1
|
Huang F, Sun K, Zhou J, Bao J, Xie G, Lu K, Fan Y. Decoding tryptophan: Pioneering new frontiers in systemic lupus erythematosus. Autoimmun Rev 2025; 24:103809. [PMID: 40158642 DOI: 10.1016/j.autrev.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects multiple organ systems, with its pathogenesis intricately tied to genetic, environmental, and immune regulatory factors. In recent years, the aberration of tryptophan metabolism has emerged as a key player in the disease, particularly through the activation of the kynurenine pathway and its influence on immune regulation. This review delves into the critical pathways of tryptophan metabolism and its profound impact on the multi-system manifestations of SLE, including its connections to the nervous system, kidneys, skin, and other organs. Additionally, it examines how tryptophan metabolism modulates the function of various immune cell types. The review also explores potential therapeutic avenues targeting tryptophan metabolism, such as dietary interventions, probiotic modulation, IDO expression inhibition, and immunoadsorption techniques. While current research has underscored the pivotal role of tryptophan metabolism in the onset and progression of SLE, its full therapeutic potential remains to be fully elucidated. This review aims to provide a solid scientific foundation for therapeutic strategies based on modulating tryptophan metabolism in SLE, offering a comprehensive overview of both clinical and basic research in this rapidly evolving field.
Collapse
Affiliation(s)
- Fugang Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ke Sun
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiawang Zhou
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie Bao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 310005, Zhejiang, China.
| | - Yongsheng Fan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
2
|
Xie Q, Liu J, Yu P, Qiu T, Jiang S, Yu R. Unlocking the power of probiotics, postbiotics: targeting apoptosis for the treatment and prevention of digestive diseases. Front Nutr 2025; 12:1570268. [PMID: 40230717 PMCID: PMC11994438 DOI: 10.3389/fnut.2025.1570268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Digestive diseases are becoming an increasingly serious health burden, creating an urgent need to develop more effective treatment strategies. Probiotics and postbiotics have been extensively studied for their potential to prevent and treat digestive diseases. Growing evidence suggests that programmed cell death, especially apoptosis, is a critical mechanism influencing the molecular and biological aspects of digestive diseases, contributing to disease progression. Understanding the mechanisms and signaling pathways by which probiotics and postbiotics regulate apoptosis could reveal new therapeutic targets for treating digestive diseases. This review focuses on the beneficial effects of probiotics and postbiotics in regulating apoptosis across a range of liver diseases, including non-alcoholic fatty liver disease, liver injury, cirrhosis, and liver cancer. It also explores their effects on gastrointestinal diseases, such as colorectal cancer, colitis, gastrointestinal injury, and infectious diarrhea. Furthermore, some probiotics help balance the gut microbiota, enhance intestinal barrier function, and regulate the immune system, all of which are closely associated with apoptosis. Moreover, emerging technologies, such as encapsulation methods, have been developed to stabilize probiotics, primarily based on experimental findings from rodent and human studies.
Collapse
Affiliation(s)
- Qiuyan Xie
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ji Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Yu
- Reproductive Medicine Centre, Affiliated Women’s Hospital of Jiangnan University, Wuxi, China
| | - Ting Qiu
- Department of Child Health Care, Affiliated Women’s Hospital of Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
3
|
Goh RCW, Maharajan MK, Gopinath D, Fang CM. The Therapeutic Effects of Probiotic on Systemic Lupus Erythematosus in Lupus Mice Models: A Systematic Review. Probiotics Antimicrob Proteins 2025; 17:35-50. [PMID: 38806966 DOI: 10.1007/s12602-024-10297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Increasing evidence suggests the beneficial immunomodulatory effects of probiotics can reduce inflammation in systemic lupus erythematosus (SLE). However, there is no summary of the existing evidence available. This study aims to investigate the therapeutic effects of probiotics on SLE in a lupus mouse model by examining various markers, including inflammatory cytokines, Treg cells, disease activity, and gut microbiota. A systematic search was conducted using three databases (Web of Science, PubMed, and Scopus) to identify animal studies that reported the therapeutic benefits of probiotics against SLE. Data extracted from the selected articles were qualitatively synthesized. The SYRCLE risk of bias tool was used to evaluate the risk of bias. Out of a total of 3205 articles, 12 met the inclusion criteria. Probiotic strains, quantities, and routes of administration varied among the studies. The treatment ranged from 8 to 47 weeks. Probiotic strains such as L. fermentum CECT5716, L. casei B255, L. reuteri DSM 17509, L. plantarum LP299v, and L. acidophilus can significantly reduce pro-inflammatory cytokines (TNF-α, IL-12, IL-6, IL-1β, IL-17, and IFN-γ) levels while increasing anti-inflammatory IL-10 and Treg cells. Probiotics also delay the production of autoantibodies, thus prolonging the remission period, decreasing flare frequency, and delaying disease progression. Furthermore, probiotic administration prevents gut dysbiosis, increases intestinal stability, and prevents pathogen colonization. In conclusion, probiotics can be considered a new alternative therapeutic approach for the management of SLE. Further clinical studies are required to investigate and validate the safety and effectiveness of probiotics in humans.
Collapse
Affiliation(s)
- Rachael Chaeh-Wen Goh
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Mari Kannan Maharajan
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Divya Gopinath
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| |
Collapse
|
4
|
Wang YH, Liao JM, Jan MS, Wang M, Su HH, Tsai WH, Liu PH, Tsuei YS, Huang SS. Prophylactic use of probiotics as an adjunctive treatment for ischemic stroke via the gut-spleen-brain axis. Brain Behav Immun 2025; 123:784-798. [PMID: 39442634 DOI: 10.1016/j.bbi.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
A growing body of research has focused on the role of spleen in orchestrating brain injury through the peripheral immune system following stroke, highlighting the brain-spleen axis as a potential target for mitigating neuronal damage during stroke. The gut microbiota plays a pivotal role in the bidirectional communication between the gut and the brain. Several studies have suggested that probiotic supplements hold promise as a strategic approach to maintaining a balanced intestinal microecology, reducing the apoptosis of intestinal epithelial cells, protecting the intestinal mucosal and blood-brain barrier (BBB), enhancing both intestinal and systemic immune functions, and thereby potentially affecting the pathogenesis and progression of ischemic stroke. In this study, we aimed to clarify the neuroprotective effects of supplementation with Lactobacillus, specifically Limosilactobacillus reuteri GMNL-89 (G89) and Lacticaseibacillus paracasei GMNL-133 (G133) on ischemic stroke and investigate how G89 and G133 modulate the communication mechanisms between the gut, brain, and spleen following ischemic stroke. We explored the neuroprotection and the underlying mechanisms of Lactobacillus supplementation in C57BL/6 mice subjected to permanent middle cerebral artery occlusion. Our results revealed that oral treatment with G89 or G133 alone, as well as oral administration combining G89 and G133, significantly decreased the infarct volume and improved the neurological function in mice with ischemic stroke. Moreover, G89 treatment alone preserved the tight junction integrity of gut barrier, while G133 alone and the combined treatment of G89 and G133 would significantly decreased the BBB permeability, and thereby significantly attenuated stroke-induced local and systemic inflammatory responses. Both G89 and G133 regulated cytotoxic T cells, and the balance between T helper 1 cells and T helper 2 cells in the spleen following ischemic stroke. Additionally, the combined administration of G89 and G133 improved the gut dysbiosis and significantly increased the concentration of short-chain fatty acids. In conclusion, our findings suggest that G89 and G133 may be used as nutrient supplements, holding promise as a prospective approach to combat ischemic stroke by modulating the gut-spleen-brain axis.
Collapse
Affiliation(s)
- Yi-Hsin Wang
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jiuan-Miaw Liao
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Shiou Jan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsing-Hui Su
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan
| | - Pei-Hsun Liu
- Department & Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuang-Seng Tsuei
- College of Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Surgical Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Neurosurgery, Taichung Verterans General Hospital, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Mirfeizi Z, Mahmoudi M, Jokar MH, Sahebari M, Noori E, Mehrad-Majd H, Barati M, Faridzadeh A. Impact of synbiotics on disease activity in systemic lupus erythematosus: Results from a randomized clinical trial. J Food Sci 2024; 89:9835-9845. [PMID: 39437223 DOI: 10.1111/1750-3841.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects various organs in the body. In SLE, inflammatory cytokines play a crucial role in initiating and sustaining the inflammatory process. Synbiotics may help modulate these inflammatory cytokines. This randomized, double-blind, placebo-controlled clinical trial aimed to assess the impact of synbiotics intervention on interleukin-17A (IL-17A) levels, disease activity, and inflammatory factors in patients with SLE. Fifty SLE patients were randomly assigned to receive either standard therapy plus synbiotics (consisting of Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus salivarius, Lactobacillus reuteri, Bifidobacterium lactis, Bifidobacterium longum, Bifidobacterium bifidum, and the prebiotic fructooligosaccharides) or standard therapy alone for 2 months. The results demonstrated a significant reduction in both protein and mRNA levels of IL-17A, as well as in the Systemic Lupus Erythematosus Disease Activity Index 2000 score, within the synbiotics group after the intervention compared to baseline. In contrast, the placebo group did not experience significant changes in IL-17A levels or disease activity. Synbiotic supplementation shows potential as an adjunctive therapeutic approach for SLE management; however, further research is needed to elucidate its underlying mechanisms. PRACTICAL APPLICATION: This study explores the use of synbiotics as a supplementary treatment for systemic lupus erythematosus, which is typically managed with immunosuppressive therapies.
Collapse
Affiliation(s)
- Zahra Mirfeizi
- Rheumatology Department, Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hassan Jokar
- Rheumatology Department, Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sahebari
- Rheumatology Department, Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Noori
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Mehrad-Majd
- Clinical Research Development Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Barati
- Department of Laboratory Sciences, School of Paramedicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Arezoo Faridzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
de Albuquerque Lemos DE, de Brito Alves JL, de Souza EL. Probiotic therapy as a promising strategy for gestational diabetes mellitus management. Expert Opin Biol Ther 2024; 24:1207-1219. [PMID: 39323363 DOI: 10.1080/14712598.2024.2409880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) has become the most common pregnancy medical complication, and its prevalence has increased in recent years. The GDM treatment primarily relies on adopting healthy eating habits, physical exercise, and insulin therapy. However, using probiotics to modulate the gut microbiota has been the subject of clinical trials as a promising therapeutic strategy for GDM management. AREAS COVERED Due to the adverse effects of gut dysbiosis in women with GDM, strategies targeting the gut microbiota to mitigate hyperglycemia, low-grade inflammation, and adverse pregnancy outcomes have been explored. Probiotic supplementation may improve glucose metabolism, lipid profile, oxidative stress, inflammation, and blood pressure in women with GDM. Furthermore, decreased fasting blood glucose, insulin resistance, and inflammatory markers, such as TNF-α and CRP, as well as increased total antioxidant capacity, lipid profile modulation, and improved blood pressure in women with GDM, are some of the important results reported in the available literature. EXPERT OPINION To fill the knowledge gap, further studies are needed focusing on modulating gut microbiota composition and metabolic activity and their systemic repercussions in GDM.
Collapse
Affiliation(s)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
7
|
Shen HT, Fang YT, Tsai WH, Chou CH, Huang MS, Yeh YT, Wu JT, Huang CH, Wang BY, Chang WW. A Lactobacillus Combination Ameliorates Lung Inflammation in an Elastase/LPS-induced Mouse Model of Chronic Obstructive Pulmonary Disease. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10300-9. [PMID: 38865030 DOI: 10.1007/s12602-024-10300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the world's leading lung disease and lacks effective and specific clinical strategies. Probiotics are increasingly used to support the improvement of the course of inflammatory diseases. In this study, we evaluated the potential of a lactic acid bacteria (LAB) combination containing Limosilactobacillus reuteri GMNL-89 and Lacticaseibacillus paracasei GMNL-133 to decrease lung inflammation and emphysema in a COPD mouse model. This model was induced by intranasal stimulation with elastase and LPS for 4 weeks, followed by 2 weeks of oral LAB administration. The results showed that the LAB combination decreased lung emphysema and reduced inflammatory cytokines (IL-1β, IL-6, TNF-α) in the lung tissue of COPD mice. Microbiome analysis revealed that Bifidobacterium and Akkermansia muciniphila, reduced in the gut of COPD mice, could be restored after LAB treatment. Microbial α-diversity in the lungs decreased in COPD mice but was reversed after LAB administration, which also increased the relative abundance of Candidatus arthromitus in the gut and decreased Burkholderia in the lungs. Furthermore, LAB-treated COPD mice exhibited increased levels of short-chain fatty acids, specifically acetic acid and propionic acid, in the cecum. Additionally, pulmonary emphysema and inflammation negatively correlated with C. arthromitus and Adlercreutzia levels. In conclusion, the combination of L. reuteri GMNL-89 and L. paracasei GMNL-133 demonstrates beneficial effects on pulmonary emphysema and inflammation in experimental COPD mice, correlating with changes in gut and lung microbiota, and providing a potential strategy for future adjuvant therapy.
Collapse
Affiliation(s)
- Huan-Ting Shen
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 88, Sec. 1, Fengxing Rd., Tanzi Dist., Taichung City, 427003, Taiwan
| | - Yi-Ting Fang
- Research and Development Department, GenMont Biotech Incorporation, No.8, Nanke 7th Rd., Shanhua Dist., Tainan City, 741014, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, No.8, Nanke 7th Rd., Shanhua Dist., Tainan City, 741014, Taiwan
| | - Chia-Hsuan Chou
- Research and Development Department, GenMont Biotech Incorporation, No.8, Nanke 7th Rd., Shanhua Dist., Tainan City, 741014, Taiwan
| | - Ming-Shyan Huang
- Division of Respiratory and Chest Medicine, Department of Internal Medicine, E-Da Cancer Hospital, No. 1, Yida Rd, Yanchao Dist, Kaohsiung City, 824005, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, No. 151, Jinxue Rd., Daliao Dist., Kaohsiung City, 831301, Taiwan
| | - Jiun-Ting Wu
- Division of Respiratory and Chest Medicine, Department of Internal Medicine, E-Da Cancer Hospital, No. 1, Yida Rd, Yanchao Dist, Kaohsiung City, 824005, Taiwan
| | - Cheng-Hsieh Huang
- Aging and Disease Prevention Research Center, Fooyin University, No. 151, Jinxue Rd., Daliao Dist., Kaohsiung City, 831301, Taiwan
| | - Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, No. 135, Nanhsiao Street, Changhua County, 500209, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City, 402202, Taiwan.
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd, Taichung City, 402306, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N.Rd, Taichung City, 402306, Taiwan.
| |
Collapse
|
8
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, Xiang W, Hao W, Sun L. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials. BMC Med 2024; 22:110. [PMID: 38475833 PMCID: PMC10935932 DOI: 10.1186/s12916-024-03303-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Jinsong Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ge Cui
- Department of Epidemiology and Statistics, School of Public Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Mirfeizi Z, Mahmoudi M, Faridzadeh A. Probiotics as a complementary treatment in systemic lupus erythematosus: A systematic review. Health Sci Rep 2023; 6:e1640. [PMID: 37877130 PMCID: PMC10591540 DOI: 10.1002/hsr2.1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that primarily affects young women. SLE has no recognized etiology but it is believed to be triggered by a number of factors, including genetic predisposition, hormonal influences, and environmental conditions. Dysbiosis in the gut microbiota has emerged as a potential mechanism connecting the intestinal microbiome to the breakdown of self-tolerance and chronic inflammation. This review aims to investigate the role of probiotics in modulating the gut microbiome and their potential therapeutic benefits in managing SLE, providing insights for future research and clinical practice. Methods We conducted a thorough search for papers published up to June 2023 in databases such as PubMed/MEDLINE, Web of Science, Scopus, and Cochrane Library. Results The systematic review identified 22 articles examining the effects of probiotics on SLE. These studies-which include in vivo tests, in vitro research, and clinical trials-indicate that probiotics may be effective against inflammation, and improve immunological responses and metabolic profiles in SLE patients. Most in vivo studies were assessed as medium to high quality, while the randomized controlled trial was deemed of high quality. Conclusion According to the findings of our systematic review, probiotics may be used in conjunction with other treatments to manage SLE. Nonetheless, current data is limited, and more randomized controlled trials would be required to fully examine their effectiveness.
Collapse
Affiliation(s)
- Zahra Mirfeizi
- Rheumatology Department, Rheumatic Diseases Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Mahmoudi
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Arezoo Faridzadeh
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
10
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
11
|
Zhu L, Wang Y, Pan CQ, Xing H. Gut microbiota in alcohol-related liver disease: pathophysiology and gut-brain cross talk. Front Pharmacol 2023; 14:1258062. [PMID: 37601074 PMCID: PMC10436520 DOI: 10.3389/fphar.2023.1258062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Alcohol-related liver disease (ALD) from excessive alcohol intake has a unique gut microbiota profile. The disease progression-free survival in ALD patients has been associated with the degree of gut dysbiosis. The vicious cycles between gut dysbiosis and the disease progression in ALD including: an increase of acetaldehyde production and bile acid secretion, impaired gut barrier, enrichment of circulating microbiota, toxicities of microbiota metabolites, a cascade of pro-inflammatory chemokines or cytokines, and augmentation in the generation of reactive oxygen species. The aforementioned pathophysiology process plays an important role in different disease stages with a spectrum of alcohol hepatitis, ALD cirrhosis, neurological dysfunction, and hepatocellular carcinoma. This review aims to illustrate the pathophysiology of gut microbiota and clarify the gut-brain crosstalk in ALD, which may provide the opportunity of identifying target points for future therapeutic intervention in ALD.
Collapse
Affiliation(s)
- Lin Zhu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Division of Gastroenterology and Hepatology, BaoJi Central Hospital, Shaanxi, China
| | - Calvin Q. Pan
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Division of Gastroenterology and Hepatology, NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Center of Liver Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
12
|
Yao K, Xie Y, Wang J, Lin Y, Chen X, Zhou T. Gut microbiota: a newly identified environmental factor in systemic lupus erythematosus. Front Immunol 2023; 14:1202850. [PMID: 37533870 PMCID: PMC10390700 DOI: 10.3389/fimmu.2023.1202850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that predominantly affects women of childbearing age and is characterized by the damage to multiple target organs. The pathogenesis of SLE is complex, and its etiology mainly involves genetic and environmental factors. At present, there is still a lack of effective means to cure SLE. In recent years, growing evidence has shown that gut microbiota, as an environmental factor, triggers autoimmunity through potential mechanisms including translocation and molecular mimicry, leads to immune dysregulation, and contributes to the development of SLE. Dietary intervention, drug therapy, probiotics supplement, fecal microbiome transplantation and other ways to modulate gut microbiota appear to be a potential treatment for SLE. In this review, the dysbiosis of gut microbiota in SLE, potential mechanisms linking gut microbiota and SLE, and immune dysregulation associated with gut microbiota in SLE are summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
13
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
14
|
Lei Y, Liu Q, Li Q, Zhao C, Zhao M, Lu Q. Exploring the Complex Relationship Between Microbiota and Systemic Lupus Erythematosus. Curr Rheumatol Rep 2023; 25:107-116. [PMID: 37083877 DOI: 10.1007/s11926-023-01102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by various autoantibodies and multi-organ. Microbiota dysbiosis in the gut, skin, oral, and other surfaces has a significant impact on SLE development. This article summarizes relevant research and provides new microbiome-related strategies for exploring the mechanisms and treating patients with SLE. RECENT FINDINGS SLE patients have disruptions in multiple microbiomes, with the gut microbiota (bacteria, viruses, and fungi) and their metabolites being the most thoroughly researched. This dysbiosis can promote SLE progression through mechanisms such as the leaky gut, molecular mimicry, and epigenetic regulation. Notwithstanding study constraints on the relationship between microbiota and SLE, specific interventions targeting the gut microbiota, such as probiotics, dietary management, and fecal microbiota transplantation, have emerged as promising SLE therapeutics.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianmei Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Zhan Y, Liu Q, Zhang B, Huang X, Lu Q. Recent advances in systemic lupus erythematosus and microbiota: from bench to bedside. Front Med 2022; 16:686-700. [DOI: 10.1007/s11684-022-0957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
|
16
|
Effects of Maternal Gut Microbiota-Targeted Therapy on the Programming of Nonalcoholic Fatty Liver Disease in Dams and Fetuses, Related to a Prenatal High-Fat Diet. Nutrients 2022; 14:nu14194004. [PMID: 36235659 PMCID: PMC9573493 DOI: 10.3390/nu14194004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic disorders can start in utero. Maternal transmission of metabolic phenotypes may increase the risks of adverse metabolic outcomes, such as nonalcoholic fatty liver disease (NAFLD); effective intervention is essential to prevent this. The gut microbiome plays a crucial role in fat storage, energy metabolism, and NAFLD. We investigated the therapeutic use of probiotic Lactobacillus reuteri and postbiotic butyrate gestation in the prevention of perinatal high-fat diet-induced programmed hepatic steatosis in the offspring of pregnant Sprague–Dawley rats who received regular chow or a high-fat (HF) diet 8 weeks before mating. L. reuteri or sodium butyrate was administered via oral gavage to the gestated rats until their sacrifice on day 21 of gestation. Both treatments improved liver steatosis in pregnant dams; L. reuteri had a superior effect. L. reuteri ameliorated obesity and altered the metabolic profiles of obese gravid dams. Maternal L. reuteri therapy prevented maternal HF diet-induced fetal liver steatosis, and reformed placental remodeling and oxidative injury. Probiotic therapy can restore lipid dysmetabolism in the fetal liver, modulate nutrient-sensing molecules in the placenta, and mediate the short-chain fatty acid signaling cascade. The therapeutic effects of maternal L. reuteri on maternal NAFLD and NAFLD reprogramming in offspring should be validated for further clinical translation.
Collapse
|
17
|
Qi-Xiang M, Yang F, Ze-Hua H, Nuo-Ming Y, Rui-Long W, Bin-Qiang X, Jun-Jie F, Chun-Lan H, Yue Z. Intestinal TLR4 deletion exacerbates acute pancreatitis through gut microbiota dysbiosis and Paneth cells deficiency. Gut Microbes 2022; 14:2112882. [PMID: 35982604 PMCID: PMC9397436 DOI: 10.1080/19490976.2022.2112882] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Toll-like receptor 4 (TLR4) has been identified as a potentially promising therapeutic target in acute pancreatitis (AP). However, the role of intestinal TLR4 in AP and AP-associated gut injury remains unclear. This study aimed to explore the relationship between intestinal TLR4 and gut microbiota during AP. A mouse AP model was establish by intraperitoneal injection of L-arginine. Pancreatic injury and intestinal barrier function were evaluated in wild-type and intestinal epithelial TLR4 knockout (TLR4ΔIEC) mice. Gut microbiota was analyzed by 16S rRNA sequencing. Quadruple antibiotics were applied to induce microbiota-depleted mice. Differentially expressed genes in gut were detected by RNA sequencing. L. reuteri treatment was carried out in vivo and vitro study. Compared with wild-type mice, AP and AP-associated gut injury were exacerbated in TLR4ΔIEC mice in a gut microbiota-dependent manner. The relative abundance of Lactobacillus and number of Paneth cells remarkably decreased in TLR4ΔIEC mice. The KEGG pathway analysis derived from RNA sequencing suggested that genes affected by intestinal TLR4 deletion were related to the activation of nod-like receptor pathway. Furthermore, L. reuteri treatment could significantly improve the pancreatic and intestinal injury in TLR4ΔIEC mice through promoting Paneth cells in a NOD2-dependent manner. Loss of intestinal epithelial TLR4 exacerbated pancreatic and intestinal damage during AP, which might be attributed to the gut microbiota dysbiosis especially the exhausted Lactobacillus. L. reuteri might maintain intestinal homeostasis and alleviate AP via Paneth cells modulation.Abbreviations: AP Acute pancreatitis, TLR4 Toll-like receptor 4, IL-1β Interleukin-1β, IL-6 Interleukin-6, TNF-α Tumor necrosis factor-α, SIRS Systematic inflammatory response syndrome, LPS Lipopolysaccharides, SPF Specific pathogen-free, ZO-1 Zonula occludens-1, CON Control, H&E Hematoxylin and eosin, FISH Fluorescence in situ hybridization, DAPI 4',6-diamidino-2-phenylindole, PCoA Principal co-ordinates analysis, SCFA Short chain fatty acid, LEfSe Linear discriminant analysis Effect Size, ANOVA Analysis of variance, F/B Firmicutes/Bacteroidetes, PCA Principal component analysis, NOD2 Nod-like receptor 2, ABX antibiotics, PCNA proliferating cell nuclear antigen.
Collapse
Affiliation(s)
- Mei Qi-Xiang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China,Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fu Yang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China,Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huang Ze-Hua
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China,Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yin Nuo-Ming
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wang Rui-Long
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xu Bin-Qiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fan Jun-Jie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huang Chun-Lan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China,CONTACT Huang Chun-Lan Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zeng Yue
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China,Zeng Yue
| |
Collapse
|
18
|
Chen Y, Lin J, Xiao L, Zhang X, Zhao L, Wang M, Li L. Gut microbiota in systemic lupus erythematosus: A fuse and a solution. J Autoimmun 2022; 132:102867. [PMID: 35932662 DOI: 10.1016/j.jaut.2022.102867] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
Gut commensals help shape and mold host immune system and deeply influence human health. The disease spectrum of mankind that gut microbiome may associate with is ever-growing, but the mechanisms are still enigmas. Characterized by loss of self-tolerance and sustained self-attack, systemic lupus erythematosus (SLE) is labeled with chronic inflammation, production of autoantibodies and multisystem injury, which so far are mostly incurable. Gut microbiota and their metabolites, now known as important environmental triggers of local/systemic immune responses, have been proposed to be involved in SLE development and progression probably through the following mechanisms: translocation beyond their niches; molecular mimicry to cross-activate immune response targeting self-antigens; epitope spreading to expand autoantibodies spectrum; and bystander activation to promote systemic inflammation. Gut microbiota which varies between individuals may also influence the metabolism and bio-transformation of disease-modifying anti-rheumatic drugs, thus associated with the efficacy and toxicity of these drugs, adding another explanation for heterogenic therapeutic responses. Modulation of gut microbiota via diet, probiotics/prebiotics, antibiotics/phages, fecal microbiota transplantation, or helminth to restore immune tolerance and homeostasis is expected to be a promising neoadjuvant therapy for SLE. We reviewed the advances in this territory and discussed the application prospect of modulating gut microbiota in controlling SLE.
Collapse
Affiliation(s)
- Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1 Da Hua Road, Dong Dan, Beijing, 100730, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1 Da Hua Road, Dong Dan, Beijing, 100730, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
| |
Collapse
|
19
|
Charoensappakit A, Sae-Khow K, Leelahavanichkul A. Gut Barrier Damage and Gut Translocation of Pathogen Molecules in Lupus, an Impact of Innate Immunity (Macrophages and Neutrophils) in Autoimmune Disease. Int J Mol Sci 2022; 23:ijms23158223. [PMID: 35897790 PMCID: PMC9367802 DOI: 10.3390/ijms23158223] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/08/2023] Open
Abstract
The gut barrier is a single cell layer that separates gut micro-organisms from the host, and gut permeability defects result in the translocation of microbial molecules from the gut into the blood. Despite the silent clinical manifestation, gut translocation of microbial molecules can induce systemic inflammation that might be an endogenous exacerbating factor of systemic lupus erythematosus. In contrast, circulatory immune-complex deposition and the effect of medications on the gut, an organ with an extremely large surface area, of patients with active lupus might cause gut translocation of microbial molecules, which worsens lupus severity. Likewise, the imbalance of gut microbiota may initiate lupus and/or interfere with gut integrity which results in microbial translocation and lupus exacerbation. Moreover, immune hyper-responsiveness of innate immune cells (macrophages and neutrophils) is demonstrated in a lupus model from the loss of inhibitory Fc gamma receptor IIb (FcgRIIb), which induces prominent responses through the cross-link between activating-FcgRs and innate immune receptors. The immune hyper-responsiveness can cause cell death, especially apoptosis and neutrophil extracellular traps (NETosis), which possibly exacerbates lupus, partly through the enhanced exposure of the self-antigens. Leaky gut monitoring and treatments (such as probiotics) might be beneficial in lupus. Here, we discuss the current information on leaky gut in lupus.
Collapse
Affiliation(s)
- Awirut Charoensappakit
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kritsanawan Sae-Khow
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
Abstract
Systemic Lupus Erythematosus is a complex autoimmune disease and its etiology remains unknown. Increased gut permeability has been reported in lupus patients, yet whether it promotes or results from lupus progression is unclear. Recent studies indicate that an impaired intestinal barrier allows the translocation of bacteria and bacterial components into systemic organs, increasing immune cell activation and autoantibody generation. Indeed, induced gut leakage in a mouse model of lupus enhanced disease characteristics, including the production of anti-dsDNA antibody, serum IL-6 as well as cell apoptosis. Gut microbiota dysbiosis has been suggested to be one of the factors that decreases gut barrier integrity by outgrowing harmful bacteria and their products, or by perturbation of gut immune homeostasis, which in turn affects gut barrier integrity. The restoration of microbial balance eliminates gut leakage in mice, further confirming the role of microbiota in maintaining gut barrier integrity. In this review, we discuss recent advances on the association between microbiota dysbiosis and leaky gut, as well as their influences on the progression of lupus. The modifications on host microbiota and gut integrity may offer insights into the development of new lupus treatment.
Collapse
Affiliation(s)
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Wang W, Fan Y, Wang X. Lactobacillus: Friend or Foe for Systemic Lupus Erythematosus? Front Immunol 2022; 13:883747. [PMID: 35677055 PMCID: PMC9168270 DOI: 10.3389/fimmu.2022.883747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
The cause of Systemic Lupus Erythematosus (SLE) remains largely unknown, despite the fact that it is well understood that a complex interaction between genes and environment is required for disease development. Microbiota serve as activators and are essential to immune homeostasis. Lactobacillus is thought to be an environmental agent affecting the development of SLE. However, beneficial therapeutic and anti-inflammatory effects of Lactobacillus on SLE were also explored. The discovery of Lactobacillus involvement in SLE will shed light on how SLE develops, as well as finding microbiota-targeted biomarkers and novel therapies. In this review, we attempt to describe the two sides of Lactobacillus in the occurrence, development, treatment and prognosis of SLE. We also discuss the effect of different strains Lactobacillus on immune cells, murine lupus, and patients. Finally, we try to illustrate the potential immunological mechanisms of Lactobacillus on SLE and provide evidence for further microbiota-targeted therapies.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
22
|
Abuqwider J, Altamimi M, Mauriello G. Limosilactobacillus reuteri in Health and Disease. Microorganisms 2022; 10:microorganisms10030522. [PMID: 35336098 PMCID: PMC8953724 DOI: 10.3390/microorganisms10030522] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Limosilactobacillus reuteri is a microorganism with valuable probiotic qualities that has been widely employed in humans to promote health. It is a well-studied probiotic bacterium that exerts beneficial health effects due to several metabolic mechanisms that enhance the production of anti-inflammatory cytochines and modulate the gut microbiota by the production of antimicrobial molecules, including reuterin. This review provides an overview of the data that support the role of probiotic properties, and the antimicrobial and immunomodulatory effects of some L. reuteri strains in relation to their metabolite production profile on the amelioration of many diseases and disorders. Although the results discussed in this paper are strain dependent, they show that L. reuteri, by different mechanisms and various metabolites, may control body weight and obesity, improve insulin sensitivity and glucose homeostasis, increase gut integrity and immunomodulation, and attenuate hepatic disorders. Gut microbiota modulation by ingesting probiotic L. reuteri strains could be a promising preventative and therapeutic approach against many diseases and disorders.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine;
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
- Correspondence: ; Tel.: +39-081-2539452
| |
Collapse
|
23
|
Kanmani P, Kim H. Probiotics counteract the expression of hepatic profibrotic genes via the attenuation of TGF-β/SMAD signaling and autophagy in hepatic stellate cells. PLoS One 2022; 17:e0262767. [PMID: 35051234 PMCID: PMC8775563 DOI: 10.1371/journal.pone.0262767] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Hepatic fibrosis is caused by the increased accumulation and improper degradation of extracellular matrix (ECM) proteins in the liver. Hepatic stellate cells (HSCs) activation is a key process in initiating hepatic fibrosis and can be ameliorated by the administration of probiotic strains. This study hypothesized that LAB strains (Lactiplantibacillus plantarum, Lactobacillus brevis, and Weissella cibaria) might attenuate pro-fibrogenic cytokine TGF-β mediated HSCs activation and induce collagen deposition, expression of other fibrogenic/inflammatory markers, autophagy, and apoptotic processes in vitro. Few studies have evaluated the probiotic effects against fibrogenesis in vitro. In this study, TGF-β exposure increased collagen deposition in LX-2 cells, but this increase was diminished when the cells were pretreated with LAB strains before TGF-β stimulation. TGF-β not only increased collagen deposition, but it also significantly upregulated the mRNA levels of Col1A1, alpha-smooth muscle actin (α-SMA), matrix metalloproteinases-2 (MMP-2), IL-6, CXCL-8, CCL2, and IL-1β in LX-2 cells. Pretreatment of the cells with LAB strains counteracted the TGF-β-induced pro-fibrogenic and inflammatory markers by modulating SMAD-dependent and SMAD-independent TGF-β signaling. In addition, LX-2 cells exposed to TGF-β induced the autophagic and apoptotic associated proteins that were also positively regulated by the LAB strains. These findings suggest that LAB can attenuate TGF-β signaling that is associated with liver fibrogenesis.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Korean Medicine, Dongguk University, Goyang, Republic of Korea
- Department of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Hojun Kim
- Department of Korean Medicine, Dongguk University, Goyang, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
Xi Y, Li H, Yu M, Li X, Li Y, Hui B, Zeng X, Wang J, Li J. Protective effects of chlorogenic acid on trimethyltin chloride-induced neurobehavioral dysfunctions in mice relying on the gut microbiota. Food Funct 2022; 13:1535-1550. [PMID: 35072194 DOI: 10.1039/d1fo03334d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trimethyltin chloride (TMT) is acknowledged to have potent neurotoxicity. Chlorogenic acid (CGA), the most abundant polyphenol in the human diet, is well-known for its neuroprotective activity. This investigation was performed to determine the effects and mechanisms of CGA on TMT-induced neurobehavioral dysfunctions. Mice received oral administrations of CGA (30 mg kg-1) for 11 days, in which they were intraperitoneally injected with TMT (2.7 mg kg-1) once on the 8th day. The daily intake of CGA significantly alleviated TMT-induced epilepsy-like seizure and cognition impairment, ameliorating hippocampal neuronal degeneration and neuroinflammation. Oral gavage of CGA potentially exerted neuroprotective effects through JNK/c-Jun and TLR4/NFκB pathways. Microbiome analysis revealed that daily consumption of CGA raised the relative abundance of Lactobacillus in TMT-treated mice. SCFAs, the gut microbial metabolites associated with neuroprotection, were increased in the mouse hippocampus following CGA treatment. TMT-induced neurotransmitter disorders were regulated by oral gavage of CGA, especially DL-kynurenine and acetylcholine chloride. Additionally, neurotransmitters in the mouse hippocampus were found to be highly associated with the gut microbiota. Our findings provided research evidence for the neuroprotective effect of CGA on TMT-induced neurobehavioral dysfunctions.
Collapse
Affiliation(s)
- Yu Xi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Meihong Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Xuejie Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Yan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Bowen Hui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Xiangquan Zeng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| | - Jian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
25
|
The Beneficial Effects of Probiotics via Autophagy: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2931580. [PMID: 34901266 PMCID: PMC8664546 DOI: 10.1155/2021/2931580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/11/2023]
Abstract
Probiotics are living microorganisms increasingly used to treat or modulate different diseases or disorders because of their benefits and also low adverse reaction, and their positive and protective effects on various cells and tissues have been reported. The mechanisms by which probiotics exert their beneficial effects in different cells and tissues were investigated, and autophagy is one of the main mechanisms to induce their positive effects. Autophagy is a conserved process that occurs in all eukaryotic cells and plays an essential role in homeostasis and cell survival by degrading damaged and dysfunctional intracellular organelles. On the other hand, the role of autophagy is diverse in different tissues and situations, and cell death derived from autophagy has been observed in some cells. This search was done in PubMed, WOS, and Scopus using the keywords probiotic, microbiota, and autophagy. The search strategy was focused on the in vitro and animal model studies, and the included filters were English language publications and full-text articles (by June 2020). Studies that investigated other underlying mechanisms except autophagy were excluded. Among more than 105 papers, 24 studies were considered eligible for more evaluation. The obtained results indicated that most studies were performed on intestinal cell lines or tissue compared with other types of cell lines and tissue. This review article discusses our current understanding of the probiotic effects through autophagy in different cell lines and tissues that would be a useful guide to daily and clinical usage of these living microorganisms, but despite promising results of this systematic review, further studies need to assess this issue. This systematic review has demonstrated that autophagy is an effective mechanism in inducing beneficial effects of probiotics in different tissues.
Collapse
|
26
|
Guo X, Yang X, Li Q, Shen X, Zhong H, Yang Y. The Microbiota in Systemic Lupus Erythematosus: An Update on the Potential Function of Probiotics. Front Pharmacol 2021; 12:759095. [PMID: 34887760 PMCID: PMC8650621 DOI: 10.3389/fphar.2021.759095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a kind of chronic diffuse connective tissue illness characterized by multisystem and multiorgan involvement, repeated recurrence and remission, and the presence of a large pool of autoantibodies in the body. Although the exact cause of SLE is not thoroughly revealed, accumulating evidence has manifested that intake of probiotics alters the composition of the gut microbiome, regulating the immunomodulatory and inflammatory response, which may be linked to the disease pathogenesis. Particularly, documented experiments demonstrated that SLE patients have remarkable changes in gut microbiota compared to healthy controls, indicating that the alteration of microbiota may be implicated in different phases of SLE. In this review, the alteration of microbiota in the development of SLE is summarized, and the mechanism of intestinal microbiota on the progression of immune and inflammatory responses in SLE is also discussed. Due to limited reports on the effects of probiotics supplementation in SLE patients, we emphasize advancements made in the last few years on the function and mechanisms of probiotics in the development of SLE animal models. Besides, we follow through literature to survey whether probiotics supplements can be an adjuvant therapy for comprehensive treatment of SLE. Research has indicated that intake of probiotics alters the composition of the gut microbiome, contributing to prevent the progression of SLE. Adjustment of the gut microbiome through probiotics supplementation seems to alleviate SLE symptoms and their cardiovascular and renal complications in animal models, marking this treatment as a potentially novel approach.
Collapse
Affiliation(s)
- Xirui Guo
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huiyun Zhong
- Department of Pharmacy, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.,Department of Pharmacy, The First People's Hospital of Zigong, Zigong, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Zhu T, Mao J, Zhong Y, Huang C, Deng Z, Cui Y, Liu J, Wang H. L. reuteri ZJ617 inhibits inflammatory and autophagy signaling pathways in gut-liver axis in piglet induced by lipopolysaccharide. J Anim Sci Biotechnol 2021; 12:110. [PMID: 34641957 PMCID: PMC8513206 DOI: 10.1186/s40104-021-00624-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/01/2021] [Indexed: 01/14/2023] Open
Abstract
Background This study investigated the protective effects of L. reuteri ZJ617 on intestinal and liver injury and the underlying mechanisms in modulating inflammatory, autophagy, and apoptosis signaling pathways in a piglet challenged with lipopolysaccharide (LPS). Methods Duroc × Landrace × Large White piglets were assigned to 3 groups (n = 6/group): control (CON) and LPS groups received oral phosphate-buffered saline for 2 weeks before intraperitoneal injection (i.p.) of physiological saline or LPS (25 μg/kg body weight), respectively, while the ZJ617 + LPS group was orally inoculated with ZJ617 for 2 weeks before i.p. of LPS. Piglets were sacrificed 4 h after LPS injection to determine intestinal integrity, serum biochemical parameters, inflammatory signaling involved in molecular and liver injury pathways. Results Compared with controls, LPS stimulation significantly increased intestinal phosphorylated-p38 MAPK, phosphorylated-ERK and JNK protein levels and decreased IκBα protein expression, while serum LPS, TNF-α, and IL-6 concentrations (P < 0.05) increased. ZJ617 pretreatment significantly countered the effects induced by LPS alone, with the exception of p-JNK protein levels. Compared with controls, LPS stimulation significantly increased LC3, Atg5, and Beclin-1 protein expression (P < 0.05) but decreased ZO-1, claudin-3, and occludin protein expression (P < 0.05) and increased serum DAO and D-xylose levels, effects that were all countered by ZJ617 pretreatment. LPS induced significantly higher hepatic LC3, Atg5, Beclin-1, SOD-2, and Bax protein expression (P < 0.05) and lower hepatic total bile acid (TBA) levels (P < 0.05) compared with controls. ZJ617 pretreatment significantly decreased hepatic Beclin-1, SOD2, and Bax protein expression (P < 0.05) and showed a tendency to decrease hepatic TBA (P = 0.0743) induced by LPS treatment. Pretreatment of ZJ617 before LPS injection induced the production of 5 significant metabolites in the intestinal contents: capric acid, isoleucine 1TMS, glycerol-1-phosphate byproduct, linoleic acid, alanine-alanine (P < 0.05). Conclusions These results demonstrated that ZJ617 pretreatment alleviated LPS-induced intestinal tight junction protein destruction, and intestinal and hepatic inflammatory and autophagy signal activation in the piglets. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00624-9.
Collapse
Affiliation(s)
- Tao Zhu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiangdi Mao
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Zhong
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | | | - Zhaoxi Deng
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Cui
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianxin Liu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Haifeng Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Yeh YL, Lu MC, Tsai BCK, Tzang BS, Cheng SM, Zhang X, Yang LY, Mahalakshmi B, Kuo WW, Xiang P, Huang CY. Heat-Killed Lactobacillus reuteri GMNL-263 Inhibits Systemic Lupus Erythematosus-Induced Cardiomyopathy in NZB/W F1 Mice. Probiotics Antimicrob Proteins 2021; 13:51-59. [PMID: 32514746 DOI: 10.1007/s12602-020-09668-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been increasingly recognized that accelerated atherosclerosis is a major cause of morbidity and mortality in patients with systemic lupus erythematosus, a multisystem autoimmune disease. In this study, we investigated the anti-apoptotic effects of heat-killed Lactobacillus reuteri GMNL-263 on the cardiac tissue of NZB/W F1 mice. The myocardial architecture of the mice heart was observed and evaluated using different staining techniques such as hematoxylin and eosin, TUNEL assay, Masson's trichrome, and fluorescent immunohistochemistry. Additionally, the probiotics-related pathway proteins were analyzed via western blot analysis. Our results showed prevention of enlarged interstitial spaces and abnormal myocardial structures in the hearts of NZB/W F1 mice with L. reuteri GMNL-263 feeding. Significant reduction in TUNEL-positive cells, Fas death receptor-related components, and apoptosis was also detected in the cardiac tissues of the NZB/W F1 mice after L. reuteri GMNL-263 feeding compared with the control group. These findings are the first to reveal the protective effects of L. reuteri GMNL-263 against cardiac abnormalities in NZB/W F1 mice and suggest the potential clinical applications of L. reuteri GMNL-263 in the treatment of SLE-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Show Tzang
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Shiu-Min Cheng
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Xiaoyong Zhang
- Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Liang-Yo Yang
- Department of Physiology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Peng Xiang
- Nephrology Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital , Qingyuan, Guangdong, China
| | - Chih-Yang Huang
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan. .,Department of Biotechnology, Asia University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
29
|
Koay KP, Tsai BCK, Kuo CH, Kuo WW, Luk HN, Day CH, Chen RJ, Chen MYC, Padma VV, Huang CY. Hyperglycemia-Induced Cardiac Damage Is Alleviated by Heat-Inactivated Lactobacillus reuteri GMNL-263 via Activation of the IGF1R Survival Pathway. Probiotics Antimicrob Proteins 2021; 13:1044-1053. [PMID: 33527184 DOI: 10.1007/s12602-021-09745-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Diabetes-induced cardiomyocyte apoptosis is one of the major causes of mortality in patients with diabetes. Numerous studies have indicated the beneficial effects of Lactobacillus reuteri GMNL-263. However, the protective effect of Lactobacillus reuteri GMNL-263 in cardiac damage associated with diabetes remains poorly understood. In this study, we aimed to investigate the protective effect of Lactobacillus reuteri GMNL-263 on cardiomyocytes in diabetic rats. Five-week-old male Wistar rats were categorized into normal control group, diabetes group (55 mg/kgw STZ-induced diabetes via intraperitoneal injection), and diabetic animals treated with Lactobacillus reuteri GMNL-263 (109 CFU/rat/day, oral administration for 4 weeks). The results were presented that oral administration of a high dose of Lactobacillus reuteri GMNL-263 in diabetic rats activated IGF1R cell survival pathways to decrease the Fas-dependent and mitochondrial-dependent apoptotic pathways induced by hyperglycemia. We found that GMNL-263 significantly attenuated cell apoptosis via the IGF1R survival pathway in diabetic rats. The findings of this study suggest that GMNL-263 treatment maybe an effective therapeutic approach for the prevention of cardiac apoptosis in patients with diabetes.
Collapse
Affiliation(s)
- Ker-Ping Koay
- Department of Anesthesia, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Hsiang-Ning Luk
- Department of Anesthesia, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Department of Biological Science and Technology, Asia University, Taichung, Taiwan. .,Center of General Education, Tzu Chi University of Science and Technology, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
30
|
Battaglia M, Garrett-Sinha LA. Bacterial infections in lupus: Roles in promoting immune activation and in pathogenesis of the disease. J Transl Autoimmun 2020; 4:100078. [PMID: 33490939 PMCID: PMC7804979 DOI: 10.1016/j.jtauto.2020.100078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bacterial infections of the lung, skin, bloodstream and other tissues are common in patients with systemic lupus erythematosus (lupus) and are often more severe and invasive than similar infections in control populations. A variety of studies have explored the changes in bacterial abundance in lupus patients, the rates of infection and the influence of particular bacterial species on disease progression, using both human patient samples and mouse models of lupus. OBJECTIVE The aim of this review is to summarize human and mouse studies that describe changes in the bacterial microbiome in lupus, the role of a leaky gut in stimulating inflammation, identification of specific bacterial species associated with lupus, and the potential roles of certain common bacterial infections in promoting lupus progression. METHODS Information was collected using searches of the Pubmed database for articles relevant to bacterial infections in lupus and to microbiome changes associated with lupus. RESULTS The reviewed studies demonstrate significant changes in the bacterial microbiome of lupus patients as compared to control subjects and in lupus-prone mice compared to control mice. Furthermore, there is evidence supporting the existence of a leaky gut in lupus patients and in lupus-prone mice. This leaky gut may allow live bacteria or bacterial components to enter the circulation and cause inflammation. Invasive bacterial infections are more common and often more severe in lupus patients. These include infections caused by Staphylococcus aureus, Salmonella enterica, Escherichia coli, Streptococcus pneumoniae and mycobacteria. These bacterial infections can trigger increased immune activation and inflammation, potentially stimulating activation of autoreactive lymphocytes and leading to worsening of lupus symptoms. CONCLUSIONS Together, the evidence suggests that lupus predisposes to infection, while infection may trigger worsening lupus, leading to a feedback loop that may reinforce autoimmune symptoms.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
31
|
Zheng TX, Pu SL, Tan P, Du YC, Qian BL, Chen H, Fu WG, Huang MZ. Liver Metabolomics Reveals the Effect of Lactobacillus reuteri on Alcoholic Liver Disease. Front Physiol 2020; 11:595382. [PMID: 33281626 PMCID: PMC7689281 DOI: 10.3389/fphys.2020.595382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD), a type of chronic liver disease that is prevalent worldwide, is still identified to have a poor prognosis despite many medical treatment protocols. Thus, it is urgent to develop and test new treatment protocols for ALD. Lactobacillus reuteri (L. reuteri) has been widely used in the clinical treatment of digestive system diseases, but studies on the protective effect of L. reuteri on ALD are considered to be rare. Therefore, in the present study, we examined the effect of L. reuteri on ALD and provide data that are significant in the development of new treatment protocols for ALD. An ALD model has been established in C57BL/6J mice treated according to the Gao-binge modeling method. Mice in the treatment group were administered with L. reuteri. Hematoxylin and eosin (H&E) staining, oil red O staining, immunohistochemistry, and biochemical analyses were performed to detect the phenotypic changes in the liver among mice in the different treatment groups. L. reuteri treatment reversed inflammatory cell infiltration and lipid accumulation. Moreover, AST, ALT, TG, and TCH levels were also reduced in the probiotics-treatment group. Five candidate biomarkers were found in the liver metabolites of different treatment groups by UPLC/QTOF-MS and a multivariate analysis. Several fatty acid metabolic pathways such as linoleic acid metabolism and glycerolipid metabolism were involved. All these findings suggested that L. reuteri treatment reversed the phenotype of ethanol-induced hepatitis and metabolic disorders. These findings provide evidence that L. reuteri might serve as a new therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Tian-Xiang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shi-Lin Pu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peng Tan
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi-Chao Du
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bao-Lin Qian
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wen-Guang Fu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mei-Zhou Huang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Xu WD, Su LC, Liu XY, Wang JM, Yuan ZC, Qin Z, Zhou XP, Huang AF. IL-38: A novel cytokine in systemic lupus erythematosus pathogenesis. J Cell Mol Med 2020; 24:12379-12389. [PMID: 33079487 PMCID: PMC7686966 DOI: 10.1111/jcmm.15737] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
IL‐38 is a newly identified cytokine that belongs to the IL‐1 family. In our previous study, we found elevated plasma levels of IL‐38 in patients with systemic lupus erythematosus (SLE). However, the clear relationship of IL‐38 expression in plasma, peripheral blood mononuclear cells (PBMCs) and clinical and laboratory features needs elucidation. Additionally, we evaluated the possible role of IL‐38 in regulating production of inflammatory cytokines in PBMCs in vitro. A pristane‐induced murine lupus model was used to further demonstrate the effects of IL‐38 on cytokines in vivo and discuss the significance of IL‐38 in lupus development. The results showed that mRNA expression of IL‐38 in PBMCs of patients with SLE was elevated compared with volunteers, and expression of IL‐38 in both plasma and PBMCs was strongly related to clinical features, such as haematuria and proteinuria, and correlated with a SLEDAI score. Plasma levels of TNF‐α, IL‐1β, IL‐6 and IL‐23 were elevated in patients with SLE and were related to plasma levels of IL‐38. In vitro, PBMCs of patients with SLE stimulated with IL‐38 showed a decreased expression of the four inflammatory cytokines compared with PBMCs of patients without treatment. Interestingly, IL‐38 administration in lupus mice significantly reduced the development of lupus, such as reduced proteinuria, improved histological examinations of the kidneys and down‐regulated inflammatory cytokines. In conclusion, IL‐38 may suppress synthesis of pro‐inflammatory cytokines and therefore regulate lupus pathogenesis.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Jia-Min Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Zhi-Chao Yuan
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Zhen Qin
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi-Ping Zhou
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Al-Balawi M, Morsy FM. Enterococcus faecalis Is a Better Competitor Than Other Lactic Acid Bacteria in the Initial Colonization of Colon of Healthy Newborn Babies at First Week of Their Life. Front Microbiol 2020; 11:2017. [PMID: 33133027 PMCID: PMC7550472 DOI: 10.3389/fmicb.2020.02017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Initial colonization of human gut by bacteria is an important step in controlling its microbiota and health status. This study followed the initial colonization by lactic acid bacteria (LAB) in colon of new born babies through following its occurrence in their stool at first week of their life. The LAB occurrence in the neonates' stool was followed on MRS agar medium. The isolated LAB from male and female newborn babies of normal birth and cesarean section surgical delivery were molecular biologically identified by phylogenetic analysis of 16S rRNA gene sequence. From the 24 investigated newborn babies, three LAB taxa, Lactobacillaceae, Enterococcus, and Streptococcus, were detected in their stool at first week of their life. Lactobacillaceae represented 20.8% of total colonized LAB in newborn babies in the culture-dependent approach used in this study and included three species namely Limosilactobacillus reuteri (previously known as Lactobacillus reuteri), Lacticaseibacillus rhamnosus (previously known as Lactobacillus rhamnosus) and Ligilactobacillus agilis (previously known as Lactobacillus agilis). Enterococcus faecalis and E. faecium were detected where E. faecalis was the highest dominant, representing 62.5% of total LAB colonizing newborn babies. This result suggests that this bacterium has high potency for colonization and might be important for controlling the initial settlement of microbiota in healthy newborn babies. Only one species of Streptococcus namely Streptococcus agalactiae was detected in 8.33% total of the investigated newborn babies indicating high competency by other LAB for colonization and that this bacteria, in spite of its pathogenicity, is commensal in its low existence in healthy babies. The explored potency of natural initial colonization of the LAB species E. faecalis, E. faecium, L. reuteri, L. rhamnosus, and L. agilis of which many health beneficial strains were previously reported, would be important for future applications. Despite the controversy in evaluating its health benefits, E. faecalis as a potent competitor to other LAB refers to its importance in initial colonization of healthy babies colon at first week of their life. Further future studies, with more number of samples and characterization, would be of importance for evaluating the potential use of beneficial Enterococcus strains which could improve intestinal ecosystem.
Collapse
Affiliation(s)
- Mohammad Al-Balawi
- Biology Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | - Fatthy Mohamed Morsy
- Biology Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
- Bacteriology Section, Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
34
|
Chen J, Wang Y, Zhu T, Yang S, Cao J, Li X, Wang LS, Sun C. Beneficial Regulatory Effects of Polymethoxyflavone-Rich Fraction from Ougan ( Citrus reticulata cv. Suavissima) Fruit on Gut Microbiota and Identification of Its Intestinal Metabolites in Mice. Antioxidants (Basel) 2020; 9:831. [PMID: 32899916 PMCID: PMC7555910 DOI: 10.3390/antiox9090831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Polymethoxyflavones (PMFs) are special flavonoids in citrus fruits that have been suggested to be beneficial to human health. However, whether PMFs in citrus fruit alter human gut microbiota is not well understood. The aim of the present study was to investigate the effects of PMF-rich fraction from Ougan (Citrus reticulata cv. Suavissima) on gut microbiota and evaluate the intestinal metabolic profile of PMFs in Institute of Cancer Research mice. The main components of the PMF-rich fraction were nobiletin, tangeretin, and 5-demethylnobiletin. The composition of the gut microbiota was analyzed using 16S ribosomal DNA sequencing. The results showed that after oral administration, the composition of mice gut microbiota was significantly altered. The relative abundance of two probiotics, Lactobacillus and Bifidobacterium, were found to increase significantly. A total of 21 metabolites of PMFs were detected in mice intestinal content by high performance liquid chromatography electrospray ionization tandem mass spectrometry, and they were generated through demethylation, demethoxylation, hydroxylation, and glucuronidation. Our results provided evidence that PMFs have potential beneficial regulatory effects on gut microbiota that in turn metabolize PMFs, which warrants further investigation in human clinical trials.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Tailin Zhu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Sijia Yang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.W.); (T.Z.); (S.Y.); (J.C.); (X.L.)
| |
Collapse
|
35
|
Babadi M, Khorshidi A, Aghadavood E, Samimi M, Kavossian E, Bahmani F, Mafi A, Shafabakhsh R, Satari M, Asemi Z. The Effects of Probiotic Supplementation on Genetic and Metabolic Profiles in Patients with Gestational Diabetes Mellitus: a Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics Antimicrob Proteins 2020; 11:1227-1235. [PMID: 30535534 DOI: 10.1007/s12602-018-9490-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study was carried out to evaluate the effects of probiotic supplementation on genetic and metabolic profiles in patients with gestational diabetes mellitus (GDM) who were not on oral hypoglycemic agents. This randomized, double-blind, placebo-controlled clinical trial was conducted in 48 patients with GDM. Participants were randomly divided into two groups to intake either probiotic capsule containing Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, Lactobacillus fermentum (2 × 109 CFU/g each) (n = 24) or placebo (n = 24) for 6 weeks. Probiotic intake upregulated peroxisome proliferator-activated receptor gamma (P = 0.01), transforming growth factor beta (P = 0.002) and vascular endothelial growth factor (P = 0.006), and downregulated gene expression of tumor necrosis factor alpha (P = 0.03) in peripheral blood mononuclear cells of subjects with GDM. In addition, probiotic supplementation significantly decreased fasting plasma glucose (β, - 3.43 mg/dL; 95% CI, - 6.48, - 0.38; P = 0.02), serum insulin levels (β, - 2.29 μIU/mL; 95% CI, - 3.60, - 0.99; P = 0.001), and insulin resistance (β, - 0.67; 95% CI, - 1.05, - 0.29; P = 0.001) and significantly increased insulin sensitivity (β, 0.009; 95% CI, 0.004, 0.01; P = 0.001) compared with the placebo. Additionally, consuming probiotic significantly decreased triglycerides (P = 0.02), VLDL-cholesterol (P = 0.02), and total-/HDL-cholesterol ratio (P = 0.006) and significantly increased HDL-cholesterol levels (P = 0.03) compared with the placebo. Finally, probiotic administration led to a significant reduction in plasma malondialdehyde (P < 0.001), and a significant elevation in plasma nitric oxide (P = 0.01) and total antioxidant capacity (P = 0.01) was observed compared with the placebo. Overall, probiotic supplementation for 6 weeks to patients with GDM had beneficial effects on gene expression related to insulin and inflammation, glycemic control, few lipid profiles, inflammatory markers, and oxidative stress.
Collapse
Affiliation(s)
- Mahtab Babadi
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Khorshidi
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Esmat Aghadavood
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Mansooreh Samimi
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Kavossian
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Alireza Mafi
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahbobeh Satari
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
36
|
Protective Effects of Probiotic Consumption in Cardiovascular Disease in Systemic Lupus Erythematosus. Nutrients 2019; 11:nu11112676. [PMID: 31694260 PMCID: PMC6893408 DOI: 10.3390/nu11112676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
The prevalence of renal and cardiovascular disease (CVD) in patients with systemic lupus erythematosus (SLE) is higher than in general populations. Recently, a causal role of gut microbiota on the development of immune responses in SLE has been described. Probiotic consumption changes the composition of gut microbiota, preventing SLE progression. The aim of this review is to explore the role of the gut microbiota in the development of renal and cardiovascular disease in SLE and how probiotics could be a therapeutic option. Despite strong evidence on the beneficial effects of probiotics in the development of autoimmunity and nephritis in SLE, only a few studies described the protective effects of Lactobacillus in important risk factors for CVD, such as endothelial dysfunction and hypertension in mice. The preventive effects of probiotics in renal and CVD in humans have not been established yet.
Collapse
|
37
|
Cui Y, Qi S, Zhang W, Mao J, Tang R, Wang C, Liu J, Luo XM, Wang H. Lactobacillus reuteri ZJ617 Culture Supernatant Attenuates Acute Liver Injury Induced in Mice by Lipopolysaccharide. J Nutr 2019; 149:2046-2055. [PMID: 31152671 DOI: 10.1093/jn/nxz088] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/09/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lactobacillus rhamnosus GG culture supernatant (LGGs) promotes intestinal integrity and ameliorates acute liver injury induced by alcohol in mice. OBJECTIVES The aim of this study was to investigate the protective effects and molecular mechanisms of Lactobacillus reuteri ZJ617 culture supernatant (ZJ617s) on acute liver injury induced by lipopolysaccharide (LPS) in mice. METHODS Male C57BL/6 mice (20 ± 2 g, 8 wk old) were randomly divided into 4 groups (6 mice/group): oral inoculation with phosphate-buffered saline (control), intraperitoneal injection of LPS (10 mg/kg body weight) (LPS), oral inoculation with ZJ617s 2 wk before intraperitoneal injection of LPS (ZJ617s + LPS), or oral inoculation with LGGs 2 wk before intraperitoneal injection of LPS (LGGs + LPS). Systemic inflammation, intestinal integrity, biomarkers of hepatic function, autophagy, and apoptosis signals in the liver were determined. RESULTS Twenty-four hours after LPS injection, the activities of serum alanine transaminase and aspartate transaminase were 32.2% and 30.3% lower in the ZJ617s + LPS group compared with the LPS group, respectively (P < 0.05). The ZJ617s + LPS group exhibited higher intestinal expression of claudin 3 (62.5%), occludin (60.1%), and zonula occludens 1 (60.5%) compared with the LPS group (P < 0.05). The concentrations of hepatic interleukin-6 and tumor necrosis factor-α were 21.4% and 27.3% lower in the ZJ617s + LPS group compared with the LPS group, respectively (P < 0.05). However, the concentration of interleukin-10 was 22.2% higher in the ZJ617s + LPS group. LPS increased the expression of Toll-like receptor 4 (TLR4; by 50.5%), phosphorylation p38 mitogen-activated protein kinase (p38MAPK; by 57.1%), extracellular signal-regulated kinase (by 77.8%), c-Jun N-terminal kinase (by 42.9%), and nuclear factor-κB (NF-κB; by 36.0%) compared with the control group. Supplementation with ZJ617s or LGGs ameliorated these effects (P < 0.05). Moreover, the hepatic expression of active caspase-3 and microtubule-associated protein 1 light chain 3 II was 23.8% and 28.6% lower in the ZJ617s + LPS group compared with the LPS group, respectively (P < 0.05). CONCLUSIONS ZJ617s exerts beneficial effects on the mouse liver through suppression of hepatic TLR4/MAPK/NF-κB activation, apoptosis, and autophagy. This trial was registered at Zhejiang University (http://www.lac.zju.edu.cn) as NO.ZJU20170529.
Collapse
Affiliation(s)
- Yanjun Cui
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China.,Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Sirui Qi
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Wenming Zhang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Jiangdi Mao
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Renlong Tang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Chong Wang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Jianxin Liu
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA
| | - Haifeng Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Jiang X, Lin D, Shao H, Yang X. Antioxidant properties of Komagataeibacter hansenii CGMCC 3917 and its ameliorative effects on alcohol-induced liver injury in mice. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1584647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinxin Jiang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| |
Collapse
|
39
|
Swartwout B, Luo XM. Implications of Probiotics on the Maternal-Neonatal Interface: Gut Microbiota, Immunomodulation, and Autoimmunity. Front Immunol 2018; 9:2840. [PMID: 30559747 PMCID: PMC6286978 DOI: 10.3389/fimmu.2018.02840] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Probiotics are being investigated for the treatment of autoimmune disease by re-balancing dysbiosis induced changes in the immune system. Pregnancy is a health concern surrounding autoimmune disease, both for the mother and her child. Probiotics for maternity are emerging on the market and have gained significant momentum in the literature. Thus far, evidence supports that probiotics alter the structure of the normal microbiota and the microbiota changes significantly during pregnancy. The interaction between probiotics-induced changes and normal changes during pregnancy is poorly understood. Furthermore, there is emerging evidence that the maternal gut microbiota influences the microbiota of offspring, leading to questions on how maternal probiotics may influence the health of neonates. Underpinning the development and balance of the immune system, the microbiota, especially that of the gut, is significantly important, and dysbiosis is an agent of immune dysregulation and autoimmunity. However, few studies exist on the implications of maternal probiotics for the outcome of pregnancy in autoimmune disease. Is it helpful or harmful for mother with autoimmune disease to take probiotics, and would this be protective or pathogenic for her child? Controversy surrounds whether probiotics administered maternally or during infancy are healthful for allergic disease, and their use for autoimmunity is relatively unexplored. This review aims to discuss the use of maternal probiotics in health and autoimmune disease and to investigate their immunomodulatory properties.
Collapse
Affiliation(s)
- Brianna Swartwout
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
40
|
Shamriz O. Probiotics and autoimmunity: Current evidence. Clin Exp Rheumatol 2018; 17:1150-1151. [PMID: 30213698 DOI: 10.1016/j.autrev.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 02/08/2023]
Affiliation(s)
- Oded Shamriz
- Pediatric Division, Hadassah-Hebrew University Medical Center, Ein-Kerem, Jerusalem, Israel.
| |
Collapse
|
41
|
Vahidi Z, Samadi M, Mahmoudi M, RezaieYazdi Z, Sahebari M, Tabasi N, Esmaeili SA, Sahebkar A, Rastin M. Lactobacillus rhamnosus and Lactobacillus delbrueckii ameliorate the expression of miR-155 and miR-181a in SLE patients. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
42
|
Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in Human Health and Diseases. Front Microbiol 2018; 9:757. [PMID: 29725324 PMCID: PMC5917019 DOI: 10.3389/fmicb.2018.00757] [Citation(s) in RCA: 463] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus reuteri (L. reuteri) is a well-studied probiotic bacterium that can colonize a large number of mammals. In humans, L. reuteri is found in different body sites, including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to inhibit the colonization of pathogenic microbes and remodel the commensal microbiota composition in the host. Second, L. reuteri can benefit the host immune system. For instance, some L. reuteri strains can reduce the production of pro-inflammatory cytokines while promoting regulatory T cell development and function. Third, bearing the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease the microbial translocation from the gut lumen to the tissues. Microbial translocation across the intestinal epithelium has been hypothesized as an initiator of inflammation. Therefore, inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the decrease in the abundance of L. reuteri in humans in the past decades is correlated with an increase in the incidences of inflammatory diseases over the same period of time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive preventive and/or therapeutic avenue against inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
43
|
Effects of oral Lactobacillus administration on antioxidant activities and CD4+CD25+forkhead box P3 (FoxP3)+ T cells in NZB/W F1 mice. Br J Nutr 2017; 118:333-342. [PMID: 28901888 DOI: 10.1017/s0007114517002112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterised by a dysregulation of the immune system, which causes inflammation responses, excessive oxidative stress and a reduction in the number of cluster of differentiation (CD)4+CD25+forkhead box P3 (FoxP3)+ T cells. Supplementation with certain Lactobacillus strains has been suggested to be beneficial in the comprehensive treatment of SLE. However, little is known about the effect and mechanism of certain Lactobacillus strains on SLE. To investigate the effects of Lactobacillus on SLE, NZB/W F1 mice were orally gavaged with Lactobacillus paracasei GMNL-32 (GMNL-32), Lactobacillus reuteri GMNL-89 (GMNL-89) and L. reuteri GMNL-263 (GMNL-263). Supplementation with GMNL-32, GMNL-89 and GMNL-263 significantly increased antioxidant activity, reduced IL-6 and TNF-α levels and significantly decreased the toll-like receptors/myeloid differentiation primary response gene 88 signalling in NZB/W F1 mice. Notably, supplementation with GMNL-263, but not GMNL-32 and GMNL-89, in NZB/W F1 mice significantly increased the differentiation of CD4+CD25+FoxP3+ T cells. These findings reveal beneficial effects of GMNL-32, GMNL-89 and GMNL-263 on NZB/W F1 mice and suggest that these specific Lactobacillus strains can be used as part of a comprehensive treatment of SLE patients.
Collapse
|
44
|
The Microbiome in Connective Tissue Diseases and Vasculitides: An Updated Narrative Review. J Immunol Res 2017; 2017:6836498. [PMID: 28835902 PMCID: PMC5556609 DOI: 10.1155/2017/6836498] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Objective To provide a narrative review of the most recent data concerning the involvement of the microbiome in the pathogenesis of connective tissue diseases (CTDs) and vasculitides. Methods The PubMed database was searched for articles using combinations of words or terms that included systemic lupus erythematosus, systemic sclerosis, autoimmune myositis, Sjögren's syndrome, undifferentiated and mixed CTD, vasculitis, microbiota, microbiome, and dysbiosis. Papers from the reference lists of the articles and book chapters were reviewed, and relevant publications were identified. Abstracts and articles written in languages other than English were excluded. Results We found some evidence that dysbiosis participates in the pathogenesis of systemic lupus erythematosus, systemic sclerosis, Sjögren's syndrome, and Behçet's disease, but there are still few data concerning the role of dysbiosis in other CTDs or vasculitides. Conclusions Numerous studies suggest that alterations in human microbiota may be involved in the pathogenesis of inflammatory arthritides as a result of the aberrant activation of the innate and adaptive immune responses. Only a few studies have explored the involvement of dysbiosis in other CTDs or vasculitides, and further research is needed.
Collapse
|