinoids, such as anandamide (AEA). In pre-clinical pain and inflammation models, increasing the endogenous levels of AEA and other bioactive fatty acid amides (FAAs) via genetic deletion or the pharmacological inhibition of FAAH produces many analgesic benefits in several different experimental models. To date, nobody has investigated the role of FAAH inhibition on an ALI mouse model. Mice were subjected to a carrageenan injection and treated orally 1 h after with the FAAH inhibitor URB878 dissolved in a vehicle consisting of 10% PEG-400, 10% Tween-80 and 80% saline at different doses: The inhibition of FAAH activity was able to counteract not only the CAR-induced histological alteration, but also the cascade of related inflammatory events. URB878 clears the way for further studies based on FAAH inhibition in acute lung pathologies.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo Piazza del Rinascimento 6, 61029 Urbino, Italy;
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
22
|
Alharbi KS, Afzal O, Almalki WH, Kazmi I, Javed Shaikh MA, Thangavelu L, Gulati M, Singh SK, Jha NK, Gupta PK, Chellappan DK, Oliver BG, Dua K, Gupta G. Nuclear factor-kappa B (NF-κB) inhibition as a therapeutic target for plant nutraceuticals in mitigating inflammatory lung diseases. Chem Biol Interact 2022; 354:109842. [PMID: 35104489 DOI: 10.1016/j.cbi.2022.109842] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
Abstract
Nutraceuticals are dietary supplements that are used to improve health, postpone aging, prevent illnesses, and maintain the human body's correct functioning. Nutraceuticals are now garnering a lot of interest because of their nutritional and therapeutic benefits. The research indicating the relevance of nutraceuticals as a possible therapeutic candidate against inflammatory lung disease was covered in this review. Nowadays, inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, pneumonia, lung cancer, becoming highly dreadful because of their associated fatality. Inflammation is one of the cores and common factors of these diseases which is mainly associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, NF-κB p65 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation, and initiation of the signaling pathway of the NF-κB. The secondary metabolites from natural sources are the active component that attenuates NF-κB and the associated pathway that inhibits inflammation in lung diseases. Nutraceuticals belonging to the chemical category polyphenols, alkaloids, terpenoids, flavonoids, tannins have the potential to combat the NF-κB pathway. Accordingly, this review discusses the medical value of nutraceuticals briefly and their ability to mitigate various inflammatory lung diseases through targeting inhibition of NF-κB.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammad Arshad Javed Shaikh
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India; Department of Pharmacy, TPCT's College of Engineering, Osmanabad, Maharashtra, 413501, India
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Uttar Pradesh, Greater Noida, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Brian George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Glebe NSW, 2037, New South Wales, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW, 2007, New South Wales, Australia.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| |
Collapse
|
23
|
Estornut C, Milara J, Bayarri MA, Belhadj N, Cortijo J. Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 12:794997. [PMID: 35126133 PMCID: PMC8815729 DOI: 10.3389/fphar.2021.794997] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by an abnormal reepithelialisation, an excessive tissue remodelling and a progressive fibrosis within the alveolar wall that are not due to infection or cancer. Oxidative stress has been proposed as a key molecular process in pulmonary fibrosis development and different components of the redox system are altered in the cellular actors participating in lung fibrosis. To this respect, several activators of the antioxidant machinery and inhibitors of the oxidant species and pathways have been assayed in preclinical in vitro and in vivo models and in different clinical trials. This review discusses the role of oxidative stress in the development and progression of IPF and its underlying mechanisms as well as the evidence of oxidative stress in human IPF. Finally, we analyze the mechanism of action, the efficacy and the current status of different drugs developed to inhibit the oxidative stress as anti-fibrotic therapy in IPF.
Collapse
Affiliation(s)
- Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
24
|
Shen XB, Ding DL, Yu LZ, Ni JZ, Liu Y, Wang W, Liu LM, Nian SH. Total extract of Anemarrhenae Rhizoma attenuates bleomycin-induced pulmonary fibrosis in rats. Bioorg Chem 2021; 119:105546. [PMID: 34954573 DOI: 10.1016/j.bioorg.2021.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/02/2022]
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease with poor prognosis. Anemarrhenae Rhizoma is a traditional Chinese herbal medicine and has been applied in clinical practice for a long history. Recently, components of Anemarrhenae Rhizoma were reported to possess anti-inflammatory and immunomodulatory features; however, the effect of them on pulmonary fibrosis remains unknown. In this study, we explored the therapeutic effect of total extract of Anemarrhenae Rhizoma (TEAR) on bleomycin-induced pulmonary fibrosis. Pulmonary fibrosis rat model was established by a single intratracheal instillation of bleomycin, three doses of TEAR were intragastrically administered for consecutive 28 days. Subsequent to sacrificing of rats, pulmonary fibrosis was observed in rats treated with bleomycin, but administration of TEAR attenuated lung fibrosis, as evidenced by the improved lung histopathological damage and decreased weight loss and lung index. Moreover, TEAR treatment inhibited the inflammatory response in lung fibrosis, which was shown by the reduced nitrogen oxide level and myeloperoxidase activity. Furthermore, TEAR modulated the redox balance in lung tissue by alleviated lipid peroxidation and enhanced enzymatic antioxidants activity. Meanwhile, TEAR protected the rats from fibrosis in a dose-dependent manner, and the anti-fibrotic activity of TEAR may be related to the modulation of TGF-β1/Smad signaling pathway. Collectively, TEAR alleviates bleomycin-induced pulmonary fibrosis, indicating perspectives for development of a potential agent for lung fibrosis therapy.
Collapse
Affiliation(s)
- Xue-Bin Shen
- School of Pharmacy, Wannan Medical College, Wuhu 241002, PR China
| | - Da-Li Ding
- School of Pharmacy, Wannan Medical College, Wuhu 241002, PR China
| | - Li-Zhen Yu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, PR China
| | - Jin-Zhong Ni
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, PR China
| | - Yao Liu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, PR China
| | - Wei Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, PR China
| | - Li-Min Liu
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu 241003, PR China.
| | - Si-Hui Nian
- School of Pharmacy, Wannan Medical College, Wuhu 241002, PR China; Institute of Modern Chinese Medicine, Wannan Medical College, Wuhu 241002, PR China.
| |
Collapse
|
25
|
Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies. Antibiotics (Basel) 2021; 10:antibiotics10121444. [PMID: 34943656 PMCID: PMC8698344 DOI: 10.3390/antibiotics10121444] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Lung diseases such as asthma, chronic obstructive pulmonary diseases, and pneumonia are causing many global health problems. The COVID-19 pandemic has directed the scientific community's attention toward performing more research to explore novel therapeutic drugs for pulmonary diseases. Herein, gas chromatography coupled with mass spectrometry tentatively identified 44 compounds in frankincense ethanol extract (FEE). We investigated the antibacterial and antibiofilm effects of FEE against Pseudomonas aeruginosa bacteria, isolated from patients with respiratory infections. In addition, its in vitro immunomodulatory activity was explored by the detection of the gene expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide synthase (iNOS), cycloxygenase-2 (COX-2), and nuclear factor kappa-B (NF-κB) in lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells (PBMC). In addition, its anticancer activity against the A549 lung cancer cell line and human skin fibroblast (HSF) normal cell line was studied. Moreover, the in vivo lung protective potential of FEE was explored histologically and immunohistochemically in mice using a benzo(a)pyrene induced lung damage model. FEE exhibited antibacterial and antibiofilm activities besides the significant inhibition of gene expression of TNFα, IL-6, and NF-κB. FEE also exerted a cytotoxic effect against A549 cell line. Histological and immunohistochemical investigations with morphometric analysis of the mean area percentage and color intensity of positive TNF-α, COX-2, and NF-κB and Bcl-2 reactions revealed the lung protective activity of FEE. This study outlined the promising therapeutic activity of oleoresin obtained from B. dalzielii in the treatment of different pulmonary diseases.
Collapse
|
26
|
Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021; 35:6813-6842. [PMID: 34462981 DOI: 10.1002/ptr.7268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Various pharmacological effects for Portulaca oleracea were shown in previous studies. Therefore, the effects of P. oleracea and its derivatives on respiratory, allergic, and immunologic diseases according to update experimental and clinical studies are provided in this review article. PubMed/Medline, Scopus, and Google Scholar were searched using appropriate keywords until the end of December 2020. The effects of P. oleracea and its constituents such as quercetin and kaempferol on an animal model of asthma were shown. Portulaca oleracea and its constituents also showed therapeutic effects on chronic obstructive pulmonary disease and chronic bronchitis in both experimental and clinical studies. The possible bronchodilatory effect of P. oleracea and its ingredients was also reported. Portulaca oleracea and its constituents showed the preventive effect on lung cancer and a clinical study showed the effect of P. oleracea on patients with lung adenocarcinoma. In addition, a various constituents of P. oleracea including, quercetin and kaempferol showed therapeutic effects on lung infections. This review indicates the therapeutic effect of P. oleracea and its constituents on various lung and allergic disorders but more clinical studies are required to establish the clinical efficacy of this plant and its constituents on lung and allergic disorders.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Wang L, Li S, Yao Y, Yin W, Ye T. The role of natural products in the prevention and treatment of pulmonary fibrosis: a review. Food Funct 2021; 12:990-1007. [PMID: 33459740 DOI: 10.1039/d0fo03001e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary fibrosis is an incurable end-stage lung disease and remains a global public health problem. Although there have been some breakthroughs in understanding the pathogenesis of pulmonary fibrosis, effective intervention methods are still limited. Natural products have the advantages of multiple biological activities and high levels of safety, which are important factors for preventing and treating pulmonary fibrosis. In this review, we summarized the mechanisms and health benefits of natural products against pulmonary fibrosis. These natural products target oxidative stress, inflammatory injury, epithelial-mesenchymal transition (EMT), fibroblast activation, extracellular matrix accumulation and metabolic regulation, and the mechanisms involve the NF-κB, TGF-β1/Smad, PI3K/Akt, p38 MAPK, Nrf2-Nox4, and AMPK signaling pathways. We hope to provide new ideas for pulmonary fibrosis prevention and treatment strategies.
Collapse
Affiliation(s)
- Liqun Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. and West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Sha Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
28
|
Hosseini SA, Zahedipour F, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pulmonary fibrosis: Therapeutic and mechanistic insights into the role of phytochemicals. Biofactors 2021; 47:250-269. [PMID: 33548106 DOI: 10.1002/biof.1713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary fibrosis (PF) is the devastating consequence of various inflammatory diseases of the lung. PF leads to a reduction of lung function, respiratory failure, and death. Several molecular pathways are involved in PF, such as inflammatory cytokines including tumor necrosis factor α (TNFα), tumor necrosis factor β1 (TNFβ1), interleukin 6 (IL-6), and interleukin 4 (IL-4), reactive oxygen species, matrix metalloproteases, and transforming growth factor-beta (TGF-β). Targeting these processes involved in the progression of PF is essential for the treatment of this disease. Natural products, including plant extracts and active compound that directly target the processes involved in PF, could be suitable therapeutic options with less adverse effects. In the present study, we reviewed the protective effects and the therapeutic role of various bioactive compounds from plants in PF management.
Collapse
Affiliation(s)
- Seyede Atefe Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
29
|
Bernatova I, Liskova S. Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. Antioxidants (Basel) 2021; 10:467. [PMID: 33809620 PMCID: PMC8002320 DOI: 10.3390/antiox10030467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Various studies have shown that certain flavonoids, flavonoid-containing plant extracts, and foods can improve human health. Experimental studies showed that flavonoids have the capacity to alter physiological processes as well as cellular and molecular mechanisms associated with their antioxidant properties. An important function of flavonoids was determined in the cardiovascular system, namely their capacity to lower blood pressure and to improve endothelial function. (-)-Epicatechin and taxifolin are two flavonoids with notable antihypertensive effects and multiple beneficial actions in the cardiovascular system, but they also possess antiviral effects, which may be of particular importance in the ongoing pandemic situation. Thus, this review is focused on the current knowledge of (-)-epicatechin as well as (+)-taxifolin and/or (-)-taxifolin-modified biological action and underlining molecular mechanisms determined in preclinical studies, which are relevant not only to the treatment of hypertension per se but may provide additional antiviral benefits that could be relevant to the treatment of hypertensive subjects with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iveta Bernatova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| | - Silvia Liskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
30
|
Shaw OM, Hurst RD, Cooney J, Sawyer GM, Dinnan H, Martell S. Boysenberry and apple juice concentrate reduced acute lung inflammation and increased M2 macrophage-associated cytokines in an acute mouse model of allergic airways disease. Food Sci Nutr 2021; 9:1491-1503. [PMID: 33747463 PMCID: PMC7958577 DOI: 10.1002/fsn3.2119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Bioactive compounds including anthocyanins and other polyphenols are associated with reduced lung inflammation and improved lung function in asthma and other lung diseases. This study investigated the effects of a Boysenberry and apple juice concentrate, high in cyanidin glycosides, ellagitannins, and chlorogenic acid, on a mouse model of allergic airways inflammation. Male C57BL/6J mice were orally gavaged with 2.5 mg/kg of total anthocyanins (TAC) from BerriQi® Boysenberry and apple juice concentrate (0.2 mg/kg human equivalent dose) or water control 1 hr before an acute intranasal ovalbumin (OVA) challenge and were gavaged again 2 days after the intranasal challenge. Consumption of BerriQi® Boysenberry and apple juice concentrate significantly decreased OVA-induced infiltrating eosinophils, neutrophils, and T cells in the lung, and mucous production. Quantification of gene expression for arginase (Arg1), chitinase 3-like 3 (Ym-1), found in inflammatory zone (Fizz1), which have been associated with an anti-inflammatory macrophage phenotype (M2), found significantly increased Arg1 expression in the lung in the Boysenberry and apple juice concentrate treatment group. There was also increased production of M2-associated cytokines C-X-C motif chemokine ligand (CXCL) 10 and C-C motif chemokine ligand (CCL) 4. These results suggest that consumption of BerriQi® Boysenberry and apple juice concentrate promoted a shift toward an anti-inflammatory environment within the lung leading to reduced immune cell infiltration and tissue damage.
Collapse
Affiliation(s)
- Odette M. Shaw
- Nutrition & Health GroupFood Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Roger D. Hurst
- Food Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Janine Cooney
- Biological Chemistry & Bioactives GroupFood Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedHamiltonNew Zealand
| | - Gregory M. Sawyer
- Nutrition & Health GroupFood Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Hannah Dinnan
- Nutrition & Health GroupFood Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Sheridan Martell
- Nutrition & Health GroupFood Innovation PortfolioThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| |
Collapse
|
31
|
Lee SY, Park SY, Lee GE, Kim H, Kwon JH, Kim MJ, Yoon HG. Aucuparin Suppresses Bleomycin-Induced Pulmonary Fibrosis Via Anti-Inflammatory Activity. J Med Food 2021; 24:151-160. [PMID: 33512266 DOI: 10.1089/jmf.2020.4861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease that results in scarring of the lungs for an unknown reason. Although many studies have been conducted on IPF, precise mechanisms and treatments have not yet been identified. In this study, we found that aucuparin, a natural product isolated from Sorbus aucuparia, inhibited pulmonary fibrosis in a bleomycin (BLM)-induced lung fibrosis mouse model. In the lung samples of mice treated with aucuparin, the gene expression of inflammation and macrophage activation markers was reduced compared to those treated with BLM alone. Moreover, aucuparin decreased the expression of profibrotic marker genes and increased the expression of antifibrotic marker genes. Finally, we observed that aucuparin significantly suppressed transforming growth factor-β-induced activation of inflammatory cytokine production and collagen synthesis from macrophages and fibroblasts, respectively. Taken together, these data demonstrate that aucuparin inhibits lung fibrosis via its anti-inflammatory action and support its potential to be a therapeutic drug for IPF treatment.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Gyeong-Eun Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hwan Kwon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Jeong Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Su X, Liu K, Xie Y, Zhang M, Wu X, Zhang Y, Wang J. Mushroom Inonotus sanghuang alleviates experimental pulmonary fibrosis: Implications for therapy of pulmonary fibrosis. Biomed Pharmacother 2021; 133:110919. [PMID: 33202282 DOI: 10.1016/j.biopha.2020.110919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
Mushroom Inonotus sanghuang has been characterized as a traditional medicine in China and has pharmacological activities to treat inflammation, gastroenteric dysfunction, and cancer. Recently, we reported the impact of Inonotus sanghuang extract (ISE) from ethyl acetate fraction on bleomycin (BLM)-induced acute lung injury in mice. Here, we aimed to investigate ISE's impact on pulmonary fibrosis using in vivo and in vitro models and the underlying mechanisms. To evaluate pulmonary fibrosis, female C57BL/6 mice fed ISE (0% or 0.6% in diet) for 4 weeks were instilled intratracheally with BLM and then continued the same diet before the end of the experiment. A549 cells were used to evaluate the epithelial-mesenchymal transition (EMT). Feeding ISE improved BLM-treated mice's survival via decreasing lung infiltrating cells and fibrosis, followed by reducing hydroxyproline content, collagen deposition, and mesenchymal markers (α-SMA and vimentin) while increasing epithelial marker E-cadherin. ISE also suppressed the TGF-β expression, Smad2/3 phosphorylation, and EMT-related transcription factor Snail upon BLM instillation. Iin vitro study demonstrated that ISE inhibited TGF-β-induced EMT-like phenotype and cell behaviors, the expression of α-SMA and vimentin, and prevented E-cadherin reduction of A549 cells. Consistent with in vivo study, ISE abrogated p-Smad2/3, and Snail expression. Finally, the influence of ISE on EMT was not due to ISE toxicity. Our findings indicated that ISE effectively attenuated BLM-induced lung fibrosis. These ISE properties were thought to be involved in interfering TGF-β, Smad2/3 phosphorylation, and EMT process, suggesting that the material has the potential health benefits to improve lung fibrosis.
Collapse
Affiliation(s)
- Xing Su
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China; Department of Respiration, The First Affiliated Hospital of Henan University, Kaifeng, 475000, China
| | - Kun Liu
- College of Biology Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei, 050061, China
| | - Yu Xie
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China; School of Physical Education, Henan University, Kaifeng, 475000, China
| | - Mengdi Zhang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Xiao Wu
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yijie Zhang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Junpeng Wang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
33
|
Zhang L, Huang C, Fan S. Mangiferin and organ fibrosis: A mini review. Biofactors 2021; 47:59-68. [PMID: 33217771 DOI: 10.1002/biof.1693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is the end stage of many chronic diseases, which results in organ function failure and high mortality. Mangiferin is a major constituent in mango and other 16 plants, and has been shown a variety of pharmacological effects, such as antioxidant, antibacterial, anti-tumor, anti-inflammation. The emerging evidence has shown that mangiferin can improve renal interstitial fibrosis, pulmonary fibrosis, myocardial fibrosis and hepatic fibrosis through the inhibition of inflammation, oxidative stress and fibrogenesis effects, indicating that mangiferin is promising therapeutic choice for organ fibrosis. The aim of this review is to summarize the therapeutic effects of mangiferin on fibrosis of various organs and the underlying mechanisms.
Collapse
Affiliation(s)
- Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
35
|
Businaro R, Maggi E, Armeli F, Murray A, Laskin DL. Nutraceuticals as potential therapeutics for vesicant-induced pulmonary fibrosis. Ann N Y Acad Sci 2020; 1480:5-13. [PMID: 32725637 PMCID: PMC7936651 DOI: 10.1111/nyas.14442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Exposure to vesicants, including sulfur mustard and nitrogen mustard, causes damage to the epithelia of the respiratory tract and the lung. With time, this progresses to chronic disease, most notably, pulmonary fibrosis. The pathogenic process involves persistent inflammation and the release of cytotoxic oxidants, cytokines, chemokines, and profibrotic growth factors, which leads to the collapse of lung architecture, with fibrotic involution of the lung parenchyma. At present, there are no effective treatments available to combat this pathological process. Recently, much interest has focused on nutraceuticals, substances derived from plants, herbs, and fruits, that exert pleiotropic effects on inflammatory cells and parenchymal cells that may be useful in reducing fibrogenesis. Some promising results have been obtained with nutraceuticals in experimental animal models of inflammation-driven fibrosis. This review summarizes the current knowledge on the putative preventive/therapeutic efficacy of nutraceuticals in progressive pulmonary fibrosis, with a focus on their activity against inflammatory reactions and profibrotic cell differentiation.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
36
|
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Inhibitor as a Novel Therapeutic Tool for Lung Injury. Int J Mol Sci 2020; 21:ijms21207761. [PMID: 33092214 PMCID: PMC7589767 DOI: 10.3390/ijms21207761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to excessive deposition of extracellular matrix. In this study, the bleomycin experimental model of pulmonary fibrosis was employed to investigate the anti-fibrotic and immunomodulatory activity of the inhibition of MALT1 protease activity. Mice received a single intra-tracheal administration of bleomycin (1 mg/kg) in the presence or absence of MI-2, a selective MALT1 inhibitor, (a dose of 30 mg/kg administered intra-peritoneally 1 h after bleomycin and daily until the end of the experiment). Seven days after bleomycin instillation mice were sacrificed and bronchoalveolar lavage fluid analysis, measurement of collagen content in the lung, histology, molecular analysis and immunohistochemistry were performed. To evaluate mortality and body weight gain a subset of mice was administered daily with MI-2 for 21 days. Mice that received MI-2 showed decreased weight loss and mortality, inflammatory cells infiltration, cytokines overexpression and tissue injury. Moreover, biochemical and immunohistochemical analysis displayed that MI-2 was able to modulate the excessive production of reactive oxygen species and the inflammatory mediator upregulation induced by bleomycin instillation. Additionally, MI-2 demonstrated anti-fibrotic activity by reducing transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA) and receptor associated factor 6 (TRAF6) expression. The underlying mechanisms for the protective effect of MI-2 bleomycin induced pulmonary fibrosis may be attributed to its inhibition on NF-κB pathway. This is the first report showing the therapeutic role of MALT1 inhibition in a bleomycin model of pulmonary fibrosis, thus supporting further preclinical and clinical studies.
Collapse
|
37
|
Insights into the Role of Bioactive Food Ingredients and the Microbiome in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21176051. [PMID: 32842664 PMCID: PMC7503951 DOI: 10.3390/ijms21176051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease mainly associated with aging and, to date, its causes are still largely unknown. It has been shown that dietary habits can accelerate or delay the occurrence of aging-related diseases; however, their potential role in IPF development has been underestimated so far. The present review summarizes the evidence regarding the relationship between diet and IPF in humans, and in animal models of pulmonary fibrosis, in which we discuss the bioactivity of specific dietary food ingredients, including fatty acids, peptides, amino acids, carbohydrates, vitamins, minerals and phytochemicals. Interestingly, many animal studies reveal preventive and therapeutic effects of particular compounds. Furthermore, it has been recently suggested that the lung and gut microbiota could be involved in IPF, a relationship which may be linked to changes in immunological and inflammatory factors. Thus, all the evidence so far puts forward the idea that the gut-lung axis could be modulated by dietary factors, which in turn have an influence on IPF development. Overall, the data reviewed here support the notion of identifying food ingredients with potential benefits in IPF, with the ultimate aim of designing nutritional approaches as an adjuvant therapeutic strategy.
Collapse
|
38
|
Thota SM, Balan V, Sivaramakrishnan V. Natural products as home-based prophylactic and symptom management agents in the setting of COVID-19. Phytother Res 2020; 34:3148-3167. [PMID: 32881214 PMCID: PMC7461159 DOI: 10.1002/ptr.6794] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID‐19) caused by the novel coronavirus (SARS‐CoV‐2) has rapidly spread across the globe affecting 213 countries or territories with greater than six million confirmed cases and about 0.37 million deaths, with World Health Organization categorizing it as a pandemic. Infected patients present with fever, cough, shortness of breath, and critical cases show acute respiratory infection and multiple organ failure. Likelihood of these severe indications is further enhanced by age as well as underlying comorbidities such as diabetes, cardiovascular, or thoracic problems, as well as due to an immunocompromised state. Currently, curative drugs or vaccines are lacking, and the standard of care is limited to symptom management. Natural products like ginger, turmeric, garlic, onion, cinnamon, lemon, neem, basil, and black pepper have been scientifically proven to have therapeutic benefits against acute respiratory tract infections including pulmonary fibrosis, diffuse alveolar damage, pneumonia, and acute respiratory distress syndrome, as well as associated septic shock, lung and kidney injury, all of which are symptoms associated with COVID‐19 infection. This review highlights the potential of these natural products to serve as home‐based, inexpensive, easily accessible, prophylactic agents against COVID‐19.
Collapse
Affiliation(s)
- Sai Manohar Thota
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, India
| | - Venkatesh Balan
- Engineering Technology Department, College of Technology, University of Houston, Sugar Land, Texas, USA
| | | |
Collapse
|
39
|
Aesculetin Attenuates Alveolar Injury and Fibrosis Induced by Close Contact of Alveolar Epithelial Cells with Blood-Derived Macrophages via IL-8 Signaling. Int J Mol Sci 2020; 21:ijms21155518. [PMID: 32752252 PMCID: PMC7432571 DOI: 10.3390/ijms21155518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Pulmonary fibrosis is a disease in which lung tissues become fibrous and thereby causes severe respiratory disturbances. Various stimuli induce infiltration of macrophages to the respiratory tract, secreting inflammatory cytokines, which subsequently leads to the development of pulmonary fibrosis. Aesculetin, a major component of the sancho tree and chicory, is known to biologically have antioxidant and anti-inflammatory effects. Human alveolar epithelial A549 cells were cultured for 24 h in conditioned media of THP-1 monocyte-derived macrophages (mCM) with 1–20 μM aesculetin. Micromolar aesculetin attenuated the cytotoxicity of mCM containing inflammatory tumor necrosis factor-α (TNF)-α and interleukin (IL)-8 as major cytokines. Aesculetin inhibited alveolar epithelial induction of the mesenchymal markers in mCM-exposed/IL-8-loaded A549 cells (≈47–51% inhibition), while epithelial markers were induced in aesculetin-treated cells subject to mCM/IL-8 (≈1.5–2.3-fold induction). Aesculetin added to mCM-stimulated A549 cells abrogated the collagen production and alveolar epithelial CXC-chemokine receptor 2 (CXCR2) induction. The production of matrix metalloproteinase (MMP) proteins in mCM-loaded A549 cells was reduced by aesculetin (≈52% reduction), in parallel with its increase in tissue inhibitor of metalloproteinases (TIMP) proteins (≈1.8-fold increase). In addition, aesculetin enhanced epithelial induction of tight junction proteins in mCM-/IL-8-exposed cells (≈2.3–2.5-fold induction). The inhalation of polyhexamethylene guanidine (PHMG) in mice accompanied neutrophil predominance in bronchoalveolar lavage fluid (BALF) and macrophage infiltration in alveoli, which was inhibited by orally administrating aesculetin to mice. Treating aesculetin to mice alleviated PHMG-induced IL-8-mediated subepithelial fibrosis and airway barrier disruption. Taken together, aesculetin may antagonize pulmonary fibrosis and alveolar epithelial barrier disruption stimulated by the infiltration of monocyte-derived macrophages, which is typical of PHMG toxicity, involving interaction of IL-8 and CXCR2. Aesculetin maybe a promising agent counteracting macrophage-mediated inflammation-associated pulmonary disorders.
Collapse
|
40
|
Adelmidrol: A New Promising Antioxidant and Anti-Inflammatory Therapeutic Tool in Pulmonary Fibrosis. Antioxidants (Basel) 2020; 9:antiox9070601. [PMID: 32660140 PMCID: PMC7402091 DOI: 10.3390/antiox9070601] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic pulmonary diseases are characterized by airway remodeling due to complex multicellular responses and the production of free oxygen radicals. They lead to a progressive decline of pulmonary functions. Adelmidrol is an analogue of palmitoylethanolamide (PEA), which is a well-known anti-inflammatory and anti-oxidant compound. In this study, we investigated the efficacy of adelmidrol (10 mg/Kg) for bleomycin-induced pulmonary fibrosis in mice. METHODS Bleomycin intratracheal administration was performed on the first day and for the following twenty-one days, mice were treated with adelmidrol (10 mg/Kg). RESULTS The survival rate and body weight gain were recorded daily. At the end of the experiment, adelmidrol-administered animals showed reduced airway infiltration by inflammatory cells, Myeloperoxidase (MPO) activity, and pro-inflammatory cytokine overexpression (IL,6 IL-1β, TNF-α, and TGF-1β). Moreover, adelmidrol treatment was able to manage the significant incapacity of antioxidants and elevation of the oxidant burden, as shown by the MDA, SOD, and GSH levels and decreased nitric oxide production. It was also able to significantly modulate the JAK2/STAT3 and IκBα/NF-kB pathway. Histologic examination of the lung tissues showed reduced sample injury, mast cell degranulation, chymase activity, and collagen deposition. CONCLUSIONS In sum, our results propose adelmidrol as a therapeutic approach in the treatment of pulmonary fibrosis.
Collapse
|
41
|
Shaikh SB, Prabhakar Bhandary Y. Effect of curcumin on IL-17A mediated pulmonary AMPK kinase/cyclooxygenase-2 expressions via activation of NFκB in bleomycin-induced acute lung injury in vivo. Int Immunopharmacol 2020; 85:106676. [PMID: 32535538 DOI: 10.1016/j.intimp.2020.106676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
Acute lung injury (ALI) remains to be the major cause of mortality. Bleomycin (BLM) injury activates the pro-inflammatory cytokine Interleukin L-17A which regulates the expression of COX-2 and inhibits P-AMPKα in BLM/IL-17A exposed mice upon activation of NFκB and other inflammatory molecules the actual mechanism behind which remains unclear. The current investigation was carried out to assess the role of IL-17A with COX-2 and P- AMPKα and to highlight the important contribution of adjunctive use of curcumin as a promising preventive strategy for the BLM-induced ALI. Immunofluorescence analysis reveals that the natural spice curcumin blocks the expressions of COX-2, NF-κB-p65, fibronectin (FBN), and expresses P-AMPKα in vivo. Curcumin could also suppress the expressions of NF-κB-p105 in BLM/IL-17A exposed mice. mRNA expressions showed reduced expressions of PDGFA, PDGFB, CTGF, IGF1, NFκB1, NFκB2, MMP-3, MMP-9, and MMP-14 on curcumin treatment. Our study implicates a critical role of AMPKα/COX- 2 in the emergence of pulmonary fibrosis via exerting the potential role of curcumin as an adjuvant anti-inflammatory therapeutic for treating lung injury.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | | |
Collapse
|
42
|
Boots AW, Veith C, Albrecht C, Bartholome R, Drittij MJ, Claessen SMH, Bast A, Rosenbruch M, Jonkers L, van Schooten FJ, Schins RPF. The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice. BMC Pulm Med 2020; 20:112. [PMID: 32349726 PMCID: PMC7191795 DOI: 10.1186/s12890-020-1142-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal disease of which the etiology is still not fully understood. Current treatment comprises two FDA-approved drugs that can slow down yet not stop or reverse the disease. As IPF pathology is associated with an altered redox balance, adding a redox modulating component to current therapy might exert beneficial effects. Quercetin is a dietary antioxidant with strong redox modulating capacities that is suggested to exert part of its antioxidative effects via activation of the redox-sensitive transcription factor Nrf2 that regulates endogenous antioxidant levels. Therefore, the aim of the present study was to investigate if the dietary antioxidant quercetin can exert anti-fibrotic effects in a mouse model of bleomycin-induced pulmonary fibrogenesis through Nrf2-dependent restoration of redox imbalance. METHODS Homozygous Nrf2 deficient mice and their wildtype littermates were fed a control diet without or with 800 mg quercetin per kg diet from 7 days prior to a single 1 μg/2 μl per g BW bleomycin challenge until they were sacrificed 14 days afterwards. Lung tissue and plasma were collected to determine markers of fibrosis (expression of extracellular matrix genes and histopathology), inflammation (pulmonary gene expression and plasma levels of tumor necrosis factor-α (TNFα) and keratinocyte chemoattrachtant (KC)), and redox balance (pulmonary gene expression of antioxidants and malondialdehyde-dG (MDA)- DNA adducts). RESULTS Mice fed the enriched diet for 7 days prior to the bleomycin challenge had significantly enhanced plasma and pulmonary quercetin levels (11.08 ± 0.73 μM versus 7.05 ± 0.2 μM) combined with increased expression of Nrf2 and Nrf2-responsive genes compared to mice fed the control diet in lung tissue. Upon bleomycin treatment, quercetin-fed mice displayed reduced expression of collagen (COL1A2) and fibronectin (FN1) and a tendency of reduced inflammatory lesions (2.8 ± 0.7 versus 1.9 ± 0.8). These beneficial effects were accompanied by reduced pulmonary gene expression of TNFα and KC, but not their plasma levels, and enhanced Nrf2-induced pulmonary antioxidant defences. In Nrf2 deficient mice, no effect of the dietary antioxidant on either histology or inflammatory lesions was observed. CONCLUSION Quercetin exerts anti-fibrogenic and anti-inflammatory effects on bleomycin-induced pulmonary damage in mice possibly through modulation of the redox balance by inducing Nrf2. However, quercetin could not rescue the bleomycin-induced pulmonary damage indicating that quercetin alone cannot ameliorate the progression of IPF.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands. .,IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany.
| | - Carmen Veith
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany
| | - Roger Bartholome
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Marie-José Drittij
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Sandra M H Claessen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | | | - Leonie Jonkers
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany
| |
Collapse
|
43
|
Song J, Meng Y, Wang M, Li L, Liu Z, Zheng K, Wu L, Liu B, Hou F, Li A. Mangiferin activates Nrf2 to attenuate cardiac fibrosis via redistributing glutaminolysis-derived glutamate. Pharmacol Res 2020; 157:104845. [PMID: 32353588 DOI: 10.1016/j.phrs.2020.104845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/09/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022]
Abstract
Cardiac injury is followed by fibrosis, characterized by myofibroblast activation. Excessive deposition of extracellular matrix (ECM) impairs the plasticity of myocardium and results in myocardial systolic and diastolic dysfunction. Mangiferin is a xanthonoid derivative rich in plants mangoes and iris unguicularis, exhibiting the ability to ameliorate metabolic disorders. This study aims to investigate whether mangiferin attenuates cardiac fibrosis via redox regulation. The transverse aortic constriction (TAC) in mice induced cardiac fibrosis with impaired heart function. Oral administration of mangiferin (50 mg/kg, 4 weeks) inhibited myofibroblast activation with reduced formation of ECM. The impaired left ventricular contractive function was also improved by mangiferin. TGF-β1 stimulation increased glutaminolysis to fuel intracellular glutamate pool for the increased demands of nutrients to support cardiac myofibroblast activation. Mangiferin degraded Keap1 to promote Nrf2 protein accumulation by improving its stability, leading to Nrf2 activation. Nrf2 transcriptionally promotes the synthesis of antioxidant proteins. By activating Nrf2, mangiferin promoted the synthesis of glutathione (GSH) in cardiac fibroblasts, likely due to the consumption of glutaminolysis-derived glutamate as a source. Meanwhile, mangiferin promoted the exchange of intracellular glutamate for the import of extracellular cystine to support GSH generation. As a result of redistribution, the reduced glutamate availability failed to support myofibroblast activation. In support of this, the addition of extracellular glutamate or α-ketoglutarate diminished the inhibitory effects of mangiferin on cardiac myofibroblast proliferation and activation. Moreover, cardiac knockdown of Nrf2 attenuated the cardioprotective effects of mangiferin in mice subjected to TAC. In conclusion, we demonstrated that activated myofibroblasts were sensitive to glutamate availability. Mangiferin activated Nrf2 and redistributed intracellular glutamate for the synthesis of GSH, consequently impairing cardiac myofibroblast activation due to decreased glutamate availability. These results address that pharmacological activation of Nrf2 could restrain cardiac fibrosis via metabolic regulation.
Collapse
Affiliation(s)
- Junna Song
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yunxia Meng
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Meng Wang
- Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Lanzhu Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Zhao Liu
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Kaiyan Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Lanfang Wu
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Baolin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Fangjie Hou
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China.
| | - Aiying Li
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China.
| |
Collapse
|
44
|
Wang W, Ma BL, Xu CG, Zhou XJ. Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153185. [PMID: 32120244 DOI: 10.1016/j.phymed.2020.153185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dihydroquercetin (DHQ) is an antifibrotic agent. However, whether DHQ can prevent renal fibrosis remains unknown. PURPOSE This study aimed to investigate the effects of DHQ on tubulointerstitial fibrosis and its underlying mechanisms in unilateral ureteral obstruction (UUO) mice in vivo and NRK-49F cells in vitro. METHODS In vivo, UUO mice received vehicle or DHQ treatment. In vitro, NRK-49F cells were pretreated with DHQ and exposed to transforming growth factor-β1 (TGF-β1). Changes in fibroblast activation, collagen synthesis, oxidative stress, and related signaling pathways were assessed by immunohistochemical staining, Western blot analysis, real-time reverse transcription-PCR, and fluorescence microscopy. RESULTS UUO induced tubular atrophy, inflammation, fibroblast differentiation into myofibroblast, and collagen deposition, whereas DHQ ameliorated these effects. UUO also resulted in decreased levels of nuclear factor-erythroid-2-related factor 2 (Nrf2), catalase, and heme oxygenase-1, but increased H2O2 and malondialdehyde levels. DHQ treatment corrected these changes. In vitro, the intracellular Nrf2 level of NRK-49F exposed to TGF-β1 decreased. However, DHQ rescued intracellular Nrf2 level and promoted nuclear translocation of Nrf2. DHQ scavenged TGF-β1-induced accumulation of reactive oxygen species, inhibited TGF-β1-induced Smad3 phosphorylation, and prevented TGF-β1-induced fibroblast activation and collagen synthesis in NRK-49F. Nrf2 knockdown could suppress the DHQ-mediated inhibitory effects on oxidative stress, Smad3 phosphorylation, fibroblast activation, and collagen deposition. Furthermore, DHQ ameliorated established renal fibrosis in UUO mice. CONCLUSIONS DHQ posed remarkable preventive and therapeutic effects on UUO-induced renal fibrosis and suppressed fibroblast activation by reducing oxidative stress and Smad3 phosphorylation via Nrf2 signaling. This study provided a mechanistic basis for the clinical application of DHQ in renal fibrosis treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 23022, China
| | - Bei-Lei Ma
- Department of Clinical Laboratory, Qilu Hospital of Shangdong University, Qingdao 266035, China
| | - Chang-Geng Xu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26th Shengli Street, Wuhan 430014, China.
| | - Xiang-Jun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
45
|
Improvement of Resveratrol Effects When Combined with Rice Oil in Rat Models of Inflammation. Inflammation 2019; 43:204-219. [PMID: 31720991 DOI: 10.1007/s10753-019-01110-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of systemic treatment with a new formulation of resveratrol (RSV) vehicled in rice oil (RSVO) in experimental rat models of inflammation. Male Wistar rats were evaluated in the following in vivo models: carrageenan-induced acute edema, complete Freund's adjuvant (CFA)-evoked sub-chronic edema, and CFA-induced polyarthritis. The animals were treated orally with RSVO (10-15 mg/kg) or RSV (100-200 mg/kg), depending on the experimental protocol. RSV was more effective than RSVO in carrageenan-elicited acute edema when dosed in either prophylactic or therapeutic schemes of administration. However, the repeated RSVO administration, at 10-fold lower doses, exhibited superior anti-inflammatory actions in either the sub-chronic edema or the chronic polyarthritis model elicited by CFA, when compared with RSV. The novel formulation RSVO displayed a lower plasma biotransformation when compared with the RSV-treated group-46% versus 88% of metabolites, respectively. RSVO also prevented polyarthritis-related cartilage destruction, an effect that might rely on the inhibition of the pro-inflammatory cytokine interleukin-6 (IL-6), associated with an increase of the anti-inflammatory cytokine interleukin-10 (IL-10). Noteworthy, the long-term administration of RSVO did not elicit any gastrointestinal harm. Our study revealed that RSVO was notably effective in the long-term inflammatory and degenerative responses triggered by CFA. This innovative formulation might well represent a promising alternative for treating chronic inflammatory diseases, such as arthritis.
Collapse
|
46
|
Kim YH, Kang MK, Lee EJ, Kim DY, Oh H, Kim SI, Oh SY, Kim KH, Park SJ, Choi YJ, Kang YH. Dried Yeast Extracts Curtails Pulmonary Oxidative Stress, Inflammation and Tissue Destruction in a Model of Experimental Emphysema. Antioxidants (Basel) 2019; 8:antiox8090349. [PMID: 31480536 PMCID: PMC6769699 DOI: 10.3390/antiox8090349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary emphysema is characterized by a loss of alveolar integrity due to prolonged cigarette smoking and inhaled irritants. Dried yeast extracts (YE) are employed as food additives, savory flavorings, or creation of umami taste sensations. Despite being rich in nutrition, their application as nutraceuticals and functional foods is not investigated much and little is known about the inhibition of pulmonary emphysema. This study examined whether YE ameliorated pulmonary emphysema in mice is evoked by cigarette smoke (CS) and ovalbumin (OVA). Mice were orally administrated with 25–100 mg/kg YE for 8 weeks. Alveolar epithelial A549 cells exposed to lipopolysaccharide or CS extracts (CSE) were supplemented with 10–100 µg/mL YE. Oral YE administration reduced bronchoalveolar lavage fluid leukocytosis in CS-/OVA-exposed mice. YE reduced induction of inflammatory mediators and MMP-12, and diminished reactive oxygen species production and emphysematous alterations in CS-challenged airways. The YE treatment blunted bax/bcl-2 ratio and activation of p53 and caspases in CS-exposed lungs. Apoptotic death was dampened in CSE-loaded YE-supplemented A549 cells. YE curtailed tissue levels of MMP-12 in inflammatory OVA-exposed lungs. YE abrogated the secretion of TNF-α and MCP-1 through blocking NF-κB signaling in endotoxin-loaded A549 cells. Thus, the antioxidant YE may therapeutically ameliorate oxidative stress and inflammatory tissue destruction in emphysematous diseases.
Collapse
Affiliation(s)
- Yun-Ho Kim
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Dong Yeon Kim
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Hyeongjoo Oh
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Soo-Il Kim
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Su Yeon Oh
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | | | | | - Yean-Jung Choi
- Department of Bio-Food Science & Technology, Far East University, Eumseong 27601, Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
| |
Collapse
|
47
|
The Effect of Taxifolin on Cisplatin-Induced Pulmonary Damage in Rats: A Biochemical and Histopathological Evaluation. Mediators Inflamm 2019; 2019:3740867. [PMID: 30992689 PMCID: PMC6434269 DOI: 10.1155/2019/3740867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 12/27/2022] Open
Abstract
The effect of taxifolin on cisplatin-induced oxidative pulmonary damage was investigated biochemically and histopathologically in male albino Wistar rats. There were four groups, with six animals in each group: 50 mg/kg of taxifolin plus 2.5 mg/kg of cisplatin (TC) group, 2.5 mg/kg of cisplatin only (CIS) group, 50 mg/kg of taxifolin only (TG) group, and a healthy control group (HG). In terms of the experimental procedure, the animals in the TC and TG groups were first treated via oral gavage. The CIS and HG groups received distilled water as solvent, respectively. One hour later, the TC and CIS groups received cisplatin at a dose of 2.5 mg/kg (injected intraperitoneally). Taxifolin, cisplatin, and the distilled water were administered at the indicated dose and volume, using the same method daily for 14 d. At the end of this period, the animals were killed with a high dosage of thiopental anaesthesia (50 mg/kg). Blood and lung tissue samples were taken for biochemical (malondialdehyde (MDA), myeloperoxidase (MPO), total glutathione (tGSH), and 8-hydroxy-2 deoxyguanosine (8-OHdG)) analyses and histopathological examinations. The biochemical and histopathological results in the TC and HG groups were then compared with those in the CIS group. Cisplatin increased the levels of MDA, myeloperoxidase, and 8-OHdG, a marker of oxidative DNA damage, and reduced the amount of tGSH in the lung tissue. Moreover, severe alveolar damage, including oedema and extensive alveolar septal fibrosis, in addition to infiltration of polymorphic nuclear leucocytes and haemorrhagic foci, was observed in the CIS group. These histopathological findings demonstrate that taxifolin provides protection against pulmonary oxidative stress by preventing increases in oxidant parameters and decreases in antioxidants.
Collapse
|
48
|
Jia L, Sun P, Gao H, Shen J, Gao Y, Meng C, Fu S, Yao H, Zhang G. Mangiferin attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting TLR4/p65 and TGF-β1/Smad2/3 pathway. J Pharm Pharmacol 2019; 71:1017-1028. [PMID: 30847938 DOI: 10.1111/jphp.13077] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/12/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Investigating the antipulmonary fibrosis effect of mangiferin from Mangifera indica and the possible molecular mechanism.
Methods
In vivo, bleomycin (BLM)-induced pulmonary fibrosis experimental model was used for evaluating antipulmonary fibrosis effect of mangiferin. Histopathologic examination and collagen deposition were investigated by HE and Masson staining as well as detecting the content of hydroxyproline. The expression of transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), TLR4 and p-P65 in lung tissue was analysed through immunofluorescence. Leucocytes and inflammatory cytokines including IL-1β, IL-6, TNF-α and MCP-1 in bronchoalveolar lavage fluid were detected by cell counting and enzyme-linked immunosorbent assay. In vitro, TGF-β1-induced A549 epithelial–mesenchymal transition (EMT) cell model was used for investigating the possible molecular mechanism. Reactive oxygen species (ROS) generation was detected by DCFH-DA assay. Expression of all proteins was examined by Western blot.
Key findings
Oral administration of mangiferin could attenuate the severity of BLM-induced pulmonary fibrosis through increasing the survival rate, improving histopathological lesion and body weight loss as well as decreasing pulmonary index visibly. Pulmonary hydroxyproline content, TGF-β1, and α-SMA levels were reduced significantly. The molecular mechanism of mangiferin for inhibiting pulmonary fibrosis is that it could obviously inhibit the occurrence of inflammation and the secretion of inflammatory cytokine through inhibiting activation of TLR4 and phosphorylation of p65. Meanwhile, EMT process was suppressed obviously by mangiferin through blocking the phosphorylation of Smad2/3 and reducing MMP-9 expression. Besides, mangiferin could significantly inhibit the process of oxidant stress through downregulating the intracellular ROS generation.
Conclusions
Mangiferin attenuates BLM-induced pulmonary fibrosis in mice through inhibiting TLR4/p65 and TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Li Jia
- Yanan's People Hospital, Yanan, Shanxi, China
| | - Ping Sun
- Yanan's People Hospital, Yanan, Shanxi, China
| | - Hui Gao
- Yanan's People Hospital, Yanan, Shanxi, China
| | - Jie Shen
- Yanan's People Hospital, Yanan, Shanxi, China
| | - Yuan Gao
- Yanan's People Hospital, Yanan, Shanxi, China
| | - Cheng Meng
- Yanan's People Hospital, Yanan, Shanxi, China
| | - Shidong Fu
- Yanan's People Hospital, Yanan, Shanxi, China
| | - Huijuan Yao
- Yanan's People Hospital, Yanan, Shanxi, China
| | - Gong Zhang
- Yanan University Affiliated Hospital, Yanan, Shanxi, China
| |
Collapse
|
49
|
Wang XF, Song SD, Li YJ, Hu ZQ, Zhang ZW, Yan CG, Li ZG, Tang HF. Protective Effect of Quercetin in LPS-Induced Murine Acute Lung Injury Mediated by cAMP-Epac Pathway. Inflammation 2018; 41:1093-1103. [PMID: 29569077 DOI: 10.1007/s10753-018-0761-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quercetin (Que) as an abundant flavonol element possesses potent antioxidative properties and has protective effect in lipopolysaccharide (LPS)-induced acute lung injury (ALI), but the specific mechanism is still unclear, so we investigated the effect of Que from in vivo and in vitro studies and the related mechanism of cAMP-PKA/Epac pathway. The results in mice suggested that Que can inhibit the release of inflammatory cytokine, block neutrophil recruitment, and decrease the albumin leakage in dose-dependent manners. At the same time, Que can increase the cAMP content of lung tissue, and Epac content, except PKA. The results in epithelial cell (MLE-12) suggested that Que also can inhibit the inflammatory mediators keratinocyte-derived chemokines release after LPS stimulation; Epac inhibitor ESI-09 functionally antagonizes the inhibitory effect of Que; meanwhile, PKA inhibitor H89 functionally enhances the inhibitory effect of Que. Overexpression of Epac1 in MLE-12 suggested that Epac1 enhance the effect of Que. All those results suggested that the protective effect of quercetin in ALI is involved in cAMP-Epac pathway.
Collapse
Affiliation(s)
- Xue-Feng Wang
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Shun-de Song
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Jun Li
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Qiang Hu
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe-Wen Zhang
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Guang Yan
- Department of Pathogenic Biology and Immunology, Southeast University School of Medicine, Nanjing, 210009, China
| | - Zi-Gang Li
- Department of Anesthesiology, Women's Hospital,School of Medicine, Zhejiang University , Hangzhou, 310006, China
| | - Hui-Fang Tang
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
50
|
Li H, Wang Z, Zhang J, Wang Y, Yu C, Zhang J, Song X, Lv C. Feifukang ameliorates pulmonary fibrosis by inhibiting JAK-STAT signaling pathway. Altern Ther Health Med 2018; 18:234. [PMID: 30092799 PMCID: PMC6085667 DOI: 10.1186/s12906-018-2297-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Background Feifukang (FFK) is a traditional Chinese medicine composed of herbs that protect lung function. However, difficulty arises regarding the clinical application of FFK due to the complex mechanism of Chinese medicines. This study aimed to investigate the efficacy of FFK and explore its targeted genes and pathways. Methods Histopathological changes and collagen deposition were measured to evaluate the effect of FFK on bleomycin-induced pulmonary fibrosis in mice. The differentially expressed targeted genes and pathways were first screened using RNA sequencing. Then network pharmacology and other experiments were conducted to confirm RNA sequencing data. Results FFK treatment reduced the pathological score and collagen deposition, with a decrease in α-SMA and collagen. RNA sequencing and network pharmacology results all showed that FFK can ameliorate pulmonary fibrosis through multi-genes and multi-pathways. The targeted genes in JAK-STAT signaling pathway are some of the most notable components of these multi-genes and multi-pathways. Further experiments illustrated that FFK regulated phosphorylation of SMAD3, STAT3 and JAK1, and their co-expressed lncRNAs, which all are the important genes in JAK-STAT signaling pathway. Conclusion FFK can ameliorate pulmonary fibrosis by inhibiting JAK-STAT signaling pathway and has potential therapeutic value for lung fibrosis treatment. Our study provides a new idea for the study of traditional Chinese medicine.
Collapse
|