1
|
Ueberall ME, Berchthold M, Häberli C, Lindemann S, Spangenberg T, Keiser J, Grevelding CG. Merck Open Global Health Library in vitro screening against Schistosoma mansoni identified two new substances with antischistosomal activities for further development. Parasit Vectors 2025; 18:40. [PMID: 39905554 DOI: 10.1186/s13071-024-06648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Schistosomiasis, which is caused by the parasite Schistosoma mansoni as well as other species of the trematode genus Schistosoma, leads to chronic inflammation and finally to liver fibrosis. If untreated, the disease can cause life-threatening complications. The current treatment of schistosomiasis relies on a single drug, praziquantel (PZQ). However, there is increasing concern about emerging resistance to PZQ due to its frequent use. METHODS To identify potential alternative drugs for repurposing, the Open Global Health Library (OGHL) was screened in vitro, using two different screening workflows at two institutions, against adult S. mansoni couples and newly transformed schistosomula. This was followed by confirmation of the effects of the lead structures against adult worms. RESULTS In vitro screening at one of the institutions identified two fast-acting substances affecting worm physiology (OGHL00022, OGHL00121). The effects of the two lead structures were investigated in more detail by confocal laser scanning microscopy and 5-ethynyl 2´-deoxyuridine (EdU) assays to assess morphological effects and stem cell effects. Both substances showed negative effects on stem cell proliferation in S. mansoni but no further morphological changes. The EC50values of both compounds were determined, with values for compound OGHL00022 of 5.955 µM for pairing stability, 10.88 µM for attachment, and 18.77 µM for motility, while the values for compound OGHL00121 were 7.088 µM for pairing stability, 8.065 µM for attachment, and 6.297 µM for motility 24 h after treatment. Furthermore, S. mansoni couples were treated in vitro with these two lead structures simultaneously to check for additive effects, which were found with respect to reduced motility. The second in vitro screening, primarily against newly transformed schistosomula and secondarily against adult worms, identified four lead structures in total (OGHL00006, OGHL00022, OGHL00169, OGHL00217). In addition, one of the tested analogues of the hits OGHL00006, OGHL00169, and OGHL00217 showed effects on both stages. CONCLUSIONS In two independent in vitro screening approaches against two stages of S. mansoni one common interesting structure with rapid effects was identified, OGHL00022, which provides opportunities for further development.
Collapse
Affiliation(s)
| | - Martina Berchthold
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Cécile Häberli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Thomas Spangenberg
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany, Route de Crassier 1, 1262 Eysins, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | | |
Collapse
|
2
|
Du P, Xia T, Li X, Giri BR, Fang C, Li S, Yan S, Cheng G. Schistosoma sex-biased microRNAs regulate ovarian development and egg production by targeting Wnt signaling pathway. Commun Biol 2024; 7:1717. [PMID: 39741204 DOI: 10.1038/s42003-024-07402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Adult Schistosoma produces a large number of eggs that play essential roles in host pathology and disease dissemination. Consequently, understanding the mechanisms of sexual maturation and egg production may open a new avenue for controlling schistosomiasis. Here, we describe that Bantam miRNA and miR-1989 regulate Wnt signaling pathway by targeting Frizzled-5/7/9, which is involved in ovarian development and oviposition. Additionally, Frizzled-7 could cooperate with SjRho to maintain normal ovarian development and egg productions and SjRho may interact with Hsp60 to potentially support Frizzled-7 trafficking and signaling. Further in vivo inhibition of SjRho in mice model infected with Schistosoma results in a remarkable decrease in worm burden and egg productions. Our findings not only broaden the functions of Bantam miRNA and miR-1989 as well as Wnt signaling pathway, but also imply that interruption of Bantam/miR-1989-Frizzled-5/7/9-SjRho axis may serve as effective targets against schistosomiasis.
Collapse
Affiliation(s)
- Pengfei Du
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai, China
- China Institute of Veterinary Drug Control, Beijing, China
| | - Tianqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xuxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Bikash R Giri
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China
| | - Chuantao Fang
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China
| | - Shun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Shi Yan
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Wien, Austria
| | - Guofeng Cheng
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai, China.
- Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Rinaldi G, Paz Meseguer C, Cantacessi C, Cortés A. Form and Function in the Digenea, with an Emphasis on Host-Parasite and Parasite-Bacteria Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:3-45. [PMID: 39008262 DOI: 10.1007/978-3-031-60121-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Carla Paz Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain.
| |
Collapse
|
4
|
Li X, Weth O, Haeberlein S, Grevelding CG. Molecular characterization of Sm tdc-1 and Sm ddc-1 discloses roles as male-competence factors for the sexual maturation of Schistosoma mansoni females. Front Cell Infect Microbiol 2023; 13:1173557. [PMID: 37305409 PMCID: PMC10252128 DOI: 10.3389/fcimb.2023.1173557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Schistosomes are the only mammalian flatworms that have evolved separate sexes. A key question of schistosome research is the male-dependent sexual maturation of the female since a constant pairing contact with a male is required for the onset of gonad development in the female. Although this phenomenon is long known, only recently a first peptide-based pheromone of males was identified that contributes to the control of female sexual development. Beyond this, our understanding of the molecular principles inducing the substantial developmental changes in a paired female is still rudimentary. Objectives Previous transcriptomic studies have consistently pointed to neuronal genes being differentially expressed and upregulated in paired males. These genes included Smp_135230 and Smp_171580, both annotated as aromatic-L-amino-acid decarboxylases (DOPA decarboxylases). Here, we characterized both genes and investigated their roles in male-female interaction of S. mansoni. Methodologies/findings Sequence analyses indicated that Smp_135230 represents an L-tyrosine decarboxylase (Smtdc-1), whereas Smp_171580 represents a DOPA decarboxylase (Smddc-1). By qRT-PCR, we confirmed the male-specific and pairing-dependent expression of both genes with a significant bias toward paired males. RNA-interference experiments showed a strong influence of each gene on gonad differentiation in paired females, which was enhanced by double knockdown. Accordingly, egg production was significantly reduced. By confocal laser scanning microscopy, a failure of oocyte maturation was found in paired knockdown females. Whole-mount in situ hybridization patterns exhibited the tissue-specific occurrence of both genes in particular cells at the ventral surface of the male, the gynecophoral canal, which represents the physical interface of both genders. These cells probably belong to the predicted neuronal cluster 2 of S. mansoni. Conclusion Our results suggest that Smtdc-1 and Smddc-2 are male-competence factors that are expressed in neuronal cells at the contact zone between the genders as a response of pairing to subsequently control processes of female sexual maturation.
Collapse
Affiliation(s)
| | | | | | - Christoph G. Grevelding
- Institute for Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| |
Collapse
|
5
|
Zhong H, Jin Y. Single-sex schistosomiasis: a mini review. Front Immunol 2023; 14:1158805. [PMID: 37153566 PMCID: PMC10154636 DOI: 10.3389/fimmu.2023.1158805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by dioecious blood flukes of the genus Schistosoma and second to malaria as a parasitic disease with significant socio-economic impacts. Mating is essential for maturation of male and female schistosomes and for females to lay of eggs, which are responsible for the pathogenesis and propagation of the life cycle beyond the mammalian host. Single-sex schistosomes, which do not produce viable eggs without mating, have been overlooked given the symptomatic paucity of the single-sex schistosomiasis and limited diagnostic toolkit. Besides, single-sex schistosomes are less sensitive to praziquantel. Therefore, these issues should be considered to achieve the elimination of this infection disease. The aim of this review is to summarize current progress in research of single-sex schistosomes and host-parasite interactions.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yamei Jin,
| |
Collapse
|
6
|
Sex-inducing effects toward planarians widely present among parasitic flatworms. iScience 2022; 26:105776. [PMID: 36594009 PMCID: PMC9804148 DOI: 10.1016/j.isci.2022.105776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Various parasitic flatworms infect vertebrates for sexual reproduction, often causing devastating diseases in their hosts. Consequently, flatworms are of great socioeconomic and biomedical importance. Although the cessation of parasitic flatworm sexual reproduction is a major target of anti-parasitic drug design, little is known regarding bioactive compounds controlling flatworm sexual maturation. Using the planarian Dugesia ryukyuensis, we observed that sex-inducing substances found in planarians are also widespread in parasitic flatworms, such as monogeneans and flukes (but not in tapeworms). Reverse-phase HPLC analysis revealed the sex-inducing substance(s) eluting around the tryptophan retention time in the fluke Calicophoron calicophorum, consistent with previous studies on the planarian Bipalium nobile, suggesting that the substance(s) is likely conserved among flatworms. Moreover, six of the 18 ovary-inducing substances identified via transcriptome and metabolome analyses are involved in purine metabolism. Our findings provide a basis for understanding and modifying the life cycles of various parasitic flatworms.
Collapse
|
7
|
Comparative proteomic profiles of Schistosoma japonicum male worms derived from single-sex and bisexual infections. Int J Parasitol 2022; 52:815-828. [PMID: 36265673 DOI: 10.1016/j.ijpara.2022.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Schistosomiasis, which is caused by parasitic schistosomes, remains the second most prevalent parasitic disease of mammals worldwide. To successfully maintain fecundity, schistosomes have evolved a lifecycle that involves the cooperation of morphologically distinct male and female forms. Eggs produced by worm pairs are vital to the lifecycle of the parasite and are responsible for pathogenesis. Understanding the reproductive mechanism of schistosomes will help to control infection. In this study, the proteomic profiles of single-sex infected male (SM) worms and bisexual infected mated male (MM) worms of Schistosoma japonicum at 18, 21, 23, and 25 days p.i. were identified through data-independent acquisition. In total, 674 differentially expressed proteins (DEPs) were identified for the SM and MM worms at all four timepoints. Bioinformatic analysis demonstrated that most of the DEPs were involved in biosynthetic processes including locomotion, cell growth and death, cell motility, and metabolic processes such as protein metabolism and glucose metabolism. Schistosoma japonicum glycosyltransferase (SjGT) and S. japonicum nicastrin protein (SjNCSTN) were selected for quantitative real‑time PCR analysis and long-term interference with small interfering RNA (siRNA) to further explore the functions of the DEPs. Sjgt mRNA expression was mainly enriched in male worms, while Sjncstn was enriched in both sexes. siRNA against SjGT and SjNCSTN resulted in minor morphological changes in the testes of male worms and significant decreased vitality and fertility. The present study provides comprehensive proteomic profiles of S. japonicum SM and MM worms at 18, 21, 23, and 25 days p.i. and offers insights into the mechanisms underlying the growth and maturation of schistosomes.
Collapse
|
8
|
Xu X, Wang Y, Wang C, Guo G, Yu X, Dai Y, Liu Y, Wei G, He X, Jin G, Zhang Z, Guan Q, Pain A, Wang S, Zhang W, Young ND, Gasser RB, McManus DP, Cao J, Zhou Q, Zhang Q. Chromosome-level genome assembly defines female-biased genes associated with sex determination and differentiation in the human blood fluke Schistosoma japonicum. Mol Ecol Resour 2022; 23:205-221. [PMID: 35844053 DOI: 10.1111/1755-0998.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Schistosomiasis is a neglected tropical disease of humans caused by blood flukes of the genus Schistosoma, the only dioecious parasitic flatworm. Although aspects of sex determination, differentiation and reproduction have been studied in some Schistosoma species, almost nothing is known for Schistosoma japonicum, the causative agent of schistosomiasis japonica. This mainly reflects the lack of high-quality genomic and transcriptomic resources for this species. As current genomes for S. japonicum are highly fragmented, we assembled and report a chromosome-level reference genome (seven autosomes, the Z-chromosome and partial W-chromosome), achieving a substantially enhanced gene annotation. Utilizing this genome, we discovered that the sex chromosomes of S. japonicum and its congener S. mansoni independently suppressed recombination during evolution, forming five and two evolutionary strata, respectively. By exploring the W-chromosome and sex-specific transcriptomes, we identified 35 W-linked genes and 257 female-preferentially transcribed genes (FTGs) from our chromosomal assembly and uncovered a signature for sex determination and differentiation in S. japonicum. These FTGs clustering within autosomes or the Z-chromosome exhibit a highly dynamic transcription profile during the pairing of female and male schistosomula, thereby representing a critical phase for the maturation of the female worms and suggesting distinct layers of regulatory control of gene transcription at this development stage. Collectively, these data provide a valuable resource for further functional genomic characterization of S. japonicum, shed light on the evolution of sex chromosomes in this highly virulent human blood fluke, and provide a pathway to identify novel targets for development of intervention tools against schistosomiasis.
Collapse
Affiliation(s)
- Xindong Xu
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yifeng Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Changhong Wang
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Gangqiang Guo
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yang Dai
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Guiying Wei
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohui He
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Ge Jin
- Novogene Bioinformatics Institute, Beijing, China
| | - Ziqiu Zhang
- Novogene Bioinformatics Institute, Beijing, China
| | - Qingtian Guan
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Shengyue Wang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Donald P McManus
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.,Center for Reproductive Medicine, the Second Affiliated Hospital School of Medicine and Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qingfeng Zhang
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Pagliazzo L, Caby S, Lancelot J, Salomé-Desnoulez S, Saliou JM, Heimburg T, Chassat T, Cailliau K, Sippl W, Vicogne J, Pierce RJ. Histone deacetylase 8 interacts with the GTPase SmRho1 in Schistosoma mansoni. PLoS Negl Trop Dis 2021; 15:e0009503. [PMID: 34843489 PMCID: PMC8670706 DOI: 10.1371/journal.pntd.0009503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/14/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has elicited considerable interest as a target for drug discovery. Invalidation of its transcripts by RNAi leads to impaired survival of the worms in infected mice and its inhibition causes cell apoptosis and death. To determine why it is a promising therapeutic target the study of the currently unknown cellular signaling pathways involving this enzyme is essential. Protein partners of SmHDAC8 were previously identified by yeast two-hybrid (Y2H) cDNA library screening and by mass spectrometry (MS) analysis. Among these partners we characterized SmRho1, the schistosome orthologue of human RhoA GTPase, which is involved in the regulation of the cytoskeleton. In this work, we validated the interaction between SmHDAC8 and SmRho1 and explored the role of the lysine deacetylase in cytoskeletal regulation. Methodology/principal findings We characterized two isoforms of SmRho1, SmRho1.1 and SmRho1.2. Co- immunoprecipitation (Co-IP)/Mass Spectrometry (MS) analysis identified SmRho1 partner proteins and we used two heterologous expression systems (Y2H assay and Xenopus laevis oocytes) to study interactions between SmHDAC8 and SmRho1 isoforms. To confirm SmHDAC8 and SmRho1 interaction in adult worms and schistosomula, we performed Co-IP experiments and additionally demonstrated SmRho1 acetylation using a Nano LC-MS/MS approach. A major impact of SmHDAC8 in cytoskeleton organization was documented by treating adult worms and schistosomula with a selective SmHDAC8 inhibitor or using RNAi followed by confocal microscopy. Conclusions/significance Our results suggest that SmHDAC8 is involved in cytoskeleton organization via its interaction with the SmRho1.1 isoform. The SmRho1.2 isoform failed to interact with SmHDAC8, but did specifically interact with SmDia suggesting the existence of two distinct signaling pathways regulating S. mansoni cytoskeleton organization via the two SmRho1 isoforms. A specific interaction between SmHDAC8 and the C-terminal moiety of SmRho1.1 was demonstrated, and we showed that SmRho1 is acetylated on K136. SmHDAC8 inhibition or knockdown using RNAi caused extensive disruption of schistosomula actin cytoskeleton. Schistosoma mansoni is the major parasitic platyhelminth species causing intestinal schistosomiasis. Currently one drug, praziquantel, is the treatment of choice but its use in mass treatment programs means that the development of resistance is likely and renders imperative the development of new therapeutic agents. As new potential targets we have focused on lysine deacetylases, and in particular S. mansoni histone deacetylase 8 (SmHDAC8). Previous studies showed that reduction in the level of transcripts of SmHDAC8 by RNAi led to the impaired survival of the worms after the infection of mice. The analysis of the 3D structure of SmHDAC8 by X-ray crystallography showed that the catalytic domain structure diverges significantly from that of human HDAC8 and this was exploited to develop novel potential anti-schistosomal drugs. The biological roles of SmHDAC8 are unknown. For this reason, we previously characterized its protein binding partners and identified the schistosome orthologue of the human RhoA GTPase, suggesting the involvement of SmHDAC8 in the modulation of cytoskeleton organization. Here we investigated the interaction between SmHDAC8 and SmRho1 and identified two SmRho1 isoforms (SmRho1.1 and SmRho1.2). Our study showed that SmHDAC8 is involved in schistosome cytoskeleton organization.
Collapse
Affiliation(s)
- Lucile Pagliazzo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Stéphanie Caby
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Julien Lancelot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | | | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Tino Heimburg
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Thierry Chassat
- Institut Pasteur de Lille - PLEHTA (Plateforme d’expérimentation et de Haute Technologie Animale), Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Jérôme Vicogne
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (JV); (RJP)
| | - Raymond J. Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (JV); (RJP)
| |
Collapse
|
10
|
Stitz M, Chaparro C, Lu Z, Olzog VJ, Weinberg CE, Blom J, Goesmann A, Grunau C, Grevelding CG. Satellite-Like W-Elements: Repetitive, Transcribed, and Putative Mobile Genetic Factors with Potential Roles for Biology and Evolution of Schistosoma mansoni. Genome Biol Evol 2021; 13:6361599. [PMID: 34469545 PMCID: PMC8490949 DOI: 10.1093/gbe/evab204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/17/2022] Open
Abstract
A large portion of animal and plant genomes consists of noncoding DNA. This part includes tandemly repeated sequences and gained attention because it offers exciting insights into genome biology. We investigated satellite-DNA elements of the platyhelminth Schistosoma mansoni, a parasite with remarkable biological features. Schistosoma mansoni lives in the vasculature of humans causing schistosomiasis, a disease of worldwide importance. Schistosomes are the only trematodes that have evolved separate sexes, and the sexual maturation of the female depends on constant pairing with the male. The schistosome karyotype comprises eight chromosome pairs, males are homogametic (ZZ) and females are heterogametic (ZW). Part of the repetitive DNA of S. mansoni are W-elements (WEs), originally discovered as female-specific satellite DNAs in the heterochromatic block of the W-chromosome. Based on new genome and transcriptome data, we performed a reanalysis of the W-element families (WEFs). Besides a new classification of 19 WEFs, we provide first evidence for stage-, sex-, pairing-, gonad-, and strain-specific/preferential transcription of WEs as well as their mobile nature, deduced from autosomal copies of full-length and partial WEs. Structural analyses suggested roles as sources of noncoding RNA-like hammerhead ribozymes, for which we obtained functional evidence. Finally, the variable WEF occurrence in different schistosome species revealed remarkable divergence. From these results, we propose that WEs potentially exert enduring influence on the biology of S. mansoni. Their variable occurrence in different strains, isolates, and species suggests that schistosome WEs may represent genetic factors taking effect on variability and evolution of the family Schistosomatidae.
Collapse
Affiliation(s)
- Maria Stitz
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Cristian Chaparro
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, France
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Christoph Grunau
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, France
| | | |
Collapse
|
11
|
Mughal MN, Ye Q, Zhao L, Grevelding CG, Li Y, Di W, He X, Li X, Gasser RB, Hu M. First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1. Pathogens 2021; 10:862. [PMID: 34358012 PMCID: PMC8308690 DOI: 10.3390/pathogens10070862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Protein kinases are known as key molecules that regulate many biological processes in animals. The right open reading frame protein kinase (riok) genes are known to be essential regulators in model organisms such as the free-living nematode Caenorhabditis elegans. However, very little is known about their function in parasitic trematodes (flukes). In the present study, we characterized the riok-1 gene (Sj-riok-1) and the inferred protein (Sj-RIOK-1) in the parasitic blood fluke, Schistosoma japonicum. We gained a first insight into function of this gene/protein through double-stranded RNA interference (RNAi) and chemical inhibition. RNAi significantly reduced Sj-riok-1 transcription in both female and male worms compared with untreated control worms, and subtle morphological alterations were detected in the ovaries of female worms. Chemical knockdown of Sj-RIOK-1 with toyocamycin (a specific RIOK-1 inhibitor/probe) caused a substantial reduction in worm viability and a major accumulation of mature oocytes in the seminal receptacle (female worms), and of spermatozoa in the sperm vesicle (male worms). These phenotypic alterations indicate that the function of Sj-riok-1 is linked to developmental and/or reproductive processes in S. japonicum.
Collapse
Affiliation(s)
- Mudassar N. Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Christoph G. Grevelding
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China;
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Xuesong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| |
Collapse
|
12
|
Kincaid-Smith J, Mathieu-Bégné E, Chaparro C, Reguera-Gomez M, Mulero S, Allienne JF, Toulza E, Boissier J. No pre-zygotic isolation mechanisms between Schistosoma haematobium and Schistosoma bovis parasites: From mating interactions to differential gene expression. PLoS Negl Trop Dis 2021; 15:e0009363. [PMID: 33945524 PMCID: PMC8127863 DOI: 10.1371/journal.pntd.0009363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/14/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Species usually develop reproductive isolation mechanisms allowing them to avoid interbreeding. These preventive barriers can act before reproduction, "pre-zygotic barriers", or after reproduction, "post-zygotic barriers". Pre-zygotic barriers prevent unfavourable mating, while post-zygotic barriers determine the viability and selective success of the hybrid offspring. Hybridization in parasites and the underlying reproductive isolation mechanisms maintaining their genetic integrity have been overlooked. Using an integrated approach this work aims to quantify the relative importance of pre-zygotic barriers in Schistosoma haematobium x S. bovis crosses. These two co-endemic species cause schistosomiasis, one of the major debilitating parasitic diseases worldwide, and can hybridize naturally. Using mate choice experiments we first tested if a specific mate recognition system exists between both species. Second, using RNA-sequencing we analysed differential gene expression between homo- and hetero-specific pairing in male and female adult parasites. We show that homo- and hetero-specific pairing occurs randomly between these two species, and few genes in both sexes are affected by hetero-specific pairing. This suggests that i) mate choice is not a reproductive isolating factor, and that ii) no pre-zygotic barrier except spatial isolation "by the final vertebrate host" seems to limit interbreeding between these two species. Interestingly, among the few genes affected by the pairing status of the worms, some can be related to pathways affected during male and female interactions and may also present interesting candidates for species isolation mechanisms and hybridization in schistosome parasites.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of
Pathobiology and Population Sciences (PPS), Royal Veterinary College, University
of London, Hawkshead Campus, Herts, United Kingdom
| | | | | | - Marta Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de
Valencia, Burjassot, Valencia, Spain
| | - Stephen Mulero
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | | | - Eve Toulza
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | - Jérôme Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| |
Collapse
|
13
|
Li P, Nanes Sarfati D, Xue Y, Yu X, Tarashansky AJ, Quake SR, Wang B. Single-cell analysis of Schistosoma mansoni identifies a conserved genetic program controlling germline stem cell fate. Nat Commun 2021; 12:485. [PMID: 33473133 PMCID: PMC7817839 DOI: 10.1038/s41467-020-20794-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
Schistosomes are parasitic flatworms causing one of the most prevalent infectious diseases from which millions of people are currently suffering. These parasites have high fecundity and their eggs are both the transmissible agents and the cause of the infection-associated pathology. Given its biomedical significance, the schistosome germline has been a research focus for more than a century. Nonetheless, molecular mechanisms that regulate its development are only now being understood. In particular, it is unknown what balances the fate of germline stem cells (GSCs) in producing daughter stem cells through mitotic divisions versus gametes through meiosis. Here, we perform single-cell RNA sequencing on juvenile schistosomes and capture GSCs during de novo gonadal development. We identify a genetic program that controls the proliferation and differentiation of GSCs. This program centers around onecut, a homeobox transcription factor, and boule, an mRNA binding protein. Their expressions are mutually dependent in the schistosome male germline, and knocking down either of them causes over-proliferation of GSCs and blocks germ cell differentiation. We further show that this germline-specific regulatory program is conserved in the planarian, schistosome's free-living evolutionary cousin, but the function of onecut has changed during evolution to support GSC maintenance.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Xi Yu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Du P, Giri BR, Liu J, Xia T, Grevelding CG, Cheng G. Proteomic and deep sequencing analysis of extracellular vesicles isolated from adult male and female Schistosoma japonicum. PLoS Negl Trop Dis 2020; 14:e0008618. [PMID: 32986706 PMCID: PMC7521736 DOI: 10.1371/journal.pntd.0008618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Schistosomes are the causative agent of schistosomiasis, which affects more than 200 million people worldwide. Unlike other trematode parasites, schistosomes (along with the Didymozoidae) have evolved separate sexes. Pairing of males and females is a prerequisite for female sexual development and subsequent egg production. However, the mechanisms underlying these processes remain poorly understood. Extracellular vesicles (EVs) have been shown to play important roles in many biological processes. In the present study, we characterized EVs isolated from adult male and female Schistosoma japonicum. Proteomic analyses of the isolated EVs revealed that some proteins are significantly enriched in male or female EVs. RNA-sequencing analysis of a small RNA population associated with EVs identified 18 miRNAs enriched in male and female S. japonicum EVs. Among these, miR-750 was specifically enriched in female EVs. Additionally, the inhibition of miR-750 by a miRNA inhibitor led to decreased egg production in female schistosomes cultured in vitro. Collectively, our results suggest that miR-750 within female EV cargo may be involved in regulating ovary development and egg production in S. japonicum females. Schistosomiasis is a neglected tropical disease caused by the genus Schistosoma and affects more than 200 million people worldwide. Previously, we and other groups found that Schistosoma japonicum can secrete extracellular vesicles (EVs) that are taken up by mammalian cells. Here, we characterized EVs isolated from adult male and female S. japonicum and found that some proteins and microRNAs (miRNAs) were significantly enriched in male or female EVs. More importantly, the inhibition of miR-750, which is specifically enriched in female EVs, resulted in decreased egg production. Overall, our study suggests that female EV miRNA cargo may play important roles in regulating female ovary development and egg production during male-female pairing in S. japonicum.
Collapse
Affiliation(s)
- Pengfei Du
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, China
| | - Bikash R. Giri
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, China
| | - Juntao Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, China
| | - Tianqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, China
| | | | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, China
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
- * E-mail: ,
| |
Collapse
|
15
|
Tavares NC, Gava SG, Torres GP, de Paiva CÊS, Moreira BP, Lunkes FMN, Montresor LC, Caldeira RL, Mourão MM. Schistosoma mansoni FES Tyrosine Kinase Involvement in the Mammalian Schistosomiasis Outcome and Miracidia Infection Capability in Biomphalaria glabrata. Front Microbiol 2020; 11:963. [PMID: 32595609 PMCID: PMC7300192 DOI: 10.3389/fmicb.2020.00963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) caused by helminthes from the Schistosoma genus. This NTD can cause systemic symptoms induced by the deposition of parasite eggs in the host liver, promoting severe complications. Functional studies to increase knowledge about parasite biology are required for the identification of new drug targets, because the treatment is solely based on praziquantel administration, a drug in which the mechanism of action is still unknown. Protein kinases are important for cellular adaptation and maintenance of many organisms homeostasis and, thus, are considered good drug targets for many pathologies. Accordingly, those proteins are also important for Schistosoma mansoni, as the parasite relies on specific environmental signals to develop into its different stages. However, the specific roles of protein kinases in S. mansoni biology are not well understood. This work aims at investigating the tyrosine-protein kinase FES (Feline Sarcoma) functions in the maintenance of S. mansoni life cycle, especially in the establishment of mammalian and invertebrate hosts' infection. In this regard, the verification of Smfes expression among S. mansoni stages showed that Smfes is more expressed in infective free-living stages: miracidia and cercariae. Schistosomula exposed to SmFES-dsRNA in vitro presented a reduction in movement and size and increased mortality. Mice infected with Smfes-knocked-down schistosomula exhibited a striking reduction in the area of liver granuloma and an increased rate of immature eggs in the intestine. Female adult worms recovered from mice presented a reduced size and changes in the ovary and vitellarium; and males exhibited damage in the gynecophoral canal. Subsequently, miracidia hatched from eggs exposed to SmFES-dsRNA presented changes in its capability to infect and to sense the snail mucus. In addition, the SmFES RNAi effect was stable from miracidia to cercariae. The establishment of infection with those cercariae reproduced the same alterations observed for the knocked-down schistosomula infection. Our findings show that SmFES tyrosine kinase (1) is important in schistosomula development and survival; (2) has a role in adult worms pairing and, consequently, female maturation; (3) might be essential for egg antigen expression, thus responsible for inducing granuloma formation and immunomodulation; and (4) is essential for miracidia infection capability. In addition, this is the first time that a gene is kept knocked down during three different S. mansoni life stages and that a tyrosine kinase is implicated in the parasite reproduction and infection establishment in the mammalian host. Accordingly, SmFES should be explored as an alternative to support schistosomiasis treatment and morbidity control.
Collapse
Affiliation(s)
- Naiara Clemente Tavares
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sandra Grossi Gava
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Gabriella Parreiras Torres
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Clara Ênia Soares de Paiva
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Bernardo Pereira Moreira
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Felipe Miguel Nery Lunkes
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Langia Colli Montresor
- Moluscário Lobato Paraense, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Roberta Lima Caldeira
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Marina Moraes Mourão
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Liu R, Cheng WJ, Ye F, Zhang YD, Zhong QP, Dong HF, Tang HB, Jiang H. Comparative Transcriptome Analyses of Schistosoma japonicum Derived From SCID Mice and BALB/c Mice: Clues to the Abnormality in Parasite Growth and Development. Front Microbiol 2020; 11:274. [PMID: 32218772 PMCID: PMC7078119 DOI: 10.3389/fmicb.2020.00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis, caused by the parasitic flatworms called schistosomes, remains one of the most prevailing parasitic diseases in the world. The prodigious oviposition of female worms after maturity is the main driver of pathology due to infection, yet our understanding about the regulation of development and reproduction of schistosomes is limited. Here, we comparatively profiled the transcriptome of Schistosoma japonicum recovered from SCID and BALB/c mice, which were collected 35 days post-infection, when prominent morphological abnormalities could be observed in schistosomes from SCID mice, by performing RNA-seq analysis. Of the 11,183 identified genes, 62 differentially expressed genes (DEGs) with 39 upregulated and 23 downregulated messenger RNAs (mRNAs) were found in male worms from SCID mice (S_M) vs. male worms from BALB/c mice (B_M), and 240 DEGs with 152 upregulated and 88 downregulated mRNAs were found in female worms from SCID mice (S_F) vs. female worms from BALB/c mice (B_F). We also tested nine DEGs with a relatively higher expression abundance in the gonads of the worms (ovary, vitellaria, or testis), suggesting their potential biological significance in the development and reproduction of the parasites. Gene ontology (GO) enrichment analysis revealed that GO terms such as “microtubule-based process,” “multicellular organismal development,” and “Rho protein signal transduction” were significantly enriched in the DEGs in S_F vs. B_F, whereas GO terms such as “oxidation–reduction process,” “response to stress,” and “response to DNA damage stimulus” were significantly enriched in the DEGs in S_M vs. B_M. These results revealed that the differential expression of some important genes might contribute to the morphological abnormalities of worms in SCID mice. Furthermore, we selected one DEG, the mitochondrial prohibitin complex protein 1 (Phb1), to perform double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) in vivo targeting the worms in BALB/c mice, and we found that it was essential for the growth and reproductive development of both male and female S. japonicum worms. Taken together, these results provided a wealth of information on the differential gene expression profiles of schistosomes from SCID mice when compared with those from BALB/c mice, which were potentially involved in regulating the growth and development of schistosomes. These findings contributed to an understanding of parasite biology and provided a rich resource for the exploitation of antischistosomal intervention targets.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feng Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yao-Dan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-Bin Tang
- Laboratory Animal Center, School of Medicine, Wuhan University, Wuhan, China
| | - Hong Jiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Role of the Pumilio gene in the reproductive system of Schistosoma japonicum. Parasitol Res 2020; 119:501-511. [PMID: 31897787 DOI: 10.1007/s00436-019-06467-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022]
Abstract
The elimination of schistosomiasis, a parasitic disease caused by Schistosoma and a major source of morbidity and mortality in developing countries, faces serious challenges. Although the pumilio protein regulates the reproductive organ development in many species, its role in Schistosoma japonicum is unknown. Thus, this study investigated the function of pumilio in S. japonicum reproduction. The complete coding sequences of S. japonicum Pumilio1 (SjPum1) and SjPum2 genes were cloned and characterized. The full-length open-reading frame SjPum1 (2613 nucleotides) and SjPum2 (4479 nucleotides) genes were obtained. Bioinformatics analysis showed that those genes belonged to the PUF (pumilio and FBF) family. Quantitative polymerase chain reaction analyses revealed that SjPum1 and SjPum2 were differentially expressed throughout the S. japonicum life cycle and were highly expressed in reproductive organs. In situ hybridization results showed that mRNA expression of SjPum2 was higher than that of SjPum1 in the ovary and testis. Knocking down SjPum2 using RNA interference techniques to explore potential reproductive functions showed that compared with the control (untransfected or scrambled mRNA-transfected) worms, the morphology of both male and female reproductive organs was altered, the number of eggs produced by paired females was significantly decreased, and the transcription levels of caspase 3 and caspase 7 genes related to apoptosis were significantly increased. The transcription level of Nanos1 gene which related to reproduction was also significantly increased. Therefore, SjPum2 may play a role in the reproductive development of S. japonicum.
Collapse
|
18
|
Lu Z, Spänig S, Weth O, Grevelding CG. Males, the Wrongly Neglected Partners of the Biologically Unprecedented Male-Female Interaction of Schistosomes. Front Genet 2019; 10:796. [PMID: 31552097 PMCID: PMC6743411 DOI: 10.3389/fgene.2019.00796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023] Open
Abstract
Schistosomes are the only platyhelminths that have evolved separate sexes, and they exhibit a unique reproductive biology because the female's sexual maturation depends on a constant pairing contact with the male. In the female, pairing leads to gonad differentiation, which is associated with substantial morphological changes, and controls among others the expression of gonad-associated genes. In the male, no morphological changes have been observed after pairing, although first data indicated an effect of pairing on gene transcription. Comprehensive transcriptomic approaches have revealed an unexpected high number of genes that are differentially transcribed in the male after pairing. Their identities suggest roles for the male that are not restricted to feeding and enhanced muscular power to transport paired female and, as assumed before, to induce its sexual maturation by one "magic" factor. Instead, a more complex picture emerges in which both partners live in a reciprocal sender-recipient relationship that not only affects the gonads of both genders but may also involve tactile stimuli, transforming growth factor β signaling, nutritional parts, and neuronal processes, including neuropeptides and G protein-coupled receptor signaling. This review provides a summary of transcriptomics including an overview of genes expressed in a pairing-dependent manner in schistosome males. This may stimulate further research in understanding the role of the male as the recipient of the female's signals upon pairing, the male's "capacitation," and its subsequent competence as a sender of information. The latter process finally transforms a sexually immature, autonomous female without completely developed gonads into a sexually mature, partially non-autonomous female with fully differentiated gonads and enormous egg production capacity.
Collapse
Affiliation(s)
- Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Insitute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Sebastian Spänig
- Department of Mathematics & Computer Science, University of Marburg, Marburg, Germany
| | - Oliver Weth
- Insitute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
19
|
Caffrey CR, El‐Sakkary N, Mäder P, Krieg R, Becker K, Schlitzer M, Drewry DH, Vennerstrom JL, Grevelding CG. Drug Discovery and Development for Schistosomiasis. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527808656.ch8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Doenhoff MJ, Modha J, Walker AJ. Failure of in vitro-cultured schistosomes to produce eggs: how does the parasite meet its needs for host-derived cytokines such as TGF-β? Int J Parasitol 2019; 49:747-757. [PMID: 31348959 DOI: 10.1016/j.ijpara.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
Abstract
When adult schistosome worm pairs are transferred from experimental hosts to in vitro culture they cease producing viable eggs within a few days. Female worms in unisexual infections fail to mature, and when mature adult females are separated from male partners they regress sexually. Worms cultured from the larval stage are also permanently reproductively defective. The cytokine transforming growth factor beta derived from the mammalian host is considered important in stimulating schistosome female worm maturation and maintenance of fecundity. The means by which schistosomes acquire TGF-β have not been elucidated, but direct uptake in vivo seems unlikely as the concentration of free, biologically active cytokine in host blood is very low. Here we review the complexities of schistosome development and male-female interactions, and we speculate about two possibilities on how worms obtain the TGF-β they are assumed to need: (i) worms may have mechanisms to free active cytokine from the latency-inducing complex of proteins in which it is associated, and/or (ii) they may obtain the cytokine from alpha 2-macroglobulin, a blood-borne protease inhibitor to which TGF-β can bind. These ideas are experimentally testable.
Collapse
Affiliation(s)
- Michael J Doenhoff
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Jay Modha
- Modha Biomedical Ltd, 9B St Cuthberts Avenue, Great Glen, Leicester LE8 9EJ, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
21
|
Haeberlein S, Angrisano A, Quack T, Lu Z, Kellershohn J, Blohm A, Grevelding CG, Hahnel SR. Identification of a new panel of reference genes to study pairing-dependent gene expression in Schistosoma mansoni. Int J Parasitol 2019; 49:615-624. [PMID: 31136746 DOI: 10.1016/j.ijpara.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Facilitated by the Schistosoma mansoni genome project, multiple transcriptomic studies were performed over the last decade to elucidate gene expression patterns among different developmental stages of the complex schistosome life cycle. While these analyses enable the identification of candidate genes with key functions in schistosome biology, a diverse molecular tool set is needed that allows comprehensive functional characterization at the single gene level. This includes the availability of reliable reference genes to confirm changes in the transcription of genes of interest over different biological samples and experimental conditions. In particular, the investigation of one key aspect of schistosome biology, the pairing-dependent gene expression in females and males, requires knowledge on reference genes that are expressed independently of both pairing and of in vitro culture effects. Therefore, the present study focused on the identification of quantitative reverse transcription (qRT)-PCR reference genes suitable for the investigation of pairing-dependent gene expression in the S. mansoni male. The "pipeline" we present here is based on qRT-PCR analyses of high biological replication combined with three different statistical analysis tools, BestKeeper, geNorm, and NormFinder. Our approach resulted in a statistically robust ranking of 15 selected reference genes with respect to their transcription stability between pairing-unexperienced and -experienced males. We further tested the top seven candidate genes for their transcription stability during invitro culture of adult S. mansoni. Of these, the two most suitable reference genes were used to investigate the influence of the pairing contact on the transcription of genes of interest, comprising a tyrosine decarboxylase gene Smtdc1, an ebony ortholog Smebony, and the follistatin ortholog Smfst in S. mansoni males. Performing pairing, separation and re-pairing experiments with adult S. mansoni in vitro, our results indicate for the first time that pairing can act as a molecular on/off-switch of specific genes to strictly control their expression in schistosome males.
Collapse
Affiliation(s)
- Simone Haeberlein
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Thomas Quack
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Josina Kellershohn
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Ariane Blohm
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Steffen R Hahnel
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
22
|
Wang J, Chen R, Collins JJ. Systematically improved in vitro culture conditions reveal new insights into the reproductive biology of the human parasite Schistosoma mansoni. PLoS Biol 2019; 17:e3000254. [PMID: 31067225 PMCID: PMC6505934 DOI: 10.1371/journal.pbio.3000254] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/18/2019] [Indexed: 11/19/2022] Open
Abstract
Schistosomes infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection, yet our understanding of sexual reproduction by schistosomes is limited because normal egg production is not sustained for more than a few days in vitro. Here, we describe culture conditions that support schistosome sexual development and sustained egg production in vitro. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs. Exploiting these new culture conditions, we explore the process of male-stimulated female maturation and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. We further report the characterization of a nuclear receptor (NR), which we call Vitellogenic Factor 1 (VF1), that is essential for female sexual development following pairing with a male worm. Taken together, these results provide a platform to study the fascinating sexual biology of these parasites on a molecular level, illuminating new strategies to control schistosome egg production. Schistosomes infect over 200 million people worldwide. This paper describes culture conditions that support sexual development and sustained egg production of the human parasitic flatworm Schistosoma mansoni in vitro, providing new insights into its reproductive biology.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rui Chen
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - James J Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
23
|
The ABL kinase inhibitor imatinib causes phenotypic changes and lethality in adult Schistosoma japonicum. Parasitol Res 2019; 118:881-890. [PMID: 30729300 DOI: 10.1007/s00436-019-06224-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Schistosomiasis caused by different species of schistosome parasites is one of the most debilitating helminthic diseases of humans worldwide. For decades, chemotherapy is the main method of controlling schistosomiasis. However, the fear of drug resistance has motivated the search for alternatives. It has been demonstrated that the ABL kinase inhibitor imatinib affected the development and survival of Schistosoma mansoni in vitro; however, there is still lack of information on whether imatinib also affects other schistosome species such as Schistosoma japonicum. In the present study, the anti-schistosomal potency of imatinib on adult S. japonicum was investigated in vitro, and the results showed that imatinib had a significant impact on various physiological processes of S. japonicum adult worms. Besides its negative effects on worm motility, pairing stability, and gonad development, imatinib caused pathological changes in the gastrodermis as well as the death of the parasite. Our findings suggest that imatinib is an intriguing candidate for further development as an option to fight S. japonicum.
Collapse
|
24
|
Form and Function in the Digenea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:3-20. [DOI: 10.1007/978-3-030-18616-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Mäder P, Rennar GA, Ventura AMP, Grevelding CG, Schlitzer M. Chemotherapy for Fighting Schistosomiasis: Past, Present and Future. ChemMedChem 2018; 13:2374-2389. [DOI: 10.1002/cmdc.201800572] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Patrick Mäder
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Georg A. Rennar
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Alejandra M. Peter Ventura
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS; Justus-Liebig-Universität Gießen; Schubertstraße 81 35392 Gießen Germany
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| |
Collapse
|
26
|
Zhao L, Lu Z, He X, Mughal MN, Fang R, Zhou Y, Zhao J, Gasser RB, Grevelding CG, Ye Q, Hu M. Serine/threonine protein phosphatase 1 (PP1) controls growth and reproduction in Schistosoma japonicum. FASEB J 2018; 32:fj201800725R. [PMID: 29879373 DOI: 10.1096/fj.201800725r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schistosomiasis is a human parasitic disease caused by flatworms of the genus Schistosoma. Adult female schistosomes produce numerous eggs that are responsible for the pathogenesis and transmission of the disease, and the maturation of female gonads depends on the permanent pairing of females and males. Signaling protein kinases have been proven to control female gonad differentiation after pairing; however, little is known about the roles of protein phosphatases in the developmental and reproductive biology of schistosomes. Here we explored 3 genes encoding catalytic subunits of serine/threonine protein phosphatase 1 (PP1c) that were structurally and evolutionarily conserved in Schistosoma japonicum. In situ hybridization showed transcripts of 3 Sj-pp1c genes mainly localized in the reproductive organs and tissues. Triple knockdown of Sj-pp1c genes by RNA interference caused stunted growth and decreased pairing stability of worm pairs, as well as a remarkable reduction in cell proliferation activity and defects in reproductive maturation and fecundity. Transcriptomic analysis post-RNA interference suggested that Sj-pp1c genes are involved in controlling worm development and maturation mainly by regulating cell proliferation, eggshell synthesis, nutritional metabolism, cytoskeleton organization, and neural process. Our study provides the first insight into the fundamental contribution of Sj-PP1c to molecular mechanisms underlying the reproductive biology of schistosomes.-Zhao, L., Lu, Z., He, X., Mughal, M. N., Fang, R., Zhou, Y., Zhao, J., Gasser, R. B., Grevelding, C. G., Ye, Q., Hu, M. Serine/threonine protein phosphatase 1 (PP1) controls growth and reproduction in Schistosoma japonicum.
Collapse
Affiliation(s)
- Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhigang Lu
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mudassar N Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Robin B Gasser
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, Australia
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Giri BR, Ye J, Chen Y, Wei C, Cheng G. In silico analysis of endogenous siRNAs associated transposable elements and NATs in Schistosoma japonicum reveals their putative roles during reproductive development. Parasitol Res 2018; 117:1549-1558. [PMID: 29568977 DOI: 10.1007/s00436-018-5830-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by trematode of the genus Schistosoma. Successful reproductive development is critical for the production of eggs, which are responsible for host pathology and disease dissemination. Endogenous small non-coding RNAs play important roles in many biological processes such as protection against foreign pathogens, cell differentiation, and chromosomal stability by regulating target gene expression at the transcriptional and post-transcriptional levels. In this study, we performed in silico analysis of endogenous small non-coding RNAs in different stages, and sex of S. japonicum focusing on endogenous small interfering RNAs (endo-siRNAs) generated from transposable elements (TEs) and natural antisense transcripts (NATs). Both total and unique siRNA populations show 18-30 nt in length, but the predominant size was 20 nt and the leading first base was adenosine. Sense TE-derived endo-siRNAs reads were higher than antisense reads at different relative positions of TEs, whereas no such difference was observed for NAT-derived endo-siRNAs. TE- and NAT-derived endo-siRNAs were more enriched in the male compared to female worms, with the higher relative expression in early phase of pairing. Putative targets of endo-siRNAs indicated more of them in males (106 and 66) than in females (6 and 23) for TE- and NAT-derived endo-siRNAs, respectively. Our preliminary study revealed vital role of endo-siRNAs during the reproductive development of S. japonicum and provide clues for putative novel targets to suppress worm reproduction and direction for effective anti-schistosomal drug development.
Collapse
Affiliation(s)
- Bikash Ranjan Giri
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Jiannan Ye
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|
28
|
Candido RRF, Morassutti AL, Graeff-Teixeira C, St Pierre TG, Jones MK. Exploring Structural and Physical Properties of Schistosome Eggs: Potential Pathways for Novel Diagnostics? ADVANCES IN PARASITOLOGY 2018; 100:209-237. [PMID: 29753339 DOI: 10.1016/bs.apar.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this era of increasing demand for sensitive techniques to diagnose schistosomiasis, there is a need for an increased focus on the properties of the parasite eggs. The eggs are not only directly linked to the morbidity of chronic infection but are also potential key targets for accurate diagnostics. Eggs were the primary target of diagnostic tools in the past and we argue they could be the target of highly sensitive tools in the future if we focus on characteristics of their structure and shell surface that could be exploited for enhanced detection. In this review, we discuss the current state of knowledge of the physical structures of schistosome eggs and eggshells with a view to identifying pathways to a comprehensive understanding of their role in the host-parasite relationship and pathogenesis of infection, and pathways to new strategies for development of diagnostics.
Collapse
Affiliation(s)
- Renata R F Candido
- School of Physics, The University of Western Australia, Crawley, WA, Australia.
| | - Alessandra L Morassutti
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Graeff-Teixeira
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Timothy G St Pierre
- School of Physics, The University of Western Australia, Crawley, WA, Australia
| | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Hahnel S, Wheeler N, Lu Z, Wangwiwatsin A, McVeigh P, Maule A, Berriman M, Day T, Ribeiro P, Grevelding CG. Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni. PLoS Pathog 2018; 14:e1006718. [PMID: 29346437 PMCID: PMC5773224 DOI: 10.1371/journal.ppat.1006718] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Schistosomes are blood-dwelling trematodes with global impact on human and animal health. Because medical treatment is currently based on a single drug, praziquantel, there is urgent need for the development of alternative control strategies. The Schistosoma mansoni genome project provides a platform to study and connect the genetic repertoire of schistosomes to specific biological functions essential for successful parasitism. G protein-coupled receptors (GPCRs) form the largest superfamily of transmembrane receptors throughout the Eumetazoan phyla, including platyhelminths. Due to their involvement in diverse biological processes, their pharmacological importance, and proven druggability, GPCRs are promising targets for new anthelmintics. However, to identify candidate receptors, a more detailed understanding of the roles of GPCR signalling in schistosome biology is essential. An updated phylogenetic analysis of the S. mansoni GPCR genome (GPCRome) is presented, facilitated by updated genome data that allowed a more precise annotation of GPCRs. Additionally, we review the current knowledge on GPCR signalling in this parasite and provide new insights into the potential roles of GPCRs in schistosome reproduction based on the findings of a recent tissue-specific transcriptomic study in paired and unpaired S. mansoni. According to the current analysis, GPCRs contribute to gonad-specific functions but also to nongonad, pairing-dependent processes. The latter may regulate gonad-unrelated functions during the multifaceted male-female interaction. Finally, we compare the schistosome GPCRome to that of another parasitic trematode, Fasciola, and discuss the importance of GPCRs to basic and applied research. Phylogenetic analyses display GPCR diversity in free-living and parasitic platyhelminths and suggest diverse functions in schistosomes. Although their roles need to be substantiated by functional studies in the future, the data support the selection of GPCR candidates for basic and applied studies, invigorating the exploitation of this important receptor class for drug discovery against schistosomes but also other trematodes.
Collapse
Affiliation(s)
- Steffen Hahnel
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nic Wheeler
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Arporn Wangwiwatsin
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Paul McVeigh
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom
| | - Aaron Maule
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Timothy Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Montreal, Canada
| | | |
Collapse
|
30
|
Signalling pathways in schistosomes: novel targets for control interventions against schistosomiasis. Emerg Top Life Sci 2017; 1:633-639. [PMID: 33525854 DOI: 10.1042/etls20170093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022]
Abstract
Over the last decade, there has been accumulating evidence showing that signalling pathways are involved in extensive biological and physiological processes in the human blood fluke schistosomes, playing essential roles in environmental sensing, host penetration, growth, development, maturation, embryogenesis, tissue self-renewal and survival. Owing to the likelihood of resistance developing against praziquantel, the only drug currently available that is effective against all the human schistosome species, there is an urgent requirement for an alternative treatment, arguing for continuing research into novel or repurposed anti-schistosomal drugs. An increasing number of anticancer drugs are being developed which block abnormal signalling pathways, a feature that has stimulated interest in developing novel interventions against human schistosomiasis by targeting key cell signalling components. In this review, we discuss the functional characterization of signal transduction pathways in schistosomes and consider current challenges and future perspectives in this important area of research.
Collapse
|
31
|
Kinases: Molecular Stage Directors for Schistosome Development and Differentiation. Trends Parasitol 2017; 34:246-260. [PMID: 29276074 DOI: 10.1016/j.pt.2017.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 01/03/2023]
Abstract
Understanding schistosome biology is still a challenging mission. The reproductive biology of this parasitic trematode is closely associated with the pathologic consequences of schistosomiasis, the devastating infectious disease caused by members of the family Schistosomatidae worldwide. Recent studies of signaling mechanisms confirmed the prominent roles of protein kinases (PKs) in directing schistosome biology, and first evidence was obtained for an additional contribution of kinases with substrates different from proteins (non-PKs). This review provides an overview of the Schistosoma mansoni kinome in the context of male-female interaction and summarizes recent studies of kinases controlling development and differentiation. Due to their importance for schistosome biology, kinases represent Achilles' heels and are therefore of high value also for translational research.
Collapse
|
32
|
Zhao L, He X, Grevelding CG, Ye Q, Li Y, Gasser RB, Dissous C, Mughal MN, Zhou YQ, Zhao JL, Hu M. The RIO protein kinase-encoding gene Sj-riok-2 is involved in key reproductive processes in Schistosoma japonicum. Parasit Vectors 2017; 10:604. [PMID: 29233188 PMCID: PMC5727939 DOI: 10.1186/s13071-017-2524-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 11/24/2022] Open
Abstract
Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is caused by parasitic trematodes of the genus Schistosoma. The pathogenesis of schistosomiasis is caused by eggs whose production is the consequence of the pairing of schistosomes and the subsequent sexual maturation of the female. Previous studies have demonstrated that protein kinases are involved in processes leading to the male-induced differentiation of the female gonads, ovary and vitellarium. Right open reading frame protein kinase 2 (RIOK-2) is a member of the atypical kinase family and shown in other organisms to be responsible for ribosomal RNA biogenesis and cell-cycle progression, as well as involves in nematode development. However, nothing is known about its functions in any trematode including schistosome. Methods We isolated and characterized the riok-2 gene from S. japonicum, and detected the transcriptional profiles of Sj-riok-2 by using real-time PCR and in situ hybridization. RNAi-mediated knockdown of Sj-riok-2 was performed, mitotic activities were detected by EdU incorporation assay and morphological changes on organs were observed by confocal laser scanning microscope (CLSM). Results In silico analyses of the amino acid sequence of Sj-RIOK-2 revealed typical features of this class of kinases including a winged helix (wHTH) domain and a RIO kinase domain. Sj-riok-2 is transcribed in different developmental stages of S. japonicum, with a higher abundance in adult females and eggs. Localization studies showed that Sj-riok-2 was mainly transcribed in female reproductive organs. Experiments with adult schistosomes in vitro demonstrated that the transcriptional level of Sj-riok-2 was affected by pairing. Knocking down Sj-riok-2 by RNAi reduced cell proliferation in the vitellarium and caused the increased amount of mature oocytes in ovary and an accumulation of eggs within the uterus. Conclusions Sj-riok-2 is involved in the reproductive development and maturation of female S. japonicum. Our findings provide first evidence for a pairing-dependent role of Sj-riok-2 in the reproductive development and maturation of female S. japonicum. Thus this study contributes to the understanding of molecular processes controlling reproduction in schistosomes. Electronic supplementary material The online version of this article (10.1186/s13071-017-2524-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, Australia
| | - Colette Dissous
- CIIL - Center for Infection and Immunity of Lille Inserm, University Lille, Lille, France
| | - Mudassar N Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yan-Qin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun-Long Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
33
|
He S, Zhu L, Liu F, Liu Q, Shao Y, Hua M, Ding H, Shao W, Du Y, Hou X, Ren C, Liu M, Shen J. Functions of the Vasa gene in Schistosoma japonicum as assessed by RNA interference. Gene 2017; 638:13-19. [PMID: 28964895 DOI: 10.1016/j.gene.2017.09.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 11/28/2022]
Abstract
Vasa, an enzyme belonging to the helicase family, contributes to the regulation of reproductive system development in many species. Thus, we hypothesized that the Vasa3 gene may function in the reproductive system of the parasite Schistosoma japonicum (S. japonicum), which is a major causative agent of schistosomiasis. It is a severe disease globally affecting humans and animals. To test this hypothesis, we firstly conducted whole mount in situ hybridization analyses and found that the S. japonicum Vasa3 (SjVasa3) gene was expressed mainly in the reproductive organs. We then explored the reproductive functions of Vasa3 in S. japonicum using RNA interference (RNAi) techniques. Coupled schistosomes collected from mice 28days post infection (dpi) were transfected three times with SjVasa3-specific small interfering RNA (siRNA) and cultured in vitro for up to 10days. As measured by quantitative PCR (qPCR) and Western blot analysis, levels of SjVasa3 mRNA and protein in Vasa siRNA treated worms were significantly reduced compared with untreated and scrambled siRNA treated worms. Confocal laser scanning microscopy (CLSM) images showed markedly siRNA induced changes in the morphology of the reproductive organs, especially in the female ovary, vitellarium and the male testes. SjVasa3 gene silencing also significantly reduced egg production. These data demonstrate that SjVasa3 is essential in reproductive organ development and egg production in S. japonicum, and could be a potential target for developing novel compounds to treat schistosomiasis.
Collapse
Affiliation(s)
- Siyu He
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Lulu Zhu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Fengchun Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Quan Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Yanjing Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Mengqing Hua
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Han Ding
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Yinan Du
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Xin Hou
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Cuiping Ren
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Miao Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China.
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui 230032, People's Republic of China.
| |
Collapse
|
34
|
A gene expression atlas of adult Schistosoma mansoni and their gonads. Sci Data 2017; 4:170118. [PMID: 28829433 PMCID: PMC5566097 DOI: 10.1038/sdata.2017.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
RNA-Seq has proven excellence in providing information about the regulation and transcript levels of genes. We used this method for profiling genes in the flatworm Schistosoma mansoni. This parasite causes schistosomiasis, an infectious disease of global importance for human and animals. The pathology of schistosomiasis is associated with the eggs, which are synthesized as a final consequence of male and female adults pairing. The male induces processes in the female that lead to the full development of its gonads as a prerequisite for egg production. Unpaired females remain sexually immature. Based on an organ-isolation method we obtained gonad tissue for RNA extraction from paired and unpaired schistosomes, with whole adults included as controls. From a total of 23 samples, we used high-throughput cDNA sequencing (RNA-Seq) on the Illumina platform to profile gene expression between genders and tissues, with and without pairing influence. The data obtained provide a wealth of information on the reproduction biology of schistosomes and a rich resource for exploitation through basic and applied research activities.
Collapse
|
35
|
Hahnel S, Parker-Manuel R, Dissous C, Cailliau K, Grevelding CG. First characterization of SmOPG1, a novel protein involved in gonad-associated processes in Schistosoma mansoni. Mol Biochem Parasitol 2017; 213:22-25. [DOI: 10.1016/j.molbiopara.2017.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 11/24/2022]
|
36
|
Liu Q, Zhu L, Liu F, Hua M, Ding H, He S, Ren C, Liu M, Shen J. Function of Nanos1 gene in the development of reproductive organs of Schistosoma japonicum. Parasitol Res 2017; 116:1505-1513. [PMID: 28352943 DOI: 10.1007/s00436-017-5427-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022]
Abstract
Nanos is a necessary factor in the differentiation and migration of primordial germ cells. It is closely associated with the development of genitalia in a wide range of species. We questioned whether Nanos was involved in the reproductive organ development of Schistosoma japonicum. Firstly, by in situ hybridization, S. japonicum Nanos1 (SjNanos1) gene was expressed mainly in reproductive organs of S. japonicum. Then, the paired schistosome of 28 days post-infection (dpi) was transfected with SjNanos1 small interfering RNA three times and cultured in vitro for 10 days. SjNanos1 expression suppression in the mRNA and protein levels were confirmed compared to that of the controls. The morphological changes in reproductive organs and egg production were observed after SjNanos1 gene knockdown. The results observed by confocal laser scanning microscopy showed significant changes in the morphology of reproductive organs of parasites, especially the female ovaries, vitellarium, and the male testes, after RNAi. In addition, SjNanos1 silencing also induced the reduction of eggs, and affected the changes of reproduction-related genes, like Pumilio, CNOT6L, and Fs800. Therefore, our findings demonstrate that the SjNanos1 gene is essential in the development of reproductive organs and the egg production of S. japonicum.
Collapse
Affiliation(s)
- Quan Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Lulu Zhu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Fengchun Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Mengqing Hua
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Han Ding
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Siyu He
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Cuiping Ren
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Miao Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China.
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China.
| |
Collapse
|
37
|
Gelmedin V, Morel M, Hahnel S, Cailliau K, Dissous C, Grevelding CG. Evidence for Integrin - Venus Kinase Receptor 1 Alliance in the Ovary of Schistosoma mansoni Females Controlling Cell Survival. PLoS Pathog 2017; 13:e1006147. [PMID: 28114363 PMCID: PMC5289644 DOI: 10.1371/journal.ppat.1006147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/02/2017] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
In metazoan integrin signaling is an important process of mediating extracellular and intracellular communication processes. This can be achieved by cooperation of integrins with growth factor receptors (GFRs). Schistosoma mansoni is a helminth parasite inducing schistosomiasis, an infectious disease of worldwide significance for humans and animals. First studies on schistosome integrins revealed their role in reproductive processes, being involved in spermatogenesis and oogenesis. With respect to the roles of eggs for maintaining the parasite´s life cycle and for inducing the pathology of schistosomiasis, elucidating reproductive processes is of high importance. Here we studied the interaction of the integrin receptor Smβ-Int1 with the venus kinase receptor SmVKR1 in S. mansoni. To this end we cloned and characterized SmILK, SmPINCH, and SmNck2, three putative bridging molecules for their role in mediating Smβ-Int1/SmVKR1 cooperation. Phylogenetic analyses showed that these molecules form clusters that are specific for parasitic platyhelminths as it was shown for integrins before. Transcripts of all genes colocalized in the ovary. In Xenopus oocytes germinal vesicle breakdown (GVBD) was only induced if all members were simultaneously expressed. Coimmunoprecipitation results suggest that a Smβ-Int1-SmILK-SmPINCH-SmNck2-SmVKR1 complex can be formed leading to the phosphorylation and activation of SmVKR1. These results indicate that SmVKR1 can be activated in a ligand-independent manner by receptor-complex interaction. RNAi and inhibitor studies to knock-down SmILK as a representative complex member concurrently revealed effects on the extracellular matrix surrounding the ovary and oocyte localization within the ovary, oocyte survival, and egg production. By TUNEL assays, confocal laser scanning microscopy (CLSM), Caspase-3 assay, and transcript profiling of the pro-apoptotic BCL-2 family members BAK/BAX we obtained first evidence for roles of this signaling complex in mediating cell death in immature and primary oocytes. These results suggest that the Smβ-Int1/SmVKR1 signaling complex is important for differentiation and survival in oocytes of paired schistosomes. Parasites of the genus Schistosoma cause schistosomiasis, a life-threatening infectious disease for humans and animals worldwide. Among the remarkable biological features of schistosomes is the differentiation of the female gonads which is controlled by pairing with the male and a prerequisite for egg production. Eggs, however, are not only important for the maintenance of the life-cycle; they also cause the pathological consequences of schistosomiasis. Part of the eggs gets trapped in host tissues such as liver and spleen and trigger inflammatory processes, finally leading to liver cirrhosis. Research activities of the last decade have indicated that different families of cellular and receptor-type kinases but also integrins contribute to the control of mitogenic activity and differentiation the female goands. In this context an unusual class of receptor tyrosine kinases (RTKs) has been identified, the venus kinase receptors (SmVKRs). By biochemical and molecular approaches we demonstrate that SmVKR1 activation can be achieved by cooperation with a signaling complex consisting of the beta integrin receptor Smβ-Int1 and the bridging molecules SmILK, SmPINCH, SmNck2. Besides unravelling a novel way of SmVKR1 activation, we provide evidence that this complex controls the differentiation status of oocytes by regulating cell death-associated processes.
Collapse
Affiliation(s)
- Verena Gelmedin
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Marion Morel
- CIIL – Center for Infection and Immunity of Lille Inserm U1019 - CNRS UMR 8204, University Lille, Lille, France
| | - Steffen Hahnel
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Katia Cailliau
- UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, University Lille, Lille, France
| | - Colette Dissous
- CIIL – Center for Infection and Immunity of Lille Inserm U1019 - CNRS UMR 8204, University Lille, Lille, France
| | | |
Collapse
|
38
|
Buro C, Burmeister C, Quack T, Grevelding CG. Identification and first characterization of SmEps8, a potential interaction partner of SmTK3 and SER transcribed in the gonads of Schistosoma mansoni. Exp Parasitol 2016; 180:55-63. [PMID: 28017636 DOI: 10.1016/j.exppara.2016.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023]
Abstract
In eukaryotes the roles of protein kinases (PKs) regulating important biological processes such as growth and differentiation are well known. Molecular, biochemical, and physiological analyses trying to unravel principles of schistosome development have substantiated the importance for PKs also in this parasite. Amongst others the role of SmTK3 was studied, one of the first cellular PKs characterized from Schistosoma mansoni. Its function was demonstrated in mitogenic and differentiation processes in the gonads. Furthermore, first insights were obtained for the downstream part of a signal transduction cascade SmTK3 is involved in, which includes the diaphanous homolog SmDia. Here we attempted to further unravel the SmTK3 signaling cascade by searching for upstream interaction partners. Using yeast three-hybrid (Y3H) analyses we detected the epidermal growth factor receptor (EGFR) pathway substrate 8 of S. mansoni (SmEps8) as the most interesting candidate. By detailed interaction analyses we showed a contribution of the Src homology (SH) domains SH2 and SH3 of SmTK3 to binding, with a clear bias towards SH2. Compared to full-length SmEps8, binding was enhanced when only its 5' part including the phosphotyrosine binding domain (PTB) was used for interaction analyses including the SH2 domain of SmTK3, although phosphorylation seemed not to play a decisive role for binding. RT-PCR analyses and in situ hybridization experiments demonstrated similar transcription patterns of SmTK3 and SmEPS8, which co-localize in the reproductive organs. Furthermore, first evidence was obtained for SmEps8 interaction and colocalization with SER, one of the epidermal growth factor receptor (EGFR) homologs detected in S. mansoni. The results of this study provide first evidence for a SER-SmEps8-SmTK3-SmDia signal transduction pathway controlling differentiation processes in the gonads of S. mansoni.
Collapse
Affiliation(s)
- C Buro
- BFS, Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| | - C Burmeister
- BFS, Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| | - T Quack
- BFS, Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| | - C G Grevelding
- BFS, Institute of Parasitology, Justus-Liebig-University Giessen, Germany.
| |
Collapse
|
39
|
Picard MAL, Boissier J, Roquis D, Grunau C, Allienne JF, Duval D, Toulza E, Arancibia N, Caffrey CR, Long T, Nidelet S, Rohmer M, Cosseau C. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation. PLoS Negl Trop Dis 2016; 10:e0004930. [PMID: 27677173 PMCID: PMC5038963 DOI: 10.1371/journal.pntd.0004930] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner. Methodology/ Principal Findings We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae) and after (in adults) the phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determinants of the sexual differentiation, (ii) sex-biased players of the interaction with the vertebrate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes. Conclusions/ Significance Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not only data on the parasite development in interaction with its vertebrate host, but also new insights on its reproductive function. Parasitic flatworms include more than 20,000 species that are classically hermaphrodites. Among them, the roughly hundred species of Schistosomatidae are intriguing because they are gonochoric. Schistosomes are responsible of the second most important parasitic disease worldwide, and eggs are the main cause of the inflammatory symptoms. Thus, studying the sexual reproduction mechanisms of schistosomes is of particular interest for drug development. Schistosome’s sex is genetically determined by the presence of sex chromosomes: ZZ in males or ZW in females. There is, however, no phenotypic dimorphism in the larval stages: sexual dimorphism appears only in the vertebrate host. In order to understand the molecular mechanisms underlying phenotypic sexual dimorphism, we performed a transcriptome analysis (RNA-Seq) in five different stages of the parasite lifecycle as well as a chromatin status analysis (ChIP-Seq) in the non-differentiated stage cercariae and in the adult differentiated stage, for males and females separately. Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, developmental pathways and epigenetic regulators. Our sex-comparative approach provides therefore new potential therapeutic targets to affect development and sexual reproduction of parasite.
Collapse
Affiliation(s)
- Marion A. L. Picard
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Jérôme Boissier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Roquis
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Eve Toulza
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nathalie Arancibia
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | | | | | - Céline Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
40
|
Morel M, Vanderstraete M, Cailliau K, Hahnel S, Grevelding CG, Dissous C. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways. PLoS One 2016; 11:e0163283. [PMID: 27636711 PMCID: PMC5026347 DOI: 10.1371/journal.pone.0163283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/05/2016] [Indexed: 12/02/2022] Open
Abstract
Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis.
Collapse
Affiliation(s)
- Marion Morel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 –UMR 8204—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Mathieu Vanderstraete
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 –UMR 8204—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Steffen Hahnel
- BFS, Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | | | - Colette Dissous
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 –UMR 8204—CIIL—Center for Infection and Immunity of Lille, Lille, France
- * E-mail:
| |
Collapse
|
41
|
Guidi A, Lalli C, Perlas E, Bolasco G, Nibbio M, Monteagudo E, Bresciani A, Ruberti G. Discovery and Characterization of Novel Anti-schistosomal Properties of the Anti-anginal Drug, Perhexiline and Its Impact on Schistosoma mansoni Male and Female Reproductive Systems. PLoS Negl Trop Dis 2016; 10:e0004928. [PMID: 27518281 PMCID: PMC4982595 DOI: 10.1371/journal.pntd.0004928] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Schistosomiasis, one of the world's greatest human neglected tropical diseases, is caused by parasitic trematodes of the genus Schistosoma. A unique feature of schistosome biology is that the induction of sexual maturation as well as the maintenance of the differentiation status of female reproductive organs and egg production, necessary for both disease transmission and pathogenesis, are strictly dependent on the male. The treatment and most control initiatives of schistosomiasis rely today on the long-term application of a single drug, praziquantel (PZQ), mostly by campaigns of mass drug administration. PZQ, while very active on adult parasites, has much lower activity against juvenile worms. Monotherapy also favors the selection of drug resistance and, therefore, new drugs are urgently needed. METHODS AND FINDINGS Following the screening of a small compound library with an ATP-based luminescent assay on Schistosoma mansoni schistosomula, we here report the identification and characterization of novel antischistosomal properties of the anti-anginal drug perhexiline maleate (PHX). By phenotypic worm survival assays and confocal microscopy studies we show that PHX, in vitro, has a marked lethal effect on all S. mansoni parasite life stages (newly transformed schistosomula, juvenile and adult worms) of the definitive host. We further demonstrate that sub-lethal doses of PHX significantly impair egg production and lipid depletion within the vitellarium of adult female worms. Moreover, we highlighted tegumental damage in adult male worms and remarkable reproductive system alterations in both female and male adult parasites. The in vivo study in S. mansoni-patent mice showed a notable variability of worm burdens in the individual experiments, with an overall minimal schistosomicidal effect upon PHX treatment. The short PHX half-life in mice, together with its very high rodent plasma proteins binding could be the cause of the modest efficacy of PHX in the schistosomiasis murine model. CONCLUSIONS/SIGNIFICANCE Overall, our data indicate that PHX could represent a promising starting point for novel schistosomicidal drug discovery programmes.
Collapse
Affiliation(s)
- Alessandra Guidi
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso Monterotondo, Roma, Italy
| | - Cristiana Lalli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso Monterotondo, Roma, Italy
| | - Emerald Perlas
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo, Italy
| | - Giulia Bolasco
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo, Italy
| | - Martina Nibbio
- IRBM Science Park, Department of Preclinical Research, Pomezia, Italy
| | - Edith Monteagudo
- IRBM Science Park, Department of Preclinical Research, Pomezia, Italy
| | | | - Giovina Ruberti
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso Monterotondo, Roma, Italy
- * E-mail:
| |
Collapse
|
42
|
Lu Z, Sessler F, Holroyd N, Hahnel S, Quack T, Berriman M, Grevelding CG. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay. Sci Rep 2016; 6:31150. [PMID: 27499125 PMCID: PMC4976352 DOI: 10.1038/srep31150] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/25/2022] Open
Abstract
As a key event for maintaining life cycles, reproduction is a central part of platyhelminth biology. In case of parasitic platyhelminths, reproductive processes can also contribute to pathology. One representative example is the trematode Schistosoma, which causes schistosomiasis, an infectious disease, whose pathology is associated with egg production. Among the outstanding features of schistosomes is their dioecious lifestyle and the pairing-dependent differentiation of the female gonads which finally leads to egg synthesis. To analyze the reproductive biology of Schistosoma mansoni in-depth we isolated complete ovaries and testes from paired and unpaired schistosomes for comparative RNA-seq analyses. Of >7,000 transcripts found in the gonads, 243 (testes) and 3,600 (ovaries) occurred pairing-dependently. Besides the detection of genes transcribed preferentially or specifically in the gonads of both genders, we uncovered pairing-induced processes within the gonads including stem cell-associated and neural functions. Comparisons to work on neuropeptidergic signaling in planarian showed interesting parallels but also remarkable differences and highlights the importance of the nervous system for flatworm gonad differentiation. Finally, we postulated first functional hints for 235 hypothetical genes. Together, these results elucidate key aspects of flatworm reproductive biology and will be relevant for basic as well as applied, exploitable research aspects.
Collapse
Affiliation(s)
- Zhigang Lu
- BFS, Institute of Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Florian Sessler
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Steffen Hahnel
- BFS, Institute of Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Thomas Quack
- BFS, Institute of Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | |
Collapse
|
43
|
Drug repositioning approaches to parasitic diseases: a medicinal chemistry perspective. Drug Discov Today 2016; 21:1699-1710. [PMID: 27365271 DOI: 10.1016/j.drudis.2016.06.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/20/2016] [Accepted: 06/21/2016] [Indexed: 01/25/2023]
Abstract
Identifying new indications for clinically useful drugs is a worthwhile approach for neglected tropical diseases. The number of successful repurposing cases in the field is growing as not-for-profit organizations, in association with academia and pharmaceutical companies, enable screening campaigns for the identification of new repositioning candidates. Current programs have delivered encouraging results as the use of state-of-the-art technologies, such as genomic and structural biology tools, and high-throughput screening platforms have become increasingly common in infectious disease research. Drug repositioning has played a key part in improving the lives of those suffering from these conditions, as evidenced by successful precedents and recent studies on preeminent parasitic disorders.
Collapse
|
44
|
Magalhães LG, Morais ER, Machado CB, Gomes MS, Cabral FJ, Souza JM, Soares CS, Sá RG, Castro-Borges W, Rodrigues V. Uncovering Notch pathway in the parasitic flatworm Schistosoma mansoni. Parasitol Res 2016; 115:3951-61. [PMID: 27344453 DOI: 10.1007/s00436-016-5161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/01/2016] [Indexed: 01/19/2023]
Abstract
Several signaling molecules that govern development in higher animals have been identified in the parasite Schistosoma mansoni, including the transforming growth factor β, protein tyrosine kinases, nuclear hormone receptors, among others. The Notch pathway is a highly conserved signaling mechanism which is involved in a wide variety of developmental processes including embryogenesis and oogenesis in worms and flies. Here we aimed to provide the molecular reconstitution of the Notch pathway in S. mansoni using the available transcriptome and genome databases. Our results also revealed the presence of the transcripts coded for SmNotch, SmSu(H), SmHes, and the gamma-secretase complex (SmNicastrin, SmAph-1, and SmPen-2), throughout all the life stages analyzed. Besides, it was observed that the viability and separation of adult worm pairs were not affected by treatment with N-[N(3,5)-difluorophenacetyl)-L-Alanyl]-S-phenylglycine t-butyl ester (DAPT), a Notch pathway inhibitor. Moreover, DAPT treatment decreased the production of phenotypically normal eggs and arrested their development in culture. Our results also showed a significant decrease in SmHes transcript levels in both adult worms and eggs treated with DAPT. These results provide, for the first time, functional validation of the Notch pathway in S. mansoni and suggest its involvement in parasite oogenesis and embryogenesis. Given the complexity of the Notch pathway, further experiments shall highlight the full repertoire of Notch-mediated cellular processes throughout the S. mansoni life cycle.
Collapse
Affiliation(s)
- Lizandra G Magalhães
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Avenida, Dr Armando Salles de Oliveira, 201 Franca, SP, Brazil.
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Enyara R Morais
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil
| | - Carla B Machado
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Matheus S Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil
| | - Fernanda J Cabral
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Julia M Souza
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Avenida, Dr Armando Salles de Oliveira, 201 Franca, SP, Brazil
| | - Cláudia S Soares
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata G Sá
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
45
|
Blohm AS, Mäder P, Quack T, Lu Z, Hahnel S, Schlitzer M, Grevelding CG. Derivatives of biarylalkyl carboxylic acid induce pleiotropic phenotypes in adult Schistosoma mansoni in vitro. Parasitol Res 2016; 115:3831-42. [PMID: 27230017 DOI: 10.1007/s00436-016-5146-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022]
Abstract
Schistosomes and other parasitic platyhelminths cause infectious diseases of worldwide significance for humans and animals. Despite their medical and economic importance, vaccines are not available and the number of drugs is alarmingly limited. For most platyhelminths including schistosomes, Praziquantel (PZQ) is the commonly used drug. With respect to its regular application in mass treatment programs, however, there is increasing concern about resistance development.Previous studies demonstrated that inhibitors used to treat non-parasitic human diseases may be useful to be tested for their effects on parasites. To this end, we focused on biarylalkyl carboxylic acids (BACAs) as basis, which had been shown before to be interesting candidates in the context of finding alternative approaches to treat diabetes mellitus. We tested 32 chemically modified derivatives of these substances (biarylalkyl carboxylic acid derivatives (BACADs)) for their effects on adult Schistosoma mansoni in vitro. Treatment with 18 BACADs resulted in egg production-associated phenotypes and reduced pairing stability. In addition, 12 of these derivatives affected vitality and/or caused severe tegument damage, gut dilatation, or other forms of tissue disintegration which led to the death of worms. In most cases (10/12), one derivative caused more than one phenotype at a time. In vitro experiments in the presence of serum albumin (SA) and alpha-acidic glycoprotein (AGP) indicated a varying influence of these blood components on the effects of two selected derivatives. The variety of observed phenotypes suggested that different targets were hit. The results demonstrated that BACADs are interesting substances with respect to their anti-schistosomal effects.
Collapse
Affiliation(s)
- Ariane S Blohm
- BFS, Institut for Parasitology, Justus-Liebig-University Gießen, Gießen, 35392, Germany
| | - Patrick Mäder
- Institute for Pharmaceutic Chemistry, Philipps-University Marburg, Marburg, 35032, Germany
| | - Thomas Quack
- BFS, Institut for Parasitology, Justus-Liebig-University Gießen, Gießen, 35392, Germany
| | - Zhigang Lu
- BFS, Institut for Parasitology, Justus-Liebig-University Gießen, Gießen, 35392, Germany
| | - Steffen Hahnel
- BFS, Institut for Parasitology, Justus-Liebig-University Gießen, Gießen, 35392, Germany
| | - Martin Schlitzer
- Institute for Pharmaceutic Chemistry, Philipps-University Marburg, Marburg, 35032, Germany
| | - Christoph G Grevelding
- BFS, Institut for Parasitology, Justus-Liebig-University Gießen, Gießen, 35392, Germany.
| |
Collapse
|
46
|
Zhu L, Zhao J, Wang J, Hu C, Peng J, Luo R, Zhou C, Liu J, Lin J, Jin Y, Davis RE, Cheng G. MicroRNAs Are Involved in the Regulation of Ovary Development in the Pathogenic Blood Fluke Schistosoma japonicum. PLoS Pathog 2016; 12:e1005423. [PMID: 26871705 PMCID: PMC4752461 DOI: 10.1371/journal.ppat.1005423] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
Schistosomes, blood flukes, are an important global public health concern. Paired adult female schistosomes produce large numbers of eggs that are primarily responsible for the disease pathology and critical for dissemination. Consequently, understanding schistosome sexual maturation and egg production may open novel perspectives for intervening with these processes to prevent clinical symptoms and to interrupt the life-cycle of these blood-flukes. microRNAs (miRNAs) are key regulators of many biological processes including development, cell proliferation, metabolism, and signal transduction. Here, we report on the identification of Schistosoma japonicum miRNAs using small RNA deep sequencing in the key stages of male-female pairing, gametogenesis, and egg production. We identified 38 miRNAs, including 10 previously unknown miRNAs. Eighteen of the miRNAs were differentially expressed between male and female schistosomes and during different stages of sexual maturation. We identified 30 potential target genes for 16 of the S. japonicum miRNAs using antibody-based pull-down assays and bioinformatic analyses. We further validated some of these target genes using either in vitro luciferase assays or in vivo miRNA suppression experiments. Notably, suppression of the female enriched miRNAs bantam and miR-31 led to morphological alteration of ovaries in female schistosomes. These findings uncover key roles for specific miRNAs in schistosome sexual maturation and egg production.
Collapse
Affiliation(s)
- Lihui Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Jiangping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Jianbin Wang
- Departments of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Chao Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Jinbiao Peng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Rong Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Chunjing Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Juntao Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Youxin Jin
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Richard E. Davis
- Departments of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| |
Collapse
|
47
|
Wang J, Wang S, Liu X, Xu B, Chai R, Zhou P, Ju C, Sun J, Brindley PJ, Hu W. Intake of Erythrocytes Required for Reproductive Development of Female Schistosoma japonicum. PLoS One 2015; 10:e0126822. [PMID: 25978643 PMCID: PMC4433235 DOI: 10.1371/journal.pone.0126822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/08/2015] [Indexed: 01/09/2023] Open
Abstract
The reproductive development and maturation of female schistosomes are crucial since their released eggs are responsible for the host immunopathology and transmission of schistosomiasis. However, little is known about the nutrients required by female Schistosoma japonicum during its sexual maturation. We evaluated the promoting effect of several nutrients (calf serum, red blood cells (RBCs), ATP and hypoxanthine) on the reproductive development of pre-adult females at 18 days post infection (dpi) from mixed infections and at 50 dpi from unisexual infections of laboratory mice in basic medium RPMI-1640. We found RBCs, rather than other nutrients, promoted the female sexual maturation and egg production with significant morphological changes. In 27% of females (18 dpi) from mixed infections that paired with males in vitro on day 14, vitelline glands could be positively stained by Fast Blue B; and in 35% of females (50 dpi) from unisexual infections on day 21, mature vitelline cells were observed. Infertile eggs were detected among both groups. To analyze which component of mouse RBCs possesses the stimulating effect, RBCs were fractionated and included in media. However, the RBC fractions failed to stimulate development of the female reproductive organs. In addition, bovine hemoglobin hydrolysate, digested by neutral protease, was found to exhibit the promoting activity instead of untreated bovine hemoglobin. The other protein hydrolysate, lactalbumin hydrolysate, exhibited a similar effect with bovine hemoglobin hydrolysate. Using quantitative RT-PCR, we found the expression levels of four reproduction-related genes were significantly stimulated by RBCs. These data indicate that RBCs provide essential nutrients for the sexual maturation of female S. japonicum and that the protein component of RBCs appeared to constitute the key nutrient. These findings would improve laboratory culture of pre-adult schistosomes to adult worms in medium with well-defined components, which is important to investigate the function of genes related to female sexual maturation.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuqi Wang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiufeng Liu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Xu
- Key Laboratory of Parasite and Vector Biology of Ministry of Public Health, Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Riyi Chai
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Pan Zhou
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Chuan Ju
- Key Laboratory of Parasite and Vector Biology of Ministry of Public Health, Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Jun Sun
- Institute for Infectious Diseases and Vaccine development, Tongji University School of Medicine, Shanghai, China
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for the Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Wei Hu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Parasite and Vector Biology of Ministry of Public Health, Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- * E-mail:
| |
Collapse
|
48
|
Abstract
For decades, Praziquantel (PZQ) is the drug of choice against one of the most afflicting helminthic diseases worldwide, schistosomiasis. With respect to the fear of upcoming PZQ resistance, efforts are needed to find new chemotherapeutic options. Protein kinases (PKs) are essential molecules in signaling processes and indispensable to life. Aberrant PK functions take distinctive roles in human diseases and represent targets in chemotherapies. In schistosomes, conserved PKs were found to possess similar pivotal roles contributing not only to reproduction processes, but also to the pathology of schistosomiasis, which is closely associated to egg production. Exploiting the similarity of PKs of humans and schistosomes, PK inhibitors designed to treat human diseases may serve as lead compounds for new drugs against schistosomiasis.
Collapse
|
49
|
Target-based molecular modeling strategies for schistosomiasis drug discovery. Future Med Chem 2015; 7:753-64. [DOI: 10.4155/fmc.15.21] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by worms from the class Trematoda (genus Schistosoma), is a serious chronic condition that has been reported in approximately 80 countries. Nearly 250 million people are affected worldwide, mostly in the sub-Saharan Africa. Praziquantel, the mainstay of treatment, has been used for 30 years, and cases of resistance have been reported. The purpose of this perspective is to discuss current target-based molecular modeling strategies in schistosomiasis drug discovery. Advances in the field and the role played by the integration between computational modeling and experimental validation are also discussed. Finally, recent cases of the contribution of modern approaches in computational medicinal chemistry to the field are explored.
Collapse
|
50
|
Parker-Manuel RP, Grevelding CG, Gelmedin V. Cryptic 3' mRNA processing signals hinder the expression of Schistosoma mansoni integrins in yeast. Mol Biochem Parasitol 2015; 199:51-7. [PMID: 25827755 DOI: 10.1016/j.molbiopara.2015.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 11/26/2022]
Abstract
The expression of parasite genes has often proven difficult in heterologous systems such as yeast or E. coli. Most often, promoter choice and codon usage were hypothesised to be the main reason for expression failures. The trematode parasite Schistosoma mansoni has five integrin genes named Smα-Int1-4 and Smβ-Int1, which we aimed to express in the yeast Saccharomyces cerevisiae. This has not been achieved, however, as only Smβ-Int1 integrin could be expressed. When the four α integrins were driven by a stronger promoter, this enabled Smα-Int1 to be expressed as well, but the remaining integrins, Smα-Int2-4, still could not be expressed. Evidence from RT-PCR experiments suggested that this was due to premature transcription termination. Using detailed in silico sequence analyses we identified AT-rich stretches in these integrin genes, which have high similarity to yeast mRNA 3'-end processing signals. We hypothesised that these signals were causing the premature truncation. To test this, we designed an optimised version of Smα-Int3, in which the sequence was modified to replace the yeast 3' processing signals. This strategy allowed us to express Smα-Int3 integrin successfully in S. cerevisiae. These findings show that the misinterpretation of AT-rich sequences by yeast 3'-mRNA processing machinery can cause problems when attempting to express genes containing such sequences in this host.
Collapse
Affiliation(s)
- Richard P Parker-Manuel
- Biomedizinisches Forschungszentrum Seltersberg (BFS), Institut für Parasitologie, Schubertstraße 81, Gießen 35392, Germany
| | - Christoph G Grevelding
- Biomedizinisches Forschungszentrum Seltersberg (BFS), Institut für Parasitologie, Schubertstraße 81, Gießen 35392, Germany
| | - Verena Gelmedin
- Biomedizinisches Forschungszentrum Seltersberg (BFS), Institut für Parasitologie, Schubertstraße 81, Gießen 35392, Germany.
| |
Collapse
|