1
|
Vanderpeet CL, Dorey ES, Neal ES, Mullins T, McIntyre DH, Callaway LK, Barrett HL, Dekker Nitert M, Cuffe JSM. Dietary Fibre Modulates Gut Microbiota in Late Pregnancy Without Altering SCFA Levels, and Propionate Treatement Has No Effect on Placental Explant Function. Nutrients 2025; 17:1234. [PMID: 40218992 PMCID: PMC11990268 DOI: 10.3390/nu17071234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Dietary fibre promotes health, partly by mediating gut microbiota and short-chain fatty acid (SCFA) production. Pregnancy alters the relationship between dietary composition and the gut microbiota, and it is unclear if fibre intake during late pregnancy alters the abundance of SCFA bacteria and circulating SFCA concentrations. The aim of this study was to determine the impact of dietary fibre on faecal microbiome composition and circulating concentrations of SCFA acetate, butyrate, and propionate in late pregnancy. We also aimed to assess the impact of propionate treatment on placental function using cultured placental explants. Methods: 16S rRNA gene amplicon sequencing was performed on faecal DNA collected at 28 weeks of gestation from participants enrolled in the SPRING cohort study consuming a low or adequate fibre diet. Circualting SCFA were assessed. Placental explants were treated with sodium propionate. Results: Fibre intake did not impact microbial diversity or richness but did impact the abundance of specific bacterial genera. Pregnant participants with low-fibre diets had a greater abundance of Bacteroides and Sutterella, and dietary fibre intake (mg/day) negatively correlated with genera, including Sutterella, Bilophila, and Bacteroides. SCFA concentrations did not differ between groups but circulating concentrations of acetate, propionate, and butyrate did correlate with the abundance of key bacterial genera. Propionate treatment of placental explants did not alter mRNA expression of fatty acid receptors, antioxidants, or markers of apoptosis, nor did it impact pAMPK levels. Conclusions: This study demonstrates that the impact of dietary fibre on SCFA concentrations in pregnant women is modest, although this relationship may be difficult to discern given that other dietary factors differed between groups. Furthermore, this study demonstrates that propionate does not impact key pathways in placental tissue, suggesting that previous associations between this SCFA and placental dysfunction may be due to other maternal factors.
Collapse
Affiliation(s)
- Chelsea L. Vanderpeet
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.V.); (E.S.N.); (T.M.)
| | - Emily S. Dorey
- Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia; (E.S.D.); (D.H.M.); (H.L.B.)
- Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Elliott S. Neal
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.V.); (E.S.N.); (T.M.)
| | - Thomas Mullins
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.V.); (E.S.N.); (T.M.)
| | - David H. McIntyre
- Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia; (E.S.D.); (D.H.M.); (H.L.B.)
- Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Leonie K. Callaway
- Department of Obstetric Medicine, Royal Brisbane and Women’s Hospital, Herston, QLD 4059, Australia;
| | - Helen L. Barrett
- Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia; (E.S.D.); (D.H.M.); (H.L.B.)
- Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
- Royal Hospital for Women, Randwick, NSW 2031, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2033, Australia
| | - Marloes Dekker Nitert
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.V.); (E.S.N.); (T.M.)
| |
Collapse
|
2
|
Puglisi CH, Kim M, Aldhafeeri M, Lewandowski M, Vuong HE. Interactions of the maternal microbiome with diet, stress, and infection influence fetal development. FEBS J 2025; 292:1437-1453. [PMID: 39988792 PMCID: PMC11927046 DOI: 10.1111/febs.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 02/25/2025]
Abstract
Humans and other animals contain multitudes of microorganisms including bacteria, fungi, and viruses, which make up a diverse microbiome. Across body sites including skin, gastrointestinal tract, and oral cavity there are distinct microbial niches that are made up of trillions of microorganisms that have co-evolved to inhabit and interact with the host. The microbiome also interacts with the changing environment. This tripartite interaction between the host, microbiome, and environment suggests microbial communities play a key role in the biological processes of the host, such as development and behaviors. Over the past two decades, emerging research continues to reveal how host and microbe interactions impact nervous system signaling and behaviors, and influence neurodevelopmental, neurological, and neurodegenerative disorders. In this review, we will describe the unique features of the maternal microbiome that exist during the perinatal period and discuss evidence for the function of the maternal microbiome in offspring development. Finally, we will discuss how the maternal environment interacts with the microbiome and nervous system development and then postulate how the maternal microbiome can modify early offspring development to have lasting influence on brain health.
Collapse
Affiliation(s)
- Chloe H Puglisi
- Division of Neonatology, Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Minjeong Kim
- Division of Neonatology, Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Modi Aldhafeeri
- Division of Neonatology, Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Megan Lewandowski
- Division of Neonatology, Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Helen E. Vuong
- Division of Neonatology, Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
3
|
Ma G, Chen Z, Xie Z, Liu J, Xiao X. Mechanisms underlying changes in intestinal permeability during pregnancy and their implications for maternal and infant health. J Reprod Immunol 2025; 168:104423. [PMID: 39793281 DOI: 10.1016/j.jri.2025.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Proper regulation of intestinal permeability is essential for maintaining the integrity of the intestinal mucosal barrier. An abnormal increase in permeability can significantly contribute to the onset and progression of various diseases, including autoimmune disorders, metabolic conditions, allergies, and inflammatory bowel diseases. The potential connection between intestinal permeability and maternal health during pregnancy is increasingly recognized, yet a comprehensive review remains lacking. Pregnancy triggers a series of physiological structural adaptations and significant hormonal fluctuations that collectively contribute to an increase in intestinal permeability. Although an increase in intestinal permeability is typically a normal physiological response during pregnancy, an abnormal rise is associated with immune dysregulation, metabolic disorders, and various pregnancy-related complications, such as recurrent pregnancy loss, gestational diabetes mellitus, overweight and obesity during pregnancy, intrahepatic cholestasis of pregnancy, and preeclampsia. This paper discusses the components of the intestinal mucosal barrier, the concept of intestinal permeability and its measurement methods, and the mechanisms and physiological significance of increased intestinal permeability during pregnancy. It thoroughly explores the association between abnormal intestinal permeability during pregnancy and maternal diseases, aiming to provide evidence for the pathophysiology of disease development in pregnant women. Additionally, the paper examines intervention methods, such as gut microbiota modulation and nutritional interventions, to regulate intestinal permeability during pregnancy, improve immune and metabolic states, and offer feasible strategies for the prevention and adjuvant treatment of clinical pregnancy complications.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Zhuojun Xie
- General Medicine Department, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - JinXiang Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Schwartz LT, Ladouceur JG, Russell MM, Xie SYL, Bu S, Kerver JM, Comstock SS. The Relationship Between Fiber Intake and Gut Bacterial Diversity and Composition During the Third Trimester of Pregnancy. Nutrients 2025; 17:773. [PMID: 40077643 PMCID: PMC11901921 DOI: 10.3390/nu17050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES High fiber (34-36 g/day) diets are recommended during pregnancy due to inverse associations with constipation and adverse pregnancy health outcomes, including pre-eclampsia and gestational diabetes. However, the mechanism for this protective effect is poorly defined. Fiber may be protective due to its impact on the composition and function of specific bacteria within the pregnancy gut microbiome. The purpose of this analysis was to investigate whether a sub-sample of cohort study participants in their third trimester met daily dietary fiber and vegetable intake recommendations and, in turn, how this impacted bacterial composition and butyrate-producing genes within the gut microbiome. METHODS Pregnant participants (n = 52) provided stool samples and survey data, which were used to calculate fiber and vegetable intake. Genomic DNA was extracted from the stool samples, followed by PCR to amplify the V4 region of the 16S rRNA gene. Amplicons were sequenced and mapped to the RDP reference. Quantitative real-time PCR was used to measure the abundance of bacterial genes for butyrate production. RESULTS Of the pregnant participants in this sample, 84.7% and 92.3% failed to meet recommendations in the Dietary Guidelines for Americans for dietary fiber and vegetable intake, respectively. All four participants who met the vegetable recommendation were a subset of those who met the fiber recommendation. The participants who met the pregnancy fiber recommendation had gut microbiotas with greater alpha diversity (Shannon and Inverse Simpson) than those who did not. However, there was no association between dietary fiber intake and the abundance of bacterial genes for butyrate production. CONCLUSIONS This research suggests that general fiber intake during pregnancy has a modest association with the gut bacterial community. These preliminary results demonstrate a need to improve fiber intake during pregnancy. Further, studies that measure the relationship between dietary intake of specific types of fiber and associations with specific gut bacterial community members and their functions are needed.
Collapse
Affiliation(s)
- Lindsay T. Schwartz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jillian G. Ladouceur
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Madeleine M. Russell
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Shiyi Y. L. Xie
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Sihan Bu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jean M. Kerver
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Orchanian SB, Hsiao EY. The microbiome as a modulator of neurological health across the maternal-offspring interface. J Clin Invest 2025; 135:e184314. [PMID: 39959974 PMCID: PMC11827852 DOI: 10.1172/jci184314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
The maternal microbiome is emerging as an important factor that influences the neurological health of mothers and their children. Recent studies highlight how microbial communities in the maternal gut can shape early-life development in ways that inform long-term health trajectories. Research on the neurodevelopmental effects of maternal microbiomes is expanding our understanding of the microbiome-gut-brain axis to include signaling across the maternal-offspring unit during the perinatal period. In this Review, we synthesize existing literature on how the maternal microbiome modulates brain function and behavior in both mothers and their developing offspring. We present evidence from human and animal studies showing that the maternal microbiome interacts with environmental factors to impact risk for neurodevelopmental abnormalities. We further discuss molecular and cellular mechanisms that facilitate maternal-offspring crosstalk for neuromodulation. Finally, we consider how advancing understanding of these complex interactions could lead to microbiome-based interventions for promoting maternal and offspring health.
Collapse
Affiliation(s)
| | - Elaine Y. Hsiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
- UCLA Goodman-Luskin Microbiome Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
6
|
Erlin M, Rianda D, Fadilah F, Erlina L, Rahayu MD, Prafiantini E, Sungkar A, Shankar AH, Agustina R. Association of Prepregnancy Body Mass Index with Gut Microbiota Diversity and Abundance in Pregnant Women. J Nutr 2025:S0022-3166(25)00087-2. [PMID: 39956391 DOI: 10.1016/j.tjnut.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Understanding the link between prepregnancy nutritional status and gut microbiota during pregnancy may lead to novel maternal and child health interventions. OBJECTIVE To explore the association of prepregnancy body mass index (BMI) status with gut microbiota diversity and abundance during pregnancy. METHODS A cross-sectional study was conducted on 90 pregnant women from primary health centers in Jakarta, Indonesia. Trained staff interviewed women on sociodemographic characteristics and nutrient intake, gathered data on prepregnancy BMI from antenatal records, and obtained fecal samples. Samples were analyzed for microbiota diversity indices [Shannon, Faith phylogenetic diversity (Faith PD), and Chao1] and abundance using 16S ribosome ribonucleic acid sequencing. Multivariate logistic regression was performed adjusting for carbohydrate and protein intake, ethnicity, and education to determine the relationship between prepregnancy BMI and the alpha diversity indices and the presence of the phylum Firmicutes and genera Prevotella and Blautia. RESULTS Pregnant women who were overweight or obese (BMI ≥23.0 kg/m2) before pregnancy had significantly lower odds of having gut microbiota diversity above the median of the Shannon index [adjusted odds ratio (aOR): 0.37, 95% confidence interval (CI): 0.14, 0.97, P = 0.042], Faith PD (aOR: 0.23, 95% CI: 0.07, 0.75, P = 0.015), and Chao1 (aOR: 0.25, 95% CI: 0.09, 0.67, P = 0.006) compared with those who were neither overweight nor obese. Prepregnant women who were overweight or obese also had significantly lower odds of having levels above the median of the phylum Firmicutes (aOR: 0.38, 95% CI: 0.15, 0.98, P = 0.045) and genus Blautia (aOR: 0.32, 95% CI: 0.12, 0.85, P = 0.022) compared with women who were neither overweight nor obese. CONCLUSIONS Prepregnancy overweight or obese status was associated with lower gut microbiota diversity and lower abundance of Firmicutes and Blautia among pregnant women in an urban community. These findings suggest that prepregnancy interventions to control BMI may improve gut flora and potentially benefit pregnant women.
Collapse
Affiliation(s)
- Maria Erlin
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Davrina Rianda
- Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Fadilah Fadilah
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Linda Erlina
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Mega Diasty Rahayu
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Erfi Prafiantini
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia; Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ali Sungkar
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Anuraj H Shankar
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Clinical Research Unit-Indonesia, Jakarta, Indonesia
| | - Rina Agustina
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia; Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| |
Collapse
|
7
|
Isolauri E, Laitinen K. Resilience to Global Health Challenges Through Nutritional Gut Microbiome Modulation. Nutrients 2025; 17:396. [PMID: 39940253 PMCID: PMC11821120 DOI: 10.3390/nu17030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
As the world faces an escalating challenge of non-communicable diseases (NCDs), with phenotypes ranging from allergic chronic immuno-inflammatory diseases to neuropsychiatric disorders, it becomes evident that their seeds are sown during the early stages of life. Furthermore, within only a few decades, human obesity has reached epidemic proportions and now represents the most serious public health challenge of our time. Recent demonstrations that a growing number of these conditions are linked to aberrant gut microbiota composition and function have evoked active scientific interest in host-microbe crosstalk, characterizing and modulating the gut microbiota in at-risk circumstances. These efforts appear particularly justified during the most critical period of developmental plasticity when the child's immune, metabolic, and microbiological constitutions lend themselves to long-term adjustment. Pregnancy and early infancy epitomize an ideal developmental juncture for preventive measures aiming to reduce the risk of NCDs; by promoting the health of pregnant and lactating women today, the health of the next generation(s) may be successfully improved. The perfect tools for this initiative derive from the earliest and most massive source of environmental exposures, namely the microbiome and nutrition, due to their fundamental interactions in the function of the host immune and metabolic maturation.
Collapse
Affiliation(s)
- Erika Isolauri
- Department of Clinical Medicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Kirsi Laitinen
- Nutrition and Food Research Center & Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland
| |
Collapse
|
8
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
9
|
Zhao Z, Zhong L, Zhou P, Deng Y, Liu G, Li P, Zeng J, Zhang Y, Tang X, Zhang M. Impact of Dietary Fatty Acid Composition on the Intestinal Microbiota and Fecal Metabolism of Rats Fed a High-Fructose/High-Fat Diet. Nutrients 2024; 16:3774. [PMID: 39519607 PMCID: PMC11547413 DOI: 10.3390/nu16213774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: An inappropriate intake of dietary fats can disrupt the homeostasis of intestinal microbiota, affect the host's metabolic status, and increase the risk of chronic diseases. The impact of dietary fat types on the composition and metabolic functionality of the intestinal microbiota has become a research focus over recent years. The objective of this study was to explore the effects of regular peanut oil (PO) and high-oleic-acid peanut oil (HOPO) on the composition and metabolic function of the intestinal microbiota. Methods: A dietary intervention test was conducted on SD rats fed a high-fat/high-fructose (HFF) diet. The composition and metabolic functionality of the intestinal microbiota of the experimental rats were investigated by 16S rRNA gene sequencing and fecal metabolomics. Results: Compared with saturated fat, PO and HOPO enhanced the diversity of intestinal microbiota in HFF diet-fed rats. Compared with PO, HOPO significantly increased the relative abundance of Lachnospiraceae_NK4A136_group and Harryflintia (p < 0.05), which are able to generate butyrate and acetate. Compared with saturated fat, 318 and 271 fecal biomarkers were identified in PO and HOPO groups, respectively. In contrast, 68 fecal biomarkers were identified between the PO and HOPO groups. The inhibition of harmful proteolytic fermentation in the colon may represent the main regulatory mechanism. With regard to metabolic status, HOPO provided better control of body weight and insulin sensitivity than PO. Conclusions: Compared with saturated fat, peanut oils better regulated the composition and metabolic function of the intestinal microbiota. In addition, HOPO exhibited better regulatory effects than PO.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Z.Z.)
| |
Collapse
|
10
|
Gogos A, Thomson S, Drummond K, Holland L, O'Hely M, Dawson S, Marx W, Mansell T, Burgner D, Saffery R, Sly P, Collier F, Tang ML, Symeonides C, Vuillermin P, Ponsonby AL. Socioeconomic adversity, maternal nutrition, and the prenatal programming of offspring cognition and language at two years of age through maternal inflammation. Brain Behav Immun 2024; 122:471-482. [PMID: 39163911 DOI: 10.1016/j.bbi.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/18/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Increasing rates of child neurodevelopmental vulnerability are a significant public health challenge. The adverse effect of socioeconomic adversity on offspring cognition may be mediated through elevated prenatal maternal systemic inflammation, but the role of modifiable antecedents such as maternal nutrition has not yet been clarified. This study aimed to examine (1) whether prenatal factors, with an emphasis on maternal nutrition, were associated with prenatal maternal systemic inflammation at 28 weeks' gestation, including the metabolomic marker glycoprotein acetyls (GlycA); (2) the extent to which the association between prenatal maternal nutrition and child cognition and language at age two years was mediated by elevated maternal inflammation in pregnancy; (3) the extent to which the associations between prenatal socioeconomic adversity and child neurodevelopment were mediated through prenatal maternal nutrition and GlycA levels. We used a prospective population-derived pre-birth longitudinal cohort study, the Barwon Infant Study (Barwon region of Victoria, Australia), where 1074 mother-child pairs were recruited by 28 weeks' gestation using an unselected sampling frame. Exposures included prenatal factors such as maternal diet measured by a validated food frequency questionnaire at 28 weeks' gestation and dietary patterns determined by principal component analysis. The main outcome measures were maternal inflammatory biomarkers (GlycA and hsCRP levels) at 28 weeks' gestation, and offspring Bayley-III cognition and language scores at age two years. Results showed that the 'modern wholefoods' and 'processed' maternal dietary patterns were independently associated with reduced and elevated maternal inflammation respectively (GlycA or hsCRP p < 0.001), and also with higher and reduced offspring Bayley-III scores respectively (cognition p ≤ 0.004, language p ≤ 0.009). Associations between dietary patterns and offspring cognition and language were partially mediated by higher maternal GlycA (indirect effect: cognition p ≤ 0.036, language p ≤ 0.05), but were less evident for hsCRP. The maternal dietary patterns mediated 22 % of the association between socioeconomic adversity (lower maternal education and/or lower household income vs otherwise) and poorer offspring cognition (indirect effect p = 0.001). Variation in prenatal GlycA levels that were independent of these dietary measures appeared less important. In conclusion, modifiable prenatal maternal dietary patterns were associated with adverse child neurocognitive outcomes through their effect on maternal inflammation (GlycA). Maternal diet may partially explain the association between socioeconomic adversity and child neurocognitive vulnerability. Maternal diet-by-inflammation pathways are an attractive target for future intervention studies.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Lada Holland
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Samantha Dawson
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Peter Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia; Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Fiona Collier
- Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia; Barwon Health, Geelong, VIC, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
11
|
Eveleens Maarse BC, Eggink HM, Warnke I, Bijlsma S, van den Broek TJ, Oosterman JE, Caspers MPM, Sybesma W, Gal P, van Kraaij SJW, Schuren FHJ, Moerland M, Hoevenaars FPM. Impact of fibre supplementation on microbiome and resilience in healthy participants: A randomized, placebo-controlled clinical trial. Nutr Metab Cardiovasc Dis 2024; 34:1416-1426. [PMID: 38499450 DOI: 10.1016/j.numecd.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND AND AIMS The gut microbiome exerts important roles in health, e.g., functions in metabolism and immunology. These functions are often exerted via short-chain fatty acid (SCFA) production by gut bacteria. Studies demonstrating causal relationships between interventions targeting the microbiome and clinical outcomes are limited. This study aimed to show a causal relationship between microbiome modulation through fibre intervention and health. METHODS AND RESULTS This randomized, double-blind, cross-over study included 65 healthy subjects, aged 45-70 years, with increased metabolic risk (i.e., body mass index [BMI] 25-30 kg/m2, low to moderate daily dietary fibre intake, <30g/day). Subjects took daily a fibre mixture of Acacia gum and carrot powder or placebo for 12 weeks, with an 8-week wash-out period. Faecal samples for measurement of SCFAs and microbiome analysis were collected every 4 weeks. Before and after each intervention period subjects underwent the mixed-meal PhenFlex challenge Test (PFT). Health effects were expressed as resilience to the stressors of the PFT and as fasting metabolic and inflammatory state. The fibre mixture exerted microbiome modulation, with an increase in β-diversity (p < 0.001). α-diversity was lower during fibre mixture intake compared to placebo after 4, 8 and 12 weeks (p = 0.002; p = 0.012; p = 0.031). There was no effect observed on faecal SCFA concentrations, nor on any of the primary clinical outcomes (Inflammatory resilience: p = 0.605, Metabolic resilience: p = 0.485). CONCLUSION Although the intervention exerted effects on gut microbiome composition, no effects on SCFA production, on resilience or fasting metabolic and inflammatory state were observed in this cohort. REGISTRATION NUMBER CLINICALTRIALS.GOV: NCT04829396.
Collapse
Affiliation(s)
- Boukje C Eveleens Maarse
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Hannah M Eggink
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Ines Warnke
- dsm-firmenich, CH-4303, Kaiseraugst, Switzerland
| | - Sabina Bijlsma
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Tim J van den Broek
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Johanneke E Oosterman
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Martien P M Caspers
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | | | - Pim Gal
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Sebastiaan J W van Kraaij
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Frank H J Schuren
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden University Medical Center, Leiden, the Netherlands
| | - Femke P M Hoevenaars
- TNO, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands.
| |
Collapse
|
12
|
Sindi AS, Stinson LF, Gridneva Z, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Rea A, Trevenen ML, Geddes DT, Payne MS. Maternal dietary intervention during lactation impacts the maternal faecal and human milk microbiota. J Appl Microbiol 2024; 135:lxae024. [PMID: 38323424 DOI: 10.1093/jambio/lxae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
AIMS To determine the effect of a two-week reduced fat and sugar and increased fibre maternal dietary intervention on the maternal faecal and human milk (HM) microbiomes. METHODS AND RESULTS Faecal swabs and HM samples were collected from mothers (n = 11) immediately pre-intervention, immediately post-intervention, and 4 and 8 weeks post-intervention, and were analysed using full-length 16S rRNA gene sequencing. Maternal macronutrient intake was assessed at baseline and during the intervention. Maternal fat and sugar intake during the intervention were significantly lower than pre-intervention (P = <0.001, 0.005, respectively). Significant changes in the bacterial composition of maternal faeces were detected after the dietary intervention, with decreases in the relative abundance of Bacteroides caccae (P = <0.001) and increases in the relative abundance of Faecalibacillus intestinalis (P = 0.006). In HM, the diet resulted in a significant increase in Cutibacterium acnes (P = 0.001) and a decrease in Haemophilus parainfluenzae (P = <0.001). The effect of the diet continued after the intervention, with faecal swabs and HM samples taken 4 and 8 weeks after the diet showing significant differences compared to baseline. CONCLUSION This pilot study demonstrates that short-term changes in maternal diet during lactation can alter the bacterial composition of the maternal faeces and HM.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia
- College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gabriela E Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Merryn J Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, SA 5000, Australia
- Discipline of Paediatrics, The University of Adelaide, North Adelaide, SA 5006, Australia
- Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Mary E Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Beverly S Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
- CSIRO, Adelaide, SA 5000, Australia
| | - Alethea Rea
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia
- Mathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia
| | - Michelle L Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia
| |
Collapse
|
13
|
Ajeeb TT, Gonzalez E, Solomons NW, Vossenaar M, Koski KG. Human milk microbiome: associations with maternal diet and infant growth. Front Nutr 2024; 11:1341777. [PMID: 38529196 PMCID: PMC10962684 DOI: 10.3389/fnut.2024.1341777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Ingestion of human milk (HM) is identified as a significant factor associated with early infant gut microbial colonization, which has been associated with infant health and development. Maternal diet has been associated with the HM microbiome (HMM). However, a few studies have explored the associations among maternal diet, HMM, and infant growth during the first 6 months of lactation. Methods For this cross-sectional study, Mam-Mayan mother-infant dyads (n = 64) were recruited from 8 rural communities in the Western Highlands of Guatemala at two stages of lactation: early (6-46 days postpartum, n = 29) or late (109-184 days postpartum, n = 35). Recruited mothers had vaginally delivered singleton births, had no subclinical mastitis or antibiotic treatments, and breastfed their infants. Data collected at both stages of lactation included two 24-h recalls, milk samples, and infant growth status indicators: head-circumference-for-age-z-score (HCAZ), length-for-age-z-score (LAZ), and weight-for-age-z-score (WAZ). Infants were divided into subgroups: normal weight (WAZ ≥ -1SD) and mildly underweight (WAZ < -1SD), non-stunted (LAZ ≥ -1.5SD) and mildly stunted (LAZ < -1.5SD), and normal head-circumference (HCAZ ≥ -1SD) and smaller head-circumference (HCAZ < -1SD). HMM was identified using 16S rRNA gene sequencing; amplicon analysis was performed with the high-resolution ANCHOR pipeline, and DESeq2 identified the differentially abundant (DA) HMM at the species-level between infant growth groups (FDR < 0.05) in both early and late lactation. Results Using both cluster and univariate analyses, we identified (a) positive correlations between infant growth clusters and maternal dietary clusters, (b) both positive and negative associations among maternal macronutrient and micronutrient intakes with the HMM at the species level and (c) distinct correlations between HMM DA taxa with maternal nutrient intakes and infant z-scores that differed between breast-fed infants experiencing growth faltering and normal growth in early and late lactation. Conclusion Collectively, these findings provide important evidence of the potential influence of maternal diet on the early-life growth of breastfed infants via modulation of the HMM.
Collapse
Affiliation(s)
- Tamara T. Ajeeb
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- Department of Clinical Nutrition, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Marieke Vossenaar
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | | |
Collapse
|
14
|
Zhang L, Agrawal M, Ng SC, Jess T. Early-life exposures and the microbiome: implications for IBD prevention. Gut 2024; 73:541-549. [PMID: 38123972 PMCID: PMC11150004 DOI: 10.1136/gutjnl-2023-330002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
The early-life period is one of microbiome establishment and immune maturation. Early-life exposures are increasingly being recognised to play an important role in IBD risk. The composition of functions of the gut microbiome in the prenatal, perinatal, and postnatal period may be crucial towards development of health or disease, including IBD, later in life. We herein present a comprehensive summary of the interplay between early-life factors and microbiome perturbations, and their association with risk of IBD. In addition, we provide an overview of host and external factors in early life that are known to impact gut microbiome maturation and exposures implicated in IBD risk. Considering the emerging concept of IBD prevention, we propose strategies to minimise maternal and offspring exposure to potentially harmful variables and recommend protective measures during pregnancy and the postpartum period. This holistic view of early-life factors and microbiome signatures among mothers and their offspring will help frame our current understanding of their importance towards IBD pathogenesis and frame the roadmap for preventive strategies.
Collapse
Affiliation(s)
- Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York NY, New York, USA
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
15
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
16
|
Barrientos G, Ronchi F, Conrad ML. Nutrition during pregnancy: Influence on the gut microbiome and fetal development. Am J Reprod Immunol 2024; 91:e13802. [PMID: 38282608 DOI: 10.1111/aji.13802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024] Open
Abstract
Pregnancy is a finely tuned process, with the health and well-being of the developing fetus determined by the metabolic status and dietary intake of the mother. The maternal gut microbiome is remodeled during pregnancy, and this, coupled with the maternal nutrient intake during gestation shapes the production of metabolites that can cross the placenta and affect fetal development. As posited by the Developmental Origins of Health and Disease Hypothesis, such environmental influences can have major effects on the developing organ systems. When occurring at particularly sensitive gestational time points, these developmental programming events can have long lasting effects on offspring adaptation to the postnatal environment, and major health implications later in life. This review will summarize current knowledge on how pregnancy and maternal dietary intake intrinsically and extrinsically modify maternal gut microbiota composition and metabolite production. Further, we will assess how these factors shape the fetal landscape and ultimately contribute to offspring health. DOHaD, fetal development, metabolites, microbiome, nutrition, pregnancy, short-chain fatty acids.
Collapse
Affiliation(s)
- Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Francesca Ronchi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Melanie L Conrad
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
López-Agudelo VA, Falk-Paulsen M, Bharti R, Rehman A, Sommer F, Wacker EM, Ellinghaus D, Luzius A, Sievers LK, Liebeke M, Kaser A, Rosenstiel P. Defective Atg16l1 in intestinal epithelial cells links to altered fecal microbiota and metabolic shifts during pregnancy in mice. Gut Microbes 2024; 16:2429267. [PMID: 39620359 PMCID: PMC11622647 DOI: 10.1080/19490976.2024.2429267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024] Open
Abstract
Throughout gestation, the female body undergoes a series of transformations, including profound alterations in intestinal microbial communities. Changes gradually increase toward the end of pregnancy and comprise reduced α-diversity of microbial communities and an increased propensity for energy harvest. Despite the importance of the intestinal microbiota for the pathophysiology of inflammatory bowel diseases, very little is known about the relationship between these microbiota shifts and pregnancy-associated complications of the disease. Here, we explored the longitudinal dynamics of gut microbiota composition and functional potential during pregnancy and after lactation in Atg16l1∆IEC mice carrying an intestinal epithelial deletion of the Crohn's disease risk gene Atg16l1. Using 16S rRNA amplicon and shotgun metagenomic sequencing, we demonstrated divergent temporal shifts in microbial composition between Atg16l1 wildtype and Atg16l1∆IEC pregnant mice in trimester 3, which was validated in an independent experiment. Observed differences included microbial genera implicated in IBD such as Lachnospiraceae, Roseburia, Ruminococcus, and Turicibacter. Changes partially recovered after lactation. Additionally, metagenomic and metabolomic analyses suggest an increased capacity for chitin degradation, resulting in higher levels of free N-acetyl-glucosamine products in feces, alongside reduced glucose and myo-inositol levels in serum around the time of delivery. On the host side, we found that the immunological response of Atg16l1∆IEC mice is characterized by higher colonic mRNA levels of TNFα and CXCL1 in trimester 3 and a lower weight of offspring at birth. Understanding pregnancy-dependent microbiome changes in the context of IBD may constitute the first step in the identification of fecal microbial biomarkers and microbiota-directed therapies that could help improve precision care for managing pregnancies in IBD patients.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Richa Bharti
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
- Boehringer Ingelheim, Biberach an der Riß, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Eike Matthias Wacker
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laura Katharina Sievers
- Department of General Internal Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Manuel Liebeke
- Department for Metabolomics, Institute for Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
18
|
Rowley CE, Lodge S, Egan S, Itsiopoulos C, Christophersen CT, Silva D, Kicic-Starcevich E, O’Sullivan TA, Wist J, Nicholson J, Frost G, Holmes E, D’Vaz N. Altered dietary behaviour during pregnancy impacts systemic metabolic phenotypes. Front Nutr 2023; 10:1230480. [PMID: 38111603 PMCID: PMC10725961 DOI: 10.3389/fnut.2023.1230480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023] Open
Abstract
Rationale Evidence suggests consumption of a Mediterranean diet (MD) can positively impact both maternal and offspring health, potentially mediated by a beneficial effect on inflammatory pathways. We aimed to apply metabolic profiling of serum and urine samples to assess differences between women who were stratified into high and low alignment to a MD throughout pregnancy and investigate the relationship of the diet to inflammatory markers. Methods From the ORIGINS cohort, 51 pregnant women were stratified for persistent high and low alignment to a MD, based on validated MD questionnaires. 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the urine and serum metabolite profiles of these women at 36 weeks of pregnancy. The relationship between diet, metabolite profile and inflammatory status was investigated. Results There were clear differences in both the food choice and metabolic profiles of women who self-reported concordance to a high (HMDA) and low (LMDA) Mediterranean diet, indicating that alignment with the MD was associated with a specific metabolic phenotype during pregnancy. Reduced meat intake and higher vegetable intake in the HMDA group was supported by increased levels of urinary hippurate (p = 0.044) and lower creatine (p = 0.047) levels. Serum concentrations of the NMR spectroscopic inflammatory biomarkers GlycA (p = 0.020) and GlycB (p = 0.016) were significantly lower in the HDMA group and were negatively associated with serum acetate, histidine and isoleucine (p < 0.05) suggesting a greater level of plant-based nutrients in the diet. Serum branched chain and aromatic amino acids were positively associated with the HMDA group while both urinary and serum creatine, urine creatinine and dimethylamine were positively associated with the LMDA group. Conclusion Metabolic phenotypes of pregnant women who had a high alignment with the MD were significantly different from pregnant women who had a poor alignment with the MD. The metabolite profiles aligned with reported food intake. Differences were most significant biomarkers of systemic inflammation and selected gut-microbial metabolites. This research expands our understanding of the mechanisms driving health outcomes during the perinatal period and provides additional biomarkers for investigation in pregnant women to assess potential health risks.
Collapse
Affiliation(s)
- Charlotte E. Rowley
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Samantha Lodge
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Siobhon Egan
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | | | - Claus T. Christophersen
- WA Human Microbiome Collaboration Centre, Curtin University, Bentley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Desiree Silva
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, WA, Australia
- Joondalup Health Campus, Joondalup, WA, Australia
| | | | - Therese A. O’Sullivan
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Julien Wist
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Chemistry Department, Universidad del Valle, Cali, Colombia
| | - Jeremy Nicholson
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Faculty of Medicine, Imperial College London, Institute of Global Health Innovation, London, United Kingdom
- Section of Nutrition Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Section of Nutrition Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elaine Holmes
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Faculty of Medicine, Imperial College London, Institute of Global Health Innovation, London, United Kingdom
- Section of Nutrition Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nina D’Vaz
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, WA, Australia
| |
Collapse
|
19
|
Abril AG, Carrera M, Pazos M. Immunomodulatory effect of marine lipids on food allergy. Front Nutr 2023; 10:1254681. [PMID: 38035353 PMCID: PMC10683508 DOI: 10.3389/fnut.2023.1254681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Seafood is highly enriched in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), particularly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), in contrast to the ultra-processed foods included in the modern Western diet that have high levels of n-6 linoleic acid (LA, 18:2 n-6), precursor for the pro-inflammatory n-6 arachidonic acid (ARA, 20:4 n-6). The capacity of marine lipids to reduce plasmatic triglycerides and blood pressure have been well-described. Moreover, recent studies have also raised evidence of a potential regulatory action of marine lipids on inflammation, the immune system, and food allergy (FA). FA is considered one of the main concerns to become life threatening in food safety. The prevalence of this emerging global problem has been increasing during the last two decades, especially in industrialized countries. About a 6-8% of young children and 2-4% of adults is estimated to be affected by FA. The main objective of the current study is to update the existing knowledge, but also the limitations, on the potential impact of marine lipids and their lipid mediators in regulating immunity, inflammation, and ultimately, food allergies. In particular, the focus is on the effect of marine lipids in modulating the key factors that control the sensitization and effector phases of FA, including gut microbiota (GM), inflammation, and immune system response. Results in animal models highlight the positive effect that consuming marine lipids, whether as a supplement or through seafood consumption, may have a relevant role in improving gut dysbiosis and inflammation, and preventing or reducing the severity of FA. However, more systematic studies in humans are needed to optimize such beneficial actions to each particular FA, age, and medical condition to reach an effective clinical application of marine lipids to improve FAs and their outcomes.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Manuel Pazos
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
20
|
Hu R, Liu Z, Geng Y, Huang Y, Li F, Dong H, Ma W, Song K, Zhang M, Song Y. Gut Microbiota and Critical Metabolites: Potential Target in Preventing Gestational Diabetes Mellitus? Microorganisms 2023; 11:1725. [PMID: 37512897 PMCID: PMC10385493 DOI: 10.3390/microorganisms11071725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is an intractable issue that negatively impacts the quality of pregnancy. The incidence of GDM is on the rise, becoming a major health burden for both mothers and children. However, the specific etiology and pathophysiology of GDM remain unknown. Recently, the importance of gut microbiota and related metabolic molecules has gained prominence. Studies have indicated that women with GDM have significantly distinct gut microbiota and gut metabolites than healthy pregnant women. Given that the metabolic pathways of gut flora and related metabolites have a substantial impact on inflammation, insulin signaling, glucose, and lipid metabolism, and so on, gut microbiota or its metabolites, such as short-chain fatty acids, may play a significant role in both pathogenesis and progression of GDM. Whereas the role of intestinal flora during pregnancy is still in its infancy, this review aims to summarize the effects and mechanisms of gut microbiota and related metabolic molecules involved in GDM, thus providing potential intervention targets.
Collapse
Affiliation(s)
- Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
21
|
Cruz MC, Azinheiro S, Pereira SG. Modulation of gut microbiota by diet and probiotics: potential approaches to prevent gestational diabetes mellitus. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e17. [PMID: 39295903 PMCID: PMC11406384 DOI: 10.1017/gmb.2023.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 02/11/2023] [Accepted: 05/18/2023] [Indexed: 09/21/2024]
Abstract
Gestational diabetes mellitus (GDM) is a rising global health problem that affects approximately 6% of pregnant women. Lifestyle interventions, particularly diet, and exercise are the first-line treatment, followed by pharmacotherapy, but with associated side effects to both mother and offspring. Modulation of gut microbiota may help prevent or manage GDM. Some gut bacterial groups associated with GDM are also associated with inflammatory biomarkers and gut dysbiosis. Available literature reports that low-glycaemic index diet reduces maternal fasting and 2-hour postprandial glucose and maintains a beneficial gut bacterial composition. Pre- and probiotics can aid GDM therapy by modulating gut microbiota to eubiotic status and improving glucose metabolism. Probiotics as adjuvant GDM therapy should consider bacterial strains, dosage, and treatment duration. Limitations in their use require further studies to develop specific probiotic-based GDM supplement therapy that impacts glycaemic control and inflammatory status by reducing fasting plasma glucose, insulin resistance, and improving lipid profiles of pregnant women.
Collapse
Affiliation(s)
| | - Sarah Azinheiro
- Center for Innovative Care and Health Technology, Polytechnic of Leiria, Leiria, Portugal
| | | |
Collapse
|
22
|
Rohr JC, Bourassa KA, Thompson DS, Fowler JC, Frueh BC, Weinstein BL, Petrosino J, Madan A. History of childhood physical abuse is associated with gut microbiota diversity among adult psychiatric inpatients. J Affect Disord 2023; 331:50-56. [PMID: 36933668 DOI: 10.1016/j.jad.2023.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/20/2023]
Abstract
BACKGROUND Traumatic life events are associated with the development of psychiatric and chronic medical illnesses. This exploratory study examined the relationship between traumatic life events and the gut microbiota among adult psychiatric inpatients. METHODS 105 adult psychiatric inpatients provided clinical data and a single fecal sample shortly after admission. A modified version of the Stressful Life Events Screening Questionnaire was used to quantify history of traumatic life events. 16S rRNA gene sequencing was used to analyze the gut microbial community. RESULTS Gut microbiota diversity was not associated with overall trauma score or any of the three trauma factor scores. Upon item-level analysis, history of childhood physical abuse was uniquely associated with beta diversity. Linear Discriminant Analysis Effect Size (LefSe) analyses revealed that childhood physical abuse was associated with abundance of distinct bacterial taxa associated with inflammation. LIMITATIONS This study did not account for dietary differences, though diet was highly restricted as all participants were psychiatric inpatients. Absolute variance accounted for by the taxa was small though practically meaningful. The study was not powered for full subgroup analysis based on race and ethnicity. CONCLUSIONS This study is among the first to demonstrate a relationship between childhood physical abuse and gut microbiota composition among adult psychiatric patients. These findings suggest that early childhood adverse events may have long-conferred systemic consequences. Future efforts may target the gut microbiota for the prevention and/or treatment of psychiatric and medical risk associated with traumatic life events.
Collapse
Affiliation(s)
- Jessica C Rohr
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA.
| | - Katelynn A Bourassa
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA
| | - Dominique S Thompson
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA; Department of Molecular Virology & Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - J Christopher Fowler
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA; Houston Methodist Academic Institute, Houston, TX, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | | | - Benjamin L Weinstein
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA
| | - Joseph Petrosino
- Department of Molecular Virology & Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Alok Madan
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA; Houston Methodist Academic Institute, Houston, TX, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
23
|
Kunasegaran T, Balasubramaniam VRMT, Arasoo VJT, Palanisamy UD, Ramadas A. Diet Gut Microbiota Axis in Pregnancy: A Systematic Review of Recent Evidence. Curr Nutr Rep 2023; 12:203-214. [PMID: 36810808 PMCID: PMC9974723 DOI: 10.1007/s13668-023-00453-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 02/23/2023]
Abstract
PURPOSE OF REVIEW Although gut microbiota have been associated with the etiology of some diseases, the influence of foods on gut microbiota, especially among pregnant women, remains unclear. Hence, a systematic review was performed to investigate the association between diet and gut microbiota and their influence on metabolic health in pregnant women. RECENT FINDINGS We performed the systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 protocol to investigate the association between diet and gut microbiota and their influence on metabolic role in pregnant women. Five databases were searched for relevant peer-reviewed articles published in English since 2011. Two-staged screening of 659 retrieved records resulted in the inclusion of 10 studies. The collated findings suggested associations between nutrient intakes and four key microbes: Collinsella, Lachnospira, Sutterella, Faecalibacterium, and the Firmicutes/Bacteroidetes ratio in pregnant women. Dietary intakes in pregnancy were found to modify the gut microbiota and positively influence the cell metabolism in pregnant women. This review, however, emphasizes the importance of conducting well-designed prospective cohorts to investigate the role of changes in dietary intakes within the pregnancy and the influence of such changes on gut microbiota.
Collapse
Affiliation(s)
- Thubasni Kunasegaran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | | | | | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
24
|
Fuke N, Yamashita T, Shimizu S, Matsumoto M, Sawada K, Jung S, Tokuda I, Misawa M, Suzuki S, Ushida Y, Mikami T, Itoh K, Suganuma H. Association of Plasma Lipopolysaccharide-Binding Protein Concentration with Dietary Factors, Gut Microbiota, and Health Status in the Japanese General Adult Population: A Cross-Sectional Study. Metabolites 2023; 13:250. [PMID: 36837869 PMCID: PMC9965710 DOI: 10.3390/metabo13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The influx of intestinal bacteria-derived lipopolysaccharide (LPS) into the blood has attracted attention as a cause of diseases. The aim of this study is investigating the associations between the influx of LPS, dietary factors, gut microbiota, and health status in the general adult population. Food/nutrient intake, gut microbiota, health status and plasma LPS-binding protein (LBP; LPS exposure indicator) were measured in 896 residents (58.1% female, mean age 54.7 years) of the rural Iwaki district of Japan, and each correlation was analyzed. As the results, plasma LBP concentration correlated with physical (right/left arms' muscle mass [β = -0.02, -0.03]), renal (plasma renin activity [β = 0.27], urine albumin creatinine ratio [β = 0.50]), adrenal cortical (cortisol [β = 0.14]), and thyroid function (free thyroxine [β = 0.05]), iron metabolism (serum iron [β = -0.14]), and markers of lifestyle-related diseases (all Qs < 0.20). Plasma LBP concentration were mainly negatively correlated with vegetables/their nutrients intake (all βs ≤ -0.004, Qs < 0.20). Plasma LBP concentration was positively correlated with the proportion of Prevotella (β = 0.32), Megamonas (β = 0.56), and Streptococcus (β = 0.65); and negatively correlated with Roseburia (β = -0.57) (all Qs < 0.20). Dietary factors correlated with plasma LBP concentration correlated with positively (all βs ≥ 0.07) or negatively (all βs ≤ -0.07) the proportion of these bacteria (all Qs < 0.20). Our results suggested that plasma LBP concentration in the Japanese general adult population was associated with various health issues, and that dietary habit was associated with plasma LBP concentration in relation to the intestinal bacteria.
Collapse
Affiliation(s)
- Nobuo Fuke
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Takahiro Yamashita
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Sunao Shimizu
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mai Matsumoto
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Kaori Sawada
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Songee Jung
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Digital Nutrition and Health Sciences, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Itoyo Tokuda
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mina Misawa
- Center of Innovation Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shigenori Suzuki
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Hiroyuki Suganuma
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| |
Collapse
|
25
|
Relationship between Diet Quality and Maternal Stool Microbiota in the MUMS Australian Pregnancy Cohort. Nutrients 2023; 15:nu15030689. [PMID: 36771396 PMCID: PMC9920253 DOI: 10.3390/nu15030689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Dietary intake during pregnancy may influence the antenatal microbiome, which is proposed to impact maternal and infant health during the pregnancy and beyond. The aim of this sub-study was to examine associations between dietary intake and microbiota diversity during pregnancy using whole metagenomic sequencing and examine associations in low-risk versus high-risk pregnancies, as well as complicated versus uncomplicated pregnancies. Pregnancy data were analysed from women participating in the MUMS cohort study in Sydney, Australia (women followed from trimester 1 of pregnancy to 1-year postpartum), who had dietary intake data at either trimester 1 or 3, assessed using the Australian Eating Survey, and a matched stool sample (n = 86). Correlations of microbial alpha diversity with dietary intake data were determined using the repeated-measures correlation, rmcorr, in R. In the combined cohort, no associations were found between diet quality or diet composition and microbial alpha diversity or beta diversity. However, trends in our analysis suggested that dietary intake of specific macro- and micronutrients may influence microbial diversity differently, depending on particular pregnancy conditions. Our findings suggest that dietary intake during pregnancy may have a variable influence on the maternal microbiota, unique to the individual maternal pregnancy phenotype. More research is needed to disentangle these associations.
Collapse
|
26
|
Rehues P, Girona J, Guardiola M, Plana N, Scicali R, Piro S, Muñiz-Grijalvo O, Díaz-Díaz JL, Recasens L, Pinyol M, Rosales R, Esteban Y, Amigó N, Masana L, Ibarretxe D, Ribalta J. PCSK9 Inhibitors Have Apolipoprotein C-III-Related Anti-Inflammatory Activity, Assessed by 1H-NMR Glycoprotein Profile in Subjects at High or very High Cardiovascular Risk. Int J Mol Sci 2023; 24:2319. [PMID: 36768645 PMCID: PMC9917120 DOI: 10.3390/ijms24032319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused by the accumulation of cholesterol in the intima. Proprotein convertase subtilisin/kexin type 9 inhibitors (iPCSK9) can reduce low-density lipoprotein (LDL) cholesterol levels by 60%, but there is still no evidence that they can lower markers of systemic inflammation such as high-sensitivity C-reactive protein (hsCRP). Acute-phase serum glycoproteins are upregulated in the liver during systemic inflammation, and their role as inflammatory biomarkers is under clinical evaluation. In this observational study, we evaluate the effects of iPCSK9 on glycoproteins (Glyc) A, B and F. Thirty-nine patients eligible for iPCSK9 therapy were enrolled. One sample before and after one to six months of iPCSK9 therapy with alirocumab was obtained from each patient. Lipids, apolipoproteins, hsCRP and PCSK9 levels were measured by biochemical analyses, and the lipoprotein and glycoprotein profiles were measured by 1H nuclear magnetic resonance (1H-NMR). The PCSK9 inhibitor reduced total (36.27%, p < 0.001), LDL (55.05%, p < 0.001) and non-high-density lipoprotein (HDL) (45.11%, p < 0.001) cholesterol, apolipoprotein (apo) C-III (10%, p < 0.001), triglycerides (9.92%, p < 0.001) and glycoprotein signals GlycA (11.97%, p < 0.001), GlycB (3.83%, p = 0.017) and GlycF (7.26%, p < 0.001). It also increased apoA-I (2.05%, p = 0.043) and HDL cholesterol levels (11.58%, p < 0.001). Circulating PCSK9 levels increased six-fold (626.28%, p < 0.001). The decrease in Glyc signals positively correlated with the decrease in triglycerides and apoC-III. In conclusion, in addition to LDL cholesterol, iPCSK9 therapy also induces a reduction in systemic inflammation measured by 1H-NMR glycoprotein signals, which correlates with a decrease in triglycerides and apoC-III.
Collapse
Affiliation(s)
- Pere Rehues
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Josefa Girona
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Montse Guardiola
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Núria Plana
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Unitat de Medicina Vascular i Metabolisme, Servei de Medicina Interna, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy
| | - Ovidio Muñiz-Grijalvo
- Unidad Clinico-Experimental de Riesgo Vascular, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - José Luis Díaz-Díaz
- Department of Internal Medicine, Complejo Hospitalario Universitario A Coruña, 15006 A Coruña, Spain
| | - Lluís Recasens
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Cardiac Rehabilitation Unit, Department of Cardiology, Hospital del Mar, 08003 Barcelona, Spain
| | - Marta Pinyol
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
| | - Roser Rosales
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Yaiza Esteban
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Núria Amigó
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Biosfer Teslab, 43201 Reus, Spain
| | - Lluís Masana
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Unitat de Medicina Vascular i Metabolisme, Servei de Medicina Interna, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Daiana Ibarretxe
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Unitat de Medicina Vascular i Metabolisme, Servei de Medicina Interna, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Josep Ribalta
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| |
Collapse
|
27
|
Jiang G, Zhou Z, Li X, Qian Y, Wang K. The Gut Microbiome During Pregnancy. MATERNAL-FETAL MEDICINE 2023; 5:36-43. [PMID: 40406538 PMCID: PMC12094337 DOI: 10.1097/fm9.0000000000000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022] Open
Abstract
Gut microbiota is symbiotic and interdependent with human body. Intestinal probiotics are colonized in the human gastrointestinal tract, which can improve the host intestinal microenvironment and enhance the intestinal function and immune function of the human body. A small number of opportunistic pathogens exist in the intestinal tract. Once the number of pathogens exceeds the threshold of intestinal tolerance, the intestinal micro-ecological balance can be destroyed, and various diseases may thus develop. Pregnancy is a special status with different physiologic changing stages. In the meanwhile, alterations in the gut microbiome populations occur, which can promote the differentiation, development, and maturation of fetal organs by affecting maternal metabolism. Compared with normal pregnant women, great changes in the gastrointestinal function and gut microbiome may take place in pregnant women with pregnancy-related complications, in which these changes include the number, species, and intestinal translocation. The composition of the maternal gut microbiome could contribute to pregnancy and obstetric outcomes, and long-term health of mother and child. The relationships of pregnancy to gut microbiome have attracted an increasing attention in recent years. This article will provide a summary review of the research studies of gut microbiome in normal pregnant women versus abnormal pregnancy women with complications.
Collapse
Affiliation(s)
- Guoqing Jiang
- Department of Obstetrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Zhiyi Zhou
- Department of Obstetrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Xiaojuan Li
- Department of Obstetrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Yuan Qian
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan 650000, China
- Yunnan Institute of Experimental Diagnosis, Kunming, Yunnan 650000, China
| | - Kunhua Wang
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- Yunnan Engineering Technology Center of Digestive disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| |
Collapse
|
28
|
Tian M, Li Q, Zheng T, Yang S, Chen F, Guan W, Zhang S. Maternal microbe-specific modulation of the offspring microbiome and development during pregnancy and lactation. Gut Microbes 2023; 15:2206505. [PMID: 37184203 DOI: 10.1080/19490976.2023.2206505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The maternal microbiome is essential for the healthy growth and development of offspring and has long-term effects later in life. Recent advances indicate that the maternal microbiome begins to regulate fetal health and development during pregnancy. Furthermore, the maternal microbiome continues to affect early microbial colonization via birth and breastfeeding. Compelling evidence indicates that the maternal microbiome is involved in the regulation of immune and brain development and affects the risk of related diseases. Modulating offspring development by maternal diet and probiotic intervention during pregnancy and breastfeeding could be a promising therapy in the future. In this review, we summarize and discuss the current understanding of maternal microbiota development, perinatal microbial metabolite transfer, mother-to-infant microbial transmission during/after birth and its association with immune and brain development as well as corresponding diseases.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
29
|
O'Connor H, Li S, Hodge A, Callaway L, David Mclntyre H, Barrett H, Wilkinson SA, Nitert MD. Gut microbiome composition is similar between pregnant women with excess body fat with healthy and less healthy dietary intake patterns. J Hum Nutr Diet 2022. [PMID: 36471554 DOI: 10.1111/jhn.13123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dietary composition influences the composition of the gut microbiota in healthy adults. Little is known about the effect of dietary patterns on gut microbiota composition in pregnancy. This cross-sectional study aimed to investigate the associations between two diet quality scores adapted from the Australian Recommended Food Score (ARFS) and the Mediterranean Dietary Score (MDS) with the composition of the gut microbiota in pregnant women with excess body fat at 28 weeks' gestation. METHODS Women from the Study of Probiotics IN Gestational diabetes (SPRING) who had completed a food frequency questionnaire (FFQ; n = 395) were classified according to tertiles of ARFS and the MDS. Higher dietary pattern scores in both the ARFS and the MDS represent better diet quality. Gut microbiota composition was assessed using 16S rRNA gene amplicon sequencing and analysed using MicrobiomeAnalyst in a subset of 196 women with faecal samples. RESULTS No significant difference was found in alpha or beta diversity. A higher ARFS was associated with a higher abundance of Ruminococcus and lower abundance of Akkermansia, whereas a higher MDS was associated with a higher abundance of Ruminococcus and Butyricicoccus, though these changes disappeared after correction for multiple testing. CONCLUSION These results suggest that dietary patterns defined by the ARFS and MDS were not associated with gut microbiota composition in pregnant women classified as overweight and obese at 28 weeks' gestation within this study.
Collapse
Affiliation(s)
- Hannah O'Connor
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Sherly Li
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia.,MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus, University of Cambridge School of Clinical Medicine, Cambridge, UK.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Allison Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Leonie Callaway
- Women's and Newborns, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia.,Mater Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Harold David Mclntyre
- Mater Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Helen Barrett
- Mater Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Shelley A Wilkinson
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
30
|
Daiy K, Harries V, Nyhan K, Marcinkowska UM. Maternal weight status and the composition of the human milk microbiome: A scoping review. PLoS One 2022; 17:e0274950. [PMID: 36191014 PMCID: PMC9529148 DOI: 10.1371/journal.pone.0274950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
The human milk microbiome is thought to partly contribute to the assembly of the infant gut microbiome, a microbial community with important implications for infant health and development. While obesity has well-established links with the adult gut microbiome, less is known about how it affects the human milk microbiome. In this scoping review, we synthesize the current literature on the microbial composition of human milk by maternal weight status, defined broadly as BMI (prepregnancy and postpartum) and gestational weight gain (GWG). This study followed the a priori protocol published in Prospero (registration #: CRD42020165633). We searched the following databases for studies reporting maternal weight status and a characterization of milk microbiota through culture-dependent and culture-independent methods: MEDLINE, Embase, Web of Science, CINAHL, and Scopus. After screening 6,365 studies, we found 20 longitudinal and cross-sectional studies investigating associations between maternal weight status and the composition of the milk microbiome. While some studies reported no associations, many others reported that women with a pre-pregnancy or postpartum BMI characterized as overweight or obese, or with excessive GWG, had higher abundances of the genus Staphylococcus, lower Bifidobacterium abundance, and lower alpha diversity (within-sample diversity). This review suggests that maternal weight status is minorly associated with the composition of the milk microbiome in various ways. We offer potential explanations for these findings, as well as suggestions for future research.
Collapse
Affiliation(s)
- Katherine Daiy
- Department of Anthropology, Yale University, New Haven, CT, United States of America
| | - Victoria Harries
- Department of Anthropology, Yale University, New Haven, CT, United States of America
| | - Kate Nyhan
- Cushing/Whitney Medical Library, Yale University, New Haven, CT, United States of America
| | | |
Collapse
|
31
|
Alrehaili BD, Lee M, Takahashi S, Novak R, Rimal B, Boehme S, Trammell SAJ, Grevengoed TJ, Kumar D, Alnouti Y, Chiti K, Wang X, Patterson AD, Chiang JYL, Gonzalez FJ, Lee Y. Bile acid conjugation deficiency causes hypercholanemia, hyperphagia, islet dysfunction, and gut dysbiosis in mice. Hepatol Commun 2022; 6:2765-2780. [PMID: 35866568 PMCID: PMC9512455 DOI: 10.1002/hep4.2041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023] Open
Abstract
Bile acid-CoA: amino acid N-acyltransferase (BAAT) catalyzes bile acid conjugation, the last step in bile acid synthesis. BAAT gene mutation in humans results in hypercholanemia, growth retardation, and fat-soluble vitamin insufficiency. The current study investigated the physiological function of BAAT in bile acid and lipid metabolism using Baat-/- mice. The bile acid composition and hepatic gene expression were analyzed in 10-week-old Baat-/- mice. They were also challenged with a westernized diet (WD) for additional 15 weeks to assess the role of BAAT in bile acid, lipid, and glucose metabolism. Comprehensive lab animal monitoring system and cecal 16S ribosomal RNA gene sequencing were used to evaluate the energy metabolism and microbiome structure of the mice, respectively. In Baat-/- mice, hepatic bile acids were mostly unconjugated and their levels were significantly increased compared with wild-type mice. Bile acid polyhydroxylation was markedly up-regulated to detoxify unconjugated bile acid accumulated in Baat-/- mice. Although the level of serum marker of bile acid synthesis, 7α-hydroxy-4-cholesten-3-one, was higher in Baat-/- mice, their bile acid pool size was smaller. When fed a WD, the Baat-/- mice showed a compromised body weight gain and impaired insulin secretion. The gut microbiome of Baat-/- mice showed a low level of sulfidogenic bacteria Bilophila. Conclusion: Mouse BAAT is the major taurine-conjugating enzyme. Its deletion protected the animals from diet-induced obesity, but caused glucose intolerance. The gut microbiome of the Baat-/- mice was altered to accommodate the unconjugated bile acid pool.
Collapse
Affiliation(s)
- Bandar D. Alrehaili
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
- Graduate Program of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Pharmacology and ToxicologyPharmacy CollegeTaibah UniversityMedinaSaudi Arabia
| | - Mikang Lee
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Shogo Takahashi
- Laboratory of MetabolismCenter for Cancer ResearchNational Cancer InstituteNIHBethesdaMarylandUSA
| | - Robert Novak
- Department of PathologyCollege of MedicineNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Bipin Rimal
- Department of Molecular ToxicologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Shannon Boehme
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Samuel A. J. Trammell
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Trisha J. Grevengoed
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Devendra Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNAUSA
| | - Yazen Alnouti
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNAUSA
| | - Katya Chiti
- Department of Pharmaceutical SciencesCollege of PharmacyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Xinwen Wang
- Department of Pharmaceutical SciencesCollege of PharmacyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Andrew D. Patterson
- Department of Molecular ToxicologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - John Y. L. Chiang
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Frank J. Gonzalez
- Laboratory of MetabolismCenter for Cancer ResearchNational Cancer InstituteNIHBethesdaMarylandUSA
| | - Yoon‐Kwang Lee
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
- Graduate Program of Biomedical SciencesKent State UniversityKentOhioUSA
| |
Collapse
|
32
|
Sindi AS, Stinson LF, Lean SS, Chooi YH, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Geddes DT, Payne MS. Effect of a reduced fat and sugar maternal dietary intervention during lactation on the infant gut microbiome. Front Microbiol 2022; 13:900702. [PMID: 36060782 PMCID: PMC9428759 DOI: 10.3389/fmicb.2022.900702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveA growing body of literature has shown that maternal diet during pregnancy is associated with infant gut bacterial composition. However, whether maternal diet during lactation affects the exclusively breastfed infant gut microbiome remains understudied. This study sets out to determine whether a two-week of a reduced fat and sugar maternal dietary intervention during lactation is associated with changes in the infant gut microbiome composition and function.DesignStool samples were collected from four female and six male (n = 10) infants immediately before and after the intervention. Maternal baseline diet from healthy mothers aged 22–37 was assessed using 24-h dietary recall. During the 2-week dietary intervention, mothers were provided with meals and their dietary intake was calculated using FoodWorks 10 Software. Shotgun metagenomic sequencing was used to characterize the infant gut microbiome composition and function.ResultsIn all but one participant, maternal fat and sugar intake during the intervention were significantly lower than at baseline. The functional capacity of the infant gut microbiome was significantly altered by the intervention, with increased levels of genes associated with 28 bacterial metabolic pathways involved in biosynthesis of vitamins (p = 0.003), amino acids (p = 0.005), carbohydrates (p = 0.01), and fatty acids and lipids (p = 0.01). Although the dietary intervention did not affect the bacterial composition of the infant gut microbiome, relative difference in maternal fiber intake was positively associated with increased abundance of genes involved in biosynthesis of storage compounds (p = 0.016), such as cyanophycin. Relative difference in maternal protein intake was negatively associated with Veillonella parvula (p = 0.006), while positively associated with Klebsiella michiganensis (p = 0.047). Relative difference in maternal sugar intake was positively associated with Lactobacillus paracasei (p = 0.022). Relative difference in maternal fat intake was positively associated with genes involved in the biosynthesis of storage compounds (p = 0.015), fatty acid and lipid (p = 0.039), and metabolic regulator (p = 0.038) metabolic pathways.ConclusionThis pilot study demonstrates that a short-term maternal dietary intervention during lactation can significantly alter the functional potential, but not bacterial taxonomy, of the breastfed infant gut microbiome. While the overall diet itself was not able to change the composition of the infant gut microbiome, changes in intakes of maternal protein and sugar during lactation were correlated with changes in the relative abundances of certain bacterial species.Clinical trial registration: Australian New Zealand Clinical Trials Registry (ACTRN12619000606189).
Collapse
Affiliation(s)
- Azhar S. Sindi
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Soo Sum Lean
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gabriela E. Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Merryn J. Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Discipline of Pediatrics, The University of Adelaide, Adelaide, SA, Australia
- Women’s and Children’s Hospital, Adelaide, SA, Australia
| | - Mary E. Wlodek
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, VIC, Australia
| | - Beverly S. Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
- CSIRO, Adelaide, SA, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Matthew S. Payne
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- Women and Infants Research Foundation, Perth, WA, Australia
- *Correspondence: Matthew S. Payne,
| |
Collapse
|
33
|
Gorczyca K, Obuchowska A, Kimber-Trojnar Ż, Wierzchowska-Opoka M, Leszczyńska-Gorzelak B. Changes in the Gut Microbiome and Pathologies in Pregnancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19169961. [PMID: 36011603 PMCID: PMC9408136 DOI: 10.3390/ijerph19169961] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 05/08/2023]
Abstract
Pregnancy is a special period in a woman's life when her organism undergoes multiple physiological changes so that the fetus has optimal conditions for growth and development. These include modifications in the composition of the microbiome that occur between the first and third trimesters of pregnancy. There is an increase in Akkermansia, Bifidobacterium, and Firmicutes, which have been associated with an increase in the need for energy storage. The growth in Proteobacteria and Actinobacteria levels has a protective effect on both the mother and the fetus via proinflammatory mechanisms. The aim of the study is to review the research on the relationship between the mother's intestinal microbiome and gestational pathologies. Changes in the maternal gut microbiome is probably one of the mechanisms that occurs in various pregnancy diseases such as preeclampsia, fetal growth restriction, gestational diabetes mellitus, excessive gestational weight gain, and premature birth. For this reason, it seems vital to pay attention to certain interventions that can benefit the affected patients both in the short term, by preventing complications during pregnancy, and in the long term, as one of the mechanisms occurring in various gestational diseases is dysbiosis of the maternal intestinal flora.
Collapse
|
34
|
The Influence of Dietary Factors on the Gut Microbiota. Microorganisms 2022; 10:microorganisms10071368. [PMID: 35889087 PMCID: PMC9318379 DOI: 10.3390/microorganisms10071368] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that diet influences the relationship between gut microbiota and individual health outcomes. Nutrient intake affects the composition of the gut microbial community and provides metabolites that influence the host physiology. Dietary patterns, including macronutrient balance and feeding/fasting cycles which may be manipulated with dietary regimens based on caloric restriction periods, influence the gut homeostasis through its impact on the microbial ecosystem. Along the same line, prebiotic and probiotic ingredients and additives in foods, as well as the degree of food processing have consequences on gut microbiota and the related immune and metabolic response of the human host. Acquiring knowledge of these aspects, especially through an -omics-integral approach, might provide the basis for personalized nutritional interventions directed to avoid dysbiosis and contribute to the prevention of major chronic degenerative diseases. Despite vast scientific evidence supporting the relationship between dietary factors and gut microbiota composition and function, the underlying mechanisms and their potential impact are far from clear. There is a lack of well-designed longitudinal studies performed in target population groups whose dietary patterns can be particularly relevant for their future health, as is the case in infants, pregnant women, or athletes.
Collapse
|
35
|
Ye Z, Xu YJ, Liu Y. Different typical dietary lipid consumption affects the bile acid metabolism and the gut microbiota structure: an animal trial using Sprague-Dawley rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3179-3192. [PMID: 34787315 DOI: 10.1002/jsfa.11661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/07/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The palm oil (PO), leaf lard oil (LO), rapeseed oil (RO), sunflower oil (SO) and linseed oil (LN) are five of the most typical dietary lipids in most Asian countries. However, their influences on gut health, and the connections between the fatty acid composition, the gut microbiota, and the bile acid metabolism are not fully understood. RESULTS In the present study, results showed that compared with polyunsaturated fatty acid (PUFA)-rich SO and LN, the saturated fatty acid (SFA)-rich and monounsaturated fatty acid (MUFA)-rich PO, LO and RO were more likely to decrease the re-absorption of bile acid in the colon, which was probably caused by their different role in modulating the gut microbiota structure. LO consumption significantly up-regulated the Cyp27a1, FXR and TGR5 gene expression level (P < 0.05). The correlation results suggested that the C18:0 was significantly positive correlated with these three genes, indicating that intake of SFA-rich dietary lipids, especially for the C18:0, could specifically increase the bile acid production by stimulating the bile acid alternative synthesis pathway. Although the bile acid receptor expression in the colon was increased, the re-absorption of bile acid did not show a significant increase (P > 0.05) as compared with other dietary lipids. Moreover, the C18:2-rich SO maintained the bile acid metabolic balance probably by decreasing the Romboutsia, while increasing the Bifidobacterium abundance in the colon. CONCLUSIONS The different dietary lipids showed different effects on the bile acid metabolism, which was probably connected with the alterations in the gut microbiota structure. The present study could provide basic understandings about the influences of the different dietary lipids consumption on gut homeostasis and bile acid metabolism. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
36
|
Distinct Diet-Microbiota-Metabolism Interactions in Overweight and Obese Pregnant Women: a Metagenomics Approach. Microbiol Spectr 2022; 10:e0089321. [PMID: 35343768 PMCID: PMC9045358 DOI: 10.1128/spectrum.00893-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diet and gut microbiota are known to modulate metabolic health. Our aim was to apply a metagenomics approach to investigate whether the diet-gut microbiota-metabolism and inflammation relationships differ in pregnant overweight and obese women. This cross-sectional study was conducted in overweight (n = 234) and obese (n = 152) women during early pregnancy. Dietary quality was measured by a validated index of diet quality (IDQ). Gut microbiota taxonomic composition and species diversity were assessed by metagenomic profiling (Illumina HiSeq platform). Markers for glucose metabolism (glucose, insulin) and low-grade inflammation (high sensitivity C-reactive protein [hsCRP], glycoprotein acetylation [GlycA]) were analyzed from blood samples. Higher IDQ scores were positively associated with a higher gut microbiota species diversity (r = 0.273, P = 0.007) in obese women, but not in overweight women. Community composition (beta diversity) was associated with the GlycA level in the overweight women (P = 0.04) but not in the obese. Further analysis at the species level revealed a positive association between the abundance of species Alistipes finegoldii and the GlycA level in overweight women (logfold change = 4.74, P = 0.04). This study has been registered at ClinicalTrials.gov under registration no. NCT01922791 (https://clinicaltrials.gov/ct2/show/NCT01922791). IMPORTANCE We observed partially distinct diet-gut microbiota-metabolism and inflammation responses in overweight and obese pregnant women. In overweight women, gut microbiota community composition and the relative abundance of A. finegoldii were associated with an inflammatory status. In obese women, a higher dietary quality was related to a higher gut microbiota diversity and a healthy inflammatory status.
Collapse
|
37
|
Chiu THT, Kao YC, Wang LY, Chang HR, Lin CL. A Dietitian-Led Vegan Program May Improve GlycA, and Other Novel and Traditional Cardiometabolic Risk Factors in Patients With Dyslipidemia: A Pilot Study. Front Nutr 2022; 9:807810. [PMID: 35399690 PMCID: PMC8984941 DOI: 10.3389/fnut.2022.807810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Background Systematic inflammation and lipid profiles are two major therapeutic targets for cardiovascular diseases. The effect of a nutritionally balanced vegan diet on systematic inflammation and lipoprotein subclass awaits further examination. Objective To investigate the change in novel and traditional cardiometabolic risk factors before and after a dietitian-led vegan program, and to test the bioavailability of vitamin B12 in Taiwanese purple laver as part of a vegan diet. Design A one-arm pilot intervention study. Participants/Setting Nine patients with dyslipidemia participated in this 12-week vegan program. Main Outcome Measures Nuclear Magnetic Resonance (NMR) detected GlycA signals (systematic inflammation) and lipoprotein subclass (atherogenicity); trimethylamine N-oxide (TMAO); and other cardiometabolic risk factors. Statistical Analyses Performed Wilcoxon signed-rank test. Results In this 12-week vegan intervention emphasizing whole foods, systematic inflammation improved as indicated by a reduction in GlycA (median: −23 μmol/L, p = 0.01). LDL-c (low-density lipoprotein cholesterol) (median −24 mg/dl, p = 0.04) and LDL-p (low-density lipoprotein particles) (median −75 nmol/L, p = 0.02) both decreased significantly. VLDL (very-low-density lipoprotein) and chylomicron particles showed a decreasing trend (−23.6 nmol/L, p = 0.05). Without caloric restriction, body mass index (BMI) (−0.7 kg/m2, p = 0.03), waist circumferences (−2.0 cm, p < 0.001), HbA1c (−0.2%, p = 0.02), and (HOMA-IR) homeostatic model assessment for insulin resistance (−0.7, p = 0.04) have all improved. The change in the TMAO and vitamin B12 status as measured by holo-transcobalamin appeared to depend on baseline diets, TMAO, and vitamin B12 status. Conclusions A dietitian-led vegan program may improve systematic inflammation and other novel and traditional cardiometabolic risk factors in high-risk individuals.
Collapse
Affiliation(s)
- Tina H. T. Chiu
- Department of Nutritional Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Yun-Chun Kao
- Department of Nutrition Therapy, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ling-Yi Wang
- Epidemiology and Biostatistics Consulting Center, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacy, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Huai-Ren Chang
- Division of Cardiology, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Huai-Ren Chang
| | - Chin-Lon Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Cardiology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
38
|
Miko E, Csaszar A, Bodis J, Kovacs K. The Maternal-Fetal Gut Microbiota Axis: Physiological Changes, Dietary Influence, and Modulation Possibilities. Life (Basel) 2022; 12:424. [PMID: 35330175 PMCID: PMC8955030 DOI: 10.3390/life12030424] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The prenatal period and the first years of life have a significant impact on the health issues and life quality of an individual. The appropriate development of the immune system and the central nervous system are thought to be major critical determining events. In parallel to these, establishing an early intestinal microbiota community is another important factor for future well-being interfering with prenatal and postnatal developmental processes. This review aims at summarizing the main characteristics of maternal gut microbiota and its possible transmission to the offspring, thereby affecting fetal and/or neonatal development and health. Since maternal dietary factors are potential modulators of the maternal-fetal microbiota axis, we will outline current knowledge on the impact of certain diets, nutritional factors, and nutritional modulators during pregnancy on offspring's microbiota and health.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| | - Andras Csaszar
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 17 Edesanyak Street, 7624 Pécs, Hungary
| | - Jozsef Bodis
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 17 Edesanyak Street, 7624 Pécs, Hungary
| | - Kalman Kovacs
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 17 Edesanyak Street, 7624 Pécs, Hungary
| |
Collapse
|
39
|
Cheema AS, Trevenen ML, Turlach BA, Furst AJ, Roman AS, Bode L, Gridneva Z, Lai CT, Stinson LF, Payne MS, Geddes DT. Exclusively Breastfed Infant Microbiota Develops over Time and Is Associated with Human Milk Oligosaccharide Intakes. Int J Mol Sci 2022; 23:2804. [PMID: 35269946 PMCID: PMC8910998 DOI: 10.3390/ijms23052804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Temporal development of maternal and infant microbiomes during early life impacts short- and long-term infant health. This study aimed to characterize bacterial dynamics within maternal faecal, human milk (HM), infant oral, and infant faecal samples during the exclusive breastfeeding period and to document associations between human milk oligosaccharide (HMO) intakes and infant oral and faecal bacterial profiles. Maternal and infant samples (n = 10) were collected at 2−5, 30, 60, 90 and 120 days postpartum and the full-length 16S ribosomal RNA (rRNA) gene was sequenced. Nineteen HMOs were quantitated using high-performance liquid chromatography. Bacterial profiles were unique to each sample type and changed significantly over time, with a large degree of intra- and inter-individual variation in all sample types. Beta diversity was stable over time within infant faecal, maternal faecal and HM samples, however, the infant oral microbiota at day 2−5 significantly differed from all other time points (all p < 0.02). HMO concentrations and intakes significantly differed over time, and HMO intakes showed differential associations with taxa observed in infant oral and faecal samples. The direct clinical relevance of this, however, is unknown. Regardless, future studies should account for intakes of HMOs when modelling the impact of HM on infant growth, as it may have implications for infant microbiota development.
Collapse
Affiliation(s)
- Ali Sadiq Cheema
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Michelle Louise Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Berwin Ashoka Turlach
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Annalee June Furst
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Sophia Roman
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Matthew Scott Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia;
- Women and Infants Research Foundation, Subiaco, WA 6008, Australia
| | - Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| |
Collapse
|
40
|
Houttu V, Boulund U, Nicolaou M, Holleboom AG, Grefhorst A, Galenkamp H, van den Born BJ, Zwinderman K, Nieuwdorp M. Physical Activity and Dietary Composition Relate to Differences in Gut Microbial Patterns in a Multi-Ethnic Cohort-The HELIUS Study. Metabolites 2021; 11:metabo11120858. [PMID: 34940616 PMCID: PMC8707449 DOI: 10.3390/metabo11120858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Physical activity (PA) at recommended levels contributes to the prevention of non-communicable diseases, such as atherosclerotic cardiovascular disease (asCVD) and type 2 diabetes mellitus (T2DM). Since the composition of the gut microbiota is strongly intertwined with dietary intake, the specific effect of exercise on the gut microbiota is not known. Moreover, multiple other factors, such as ethnicity, influence the composition of the gut microbiota, and this may be derived by distinct diet as well as PA patterns. Here we aim to untangle the associations between PA and the gut microbiota in a sample (n = 1334) from the Healthy Life In an Urban Setting (HELIUS) multi-ethnic cohort. The associations of different food groups and gut microbiota were also analyzed. PA was monitored using subjective (n = 1309) and objective (n = 162) methods, and dietary intake was assessed with ethnic-specific food frequency questionnaire (FFQ). The gut microbiota was profiled using 16S rRNA gene amplicon sequencing, and the functional composition was generated with the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2). Associations were assessed using multivariable and machine learning models. In this cohort, a distinct gut microbiota composition was associated with meeting the Dutch PA norm as well as with dietary intake, e.g., grains. PA related parameters such as muscle strength and calf circumference correlated with gut microbiota diversity. Furthermore, gut microbial functionality differed between active and sedentary groups. Differential representation of ethnicities in active and sedentary groups in both monitor methods hampered the detection of ethnic-specific effects. In conclusion, both PA and dietary intake were associated with gut microbiota composition in our multi-ethnic cohort. Future studies should further elucidate the role of ethnicity and diet in this association.
Collapse
Affiliation(s)
- Veera Houttu
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Adriaan Georgius Holleboom
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Bert-Jan van den Born
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Koos Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-5665-737
| |
Collapse
|
41
|
Sibeko L, Johns T, Cordeiro LS. Traditional plant use during lactation and postpartum recovery: Infant development and maternal health roles. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114377. [PMID: 34192598 DOI: 10.1016/j.jep.2021.114377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/11/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evidence of phytochemical roles in infant development and maternal recovery offers insights into beneficial functions of traditional plant use during lactation and the postpartum period. Ethnopharmacological research has relevance to global priorities on maternal and child health, to understanding origins and determinants of human self-medication, and for reconciling traditional postpartum practices and mainstream healthcare. AIM OF THE STUDY Present emerging evidence, within evolutionary and socio-cultural contexts, on the role of maternal consumption on transfer of phytochemicals into breast milk with impacts on maternal and child health, and on infant development. Establish current state of knowledge and an ethnopharmacological research agenda that is attentive to cross-cultural and regional differences in postpartum plant use. MATERIALS AND METHODS An extensive literature review using Medline, Scopus, and Web of Science focused on traditional and contemporary use and socio-cultural context, as well as physiological, pharmacological, toxicological, and behavioral activities of plants used medicinally by women during postpartum recovery and lactation. RESULTS The most widely reported postpartum plants show antimicrobial, anti-inflammatory, immunological, and neurophysiological activities, with low toxicity. Phytochemicals transfer from maternal consumption into breast milk in physiological concentrations, while animal studies demonstrate immunomodulation and other actions of medicinal plants during lactation. Reporting on the use and diverse traditional knowledge of women about plants during the postpartum period is obscured by the marginal place of obstetric issues and by gender biases in ethnobotanical research. In many contemporary contexts use is prejudiced by precautionary risk warnings in health literature and practice that confound lactation with pregnancy. CONCLUSIONS Although systematic investigation of postpartum plant use is lacking, known pharmacological activities support potential benefits on infant development and maternal health with immediate and long-term consequences in relation to allergic, inflammatory, autoimmune, and other diseases. An ethnopharmacological agenda focused on the perinatal period requires directed methodologies and a regional approach in relation to culturally-specific knowledge and practices, traditional plant use, and local health needs. Testing the hypothesis that phytochemicals transferred from medicinal plants into breast milk impact the human immune system and other aspects of infant development requires extended analysis of phytochemicals in human milk and infant lumen and plasma, as well as effects on gastrointestinal and milk microbiome.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Lorraine S Cordeiro
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
42
|
Abstract
Research characterising the gut microbiota in different populations and diseases has mushroomed since the advent of next-generation sequencing techniques. However, there has been less emphasis on the impact of dietary fibres and other dietary components that influence gut microbial metabolic activities. Dietary fibres are the main energy source for gut bacteria. However, fibres differ in their physicochemical properties, their effects on the gut and their fermentation characteristics. The diversity of carbohydrates and associated molecules in fibre-rich foods can have a major influence on microbiota composition and production of bioactive molecules, for example SCFAs and phenolic acids. Several of these microbial metabolites may influence the functions of body systems including the gut, liver, adipose tissues and brain. Dietary fibre intake recommendations have recently been increased (to 30 g daily) in response to growing obesity and other health concerns. Increasing intakes of specific fibre and plant food sources may differentially influence the bacteria and their metabolism. However, in vitro studies show great individual variability in the response of the gut microbiota to different fibres and fibre combinations, making it difficult to predict which foods or food components will have the greatest impact on levels of bioactive molecules produced in the colon of individuals. Greater understanding of individual responses to manipulation of the diet, in relation to microbiome composition and production of metabolites with proven beneficial impact on body systems, would allow the personalised approach needed to best promote good health.
Collapse
Affiliation(s)
- Catriona Thomson
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ada L Garcia
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christine A Edwards
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
43
|
Miller CB, Benny P, Riel J, Boushey C, Perez R, Khadka V, Qin Y, Maunakea AK, Lee MJ. Adherence to Mediterranean diet impacts gastrointestinal microbial diversity throughout pregnancy. BMC Pregnancy Childbirth 2021; 21:558. [PMID: 34399704 PMCID: PMC8369757 DOI: 10.1186/s12884-021-04033-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background Consumption of a diet with high adherence to a Mediterranean diet pattern (MDP) has been associated with a favorable gastrointestinal tract (GIT) microbiome. A healthy GIT microbiome in pregnancy, as defined by increased alpha diversity, is associated with lower chance of adverse perinatal outcomes. This study aimed to evaluate the impact of adherence to an MDP on GIT microbial diversity longitudinally throughout pregnancy. Methods Adherence to MDP was scored by the Alternate Mediterranean (aMED) Diet Quality Score, after being applied to a validated Food Frequency Questionnaire. Association of aMED Scores with GIT alpha diversity profiles were compared linearly and across time using a linear mixed model, including covariates of age, body mass index (BMI), ethnicity, and parity. Results Forty-one participants of Filipino, Japanese, Native Hawaiian, and Non-Hispanic White descent provided dietary information and microbiome samples during each trimester of pregnancy. Alpha diversity profiles changed over gestation, with decreased microbial diversity in the third trimester. aMED scores positively correlated with Chao1 Index and Observed Species Number (r = 0.244, p = 0.017, and r = 0.233, p = 0.023, respectively). The strongest association was detected in the third trimester (Chao 1: r = 0.43, p = 0.020, Observed Species Number: r = 0.41, p = 0.026). Participants with higher aMED scores had higher relative abundance of Acidaminoacaeae at the family level (p = 0.0169), as well as higher abundance of several species known to increase production of short chain fatty acids within the GIT. Conclusions Adherence to MDP pattern is associated with increased maternal GIT microbial diversity, and promotes the abundance of bacteria that produce short chain fatty acids. Increased consumption of fruits, vegetables and legumes with low red meat consumption were key components driving this association. The effect of nutrition however, was less of an effect than pregnancy itself. Further studies are needed to determine if adherence to a Mediterranean diet translates not only into microbial health, but also into reduced risk of adverse pregnancy outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-021-04033-8.
Collapse
Affiliation(s)
- Corrie B Miller
- John A Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, USA. .,John A. Burns School of Medicine, Department of Obstetrics, Gynecology and Women's Health, 1319 Punahou Street, Suite 824, Honolulu, HI, 96826, USA.
| | - Paula Benny
- John A Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, USA.,John A. Burns School of Medicine, Department of Obstetrics, Gynecology and Women's Health, 1319 Punahou Street, Suite 824, Honolulu, HI, 96826, USA
| | - Jonathan Riel
- John A Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, USA.,John A. Burns School of Medicine, Department of Obstetrics, Gynecology and Women's Health, 1319 Punahou Street, Suite 824, Honolulu, HI, 96826, USA
| | - Carol Boushey
- University of Hawai'i Cancer Center, Epidemiology Program, 701 Ilalo Street Room 525, Honolulu, HI, 96813, USA
| | - Rafael Perez
- Epigenomics Research Program, BSB-222K (office)/BSB-228 (lab), 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Vedbar Khadka
- John A. Burns School of Medicine Department of Quantitative Health Sciences, 651 Ilalo Street, Medical Education Building Suite 411, Honolulu, HI, 96813, USA
| | - Yujia Qin
- John A. Burns School of Medicine Department of Quantitative Health Sciences, 651 Ilalo Street, Medical Education Building Suite 411, Honolulu, HI, 96813, USA
| | - Alika K Maunakea
- Epigenomics Research Program, BSB-222K (office)/BSB-228 (lab), 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Men-Jean Lee
- John A Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, USA.,John A. Burns School of Medicine, Department of Obstetrics, Gynecology and Women's Health, 1319 Punahou Street, Suite 824, Honolulu, HI, 96826, USA
| |
Collapse
|
44
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Gao Y, Nanan R, Macia L, Tan J, Sominsky L, Quinn TP, O'Hely M, Ponsonby AL, Tang ML, Collier F, Strickland DH, Dhar P, Brix S, Phipps S, Sly PD, Ranganathan S, Stokholm J, Kristiansen K, Gray L, Vuillermin P. The maternal gut microbiome during pregnancy and offspring allergy and asthma. J Allergy Clin Immunol 2021; 148:669-678. [PMID: 34310928 DOI: 10.1016/j.jaci.2021.07.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Environmental exposures during pregnancy that alter both the maternal gut microbiome and the infant's risk of allergic disease and asthma include a traditional farm environment and consumption of unpasteurized cow's milk, antibiotic use, dietary fiber and psychosocial stress. Multiple mechanisms acting in concert may underpin these associations and prime the infant to acquire immune competence and homeostasis following exposure to the extrauterine environment. Cellular and metabolic products of the maternal gut microbiome can promote the expression of microbial pattern recognition receptors, as well as thymic and bone marrow hematopoiesis relevant to regulatory immunity. At birth, transmission of maternally derived bacteria likely leverages this in utero programming to accelerate postnatal transition from a Th2 to Th1 and Th17 dominant immune phenotypes and maturation of regulatory immune mechanisms, which in turn reduce the child's risk of allergic disease and asthma. Although our understanding of these phenomena is rapidly evolving, the field is relatively nascent, and we are yet to translate existing knowledge into interventions that substantially reduce disease risk in humans. Here we review evidence that the maternal gut microbiome impacts the offspring's risk of allergic disease and asthma, discuss challenges and future directions for the field, and propose the hypothesis that maternal carriage of Prevotella copri during pregnancy decreases the offspring's risk of allergic disease via production of succinate which in turn promotes bone marrow myelopoiesis of dendritic cell precursors in the fetus.
Collapse
Affiliation(s)
- Yuan Gao
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ralph Nanan
- The Charles Perkins Center, the University of Sydney, Sydney, Australia
| | - Laurence Macia
- The Charles Perkins Center, the University of Sydney, Sydney, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jian Tan
- The Charles Perkins Center, the University of Sydney, Sydney, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Luba Sominsky
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia
| | - Thomas P Quinn
- Applied Artificial Intelligence Institute, Deakin University, Geelong, Australia
| | - Martin O'Hely
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Anne-Louise Ponsonby
- The Florey Institute, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia
| | - Fiona Collier
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia
| | | | - Poshmaal Dhar
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Peter D Sly
- Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia; Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, 4200 Slagelse, Denmark
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China; China National Genebank, Shenzhen, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lawrence Gray
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia.
| | - Peter Vuillermin
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia.
| |
Collapse
|
46
|
Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Associations between Dietary Patterns and Inflammatory Markers during Pregnancy: A Systematic Review. Nutrients 2021; 13:nu13030834. [PMID: 33806342 PMCID: PMC8000934 DOI: 10.3390/nu13030834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Elevated inflammation in pregnancy has been associated with multiple adverse pregnancy outcomes and potentially an increased susceptibility to future chronic disease. How maternal dietary patterns influence systemic inflammation during pregnancy requires further investigation. The purpose of this review was to comprehensively evaluate studies that assessed dietary patterns and inflammatory markers during pregnancy. This review was guided by the Preferred Reporting Items for Systematic Review and Meta-Analyses. Included studies were sourced from EMBASE, PubMed, Web of Science, and Scopus and evaluated using The Quality Assessment Tool for Quantitative Studies. Inclusion criteria consisted of human studies published in English between January 2007 and May 2020 that addressed associations between dietary patterns and inflammatory markers during pregnancy. Studies focused on a single nutrient, supplementation, or combined interventions were excluded. A total of 17 studies were included. Despite some inconsistent findings, maternal diets characterized by a higher intake of animal protein and cholesterol and/or a lower intake of fiber were shown to be associated with certain pro-inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF- α), IL-8, serum amyloid A (SAA), and glycoprotein acetylation (GlycA)). Future studies that explore a broader range of inflammatory markers in the pregnant population, reduce measurement errors, and ensure adequate statistical adjustment are warranted.
Collapse
|
49
|
Sindi AS, Geddes DT, Wlodek ME, Muhlhausler BS, Payne MS, Stinson LF. Can we modulate the breastfed infant gut microbiota through maternal diet? FEMS Microbiol Rev 2021; 45:6133472. [PMID: 33571360 DOI: 10.1093/femsre/fuab011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Initial colonisation of the infant gut is robustly influenced by regular ingestion of human milk, a substance that contains microbes, microbial metabolites, immune proteins, and oligosaccharides. Numerous factors have been identified as potential determinants of the human milk and infant gut microbiota, including maternal diet; however, there is limited data on the influence of maternal diet during lactation on either of these. Here, we review the processes thought to contribute to human milk and infant gut bacterial colonisation and provide a basis for considering the role of maternal dietary patterns during lactation in shaping infant gut microbial composition and function. Although only one observational study has directly investigated the influence of maternal diet during lactation on the infant gut microbiome, data from animal studies suggests that modulation of the maternal gut microbiota, via diet or probiotics, may influence the mammary or milk microbiota. Additionally, evidence from human studies suggests that the maternal diet during pregnancy may affect the gut microbiota of the breastfed infant. Together, there is a plausible hypothesis that maternal diet during lactation may influence the infant gut microbiota. If substantiated in further studies, this may present a potential window of opportunity for modulating the infant gut microbiome in early life.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mary E Wlodek
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Beverly S Muhlhausler
- CSIRO, Adelaide, South Australia, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
50
|
An overview of the level of dietary support in the gut microbiota at different stages of life: A systematic review. Clin Nutr ESPEN 2021; 42:41-52. [PMID: 33745615 DOI: 10.1016/j.clnesp.2021.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The gut microbiome is an essential factor for the health of the host. Several factors may alter the gut's microbiota composition, including genetic factors, lifestyle, aging, and dietary intervention. This process can be an essential element in the prevention and treatment of diseases associated with microbiome dysfunction through appropriate dietary interventions. Based on this context, a systematic review was carried out in order to assess the effect of dietary intervention on the profile of the gut microbiota throughout different stages of life. METHODS The systematic review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA), with the eligibility criteria following the principle of PICOS. The literature search was carried out in 2019 throughout PubMed/MEDLINE, Scopus, and Science Direct. Thus, 1237 studies were selected, and 40 articles were included by criteria. RESULTS According to the level of evidence of Centre for Evidence-Based Medicine (OCEBM), 21 studies reached the level of evidence B1, 15 articles were classified with B2, and four articles with B3. No dietary intervention was applied at all stages of life, nor with similar proportions of intervention. No dietary intervention was applied at all stages of life, nor with similar proportions of intervention. On the other hand, dietary interventions alter the intestinal microbiota in different pathological realities. CONCLUSIONS Different dietary interventions change the microbiome composition at all stages of life in healthy and pathological individuals. However, more clinical studies are needed to identify the specifics of each stage in response to interventions.
Collapse
|