1
|
Romero-Ferreiro V, García-Fernández L, Biscaia JM, Romero C, González-Soltero R, De la Fuente M, Álvarez-Mon MA, Wynn R, Rodriguez-Jimenez R. Effect of probiotics on C-reactive protein levels in schizophrenia: Evidence from a systematic review and meta-analysis. Complement Ther Med 2025; 89:103126. [PMID: 39798817 DOI: 10.1016/j.ctim.2025.103126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Inflammatory markers play a pivotal role in schizophrenia, as they provide insight into the neuroinflammatory processes occurring in the context of the disorder. Elevated levels of these markers, particularly C-reactive protein (CRP), can indicate an underlying immune system dysregulation, potentially influencing symptom severity and progression. Recognizing these markers has led to investigate the use of probiotics as an adjuvant to improve the treatment of schizophrenia. The main objective of this study is to rigorously evaluate the efficacy of probiotics in reducing plasma levels of CRP in patients with schizophrenia. METHODS A systematic search and meta-analysis were conducted to review randomized clinical trials following the PRISMA methodology. The following search strategy ((SCHIZO* OR PSYCHOTIC OR PSYCHOSES) AND (PROBIOTIC* OR BIFIDOBACTER* OR LACTOBACILL*)) was used for searching publications between June-December 2024 on the PubMed, Web of Science, and APA PsycINFO databases. Individual study quality was assessed with the Cochrane risk of bias (RoB2) and the certainty of total evidence was assessed with the GRADE system. RESULTS The primary outcome assessed was the impact of probiotic supplementation on plasma CRP levels. Out of 78 studies initially identified, 4 were finally included in the meta-analysis. Three out four studies found a significant reduction in high-sensitivity C-reactive protein levels in the supplemented compared with the placebo group. The pooled analysis revealed a significant reduction in CRP levels with probiotic supplementation, with a standardized mean difference (SMD) of -0.46, (95 % CI -0.719; -0.201; p = 0.001). CONCLUSIONS The synthesis and meta-analysis of available literature provide evidence for the potential role of probiotics in the reduction of serum CRP in schizophrenia compared with placebo. However, more clinical trials with better control of experimental design are needed before a clear recommendation as adjuvant therapy can be made.
Collapse
Affiliation(s)
- Verónica Romero-Ferreiro
- Universidad Europea de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain.
| | - Lorena García-Fernández
- CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain; Clinical Medicine Department, Universidad Miguel Hernández, Alicante, Spain; Psychiatry Department, Hospital Universitario de San Juan, Alicante, Spain
| | | | - Carmen Romero
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain; CIBERESP/ISCIII (Biomedical Research Networking Centre for Epidemiology and PublicHealth/Carlos III Health Institute), Spain
| | | | - Mónica De la Fuente
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Complutense University of Madrid (UCM), Madrid, Spain
| | - Miguel A Álvarez-Mon
- CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain; Department of Medicine and Medical Specialities, University of Alcala, Alcala de Henares, Spain; Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain; Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Rolf Wynn
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Education, ICT and Learning, Østfold University College, Tromsø, Norway
| | - Roberto Rodriguez-Jimenez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain; Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
2
|
Mlynek E, Tan X, Lammertz SE, Schaffrath S, Gründer G, Schneider F, Frodl T, Mathiak K, Gaebler AJ. Disturbed Functional Connectivity Between Anterior Default Mode and Sensory Processing Regions Is Linked to Peripheral Inflammatory Markers and Psychopathology in Schizophrenia. Schizophr Bull 2025:sbaf048. [PMID: 40263705 DOI: 10.1093/schbul/sbaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BACKGROUND AND HYPOTHESIS Both elevated inflammatory markers and aberrant functional connectivity have been detected in patients with schizophrenia, but there is limited knowledge on the relationship between the two phenomena. Some positive symptoms may arise from external misattribution of self-generated actions mediated by decoupling of the default mode network (DMN) with sensory processing regions. Since the anterior DMN also exhibits bidirectional interaction with the immune system, we hypothesized its decoupling would be associated with elevated inflammatory markers as well as the burden of positive symptomatology. STUDY DESIGN Resting-state functional magnetic resonance imaging, diffusion tensor imaging (DTI), clinical and laboratory data (serum concentrations of interleukin-6 and C-reactive protein) were collected within a neuroimaging trial on schizophrenia. Neuroimaging data were assessed applying seed-to-voxel and region-of-interest-to-region-of-interest functional connectivity analyses as well as DTI tractography. Associations between neuroimaging and laboratory as well as behavioral data were studied employing regression analyses. STUDY RESULTS For both inflammatory markers, a consistent pattern of hypo-connectivity emerged between the anterior DMN and different brain regions involved in sensory processing and self-monitoring. The strongest association was detected for the connectivity between the anterior DMN and the right parietal operculum which was not explained by the structural integrity of the respective white matter tract. Finally, this functional connection was correlated both with the burden of positive and negative symptoms. CONCLUSIONS Our findings reveal a mechanistically plausible neurobiological link between inflammation and psychopathology in schizophrenia.
Collapse
Affiliation(s)
- Emanuel Mlynek
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen 52074, Germany
- JARA Translational Brain Medicine, Aachen 52074, Germany
| | - Xiaolin Tan
- Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Sarah Edith Lammertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen 52074, Germany
- JARA Translational Brain Medicine, Aachen 52074, Germany
| | - Sabrina Schaffrath
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen 52074, Germany
- JARA Translational Brain Medicine, Aachen 52074, Germany
| | - Gerhard Gründer
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Frank Schneider
- Department of the History, Philosophy and Ethics of Medicine, Centre for Health and Society, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Thomas Frodl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen 52074, Germany
- JARA Translational Brain Medicine, Aachen 52074, Germany
- Department of Psychiatry and Psychotherapie, Otto von Guericke University, Magdeburg 39120, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen 52074, Germany
- JARA Translational Brain Medicine, Aachen 52074, Germany
| | - Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen 52074, Germany
- JARA Translational Brain Medicine, Aachen 52074, Germany
- Department of Neurophysiology, Faculty of Medicine, RWTH Aachen, Aachen 52074, Germany
| |
Collapse
|
3
|
Mattei D, Guneykaya D, Ugursu B, Buonfiglioli A. From womb to world: The interplay between maternal immune activation, neuroglia, and neurodevelopment. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:269-285. [PMID: 40148048 DOI: 10.1016/b978-0-443-19102-2.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
This chapter introduces and discusses maternal immune activation (MIA) as a contributing factor in increasing the risk of neurodevelopmental disorders, particularly in relation to its interactions with neuroglia. Here we first provide an overview of the neuroglia-astroglia, oligodendroglia, microglia, and radial glial cells-and their important role during early brain development and in adulthood. We then present and discuss MIA, followed by a critical overview of inflammatory molecules and temporal stages associated to maternal inflammation during pregnancy. We provide an overview of animal and human models used to mimic and study MIA. Furthermore, we review the possible interaction between MIA and neuroglia, focusing on the current advances in both modeling and therapeutics. Additionally, we discuss and provide preliminary and interesting insights into the most recent pandemic, COVID-19, and how the infection may be associated to MIA and increased risk for neurodevelopmental disorders. Finally, we provide a critical overview of challenges and future opportunities to study how MIA may contribute to higher risk of developing neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniele Mattei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
| | - Dilansu Guneykaya
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bilge Ugursu
- Department of Psychoneuroimmunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
4
|
Hardie I, Murray A, King J, Hall HA, Luedecke E, Marryat L, Thompson L, Minnis H, Wilson P, Auyeung B. Prenatal maternal infections and early childhood developmental outcomes: analysis of linked administrative health data for Greater Glasgow & Clyde, Scotland. J Child Psychol Psychiatry 2025; 66:30-40. [PMID: 38934255 PMCID: PMC11652418 DOI: 10.1111/jcpp.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Previous research has linked prenatal maternal infections to later childhood developmental outcomes and socioemotional difficulties. However, existing studies have relied on retrospectively self-reported survey data, or data on hospital-recorded infections only, resulting in gaps in data collection. METHODS This study used a large linked administrative health dataset, bringing together data from birth records, hospital records, prescriptions and routine child health reviews for 55,856 children born in Greater Glasgow & Clyde, Scotland, 2011-2015, and their mothers. Logistic regression models examined associations between prenatal infections, measured as both hospital-diagnosed prenatal infections and receipt of infection-related prescription(s) during pregnancy, and childhood developmental concern(s) identified by health visitors during 6-8 week or 27-30 month health reviews. Secondary analyses examined whether results varied by (a) specific developmental outcome types (gross-motor-skills, hearing-communication, vision-social-awareness, personal-social, emotional-behavioural-attention and speech-language-communication) and (b) the trimester(s) in which infections occurred. RESULTS After confounder/covariate adjustment, hospital-diagnosed infections were associated with increased odds of having at least one developmental concern (OR: 1.30; 95% CI: 1.19-1.42). This was broadly consistent across all developmental outcome types and appeared to be specifically linked to infections occurring in pregnancy trimesters 2 (OR: 1.34; 95% CI: 1.07-1.67) and 3 (OR: 1.33; 95% CI: 1.21-1.47), that is the trimesters in which foetal brain myelination occurs. Infection-related prescriptions were not associated with any clear increase in odds of having at least one developmental concern after confounder/covariate adjustment (OR: 1.03; 95% CI: 0.98-1.08), but were associated with slightly increased odds of concerns specifically related to personal-social (OR: 1.12; 95% CI: 1.03-1.22) and emotional-behavioural-attention (OR: 1.15; 95% CI: 1.08-1.22) development. CONCLUSIONS Prenatal infections, particularly those which are hospital-diagnosed (and likely more severe), are associated with early childhood developmental outcomes. Prevention of prenatal infections, and monitoring of support needs of affected children, may improve childhood development, but causality remains to be established.
Collapse
Affiliation(s)
- Iain Hardie
- Department of Psychology, School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | - Aja Murray
- Department of Psychology, School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | - Josiah King
- Department of Psychology, School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | - Hildigunnur Anna Hall
- Centre for Health Security and Communicable Disease ControlDirectorate of HealthReykjavíkIceland
| | - Emily Luedecke
- Department of Psychology, School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | | | - Lucy Thompson
- Centre for Rural Health, Institute of Applied Health SciencesUniversity of AberdeenAberdeenUK
- Gillberg Neuropsychiatry CentreUniversity of GothenburgGothenburgSweden
| | - Helen Minnis
- School of Health and WellbeingUniversity of GlasgowGlasgowUK
| | - Philip Wilson
- Centre for Rural Health, Institute of Applied Health SciencesUniversity of AberdeenAberdeenUK
- Centre for Research and Education in General PracticeUniversity of CopenhagenCopenhagenDenmark
| | - Bonnie Auyeung
- Department of Psychology, School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
5
|
Tsang RSM, Timpson NJ, Khandaker GM. Inflammation proteomic profiling of psychosis in young adults: Findings from the ALSPAC birth cohort. Psychoneuroendocrinology 2025; 171:107188. [PMID: 39442229 DOI: 10.1016/j.psyneuen.2024.107188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Psychotic disorder is associated with altered levels of various inflammatory markers in blood, but existing studies have typically focused on a few selected biomarkers, have not examined specific symptom domains notably negative symptoms, and are based on individuals with established/chronic illness. Based on data from young people aged 24 years from the Avon Longitudinal Study of Parents and Children (ALSPAC), a UK birth cohort, we have examined the associations of 67 plasma immune/inflammatory proteins assayed using the Olink Target 96 Inflammation panel with psychotic disorder, positive (any psychotic experiences and definite psychotic experiences) and negative symptoms, using linear models with empirical Bayes estimation. The analyses included between 2317 and 2854 individuals. After adjustment for age, sex, body mass index and smoking and correction for multiple testing, positive symptoms and psychotic disorder were consistently associated with upregulation of CDCP1 and IL-6, and psychotic disorder was additionally associated with upregulation of MMP-10. Negative symptoms were associated with upregulation of CDCP1 and TRAIL. CDCP1 and MMP-10 are novel markers of psychosis identified in this study, and are involved in immune regulation, immune cell activation/migration, blood-brain barrier disruption, and extracellular matrix abnormalities. Our findings highlight psychosis symptom domains have overlapping and distinct immune associations, and support a role of inflammation and immune dysfunction in the pathogenesis of psychosis.
Collapse
Affiliation(s)
- Ruby S M Tsang
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, University of Bristol, Bristol, UK.
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, University of Bristol, Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
6
|
Niskanen A, Barron A, Azaryah H, Kerkelä M, Pulli E, Tuulari JJ, Lukkarinen M, Karlsson L, Muetzel RL, Campoy C, Catena A, Tiemeier H, Khandaker GM, Karlsson H, Veijola J, Björnholm L. Sex-specific associations between maternal prenatal inflammation and offspring cortical morphology in youth: A harmonised study across four birth cohorts. Brain Behav Immun 2025; 123:1081-1090. [PMID: 39505051 DOI: 10.1016/j.bbi.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/29/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024] Open
Abstract
Maternal immune activation (MIA) during pregnancy is implicated in offspring psychiatric disorders. However, it is unknown to what extent MIA affects neurodevelopment, particularly cerebrocortical anatomy, in the general population, and whether effects differ by sex. The current study used vertex-wise statistics to examine the association between maternal prenatal CRP, an archetypal systemic inflammatory marker, and offspring cortical thickness, surface area, and volume, in 2635 mother-child dyads (5.4-26.5 years) from three population-based cohorts, and one clinical cohort enriched for presence of inflammation markers. Maternal CRP within a normal physiological range (<10 mg/L) exhibited sex-specific quadratic associations with cortical morphological measures in 2 regions in males and 1 region in females at childhood. Elevated (>10 mg/L) CRP was associated with regional cortical morphology in females and in a pooled sample of sexes. Overall, MIA is associated with cortical development in a regional and sex-specific manner in studies spanning childhood to adulthood.
Collapse
Affiliation(s)
- Anni Niskanen
- Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Aaron Barron
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Hatim Azaryah
- Department of Pediatrics, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Pediatric Research, School of Medicine, University of Granada, Granada, Spain; Instituto Biosanitario de Granada (Ibs-Granada), Granada, Spain
| | - Martta Kerkelä
- Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Elmo Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Turku Collegium for Science, Medicine and Technology (TCSMT), University of Turku, Turku, Finland
| | - Minna Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; The Department of Pediatrics and Adolescent Medicine, University of Turku, and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Clinical Medicine, Unit of Public Health, University of Turku, Finland; Department of Child Psychiatry, Turku University Hospital, Finland
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, Netherlands (the); Department of Radiology and Nuclear Medicine, Erasmus University Medical Center,Netherlands (the)
| | - Cristina Campoy
- Department of Pediatrics, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Pediatric Research, School of Medicine, University of Granada, Granada, Spain; Instituto Biosanitario de Granada (Ibs-Granada), Granada, Spain; CIBERESP, Spanish Research Network on Epidemiology and Public Health, ISCIII, Madrid, Spain
| | - Andrés Catena
- Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain; Mind, Brain & Behaviour Centre (CIMCYC), University of Granada, Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, Netherlands (the); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Bristol Medical School, University of Bristol, Bristol, UK; National Institute of Health and Care Research Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK; Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland; Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha Veijola
- Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Lassi Björnholm
- Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
7
|
Ayuk HS, Arnold S, Pierzchalski A, Bauer M, Stojanovska V, Zenclussen AC. SARS-CoV-2 Activated Peripheral Blood Mononuclear Cells (PBMCs) Do Not Provoke Adverse Effects in Trophoblast Spheroids. Am J Reprod Immunol 2025; 93:e70039. [PMID: 39776066 PMCID: PMC11706221 DOI: 10.1111/aji.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
PROBLEM Although it is still uncertain whether Severe Acute Respiratory Coronavirus (SARS-CoV-2) placental infection and vertical transmission occur, inflammation during early pregnancy can have devastating consequences for gestation itself and the growing fetus. If and how SARS-CoV-2-specific immune cells negatively affect placenta functionality is still unknown. METHOD OF STUDY We stimulated peripheral blood mononuclear cells (PBMCs) from women of reproductive age with SARS-CoV-2 peptides and cocultured them with trophoblast spheroids (HTR-8/SVneo and JEG-3) to dissect if SARS-CoV-2-activated immune cells can interfere with trophoblast functionality. The activation and cytokine profile of the PBMCs were determined using multicolor flow cytometry. The functionality of trophoblast spheroids was assessed using microscopy, enzyme-linked immunosorbent assay (ELISA), and RT-qPCR. RESULTS SARS-CoV-2 S and M peptides significantly activated PBMCs (monocytes, NK cells, and T cells with memory subsets) and induced the upregulation of proinflammatory cytokines, such as IFNγ. The activated PBMCs did not impact the viability, growth rate, and invasion capabilities of trophoblast spheroids. Furthermore, the hormonal production of hCG by JEG-3 spheroids was not compromised upon coculture with the activated PBMCs. mRNA transcript levels of genes involved in trophoblast spheroid functional pathways were also not dysregulated after coculture. CONCLUSIONS Together, the findings of our in vitro coculture model, although not fully representative of in vivo conditions, strongly support the claim that the interaction of SARS-CoV-2-activated peripheral blood immune cells with trophoblast cells at the fetal-maternal interface does not negatively affect trophoblast functionality. This goes in hand with the recommendation of vaccinating pregnant women in their first trimester.
Collapse
Affiliation(s)
| | - Susanne Arnold
- Department of Environmental ImmunologyHelmholtz Centre for Environmental ResearchLeipzigSaxonyGermany
| | - Arkadiusz Pierzchalski
- Department of Environmental ImmunologyHelmholtz Centre for Environmental ResearchLeipzigSaxonyGermany
| | - Mario Bauer
- Department of Environmental ImmunologyHelmholtz Centre for Environmental ResearchLeipzigSaxonyGermany
| | - Violeta Stojanovska
- Department of Environmental ImmunologyHelmholtz Centre for Environmental ResearchLeipzigSaxonyGermany
| | - Ana Claudia Zenclussen
- Department of Environmental ImmunologyHelmholtz Centre for Environmental ResearchLeipzigSaxonyGermany
- Saxon Incubator for Translational ResearchUniversity of LeipzigLeipzigSaxonyGermany
- German Center for Child and Adolescent Health (DZKJ)Partner Site Leipzig/DresdenLeipzig/DresdenGermany
| |
Collapse
|
8
|
Mohebalizadeh M, Babapour G, Maleki Aghdam M, Mohammadi T, Jafari R, Shafiei-Irannejad V. Role of Maternal Immune Factors in Neuroimmunology of Brain Development. Mol Neurobiol 2024; 61:9993-10005. [PMID: 38057641 DOI: 10.1007/s12035-023-03749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Inflammation during pregnancy may occur due to various factors. This condition, in which maternal immune system activation occurs, can affect fetal brain development and be related to neurodevelopmental diseases. MIA interacts with the fetus's brain development through maternal antibodies, cytokines, chemokines, and microglial cells. Antibodies are associated with the development of the nervous system by two mechanisms: direct binding to brain inflammatory factors and binding to brain antigens. Cytokines and chemokines have an active presence in inflammatory processes. Additionally, glial cells, defenders of the nervous system, play an essential role in synaptic modulation and neurogenesis. Maternal infections during pregnancy are the most critical factors related to MIA; however, several studies show the relation between these infections and neurodevelopmental diseases. Infection with specific viruses, such as Zika, cytomegalovirus, influenza A, and SARS-CoV-2, has revealed effects on neurodevelopment and the onset of diseases such as schizophrenia and autism. We review the relationship between maternal infections during pregnancy and their impact on neurodevelopmental processes.
Collapse
Affiliation(s)
- Mehdi Mohebalizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Urmia, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Golsa Babapour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Maleki Aghdam
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Tooba Mohammadi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Santoni M, Pistis M. Maternal Immune Activation and the Endocannabinoid System: Focus on Two-Hit Models of Schizophrenia. Biol Psychiatry 2024:S0006-3223(24)01783-9. [PMID: 39617194 DOI: 10.1016/j.biopsych.2024.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 02/05/2025]
Abstract
The devastating effects of the COVID-19 pandemic have underscored the significant threat that infectious diseases pose to our society. Pregnancy represents a period of heightened vulnerability to infections, which can compromise maternal health and increase the risk of neurodevelopmental disorders in offspring. Preclinical and clinical investigations suggest a potential association between maternal immune activation (MIA), which is triggered by viral or bacterial infections, and increased risk for neurodevelopmental disorders such as autism and schizophrenia. Genetic and environmental factors may contribute to the overall risk. Therefore, the two-hit hypothesis of schizophrenia suggests that MIA could act as a first trigger, with subsequent factors, such as stress or drug abuse, exacerbating latent abnormalities. A growing body of research is focused on the interaction between MIA and cannabis use during adolescence, considering the role of the endocannabinoid (eCB) system in neurodevelopment and in neurodevelopmental disorders. The eCB system, crucial for fetal brain development, may be disrupted by MIA, leading to adverse outcomes in adulthood. Recent research indicates the eCB system's significant role in the pathophysiology of neurodevelopmental disorders in preclinical models. However, findings on adolescent cannabinoid exposure in MIA-exposed animals have revealed unexpected complexities, with several studies failing to support the exacerbation of MIA-related abnormalities. In this review, we delve into the functional implications of the eCB system in MIA models, emphasizing the role of 2-AG (2-arachidonoylglycerol) signaling in synaptic plasticity and neuroinflammation and its relevance to the two-hit model of schizophrenia.
Collapse
Affiliation(s)
- Michele Santoni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy; Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy; Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy; Neuroscience Institute, National Research Council of Italy, Cagliari, Italy.
| |
Collapse
|
10
|
Guo X, Kong L, Wen Y, Chen L, Hu S. Impact of second-generation antipsychotics monotherapy or combined therapy in cytokine, lymphocyte subtype, and thyroid antibodies for schizophrenia: a retrospective study. BMC Psychiatry 2024; 24:695. [PMID: 39415112 PMCID: PMC11481721 DOI: 10.1186/s12888-024-06141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) shares high clinical relevance with the immune system, and the potential interactions of psychopharmacological drugs with the immune system are still an overlooked area. Here, we aimed to identify whether the second-generation antipsychotics (SGA) monotherapy or combined therapy of SGA with other psychiatric medications influence the routine blood immunity biomarkers of patients with SCZ. METHODS Medical records of inpatients with SCZ from January 2019 to June 2023 were retrospectively screened from June 2023 to August 2023. The demographic data and peripheral levels of cytokines (IL-2, IL-4, IL-6, TNF-α, INF-γ, and IL-17 A), lymphocyte subtype proportions (CD3+, CD4+, CD8 + T-cell, and natural killer (NK) cells), and thyroid autoimmune antibodies (thyroid peroxidase antibody (TPOAb), and antithyroglobulin antibody (TGAb)) were collected and analyzed. RESULTS 30 drug-naïve patients, 64 SGA monotherapy (20 for first-episode SCZ, 44 for recurrent SCZ) for at least one week, 39 combined therapies for recurrent SCZ (18 with antidepressant, 10 with benzodiazepine, and 11 with mood stabilizer) for at least two weeks, and 23 used to receive SGA monotherapy (had withdrawn for at least two weeks) were included despite specific medication. No difference in cytokines was found between the SGA monotherapy sub-groups (p > 0.05). Of note, SGA monotherapy appeared to induce a down-regulation of IFN-γ in both first (mean [95% confidence interval]: 1.08 [0.14-2.01] vs. 4.60 [2.11-7.08], p = 0.020) and recurrent (1.88 [0.71-3.05] vs. 4.60 [2.11-7.08], p = 0.027) episodes compared to drug-naïve patients. However, the lymphocyte proportions and thyroid autoimmune antibodies remained unchanged after at least two weeks of SGA monotherapy (p > 0.05). In combined therapy groups, results mainly resembled the SGA monotherapy for recurrent SCZ (p > 0.05). CONCLUSION The study demonstrated that SGA monotherapy possibly achieved its comfort role via modulating IFN-γ, and SGA combined therapy showed an overall resemblance to monotherapy.
Collapse
Affiliation(s)
- Xiaonan Guo
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yalan Wen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lizichen Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310058, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Department of Psychology and Behavioral Sciences, Graduate School, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Suleri A, Salontaji K, Luo M, Neumann A, Mulder RH, Tiemeier H, Felix JF, Marioni RE, Bergink V, Cecil CAM. Prenatal exposure to common infections and newborn DNA methylation: A prospective, population-based study. Brain Behav Immun 2024; 121:244-256. [PMID: 39084542 PMCID: PMC11784989 DOI: 10.1016/j.bbi.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Infections during pregnancy have been robustly associated with adverse mental and physical health outcomes in offspring, yet the underlying molecular pathways remain largely unknown. Here, we examined whether exposure to common infections in utero associates with DNA methylation (DNAm) patterns at birth and whether this in turn relates to offspring health outcomes in the general population. METHODS Using data from 2,367 children from the Dutch population-based Generation R Study, we first performed an epigenome-wide association study to identify differentially methylated sites and regions at birth associated with prenatal infection exposure. We also examined the influence of infection timing by using self-reported cumulative infection scores for each trimester. Second, we sought to develop an aggregate methylation profile score (MPS) based on cord blood DNAm as an epigenetic proxy of prenatal infection exposure and tested whether this MPS prospectively associates with offspring health outcomes, including psychiatric symptoms, BMI, and asthma at ages 13-16 years. Third, we investigated whether prenatal infection exposure associates with offspring epigenetic age acceleration - a marker of biological aging. Across all analysis steps, we tested whether our findings replicate in 864 participants from an independent population-based cohort (ALSPAC, UK). RESULTS We observed no differentially methylated sites or regions in cord blood in relation to prenatal infection exposure, after multiple testing correction. 33 DNAm sites showed suggestive associations (p < 5e10 - 5; of which one was also nominally associated in ALSPAC), indicating potential links to genes associated with immune, neurodevelopmental, and cardiovascular pathways. While the MPS of prenatal infections associated with maternal reports of infections in the internal hold out sample in the Generation R Study (R2incremental = 0.049), it did not replicate in ALSPAC (R2incremental = 0.001), and it did not prospectively associate with offspring health outcomes in either cohort. Moreover, we observed no association between prenatal exposure to infections and epigenetic age acceleration across cohorts and clocks. CONCLUSION In contrast to prior studies, which reported DNAm differences in offspring exposed to severe infections in utero, we do not find evidence for associations between self-reported clinically evident common infections during pregnancy and DNAm or epigenetic aging in cord blood within the general pediatric population. Future studies are needed to establish whether associations exist but are too subtle to be statistically meaningful with present sample sizes, whether they replicate in a cohort with a more similar infection score as our discovery cohort, whether they occur in different tissues than cord blood, and whether other biological pathways may be more relevant for mediating the effect of prenatal common infection exposure on downstream offspring health outcomes.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Kristina Salontaji
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mannan Luo
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rosa H Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
12
|
Zhang Y, Wang SW, Ding J, Wen X, Li T, Yang L, Peng J, Dong Y, Mi W, Gao Y, Sun G. Causal role of immune cells in major depressive disorder and bipolar disorder: Mendelian randomization (MR) study. J Affect Disord 2024; 361:165-171. [PMID: 38838789 DOI: 10.1016/j.jad.2024.05.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and bipolar disorder (BD) are prevalent psychiatric conditions linked to inflammatory processes. However, it is unclear whether associations of immune cells with these disorders are likely to be causal. METHODS We used two-sample Mendelian randomization (MR) approach to investigate the relationship between 731 immune cells and the risk of MDD and BD. Rigorous sensitivity analyses are conducted to assess the reliability, heterogeneity, and horizontal pleiotropy of the findings. RESULTS Genetically-predicted CD27 on IgD+ CD38- unswitched memory B cell (inverse variance weighting (IVW): odds ratio (OR) [95 %]: 1.017 [1.007 to 1.027], p = 0.001), CD27 on IgD+ CD24+ B cell (IVW: OR [95 %]: 1.021 [1.011 to 1.031], p = 4.821E-05) and other 12 immune cells were associated with increased risk of MDD in MR, while HLA DR++ monocyte %leukocyte (IVW: OR [95 %]: 0.973 [0.948 to 0.998], p = 0.038), CD4 on Central Memory CD4+ T cell (IVW: OR [95 %]: 0.979 [0.963 to 0.995], p = 0.011) and other 13 immune cells were associated with decreased risk of MDD in MR. Additionally, CD33+ HLA DR+ Absolute Count (IVW: OR [95 %]: 1.022[1.007 to 1.036], p = 0.007), CD28+ CD45RA- CD8+ T cell %T cell (IVW: OR [95 %]: 1.024 [1.008 to 1.041], p = 0.004) and other 18 immune cells were associated with increased risk of BD in MR, while CD62L on CD62L+ myeloid Dendritic Cell (IVW: OR [95 %]: 0.926 [0.871 to 0.985], p = 0.014), IgD- CD27- B cell %lymphocyte (IVW: OR [95 %]: 0.918 [0.880 to 0.956], p = 4.654E-05) and other 13 immune cells were associated with decreased risk of BD in MR. CONCLUSIONS This MR study provides robust evidence supporting a causal relationship between immune cells and the susceptibility to MDD and BD, offering valuable insights for future clinical investigations. Experimental studies are also required to further examine causality, mechanisms, and treatment potential for these immune cells for MDD and BD.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Psychiatry, Binzhou Medical University Hospital, Binzhou, China; Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, 430063, China
| | - San-Wang Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jiahao Ding
- Shandong First Medical University (Shandong Academy Of Medical Sciences) No. 6699, Qingdao Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Xin Wen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tingting Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lu Yang
- Department of Psychiatry, Binzhou Medical University Hospital, Binzhou, China; Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jintao Peng
- Department of Psychiatry, Binzhou Medical University Hospital, Binzhou, China; Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Yingying Dong
- Department of Psychiatry, Binzhou Medical University Hospital, Binzhou, China
| | - Weifeng Mi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Yujun Gao
- Clinical and Translational Sciences (CaTS) Lab, The Douglas Research Centre, McGill University, Montréal, Québec, Canada; Binzhou Medical University, Binzhou, China.
| | - Guizhi Sun
- Department of Psychiatry, Binzhou Medical University Hospital, Binzhou, China.
| |
Collapse
|
13
|
Liu Z, Lv D, Li J, Li F, Zhang Y, Liu Y, Gao C, Qiu Y, Ma J, Zhang R. The potential predictive value and relationship of blood-based inflammatory markers with the clinical symptoms of Han Chinese patients with first-episode adolescent-onset schizophrenia. Front Psychiatry 2024; 15:1431350. [PMID: 39290303 PMCID: PMC11405196 DOI: 10.3389/fpsyt.2024.1431350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background Inflammation is associated with the pathophysiology of schizophrenia. The blood markers for systemic inflammation include neutrophil-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), lymphocyte-monocyte ratio (LMR), system inflammation response index (SIRI), and platelet-lymphocyte ratio (PLR). However, these inflammation markers and their relationships with clinical phenotypes among Han Chinese patients with first-episode adolescent-onset schizophrenia (AOS) is unclear. This investigation aimed to elucidate the impact of inflammation on Han Chinese AOS patients as well as the association of blood-based inflammation markers with clinical symptoms. Methods Altogether, 203 Han Chinese individuals participated in this study, 102 first-episode AOS patients and 101 healthy controls. The assessment of inflammatory indices was based on complete blood cell count. Furthermore, schizophrenia-related clinical symptoms were evaluated using the five-factor model of the Positive and Negative Syndrome Scale (PANSS). Results In Han Chinese first-episode AOS patients, levels of SIRI, PLR, SII, and NLR were significantly increased (p < 0.001), while LMR decreased (p < 0.001) compared to healthy controls. Furthermore, multivariate logistic regression showed that LMR, NLR, SII, and SIRI (all p < 0.05) were independently associated with AOS. Moreover, Receiver operating characteristics assessment indicated that NLR, SIRI, LMR, and SII could effectively distinguish AOS patients from healthy controls. Their areas under the curves were 0.734, 0.701, 0.715, and 0.730 (all p < 0.001). In addition, Correlation analysis revealed that LMR was negatively correlated with the PANSS total, negative, and cognitive factor scores (all p < 0.05); NLR was positively correlated with the cognitive factor score (p < 0.01); SII was negatively correlated with the positive factor score and positively with the negative and cognitive factor scores (all p < 0.05); SIRI was positively correlated with the PANSS total and cognitive factor scores (all p < 0.01). Conclusions This research established the involvement of peripheral blood inflammatory markers (LMR, NLR, SII, and SIRI) with the clinical manifestations and pathophysiology of schizophrenia, and these can serve as screening tools or potential indices of the inflammatory state and AOS symptoms severity.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Dali Lv
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Jianfeng Li
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Fuwei Li
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Yanhua Zhang
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Yongjie Liu
- Department of Psychiatry, The Fifth People's Hospital of Luoyang, Luoyang, Henan, China
| | - Chao Gao
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Yafeng Qiu
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Jun Ma
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China
| | - Ruiling Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
14
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
15
|
Hanson KL, Greiner DM, Schumann CM, Semendeferi K. Inhibitory Systems in Brain Evolution: Pathways of Vulnerability in Neurodevelopmental Disorders. BRAIN, BEHAVIOR AND EVOLUTION 2024; 100:29-48. [PMID: 39137740 PMCID: PMC11822052 DOI: 10.1159/000540865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND The evolution of the primate brain has been characterized by the reorganization of key structures and circuits underlying derived specializations in sensory systems, as well as social behavior and cognition. Among these, expansion and elaboration of the prefrontal cortex has been accompanied by alterations to the connectivity and organization of subcortical structures, including the striatum and amygdala, underlying advanced aspects of executive function, inhibitory behavioral control, and socioemotional cognition seen in our lineages. At the cellular level, the primate brain has further seen an increase in the diversity and number of inhibitory GABAergic interneurons. A prevailing hypothesis holds that disruptions in the balance of excitatory to inhibitory activity in the brain underlies the pathophysiology of many neurodevelopmental and psychiatric disorders. SUMMARY This review highlights the evolution of inhibitory brain systems and circuits and suggests that recent evolutionary modifications to GABAergic circuitry may provide the substrate for vulnerability to aberrant neurodevelopment. We further discuss how modifications to primate and human social organization and life history may shape brain development in ways that contribute to neurodivergence and the origins of neurodevelopmental disorders. KEY MESSAGES Many brain systems have seen functional reorganization in the mammalian, primate, and human brain. Alterations to inhibitory circuitry in frontostriatal and frontoamygdalar systems support changes in social behavior and cognition. Increased complexity of inhibitory systems may underlie vulnerabilities to neurodevelopmental and psychiatric disorders, including autism and schizophrenia. Changes observed in Williams syndrome may further elucidate the mechanisms by which alterations in inhibitory systems lead to changes in behavior and cognition. Developmental processes, including altered neuroimmune function and age-related vulnerability of inhibitory cells and synapses, may lead to worsening symptomatology in neurodevelopmental and psychiatric disorders. BACKGROUND The evolution of the primate brain has been characterized by the reorganization of key structures and circuits underlying derived specializations in sensory systems, as well as social behavior and cognition. Among these, expansion and elaboration of the prefrontal cortex has been accompanied by alterations to the connectivity and organization of subcortical structures, including the striatum and amygdala, underlying advanced aspects of executive function, inhibitory behavioral control, and socioemotional cognition seen in our lineages. At the cellular level, the primate brain has further seen an increase in the diversity and number of inhibitory GABAergic interneurons. A prevailing hypothesis holds that disruptions in the balance of excitatory to inhibitory activity in the brain underlies the pathophysiology of many neurodevelopmental and psychiatric disorders. SUMMARY This review highlights the evolution of inhibitory brain systems and circuits and suggests that recent evolutionary modifications to GABAergic circuitry may provide the substrate for vulnerability to aberrant neurodevelopment. We further discuss how modifications to primate and human social organization and life history may shape brain development in ways that contribute to neurodivergence and the origins of neurodevelopmental disorders. KEY MESSAGES Many brain systems have seen functional reorganization in the mammalian, primate, and human brain. Alterations to inhibitory circuitry in frontostriatal and frontoamygdalar systems support changes in social behavior and cognition. Increased complexity of inhibitory systems may underlie vulnerabilities to neurodevelopmental and psychiatric disorders, including autism and schizophrenia. Changes observed in Williams syndrome may further elucidate the mechanisms by which alterations in inhibitory systems lead to changes in behavior and cognition. Developmental processes, including altered neuroimmune function and age-related vulnerability of inhibitory cells and synapses, may lead to worsening symptomatology in neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Kari L. Hanson
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| | - Demi M.Z. Greiner
- Department of Anthropology, University of California San Diego, La Jolla, CA, USA
| | - Cynthia M. Schumann
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| | - Katerina Semendeferi
- Department of Anthropology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Hardie I, Murray A, King J, Hall HA, Okelo K, Luedecke E, Marryat L, Thompson L, Minnis H, Lombardo M, Wilson P, Auyeung B. Investigating low birth weight and preterm birth as potential mediators in the relationship between prenatal infections and early child development: a linked administrative health data analysis. J Epidemiol Community Health 2024; 78:585-590. [PMID: 38834230 PMCID: PMC11347972 DOI: 10.1136/jech-2023-221826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Prenatal infections are associated with childhood developmental outcomes such as reduced cognitive abilities, emotional problems and other developmental vulnerabilities. However, there is currently a lack of research examining whether this arises due to potential intermediary variables like low birth weight or preterm birth, or due to some other mechanisms of maternal immune activation arising from prenatal infections. METHODS Administrative data from the National Health Service health board of Greater Glasgow & Clyde, Scotland, were used, linking birth records to hospital records and universal child health review records for 55 534 children born from 2011 to 2015, and their mothers. Causal mediation analysis was conducted to examine the extent to which low birth weight and preterm birth mediate the relationship between hospital-diagnosed prenatal infections and having developmental concern(s) identified by a health visitor during 6-8 weeks or 27-30 months child health reviews. RESULTS Model estimates suggest that 5.18% (95% CI 3.77% to 7.65%) of the positive association observed between hospital-diagnosed prenatal infections and developmental concern(s) was mediated by low birth weight, while 7.37% (95% CI 5.36 to 10.88%) was mediated by preterm birth. CONCLUSION Low birth weight and preterm birth appear to mediate the relationship between prenatal infections and childhood development, but only to a small extent. Maternal immune activation mechanisms unrelated to low birth weight and preterm birth remain the most likely explanation for associations observed between prenatal infections and child developmental outcomes, although other factors (for example, genetic factors) may also be involved.
Collapse
Affiliation(s)
- Iain Hardie
- Department of Psychology, School of Philosophy Psychology and Language Sciences, The University of Edinburgh, Edinburgh, UK
| | - Aja Murray
- Department of Psychology, School of Philosophy Psychology and Language Sciences, The University of Edinburgh, Edinburgh, UK
| | - Josiah King
- Department of Psychology, School of Philosophy Psychology and Language Sciences, The University of Edinburgh, Edinburgh, UK
| | - Hildigunnar Anna Hall
- Centre for Health Security and Communicable Disease Control, Directorate of Health, Reykjavik, Iceland
| | - Kenneth Okelo
- Department of Psychology, School of Philosophy Psychology and Language Sciences, The University of Edinburgh, Edinburgh, UK
| | - Emily Luedecke
- Department of Psychology, School of Philosophy Psychology and Language Sciences, The University of Edinburgh, Edinburgh, UK
| | - Louise Marryat
- School of Health Sciences, University of Dundee, Dundee, UK
| | - Lucy Thompson
- Centre for Rural Health, University of Aberdeen, Inverness, UK
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gotherburg, Sweden
| | - Helen Minnis
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Michael Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Philip Wilson
- Centre for Rural Health, University of Aberdeen, Inverness, UK
- Centre for Research and Education in General Practice, University of Copenhagen, Copenhagen, Denmark
| | - Bonnie Auyeung
- Department of Psychology, School of Philosophy Psychology and Language Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Liong S, Choy KHC, De Luca SN, Liong F, Coward-Smith M, Oseghale O, Miles MA, Vlahos R, Valant C, Nithianantharajah J, Pantelis C, Christopoulos A, Selemidis S. Brain region-specific alterations in gene expression trajectories in the offspring born from influenza A virus infected mice. Brain Behav Immun 2024; 120:488-498. [PMID: 38925418 DOI: 10.1016/j.bbi.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A virus (IAV) infection during pregnancy can increase the risk for neurodevelopmental disorders in the offspring, however, the underlying neurobiological mechanisms are largely unknown. To recapitulate viral infection, preclinical studies have traditionally focused on using synthetic viral mimetics, rather than live IAV, to examine consequences of maternal immune activation (MIA)-dependent processes on offspring. In contrast, few studies have used live IAV to assess effects on global gene expression, and none to date have addressed whether moderate IAV, mimicking seasonal influenza disease, alters normal gene expression trajectories in different brain regions across different stages of development. Herein, we show that moderate IAV infection during pregnancy, which causes mild maternal disease and no overt foetal complications in utero, induces lasting effects on the offspring into adulthood. We observed behavioural changes in adult offspring, including disrupted prepulse inhibition, dopaminergic hyper-responsiveness, and spatial recognition memory deficits. Gene profiling in the offspring brain from neonate to adolescence revealed persistent alterations to normal gene expression trajectories in the prefronal cortex, hippocampus, hypothalamus and cerebellum. Alterations were found in genes involved in inflammation and neurogenesis, which were predominately dysregulated in neonatal and early adolescent offspring. Notably, late adolescent offspring born from IAV infected mice displayed altered microglial morphology in the hippocampus. In conclusion, we show that moderate IAV during pregnancy perturbs neurodevelopmental trajectories in the offspring, including alterations in the neuroinflammatory gene expression profile and microglial number and morphology in the hippocampus, resulting in behavioural changes in adult offspring. Such early perturbations may underlie the vulnerability in human offspring for the later development of neurodevelopmental disorders, including schizophrenia. Our work highlights the importance of using live IAV in developing novel preclinical models that better recapitulate the real-world impact of inflammatory insults during pregnancy on offspring neurodevelopmental trajectories and disease susceptibility later in life.
Collapse
Affiliation(s)
- Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - K H Christopher Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Simone N De Luca
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Madison Coward-Smith
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Osezua Oseghale
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Mark A Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; Department of Florey Neuroscience, University of Melbourne, Melbourne, VIC, Australia.
| | - Christos Pantelis
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia; Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
18
|
Mastenbroek LJM, Kooistra SM, Eggen BJL, Prins JR. The role of microglia in early neurodevelopment and the effects of maternal immune activation. Semin Immunopathol 2024; 46:1. [PMID: 38990389 PMCID: PMC11239780 DOI: 10.1007/s00281-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Activation of the maternal immune system during gestation has been associated with an increased risk for neurodevelopmental disorders in the offspring, particularly schizophrenia and autism spectrum disorder. Microglia, the tissue-resident macrophages of the central nervous system, are implicated as potential mediators of this increased risk. Early in development, microglia start populating the embryonic central nervous system and in addition to their traditional role as immune responders under homeostatic conditions, microglia are also intricately involved in various early neurodevelopmental processes. The timing of immune activation may interfere with microglia functioning during early neurodevelopment, potentially leading to long-term consequences in postnatal life. In this review we will discuss the involvement of microglia in brain development during the prenatal and early postnatal stages of life, while also examining the effects of maternal immune activation on microglia and neurodevelopmental processes. Additionally, we discuss recent single cell RNA-sequencing studies focusing on microglia during prenatal development, and hypothesize how early life microglial priming, potentially through epigenetic reprogramming, may be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- L J M Mastenbroek
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - S M Kooistra
- Department of BioMedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - B J L Eggen
- Department of BioMedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J R Prins
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
19
|
Shen HP, Dong X, Li ZB, Wu JZ, Zheng CM, Hu XJ, Qian C, Wang SP, Zhao YL, Li JC. Protein Profiles and Novel Molecular Biomarkers of Schizophrenia Based on 4D-DIA Proteomics. J Proteome Res 2024; 23:2376-2385. [PMID: 38856018 DOI: 10.1021/acs.jproteome.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Schizophrenia is a severe psychological disorder. The current diagnosis mainly relies on clinical symptoms and lacks laboratory evidence, which makes it very difficult to make an accurate diagnosis especially at an early stage. Plasma protein profiles of schizophrenia patients were obtained and compared with healthy controls using 4D-DIA proteomics technology. Furthermore, 79 DEPs were identified between schizophrenia and healthy controls. GO functional analysis indicated that DEPs were predominantly associated with responses to toxic substances and platelet aggregation, suggesting the presence of metabolic and immune dysregulation in patients with schizophrenia. KEGG pathway enrichment analysis revealed that DEPs were primarily enriched in the chemokine signaling pathway and cytokine receptor interactions. A diagnostic model was ultimately established, comprising three proteins, namely, PFN1, GAPDH and ACTBL2. This model demonstrated an AUC value of 0.972, indicating its effectiveness in accurately identifying schizophrenia. PFN1, GAPDH and ACTBL2 exhibit potential as biomarkers for the early detection of schizophrenia. The findings of our studies provide novel insights into the laboratory-based diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Hui-Ping Shen
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Xiaotao Dong
- Major Disease Biomarker Research Laboratory, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Zhi-Bin Li
- Major Disease Biomarker Research Laboratory, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Jing-Zhu Wu
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Chun-Mei Zheng
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Xie-Jun Hu
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Chao Qian
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Sheng-Pang Wang
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Yu-Long Zhao
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing 312000, China
| | - Ji-Cheng Li
- Major Disease Biomarker Research Laboratory, School of Basic Medical Science, Henan University, Kaifeng 475004, China
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
20
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
21
|
Idotta C, Pagano MA, Tibaldi E, Cadamuro M, Saetti R, Silvestrini M, Pigato G, Leanza L, Peruzzo R, Meneghetti L, Piazza S, Meneguzzo P, Favaro A, Grassi L, Toffanin T, Brunati AM. Neural stem/progenitor cells from olfactory neuroepithelium collected by nasal brushing as a cell model reflecting molecular and cellular dysfunctions in schizophrenia. World J Biol Psychiatry 2024; 25:317-329. [PMID: 38869228 DOI: 10.1080/15622975.2024.2357096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES Neural stem/progenitor cells derived from olfactory neuroepithelium (hereafter olfactory neural stem/progenitor cells, ONSPCs) are emerging as a potential tool in the exploration of psychiatric disorders. The present study intended to assess whether ONSPCs could help discern individuals with schizophrenia (SZ) from non-schizophrenic (NS) subjects by exploring specific cellular and molecular features. METHODS ONSPCs were collected from 19 in-patients diagnosed with SZ and 31 NS individuals and propagated in basal medium. Mitochondrial ATP production, expression of β-catenin and cell proliferation, which are described to be altered in SZ, were examined in freshly isolated or newly thawed ONSPCs after a few culture passages. RESULTS SZ-ONSPCs exhibited a lower mitochondrial ATP production and insensitivity to agents capable of positively or negatively affecting β-catenin expression with respect to NS-ONSPCs. As to proliferation, it declined in SZ-ONSPCs as the number of culture passages increased compared to a steady level of growth shown by NS-ONSPCs. CONCLUSIONS The ease and safety of sample collection as well as the differences observed between NS- and SZ-ONSPCs, may lay the groundwork for a new approach to obtain biological material from a large number of living individuals and gain a better understanding of the mechanisms underlying SZ pathophysiology.
Collapse
Affiliation(s)
- Carlo Idotta
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mario Angelo Pagano
- Department of Molecular Medicine, University of Padua, Padua, Italy
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Elena Tibaldi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Roberto Saetti
- Department of Otolaryngology, San Bortolo Hospital, ULSS 8 Berica, Vicenza, Italy
| | - Marina Silvestrini
- Department of Otolaryngology, San Bortolo Hospital, ULSS 8 Berica, Vicenza, Italy
| | | | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Stefano Piazza
- Department of Mental Health, ULSS 8 Berica, Vicenza, Italy
| | - Paolo Meneguzzo
- Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Angela Favaro
- Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
22
|
Suleri A, Gaiser C, Cecil CAM, Dijkzeul A, Neumann A, Labrecque JA, White T, Bergink V, Muetzel RL. Examining longitudinal associations between prenatal exposure to infections and child brain morphology. Brain Behav Immun 2024; 119:965-977. [PMID: 38750701 PMCID: PMC7616133 DOI: 10.1016/j.bbi.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Maternal infection during pregnancy has been identified as a prenatal risk factor for the later development of psychopathology in exposed offspring. Neuroimaging data collected during childhood has suggested a link between prenatal exposure to maternal infection and child brain structure and function, potentially offering a neurobiological explanation for the emergence of psychopathology. Additionally, preclinical studies utilizing repeated measures of neuroimaging data suggest that effects of prenatal maternal infection on the offspring's brain may normalize over time (i.e., catch-up growth). However, it remains unclear whether exposure to prenatal maternal infection in humans is related to long-term differential neurodevelopmental trajectories. Hence, this study aimed to investigate the association between prenatal exposure to infections on child brain development over time using repeated measures MRI data. METHODS We leveraged data from a population-based cohort, Generation R, in which we examined prospectively assessed self-reported infections at each trimester of pregnancy (N = 2,155). We further used three neuroimaging assessments (at mean ages 8, 10 and 14) to obtain cortical and subcortical measures of the offspring's brain morphology with MRI. Hereafter, we applied linear mixed-effects models, adjusting for several confounding factors, to estimate the association of prenatal maternal infection with child brain development over time. RESULTS We found that prenatal exposure to infection in the third trimester was associated with a slower decrease in volumes of the pars orbitalis, rostral anterior cingulate and superior frontal gyrus, and a faster increase in the middle temporal gyrus. In the temporal pole we observed a divergent pattern, specifically showing an increase in volume in offspring exposed to more infections compared to a decrease in volume in offspring exposed to fewer infections. We further observed associations in other frontal and temporal lobe structures after exposure to infections in any trimester, though these did not survive multiple testing correction. CONCLUSIONS Our results suggest that prenatal exposure to infections in the third trimester may be associated with slower age-related growth in the regions: pars orbitalis, rostral anterior cingulate and superior frontal gyrus, and faster age-related growth in the middle temporal gyrus across childhood, suggesting a potential sensitive period. Our results might be interpreted as an extension of longitudinal findings from preclinical studies, indicating that children exposed to prenatal infections could exhibit catch-up growth. However, given the lack of differences in brain volume between various infection groups at baseline, there may instead be either a longitudinal deviation or a subtle temporal deviation. Subsequent well-powered studies that extend into the period of full brain development (∼25 years) are needed to confirm whether the observed phenomenon is indeed catch-up growth, a longitudinal deviation, or a subtle temporal deviation.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Carolin Gaiser
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Annet Dijkzeul
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeremy A Labrecque
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
23
|
da Silva Rodrigues F, Jantsch J, de Farias Fraga G, Luiza de Camargo Milczarski V, Silva Dias V, Scheid C, de Oliveira Merib J, Giovernardi M, Padilha Guedes R. Cannabidiol improves maternal obesity-induced behavioral, neuroinflammatory and neurochemical dysfunctions in the juvenile offspring. Brain Behav Immun 2024; 119:301-316. [PMID: 38608740 DOI: 10.1016/j.bbi.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Maternal obesity is associated with an increased risk of psychiatric disorders such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While numerous studies focus on preventive measures targeting the mothers, only a limited number provide practical approaches for addressing the damages once they are already established. We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on hypothalamic inflammation and metabolic disturbances, however, little is known about this relationship on behavioral manifestations and neurochemical imbalances in other brain regions. Therefore, here we tested whether CBD treatment could mitigate anxiety-like and social behavioral alterations, as well as neurochemical disruptions in both male and female offspring of obese dams. Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) from weaning for 3 weeks. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and neurochemical markers were evaluated in the prefrontal cortex (PFC) and hippocampus. CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, followed by rescuing effects on imbalanced neurotransmitter and endocannabinoid concentrations and altered expression of glial markers, CB1, oxytocin and dopamine receptors, with important differences between sexes. Overall, the findings of this study provide insight into the signaling pathways for the therapeutic benefits of CBD on neuroinflammation and neurochemical imbalances caused by perinatal maternal obesity in the PFC and the hippocampus, which translates into the behavioral manifestations, highlighting the sexual dimorphism encompassing both the transgenerational effect of obesity and the endocannabinoid system.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória Luiza de Camargo Milczarski
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Scheid
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josias de Oliveira Merib
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Giovernardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170 Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170 Rio Grande do Sul, Brazil.
| |
Collapse
|
24
|
Suleri A, Rommel AS, Neumann A, Luo M, Hillegers M, de Witte L, Bergink V, Cecil CAM. Exposure to prenatal infection and the development of internalizing and externalizing problems in children: a longitudinal population-based study. J Child Psychol Psychiatry 2024; 65:874-886. [PMID: 38158849 PMCID: PMC7616076 DOI: 10.1111/jcpp.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND A large body of work has reported a link between prenatal exposure to infection and increased psychiatric risk in offspring. However, studies to date have focused primarily on exposure to severe prenatal infections and/or individual psychiatric diagnoses in clinical samples, typically measured at single time points, and without accounting for important genetic and environmental confounders. In this study, we investigated whether exposure to common infections during pregnancy is prospectively associated with repeatedly assessed child psychiatric symptoms in a large population-based study. METHODS Our study was embedded in a prospective pregnancy cohort (Generation R; n = 3,598 mother-child dyads). We constructed a comprehensive prenatal infection score comprising common infections for each trimester of pregnancy. Child total, internalizing, and externalizing problems were assessed repeatedly using the parent-rated Child Behavioral Checklist (average age: 1.5, 3, 6, 10, and 14 years). Linear mixed-effects models were run adjusting for a range of confounders, including child polygenic scores for psychopathology, maternal chronic illness, birth complications, and infections during childhood. We also investigated trimester-specific effects and child sex as a potential moderator. RESULTS Prenatal exposure to infections was associated with higher child total, internalizing, and externalizing problems, showing temporally persistent effects, even after adjusting for important genetic and environmental confounders. We found no evidence that prenatal infections were associated with changes in child psychiatric symptoms over time. Moreover, in our trimester-specific analysis, we did not find evidence of significant timing effects of prenatal infection on child psychiatric symptoms. No interactions with child sex were identified. CONCLUSIONS Our research adds to evidence that common prenatal infections may be a risk factor for psychiatric symptoms in children. We also extend previous findings by showing that these associations are present early on, and that rather than changing over time, they persist into adolescence. However, unmeasured confounding may still explain in part these associations. In the future, employing more advanced causal inference designs will be crucial to establishing the degree to which these effects are causal.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mannan Luo
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lotje de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Maggioni E, Pigoni A, Fontana E, Delvecchio G, Bonivento C, Bianchi V, Mauri M, Bellina M, Girometti R, Agarwal N, Nobile M, Brambilla P. Right frontal cingulate cortex mediates the effect of prenatal complications on youth internalizing behaviors. Mol Psychiatry 2024; 29:2074-2083. [PMID: 38378927 PMCID: PMC11408263 DOI: 10.1038/s41380-024-02475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Prenatal and perinatal complications represent well-known risk factors for the future development of psychiatric disorders. Such influence might become manifested during childhood and adolescence, as key periods for brain and behavioral changes. Internalizing and externalizing behaviors in adolescence have been associated with the risk of psychiatric onset later in life. Both brain morphology and behavior seem to be affected by obstetric complications, but a clear link among these three aspects is missing. Here, we aimed at analyzing the association between prenatal and perinatal complications, behavioral issues, and brain volumes in a group of children and adolescents. Eighty-two children and adolescents with emotional-behavioral problems underwent clinical and 3 T brain magnetic resonance imaging (MRI) assessments. The former included information on behavior, through the Child Behavior Checklist/6-18 (CBCL/6-18), and on the occurrence of obstetric complications. The relationships between clinical and gray matter volume (GMV) measures were investigated through multiple generalized linear models and mediation models. We found a mutual link between prenatal complications, GMV alterations in the frontal gyrus, and withdrawn problems. Specifically, complications during pregnancy were associated with higher CBCL/6-18 withdrawn scores and GMV reductions in the right superior frontal gyrus and anterior cingulate cortex. Finally, a mediation effect of these GMV measures on the association between prenatal complications and the withdrawn dimension was identified. Our findings suggest a key role of obstetric complications in affecting brain structure and behavior. For the first time, a mediator role of frontal GMV in the relationship between prenatal complications and internalizing symptoms was suggested. Once replicated on independent cohorts, this evidence will have relevant implications for planning preventive interventions.
Collapse
Affiliation(s)
- Eleonora Maggioni
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Alessandro Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Elisa Fontana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Valentina Bianchi
- Child and Adolescent Psychiatry Unit, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini (Lc), Italy
| | - Maddalena Mauri
- Child and Adolescent Psychiatry Unit, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini (Lc), Italy
| | - Monica Bellina
- Child and Adolescent Psychiatry Unit, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini (Lc), Italy
| | - Rossano Girometti
- Institute of Radiology, Department of Medicine (DMED), University of Udine, Udine, Italy
- University Hospital S. Maria Della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Nivedita Agarwal
- Neuroimaging Unit, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini (Lc), Italy
| | - Maria Nobile
- Child and Adolescent Psychiatry Unit, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini (Lc), Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
26
|
Staines L, Dooley N, Healy C, Kelleher I, Cotter D, Cannon M. Examining the association between prenatal and perinatal adversity and the psychotic experiences in childhood. Psychol Med 2024; 54:2087-2098. [PMID: 38433592 DOI: 10.1017/s0033291724000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
BACKGROUND Prenatal and perinatal complications are established risk factors for psychotic disorder, but far less is known about these measures and psychotic experiences (PEs). We investigated the longitudinal effect of prenatal risk factors (maternal behavior, medication complications) and perinatal risk factors (birth weight, medical complications) on frequency of PEs. We also examined the cumulative risk of prenatal/perinatal risk factors, and differences between transient PE, persistent PE, and controls. METHODS The Adolescent Brain Cognitive Development study is a large child cohort (age 9-10 at baseline; n = 11 872 with PE data). PEs were measured longitudinally using the Prodromal Questionnaire-Brief, Child version, and included only if reported as distressing. Mixed-effects models were used for analysis, controlling for random effects, and a substantial number of fixed-effects covariates. RESULTS Urinary tract infection (β = 0.11, 95% confidence interval [CI] 0.03-0.19) and severe anemia (β = 0.18, 95% CI 0.07-0.29) increased frequency of distressing PEs in childhood. Number of prenatal complications increased frequency of PEs (β = 0.03, 95% CI 0.01-0.06) and risk of persistent PEs (odds ratio [OR] = 1.08, 95% CI 1.01-1.15). Maternal smoking was associated with an increased frequency of PEs (β = 0.11, 95% CI 0.04-0.18) and persistent PEs (OR = 1.31, 95% CI 1.04-1.66). Maternal substance use was a risk factor for a 48% increased risk of persistent PEs (OR = 1.48, 95% CI 1.08-2.01). Perinatal complications showed no effect on PEs. CONCLUSIONS This study provides evidence that certain prenatal medical complications (severe nausea, severe anemia), cumulative number of prenatal medical complications, and maternal behaviors (smoking during pregnancy), increased frequency of distressing PEs in childhood. Maternal smoking and substance use, as well as cumulative number of prenatal complications increased risk of persistent PEs.
Collapse
Affiliation(s)
- Lorna Staines
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Niamh Dooley
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ian Kelleher
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - David Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Psychiatry, Beaumont Hospital, Dublin 9, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Psychiatry, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
27
|
Cao Z, Yang M, Gong H, Feng X, Hu L, Li R, Xu S, Wang Y, Xiao H, Zhou A. Association between prenatal exposure to rare earth elements and the neurodevelopment of children at 24-months of age: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123201. [PMID: 38135135 DOI: 10.1016/j.envpol.2023.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
The increasing consumption of rare earth elements (REEs) has resulted in a considerable risk of environmental exposure. However, the adverse effects of prenatal REEs exposure on children's neurodevelopment are not yet fully recognized. Therefore, we investigated the individual and joint effects of prenatal exposure to 13 REEs on children's neurocognitive development based on 809 mother-child pairs from a large birth cohort in Wuhan, China. Maternal urinary concentrations of 13 REEs were repeatedly measured by inductively coupled plasma mass spectrometry. Children's neurodevelopment [e.g., mental and psychomotor development index (MDI/PDI)] at 24-months was assessed using Bayley Scales of Infant Development of Chinese Revision. GEE and BKMR models were applied to estimate the individual and joint effects of prenatal REE exposure on child neurodevelopment level. After controlling for typical confounders, we observed that exposure to 9 REEs during the first trimester were significantly associated with decreased MDI scores [βs and 95% confidence intervals (CIs) ranging from -2.24 (-3.86 ∼ -0.63) to -1.44 (-2.26∼ -0.26)], and 7 REEs during third trimester were significantly associated decreased PDI scores [β and 95% CIs ranging from -1.95 (-3.19 ∼ -0.71) to -1.25 (-2.34 ∼ -0.16)]. Higher quantiles of REE mixture in first and third trimester were associated with decreased MDI and PDI score. Thulium, erbium in the first trimester and cerium, lanthanum in the third trimester accounted most importance to joint effects on MDI and PDI, respectively. In conclusion, prenatal exposure to higher concentrations of REEs during the first and third trimester were negative associated with children's neurodevelopment.
Collapse
Affiliation(s)
- Zhongqiang Cao
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Meng Yang
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongjian Gong
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaoyuan Feng
- Medical Center of Cardiovascular Ultrasound, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liqin Hu
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ruizhen Li
- Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youjie Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Xiao
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Aifen Zhou
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
28
|
Chaves C, Dursun SM, Tusconi M, Hallak JEC. Neuroinflammation and schizophrenia - is there a link? Front Psychiatry 2024; 15:1356975. [PMID: 38389990 PMCID: PMC10881867 DOI: 10.3389/fpsyt.2024.1356975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Cristiano Chaves
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Center (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
| | - Serdar M Dursun
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Massimo Tusconi
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Iakunchykova O, Leonardsen EH, Wang Y. Genetic evidence for causal effects of immune dysfunction in psychiatric disorders: where are we? Transl Psychiatry 2024; 14:63. [PMID: 38272880 PMCID: PMC10810856 DOI: 10.1038/s41398-024-02778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
The question of whether immune dysfunction contributes to risk of psychiatric disorders has long been a subject of interest. To assert this hypothesis a plethora of correlative evidence has been accumulated from the past decades; however, a variety of technical and practical obstacles impeded on a cause-effect interpretation of these data. With the advent of large-scale omics technology and advanced statistical models, particularly Mendelian randomization, new studies testing this old hypothesis are accruing. Here we synthesize these new findings from genomics and genetic causal inference studies on the role of immune dysfunction in major psychiatric disorders and reconcile these new data with pre-omics findings. By reconciling these evidences, we aim to identify key gaps and propose directions for future studies in the field.
Collapse
Affiliation(s)
- Olena Iakunchykova
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Esten H Leonardsen
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Yunpeng Wang
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway.
| |
Collapse
|
30
|
Manti S, Spoto G, Nicotera AG, Di Rosa G, Piedimonte G. Impact of respiratory viral infections during pregnancy on the neurological outcomes of the newborn: current knowledge. Front Neurosci 2024; 17:1320319. [PMID: 38260010 PMCID: PMC10800711 DOI: 10.3389/fnins.2023.1320319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Brain development is a complex process that begins during pregnancy, and the events occurring during this sensitive period can affect the offspring's neurodevelopmental outcomes. Respiratory viral infections are frequently reported in pregnant women, and, in the last few decades, they have been related to numerous neuropsychiatric sequelae. Respiratory viruses can disrupt brain development by directly invading the fetal circulation through vertical transmission or inducing neuroinflammation through the maternal immune activation and production of inflammatory cytokines. Influenza virus gestational infection has been consistently associated with psychotic disorders, such as schizophrenia and autism spectrum disorder, while the recent pandemic raised some concerns regarding the effects of severe acute respiratory syndrome coronavirus 2 on neurodevelopmental outcomes of children born to affected mothers. In addition, emerging evidence supports the possible role of respiratory syncytial virus infection as a risk factor for adverse neuropsychiatric consequences. Understanding the mechanisms underlying developmental dysfunction allows for improving preventive strategies, early diagnosis, and prompt interventions.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Giovanni Piedimonte
- Department of Pediatrics, Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
31
|
Xenaki LA, Dimitrakopoulos S, Selakovic M, Stefanis N. Stress, Environment and Early Psychosis. Curr Neuropharmacol 2024; 22:437-460. [PMID: 37592817 PMCID: PMC10845077 DOI: 10.2174/1570159x21666230817153631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 08/19/2023] Open
Abstract
Existing literature provides extended evidence of the close relationship between stress dysregulation, environmental insults, and psychosis onset. Early stress can sensitize genetically vulnerable individuals to future stress, modifying their risk for developing psychotic phenomena. Neurobiological substrate of the aberrant stress response to hypothalamic-pituitary-adrenal axis dysregulation, disrupted inflammation processes, oxidative stress increase, gut dysbiosis, and altered brain signaling, provides mechanistic links between environmental risk factors and the development of psychotic symptoms. Early-life and later-life exposures may act directly, accumulatively, and repeatedly during critical neurodevelopmental time windows. Environmental hazards, such as pre- and perinatal complications, traumatic experiences, psychosocial stressors, and cannabis use might negatively intervene with brain developmental trajectories and disturb the balance of important stress systems, which act together with recent life events to push the individual over the threshold for the manifestation of psychosis. The current review presents the dynamic and complex relationship between stress, environment, and psychosis onset, attempting to provide an insight into potentially modifiable factors, enhancing resilience and possibly influencing individual psychosis liability.
Collapse
Affiliation(s)
- Lida-Alkisti Xenaki
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Stefanos Dimitrakopoulos
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Mirjana Selakovic
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Nikos Stefanis
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| |
Collapse
|
32
|
Wu D, Wu Q, Li F, Wang Y, Zeng J, Tang B, Bishop JR, Xiao L, Lui S. Free water alterations in different inflammatory subgroups in schizophrenia. Brain Behav Immun 2024; 115:557-564. [PMID: 37972880 DOI: 10.1016/j.bbi.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that inflammatory dysregulation both in blood and the brain is implicated in the pathogenesis of schizophrenia. Alterations in peripheral cytokines are not evident in all patients and there may be discrete altered inflammatory subgroups in schizophrenia. Recent studies using a novel and in vivo free-water imaging to detect inflammatory processes, have shown increased free water in white matter in schizophrenia. However, no studies to date have investigated the free water alterations in different inflammatory subgroups in schizophrenia. METHODS Forty-four patients with schizophrenia and 49 controls were recruited. The serum levels of interleukin-1 beta (IL-1β), IL-6, IL-10, and IL-12p70 were measured and used for cluster analysis with K-means and hierarchical algorithms. Diffusion tensor imaging (DTI) images were collected for all participants and voxel-wise free water and fractional anisotropy of tissue (FA-t) were compared between groups with Randomise running in FSL. Partial correlation analysis was employed to explore the association of the peripheral cytokine levels with free water. RESULTS We identified two statistically quantifiable discrete subgroups of patients based on the cluster analysis of cytokine measures. The peripheral levels of IL-1β (P < 0.001), IL-10 (P = 0.041), and IL-12p70 (P < 0.001) showed significant differences between the two different inflammatory subgroups. In the inflammatory subgroup with a predominantly higher IL-1β level, increased free water values in white matter were found mainly in the left posterior limb of the internal capsule, posterior corona radiata, and partly in the left sagittal stratum. These affected areas did not overlap with the regions that showed significant free water differences between patients and healthy controls. In the inflammatory subgroup with lower IL-1β levels, peripheral IL-1β was significantly associated with free water values in white matter while no such association was detected in the patient group. CONCLUSIONS Localized free water differences were demonstrated between the two identified inflammatory subgroups in our data, and free water appears to be a feasible in vivo neuroimaging biomarker guiding the target of inflammatory intervention and development of new therapeutic strategies in an individualized manner in schizophrenia.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China.
| | - Qi Wu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiaxin Zeng
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Biqiu Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States.
| | - Li Xiao
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Zheng H, Webster MJ, Weickert CS, Beasley CL, Paulus MP, Yolken RH, Savitz J. Cytomegalovirus antibodies are associated with mood disorders, suicide, markers of neuroinflammation, and microglia activation in postmortem brain samples. Mol Psychiatry 2023; 28:5282-5292. [PMID: 37391529 PMCID: PMC10756933 DOI: 10.1038/s41380-023-02162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Cytomegalovirus (CMV) is a common, neurotrophic herpesvirus that can be reactivated by inflammation and cause central nervous system disease. We hypothesize that CMV may contribute to the neuroinflammation that underlies some psychiatric disorders by (1) exacerbating inflammation through the induction of anti-viral immune responses, and (2) translating peripheral inflammation into neuroinflammation. We investigated whether the presence of anti-CMV antibodies in blood were associated with mental illness, suicide, neuroinflammation, and microglial density in the dorsolateral prefrontal cortex (DLPFC) in postmortem samples. Data (n = 114 with schizophrenia; n = 78 with bipolar disorder; n = 87 with depression; n = 85 controls) were obtained from the Stanley Medical Research Institute. DLPFC gene expression data from a subset of 82 samples were categorized into "high" (n = 30), and "low" (n = 52) inflammation groups based on a recursive two-step cluster analysis using expression data for four inflammation-related genes. Measurements of the ratio of non-ramified to ramified microglia, a proxy of microglial activation, were available for a subset of 49 samples. All analyses controlled for age, sex, and ethnicity, as well as postmortem interval, and pH for gene expression and microglial outcomes. CMV seropositivity significantly increased the odds of a mood disorder diagnosis (bipolar disorder: OR = 2.45; major depression: OR = 3.70) and among the psychiatric samples, of suicide (OR = 2.09). Samples in the upper tercile of anti-CMV antibody titers were more likely to be members of the "high" inflammation group (OR = 4.41, an effect driven by schizophrenia and bipolar disorder samples). CMV positive samples also showed an increased ratio of non-ramified to ramified microglia in layer I of the DLPFC (Cohen's d = 0.81) as well as a non-significant increase in this ratio for the DLPFC as a whole (d = 0.56). The results raise the possibility that the reactivation of CMV contributes to the neuroinflammation that underlies some cases of psychiatric disorders.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
34
|
Chandra A, Miller BJ, Goldsmith DR. Predictors of successful anti-inflammatory drug trials in patients with schizophrenia: A meta-regression and critical commentary. Brain Behav Immun 2023; 114:154-162. [PMID: 37607662 PMCID: PMC10592013 DOI: 10.1016/j.bbi.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/05/2023] [Accepted: 08/06/2023] [Indexed: 08/24/2023] Open
Abstract
Given evidence pointing toward a role for immune dysregulation in the pathogenesis of schizophrenia, anti-inflammatory agents are promising adjunctive treatments that have potential to support a causal relationship for inflammation and psychopathology and lead to novel treatments for individuals. Indeed, previous meta-analyses have demonstrated small-to-medium effect sizes (ES) in favor of various anti-inflammatory agents, though there is significant heterogeneity and challenges in the interpretation of this literature. Identifying predictors, including sociodemographic variables, trial duration, and/or symptoms themselves, of successful anti-inflammatory trials may help identify which patients who might benefit from these compounds. We performed a meta-regression analysis of 63 adjunctive anti-inflammatory trial arms (2232 patients randomized to adjunctive anti-inflammatory agents and 2207 patients randomized to placebo).Potential predictors of effect size estimates for changes in psychopathology scores from baseline to endpoint included geography, trial duration, sample size, age, sex, race, smoking, body mass index, illness duration, age of onset of psychosis, study quality score and psychopathology scores (total and subscale) at baseline. Geography (β = 0.31, p = 0.011), smaller sample size (β = 0.33, p = 0.009), and higher study quality score (β = 0.44, p < 0.001) were significant predictors of larger ES estimates for change in total psychopathology in favor of anti-inflammatory agents. Smaller sample size (β = 0.37, p = 0.034) and higher study quality score (β = 0.55, p = 0.003) were significant predictors of larger ES estimates for change in negative psychopathology in favor of anti-inflammatory agents. Higher study quality score (β = 0.46, p = 0.019) was a significant predictor of larger ES estimates for change in general psychopathology in favor of anti-inflammatory agents. These findings should be interpreted with caution given concerns of publication bias regarding the geographic differences and small study effects. The lack of an association with other demographic variables should be seen as a primary limitation of the literature that needs to be considered in future studies. The association with study quality score suggests that future anti-inflammatory trials must consider demographic variables known to be associated with inflammation (e.g., BMI and smoking) and evidence of increased baseline inflammation should be incorporated in study design. Moreover, evidence of target engagement and endpoints thoughts to be associated with increased inflammation should be considered as well.
Collapse
Affiliation(s)
- Anjali Chandra
- Emory University School of Medicine, Atlanta, GA, United States
| | - Brian J Miller
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA, United States
| | - David R Goldsmith
- Emory University School of Medicine, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States.
| |
Collapse
|
35
|
Liao Z, Zhu Q, Huang H. Involvement of IL-1β-Mediated Necroptosis in Neurodevelopment Impairment after Neonatal Sepsis in Rats. Int J Mol Sci 2023; 24:14693. [PMID: 37834141 PMCID: PMC10572485 DOI: 10.3390/ijms241914693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The mechanism of long-term cognitive impairment after neonatal sepsis remains poorly understood, although long-lasting neuroinflammation has been considered the primary contributor. Necroptosis is actively involved in the inflammatory process, and in this study, we aimed to determine whether neonatal sepsis-induced long-term cognitive impairment was associated with activation of necroptosis. Rat pups on postnatal day 3 (P3) received intraperitoneal injections of lipopolysaccharide (LPS, 1 mg/kg) to induce neonatal sepsis. Intracerebroventricular injection of IL-1β-siRNA and necrostatin-1 (NEC1) were performed to block the production of IL-1β and activation of necroptosis in the brain, respectively. The Morris water maze task and fear conditioning test were performed on P28-P32 and P34-P35, respectively. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (RT-PCR), and Western blotting were used to examine the expression levels of proinflammatory cytokines and necroptosis-associated proteins, such as receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Sustained elevation of IL-1β level was observed in the brain after initial neonatal sepsis, which would last for at least 32 days. Sustained necroptosis activation was also observed in the brain. Knockdown of IL-1β expression in the brain alleviated necroptosis and improved long-term cognitive function. Direct inhibition of necroptosis also improved neurodevelopment and cognitive performance. This research indicated that sustained activation of necroptosis via IL-1β contributed to long-term cognitive dysfunction after neonatal sepsis.
Collapse
Affiliation(s)
| | | | - Han Huang
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital of Sichuan University, Chengdu 610041, China; (Z.L.); (Q.Z.)
| |
Collapse
|
36
|
Steen NE, Rahman Z, Szabo A, Hindley GFL, Parker N, Cheng W, Lin A, O’Connell KS, Sheikh MA, Shadrin A, Bahrami S, Karthikeyan S, Hoseth EZ, Dale AM, Aukrust P, Smeland OB, Ueland T, Frei O, Djurovic S, Andreassen OA. Shared Genetic Loci Between Schizophrenia and White Blood Cell Counts Suggest Genetically Determined Systemic Immune Abnormalities. Schizophr Bull 2023; 49:1345-1354. [PMID: 37319439 PMCID: PMC10483470 DOI: 10.1093/schbul/sbad082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Immune mechanisms are indicated in schizophrenia (SCZ). Recent genome-wide association studies (GWAS) have identified genetic variants associated with SCZ and immune-related phenotypes. Here, we use cutting edge statistical tools to identify shared genetic variants between SCZ and white blood cell (WBC) counts and further understand the role of the immune system in SCZ. STUDY DESIGN GWAS results from SCZ (patients, n = 53 386; controls, n = 77 258) and WBC counts (n = 56 3085) were analyzed. We applied linkage disequilibrium score regression, the conditional false discovery rate method and the bivariate causal mixture model for analyses of genetic associations and overlap, and 2 sample Mendelian randomization to estimate causal effects. STUDY RESULTS The polygenicity for SCZ was 7.5 times higher than for WBC count and constituted 32%-59% of WBC count genetic loci. While there was a significant but weak positive genetic correlation between SCZ and lymphocytes (rg = 0.05), the conditional false discovery rate method identified 383 shared genetic loci (53% concordant effect directions), with shared variants encompassing all investigated WBC subtypes: lymphocytes, n = 215 (56% concordant); neutrophils, n = 158 (49% concordant); monocytes, n = 146 (47% concordant); eosinophils, n = 135 (56% concordant); and basophils, n = 64 (53% concordant). A few causal effects were suggested, but consensus was lacking across different Mendelian randomization methods. Functional analyses indicated cellular functioning and regulation of translation as overlapping mechanisms. CONCLUSIONS Our results suggest that genetic factors involved in WBC counts are associated with the risk of SCZ, indicating a role of immune mechanisms in subgroups of SCZ with potential for stratification of patients for immune targeted treatment.
Collapse
Affiliation(s)
- Nils Eiel Steen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Zillur Rahman
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Nadine Parker
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aihua Lin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sandeep Karthikeyan
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eva Z Hoseth
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen—Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Wang C, Zhu D, Zhang D, Zuo X, Yao L, Liu T, Ge X, He C, Zhou Y, Shen Z. Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study. BMC Psychiatry 2023; 23:590. [PMID: 37582716 PMCID: PMC10428653 DOI: 10.1186/s12888-023-05081-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Complex immune-brain interactions that affect neural development, survival and function might have causal and therapeutic implications for psychiatric illnesses. However, previous studies examining the association between immune inflammation and schizophrenia (SCZ) have yielded inconsistent findings. METHODS Comprehensive two-sample Mendelian randomization (MR) analysis was performed to determine the causal association between immune cell signatures and SCZ in this study. Based on publicly available genetic data, we explored causal associations between 731 immune cell signatures and SCZ risk. A total of four types of immune signatures (median fluorescence intensities (MFI), relative cell (RC), absolute cell (AC), and morphological parameters (MP)) were included. Comprehensive sensitivity analyses were used to verify the robustness, heterogeneity, and horizontal pleiotropy of the results. RESULTS After FDR correction, SCZ had no statistically significant effect on immunophenotypes. It was worth mentioning some phenotypes with unadjusted low P-values, including FSC-A on NKT (β = 0.119, 95% CI = 0.044 ~ 0.194, P = 0.002), DN (CD4-CD8-) NKT %T cell (β = 0.131, 95% CI = 0.054 ~ 0.208, P = 9.03 × 10- 4), and SSC-A on lymphocytes (β = 0.136, 95% CI = 0.059 ~ 0.213, P = 5.43 × 10- 4). The causal effect of SCZ IgD on transitional was estimated to 0.127 (95% CI = 0.051 ~ 0.203, P = 1.09 × 10- 3). SCZ also had a causal effect on IgD+ %B cell (β = 0.130, 95% CI = 0.054 ~ 0.207, P = 8.69 × 10- 4), and DP (CD4+CD8+) %T cell (β = 0.131, 95% CI = 0.054 ~ 0.207, P = 8.05 × 10- 4). Furthermore, four immunophenotypes were identified to be significantly associated with SCZ risk: naive CD4+ %T cell (OR = 0.986, 95% CI = 0.979 ~ 0.992, P = 1.37 × 10- 5), HLA DR on CD14- CD16- (OR = 0.738 (95% CI = 0.642 ~ 0.849, P = 2.00 × 10- 5), CD33dim HLA DR+ CD11b- AC (OR = 0.631, 95% CI = 0.529 ~ 0.753, P = 3.40 × 10- 7) and activated & resting Treg % CD4 Treg (OR = 0.937, 95% CI = 0.906 ~ 0.970, P = 1.96 × 10- 4). CONCLUSIONS Our study has demonstrated the close connection between immune cells and SCZ by genetic means, thus providing guidance for future clinical research.
Collapse
Affiliation(s)
- Chengdong Wang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Dongdong Zhu
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Dongjun Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453005, China
| | - Xiaowei Zuo
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Lei Yao
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Teng Liu
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Xiaodan Ge
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Chenlu He
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yuan Zhou
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
38
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
39
|
Villani MV, Kovess-Masféty V. Causal Beliefs About and Perceptions of Illness in Persons Experiencing Schizophrenia and in Close Relatives of Such Individuals: An Exploratory Study. J Psychiatr Pract 2023; 29:213-226. [PMID: 37200140 DOI: 10.1097/pra.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND The cause to which persons experiencing schizophrenia attribute their illness influences emotional and adjustment variables. This is also true for close relatives (CRs), who are important players in the affected individual's environment and whose mood can influence the person's day-to-day life or treatment adherence. Recent literature has highlighted a need to further explore the impact of causal beliefs on different aspects of recovery as well as on stigma. AIMS The objective of this study was to explore causal beliefs about the illness and their relationship to other illness perceptions and stigma among persons experiencing schizophrenia and their CRs. METHODS Twenty French individuals experiencing schizophrenia and 27 CRs of individuals with schizophrenia answered the Brief Illness Perception Questionnaire, which investigates probable causes of an illness and other illness perceptions, and the Stigma Scale. A semi-structured interview was used to collect information about diagnosis, treatment, and access to psychoeducation. RESULTS The individuals with schizophrenia identified fewer causal attributions than the CRs. They were more likely to endorse psychosocial stress and family environment as probable causes, while CRs mostly favored genetic explanations. We found significant relationships between causal attributions and most negative perceptions of the illness, including components of stigma, in both samples. Among CRs, having received family psychoeducation was strongly correlated with viewing substance abuse as a probable cause. CONCLUSIONS Relationships between causal beliefs about illness and perceptions of illness both in individuals experiencing schizophrenia and in CRs of such individuals should be explored further with harmonized and detailed tools. Assessing causal beliefs about schizophrenia as a framework for psychiatric clinical practice could prove useful for all those involved in the recovery process.
Collapse
Affiliation(s)
- Murielle V Villani
- VILLANI and KOVESS-MASFÉTY: Laboratoire de Psychopathologie et Processus de Santé, Université de Paris, Boulogne Billancourt Cedex, France
| | | |
Collapse
|
40
|
Howes OD, Onwordi EC. The synaptic hypothesis of schizophrenia version III: a master mechanism. Mol Psychiatry 2023; 28:1843-1856. [PMID: 37041418 PMCID: PMC10575788 DOI: 10.1038/s41380-023-02043-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The synaptic hypothesis of schizophrenia has been highly influential. However, new approaches mean there has been a step-change in the evidence available, and some tenets of earlier versions are not supported by recent findings. Here, we review normal synaptic development and evidence from structural and functional imaging and post-mortem studies that this is abnormal in people at risk and with schizophrenia. We then consider the mechanism that could underlie synaptic changes and update the hypothesis. Genome-wide association studies have identified a number of schizophrenia risk variants converging on pathways regulating synaptic elimination, formation and plasticity, including complement factors and microglial-mediated synaptic pruning. Induced pluripotent stem cell studies have demonstrated that patient-derived neurons show pre- and post-synaptic deficits, synaptic signalling alterations, and elevated, complement-dependent elimination of synaptic structures compared to control-derived lines. Preclinical data show that environmental risk factors linked to schizophrenia, such as stress and immune activation, can lead to synapse loss. Longitudinal MRI studies in patients, including in the prodrome, show divergent trajectories in grey matter volume and cortical thickness compared to controls, and PET imaging shows in vivo evidence for lower synaptic density in patients with schizophrenia. Based on this evidence, we propose version III of the synaptic hypothesis. This is a multi-hit model, whereby genetic and/or environmental risk factors render synapses vulnerable to excessive glia-mediated elimination triggered by stress during later neurodevelopment. We propose the loss of synapses disrupts pyramidal neuron function in the cortex to contribute to negative and cognitive symptoms and disinhibits projections to mesostriatal regions to contribute to dopamine overactivity and psychosis. It accounts for the typical onset of schizophrenia in adolescence/early adulthood, its major risk factors, and symptoms, and identifies potential synaptic, microglial and immune targets for treatment.
Collapse
Affiliation(s)
- Oliver D Howes
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ellis Chika Onwordi
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, E1 2AB, UK.
| |
Collapse
|
41
|
Mawson ER, Morris BJ. A consideration of the increased risk of schizophrenia due to prenatal maternal stress, and the possible role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110773. [PMID: 37116354 DOI: 10.1016/j.pnpbp.2023.110773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Schizophrenia is caused by interaction of a combination of genetic and environmental factors. Of the latter, prenatal exposure to maternal stress is reportedly associated with elevated disease risk. The main orchestrators of inflammatory processes within the brain are microglia, and aberrant microglial activation/function has been proposed to contribute to the aetiology of schizophrenia. Here, we evaluate the epidemiological and preclinical evidence connecting prenatal stress to schizophrenia risk, and consider the possible mediating role of microglia in the prenatal stress-schizophrenia relationship. Epidemiological findings are rather consistent in supporting the association, albeit they are mitigated by effects of sex and gestational timing, while the evidence for microglial activation is more variable. Rodent models of prenatal stress generally report lasting effects on offspring neurobiology. However, many uncertainties remain as to the mechanisms underlying the influence of maternal stress on the developing foetal brain. Future studies should aim to characterise the exact processes mediating this aspect of schizophrenia risk, as well as focussing on how prenatal stress may interact with other risk factors.
Collapse
Affiliation(s)
- Eleanor R Mawson
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Brian J Morris
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
42
|
Martín-González NS, Castro-Quintas Á, Marques-Feixa L, Ayesa-Arriola R, López M, Fañanás L. Maternal respiratory viral infections during pregnancy and offspring's neurodevelopmental outcomes: a systematic review. Neurosci Biobehav Rev 2023; 149:105178. [PMID: 37059407 DOI: 10.1016/j.neubiorev.2023.105178] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Maternal infections during pregnancy, as cytomegalovirus and zika, have been consistently associated with severe newborn neurodevelopmental conditions, mainly related to vertical transmission and congenital infection. However, little is known about the neurodevelopmental consequences of maternal respiratory viral infections, which are the most prevalent infections during pregnancy. The recent COVID-19 pandemic has increased the interest in understanding the consequences of infections in offspring's development. This systematic review explores whether maternal gestational viral respiratory infections are associated with neurodevelopmental deviations in children below 10 years-old. The search was conducted in Pubmed, PsychInfo and Web of Science databases. 12 articles were revised, including information about maternal infection (Influenza, SARS-CoV-2 and unspecified respiratory infections) and offspring's neurodevelopment (global development, specific functions, temperament and behavioral/emotional aspects). Controversial results were reported regarding maternal respiratory infections during pregnancy and infants' neurodevelopment. Maternal infections seem to be associated with subtle alterations in some offspring's developmental subdomains, as early motor development, and attentional, behavioral/emotional minor problems. Further studies are needed to determine the impact of other psychosocial confounding factors.
Collapse
Affiliation(s)
- Nerea San Martín-González
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBER-SAM), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| | - Águeda Castro-Quintas
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBER-SAM), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| | - Laia Marques-Feixa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBER-SAM), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| | - Rosa Ayesa-Arriola
- Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBER-SAM), Madrid, Spain; Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain.
| | - Marta López
- Fetal Medicine Research Center, Maternal fetal medicine department, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER of Rare Diseases, CIBER-ER), Madrid, Spain.
| | - Lourdes Fañanás
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBER-SAM), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
43
|
Halstead S, Siskind D, Amft M, Wagner E, Yakimov V, Shih-Jung Liu Z, Walder K, Warren N. Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: a systematic review and network meta-analysis. Lancet Psychiatry 2023; 10:260-271. [PMID: 36863384 DOI: 10.1016/s2215-0366(23)00025-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/11/2022] [Accepted: 01/06/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Immune system dysfunction is considered to play an aetiological role in schizophrenia spectrum disorders, with substantial alterations in the concentrations of specific peripheral inflammatory proteins, such as cytokines. However, there are inconsistencies in the literature over which inflammatory proteins are altered throughout the course of illness. Through conducting a systematic review and network meta-analysis, this study aimed to investigate the patterns of alteration that peripheral inflammatory proteins undergo in both acute and chronic stages of schizophrenia spectrum disorders, relative to a healthy control population. METHODS In this systematic review and meta-analysis, we searched PubMed, PsycINFO, EMBASE, CINAHL, and the Cochrane Central Register of Controlled Trials from inception to March 31, 2022, for published studies reporting peripheral inflammatory protein concentrations in cases of people with schizophrenia-spectrum disorders and healthy controls. Inclusion criteria were: (1) observational or experimental design; (2) a population consisting of adults diagnosed with schizophrenia-spectrum disorders with a specified indicator of acute or chronic stage of illness; (3) a comparable healthy control population without mental illness; (4) a study outcome measuring the peripheral protein concentration of a cytokine, associated inflammatory marker, or C-reactive protein. We excluded studies that did not measure cytokine proteins or associated biomarkers in blood. Mean and SDs of inflammatory marker concentrations were extracted directly from full-text publshed articles; articles that did not report data as results or supplementary results were excluded (ie, authors were not contacted) and grey literature and unpublished studies were not sought. Pairwise and network meta-analyses were done to measure the standardised mean difference in peripheral protein concentrations between three groups: individuals with acute schizophrenia-spectrum disorder, individuals with chronic schizophrenia-spectrum disorder, and healthy controls. This protocol was registered on PROSPERO, CRD42022320305. FINDINGS Of 13 617 records identified in the database searches, 4492 duplicates were removed, 9125 were screened for eligibility, 8560 were excluded after title and abstract screening, and three were excluded due to limited access to the full-text article. 324 full-text articles were then excluded due to inappropriate outcomes, mixed or undefined schizophrenia cohorts, or duplicate study populations, five were removed due to concerns over data integrity, and 215 studies were included in the meta-analysis. 24 921 participants were included, with 13 952 adult cases of schizophrenia-spectrum disorder and 10 969 adult healthy controls (descriptive data for the entire cohort were not available for age, numbers of males and females, and ethnicity). Concentration of interleukin (IL)-1β, IL-1 receptor antagonist (IL-1RA), soluble interleukin-2 receptor (sIL-2R), IL-6, IL-8, IL-10, tumour necrosis factor (TNF)-α, and C-reactive protein were consistently elevated in both individuals with acute schizophrenia-spectrum disorder and chronic schizophrenia-spectrum disorder, relative to healthy controls. IL-2 and interferon (IFN)-γ were significantly elevated in acute schizophrenia-spectrum disorder, while IL-4, IL-12, and IFN-γ were significantly decreased in chronic schizophrenia-spectrum disorder. Sensitivity and meta-regression analyses revealed that study quality and a majority of the evaluated methodological, demographic, and diagnostic factors had no significant impact on the observed results for most of the inflammatory markers. Specific exceptions to this included: methodological factors of assay source (for IL-2 and IL-8), assay validity (for IL-1β), and study quality (for transforming growth factor-β1); demographic factors of age (for IFN-γ, IL-4, and IL-12), sex (for IFN-γ and IL-12), smoking (for IL-4), and BMI (for IL-4); and diagnostic factors including diagnostic composition of schizophrenia-spectrum cohort (for IL-1β IL-2, IL-6, and TNF-α), antipsychotic-free cases (for IL-4 and IL-1RA), illness duration (for IL-4), symptom severity (for IL-4), and subgroup composition (for IL-4). INTERPRETATION Results suggest that people with schizophrenia-spectrum disorders have a baseline level of inflammatory protein alteration throughout the illness, as reflected by consistently elevated pro-inflammatory proteins, hypothesised here as trait markers (eg, IL-6), while those with acute psychotic illness might have superimposed immune activity with increased concentrations of hypothesised state markers (eg, IFN-γ). Further research is required to determine whether these peripheral alterations are reflected within the central nervous system. This research facilitates an entry point in understanding how clinically relevant inflammatory biomarkers might one day be useful to the diagnosis and prognostication of schizophrenia-spectrum disorders. FUNDING None.
Collapse
Affiliation(s)
- Sean Halstead
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia; Medical School, The University of Queensland, Brisbane, QLD, Australia
| | - Dan Siskind
- Medical School, The University of Queensland, Brisbane, QLD, Australia; Metro South Addiction and Mental Health, Brisbane, QLD, Australia
| | - Michaela Amft
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität München, Munich, Munich, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität München, Munich, Munich, Germany
| | - Vladislav Yakimov
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität München, Munich, Munich, Germany
| | - Zoe Shih-Jung Liu
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Nicola Warren
- Medical School, The University of Queensland, Brisbane, QLD, Australia; Metro South Addiction and Mental Health, Brisbane, QLD, Australia.
| |
Collapse
|
44
|
Harris A. Approach to schizophrenia. Intern Med J 2023; 53:473-480. [PMID: 37070777 DOI: 10.1111/imj.16068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 04/19/2023]
Abstract
Schizophrenia is the most common of a group of psychotic disorders that occur in approximately 3% of the population over the lifespan. It has clear genetic antecedents, which are shared across the spectrum of psychotic disorders; however, a range of other biological and social factors influence the onset and treatment of the disorder. Schizophrenia is diagnosed by a characteristic set of symptoms (positive, negative, disorganisation, cognitive and affective) accompanied by a functional decline. Investigations are used to exclude other organic causes of psychosis and to provide a baseline for the negative effects of pharmacological treatments. Treatment requires a combination of pharmacological and psychosocial interventions. Physical health is poor in this group of people and this is not helped by inconsistent care from health services. Although earlier intervention has improved the immediate outcomes, the longer-term outcome has not significantly shifted.
Collapse
Affiliation(s)
- Anthony Harris
- Specialty of Psychiatry, Sydney Medical School, Faculty of Medicine and Health Sciences, University of Sydney, Sydney, New South Wales, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Prevention Early Intervention and Recovery Service, Western Sydney Local Health District, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Foley ÉM, Griffiths SL, Murray A, Rogers J, Corsi-Zuelli F, Hickinbotham H, Warwick E, Wilson M, Kaser M, Murray GK, Deakin B, Jadon D, Suckling J, Barnes NM, Upthegrove R, Khandaker GM. Protocol for the Psychosis Immune Mechanism Stratified Medicine (PIMS) trial: a randomised double-blind placebo-controlled trial of single-dose tocilizumab in patients with psychosis. BMJ Open 2023; 13:e067944. [PMID: 36963796 PMCID: PMC10040013 DOI: 10.1136/bmjopen-2022-067944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/22/2023] [Indexed: 03/26/2023] Open
Abstract
INTRODUCTION Evidence suggests a potentially causal role of interleukin 6 (IL-6), a pleiotropic cytokine that generally promotes inflammation, in the pathogenesis of psychosis. However, no interventional studies in patients with psychosis, stratified using inflammatory markers, have been conducted to assess the therapeutic potential of targeting IL-6 in psychosis and to elucidate potential mechanism of effect. Tocilizumab is a humanised monoclonal antibody targeting the IL-6 receptor to inhibit IL-6 signalling, licensed in the UK for treatment of rheumatoid arthritis. The primary objective of this study is to test whether IL-6 contributes to the pathogenesis of first episode psychosis and to examine potential mechanisms by which IL-6 affects psychotic symptoms. A secondary objective is to examine characteristics of inflammation-associated psychosis. METHODS AND ANALYSIS A proof-of-concept study employing a randomised, parallel-group, double-blind, placebo-controlled design testing the effect of IL-6 inhibition on anhedonia in patients with psychosis. Approximately 60 participants with a diagnosis of schizophrenia and related psychotic disorders (ICD-10 codes F20, F22, F25, F28, F29) with evidence of low-grade inflammation (IL-6≥0.7 pg/mL) will receive either one intravenous infusion of tocilizumab (4.0 mg/kg; max 800 mg) or normal saline. Psychiatric measures and blood samples will be collected at baseline, 7, 14 and 28 days post infusion. Cognitive and neuroimaging data will be collected at baseline and 14 days post infusion. In addition, approximately 30 patients with psychosis without evidence of inflammation (IL-6<0.7 pg/mL) and 30 matched healthy controls will be recruited to complete identical baseline assessments to allow for comparison of the characteristic features of inflammation-associated psychosis. ETHICS AND DISSEMINATION The study is sponsored by the University of Bristol and has been approved by the Cambridge East Research Ethics Committee (reference: 22/EE/0010; IRAS project ID: 301682). Study findings will be published in peer-review journals. Findings will also be disseminated by scientific presentation and other means. TRIAL REGISTRATION NUMBER ISRCTN23256704.
Collapse
Affiliation(s)
- Éimear M Foley
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sian Lowri Griffiths
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Alexander Murray
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Jack Rogers
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Fabiana Corsi-Zuelli
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Ella Warwick
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Martin Wilson
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Muzaffer Kaser
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn, UK
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn, UK
| | - Bill Deakin
- Faculty of Biology, Medicine and Health, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Deepak Jadon
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn, UK
| | - Nicholas M Barnes
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel Upthegrove
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health and Care Research, Bristol Biomedical Research Centre, Bristol, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| |
Collapse
|
46
|
Chen Z, Li X, Cui X, Zhang L, Liu Q, Lu Y, Wang X, Shi H, Ding M, Yang Y, Li W, Lv L. Association of CTNND2 gene polymorphism with schizophrenia: Two-sample case-control study in Chinese Han population. Int J Psychiatry Med 2023:912174231164669. [PMID: 36930964 DOI: 10.1177/00912174231164669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
OBJECTIVES Genetic factors play an important role in the etiology of schizophrenia (SZ). Catenin Delta 2 (CTNND2) is one of the genes regulating neuronal development in the brain. It is unclear whether CTNND2 is involved in SZ. With the hypothesis that CTNND2 may be a risk gene for SZ, we performed a case-control association analysis to investigate if CTNND2 gene single nucleotide polymorphisms (SNPs) are implicated in SZ in a Han Chinese northern population. MATERIALS AND METHODS We recruited subjects from 2010 to 2022 from the Han population of northern Henan and divided them into two case-control samples, including a discovery sample (SZ = 528 and control = 528) and replication sample (SZ = 2458 and control = 6914). Twenty-one SNPs were genotyped on the Illumina BeadStation 500G platform using GoldenGate technology and analyzed by PLINK. Positive and Negative Syndrome Scale (PANSS) was used to assess clinical symptoms. RESULTS Rs16901943, rs7733427, and rs2168878 SNPs were associated with SZ (Chi2 = 7.484, 11.576, and 5.391, respectively, df = 1; p = 0.006, 0.00067, and 0.02, respectively) in two samples. Rs10058868 was associated with SZ in male patients in the discovery sample (Chi2 = 6.264, df = 1, p = .044). Only rs7733427 survived Bonferroni correction. Linkage disequilibrium block three haplotypes were associated with SZ in the discovery and total sample. PANSS analysis of the four SNPs implicated rs10058868 and rs2168878 with symptoms of depression and excitement, respectively, in the SZ patients. CONCLUSION Four SNPs were identified as being correlated with SZ. The CTNND2 gene may be involved in susceptibility to SZ.
Collapse
Affiliation(s)
- Zhaonian Chen
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaojing Li
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiangzheng Cui
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luwen Zhang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Qing Liu
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiujuan Wang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Han Shi
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Minli Ding
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
47
|
Santoni M, Sagheddu C, Serra V, Mostallino R, Castelli MP, Pisano F, Scherma M, Fadda P, Muntoni AL, Zamberletti E, Rubino T, Melis M, Pistis M. Maternal immune activation impairs endocannabinoid signaling in the mesolimbic system of adolescent male offspring. Brain Behav Immun 2023; 109:271-284. [PMID: 36746342 DOI: 10.1016/j.bbi.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Prenatal infections can increase the risk of developing psychiatric disorders such as schizophrenia in the offspring, especially when combined with other postnatal insults. Here, we tested, in a rat model of prenatal immune challenge by the viral mimic polyriboinosinic-polyribocytidilic acid, whether maternal immune activation (MIA) affects the endocannabinoid system and endocannabinoid-mediated modulation of dopamine functions. Experiments were performed during adolescence to assess i) the behavioral endophenotype (locomotor activity, plus maze, prepulse inhibition of startle reflex); ii) the locomotor activity in response to Δ9-Tetrahydrocannabinol (THC) and iii) the properties of ventral tegmental area (VTA) dopamine neurons in vivo and their response to THC; iv) endocannabinoid-mediated synaptic plasticity in VTA dopamine neurons; v) the expression of cannabinoid receptors and enzymes involved in endocannabinoid synthesis and catabolism in mesolimbic structures and vi) MIA-induced neuroinflammatory scenario evaluated by measurements of levels of cytokine and neuroinflammation markers. We revealed that MIA offspring displayed an altered locomotor activity in response to THC, a higher bursting activity of VTA dopamine neurons and a lack of response to cumulative doses of THC. Consistently, MIA adolescence offspring showed an enhanced 2-arachidonoylglycerol-mediated synaptic plasticity and decreased monoacylglycerol lipase activity in mesolimbic structures. Moreover, they displayed a higher expression of cyclooxygenase 2 (COX-2) and ionized calcium-binding adaptor molecule 1 (IBA-1), associated with latent inflammation and persistent microglia activity. In conclusion, we unveiled neurobiological mechanisms whereby inflammation caused by MIA influences the proper development of endocannabinoid signaling that negatively impacts the dopamine system, eventually leading to psychotic-like symptoms in adulthood.
Collapse
Affiliation(s)
- Michele Santoni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valeria Serra
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Francesco Pisano
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy; Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy.
| |
Collapse
|
48
|
Skalniak A, Krzyściak W, Śmierciak N, Szwajca M, Donicz P, Kozicz T, Pilecki M. Immunological routine laboratory parameters at admission influence the improvement of positive symptoms in schizophrenia patients after pharmacological treatment. Front Psychiatry 2023; 14:1082135. [PMID: 37032951 PMCID: PMC10073498 DOI: 10.3389/fpsyt.2023.1082135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The standard care of schizophrenia patients is based on the assessment of their psychotic behavior, using interview-based, subjective scales that measure symptoms severity. We aimed at defining easily accessible and inexpensive blood-derived clinical diagnostic parameters that might serve as objective markers in the prediction of the effects of pharmacological treatment of schizophrenia patients. Methods A total of 40 patients with schizophrenia diagnosis according to ICD 10 during psychotic decompensation were included in the study. Blood-based biochemical parameters, BMI and interview-based medical scales of symptom severity were determined - all at admission and after 12 weeks of standard pharmacological treatment. Results The drops in scale values were correlated with clinical parameters. All scale changes after treatment were dependent on the value of the given scale at admission, with higher initial values leading to larger drops of the values after treatment. Models based on those correlations were significantly improved when immune and metabolism parameters were included. C4 complement and C-reactive protein (CRP) level at admission were predictive of changes in Positive and Negative Syndrome Scale (PANSS) subscales related to significant disruption of thought processes, reality testing and disorganization. The pharmacological treatment-driven changes in scales representing negative symptoms were correlated with markers of the patients' thyroid status and metabolism. Discussion We show that objective markers can be obtained by testing immune and metabolic parameters from the patients' blood and may be added at a low cost to the standard care of schizophrenia patients in order to predict the outcome of pharmacological treatment.
Collapse
Affiliation(s)
- Anna Skalniak
- Department of Endocrinology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Wirginia Krzyściak,
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Paulina Donicz
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
49
|
Abstract
There is increasingly compelling evidence that microorganisms may play an etiological role in the emergence of mental illness in a subset of the population. Historically, most work has focused on the neurotrophic herpesviruses, herpes simplex virus type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as the protozoan, Toxoplasma gondii. In this chapter, we provide an umbrella review of this literature and additionally highlight prospective studies that allow more mechanistic conclusions to be drawn. Next, we focus on clinical trials of anti-microbial medications for the treatment of psychiatric disorders. We critically evaluate six trials that tested the impact of anti-herpes medications on inflammatory outcomes in the context of a medical disorder, nine clinical trials utilizing anti-herpetic medications for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or schizophrenia, and four clinical trials utilizing anti-parasitic medications for the treatment of schizophrenia. We then turn our attention to evidence for a gut dysbiosis and altered microbiome in psychiatric disorders, and the potential therapeutic effects of probiotics, including an analysis of more than 10 randomized controlled trials of probiotics in the context of schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD).
Collapse
|
50
|
Shin SH, Kim YK. Early Life Stress, Neuroinflammation, and Psychiatric Illness of Adulthood. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:105-134. [PMID: 36949308 DOI: 10.1007/978-981-19-7376-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Stress exposure during early stages of life elevates the risk of developing psychopathologies and psychiatric illness in later life. The brain and immune system are not completely developed by birth and therefore continue develop after birth; this post birth development is influenced by several psychosocial factors; hence, early life stress (ELS) exposure can alter brain structural development and function. A growing number of experimental animal and observational human studies have investigated the link between ELS exposure and increased risk of psychopathology through alternations in the immune system, by evaluating inflammation biomarkers. Recent studies, including brain imaging, have also shed light on the mechanisms by which both the innate and adaptive immune systems interact with neural circuits and neurotransmitters, which affect psychopathology. Herein, we discuss the link between the experience of stress in early life and lifelong alterations in the immune system, which subsequently lead to the development of various psychiatric illnesses.
Collapse
Affiliation(s)
- Sang Ho Shin
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Korea University, Ansan, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Korea University, Ansan, Republic of Korea.
| |
Collapse
|