1
|
Yang M, Fu Y, Dhakal P, Yan Z, Lang J, Ma C, Jiang Y, Wang C, Zhang L. Prevalence and novel genetic characteristics of Cryptosporidium spp. in wild rodents in the northern foothills of the Dabie Mountains, southeast Henan Province, China. PLoS Negl Trop Dis 2025; 19:e0013117. [PMID: 40392880 PMCID: PMC12091789 DOI: 10.1371/journal.pntd.0013117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 05/05/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Cryptosporidium spp. are prevalent zoonotic pathogens that affect both humans and animals. The pathogens are spread through feces and represent a major cause of diarrhea. As they are both abundant and widely distributed, wild rodents play a significant role in the transmission of Cryptosporidium spp. The Dabie Mountains in southeast Henan Province are rich in wildlife resources as well as various species of livestock. However, the epidemiological characteristics of Cryptosporidium spp. among local wild rodents remain poorly understood. Therefore, the infection rate and genetic characteristics of Cryptosporidium spp. in wild rodents within this region should be determined. METHODS Between March 2023 and April 2024, a total of 267 wild rodents were captured in the northern foothills of the Dabie Mountains, and fecal samples were collected from their intestines for DNA extraction. Species identification of wild rodents was conducted using PCR amplification of the universal vertebrate cytochrome b (cytb) gene. Nested PCR was subsequently used to amplify the small subunit (SSU) rRNA, actin, heat shock protein 70 (HSP70), and 60 kDa glycoprotein (gp60) genes for the analysis of Cryptosporidium species, genotypes, and subtypes in the fecal samples. RESULTS The infection rate of Cryptosporidium spp. in wild rodents from the northern foothills of the Dabie Mountains was 21.3% (57/267). Seven species of wild rodents were identified, and the infection rates for Cryptosporidium spp. varied among host species. In particular, the infection rate was 21.4% (25/117) in Niviventer lotipes, 22.4% (22/98) in Apodemus agrarius, 17.2% (5/29) in Rattus nitidus, 22.2% (4/18) in Apodemus draco, and 33.3% (1/3) in Rattus tanezumi. The identification results indicated the presence of five Cryptosporidium species: Cryptosporidium apodemi (n = 12), C. ubiquitum (n = 11), C. viatorum (n = 7), C. ratti (n = 2), and C. occultus (n = 2). Moreover, two novel genotypes were identified: Cryptosporidium sp. rat genotype VI (n = 8) and Cryptosporidium sp. rat genotype VII (n = 15). Notably, a new subtype of C. viatorum designated as XVgA4 was discovered. CONCLUSIONS This study revealed the prevalence of Cryptosporidium spp. in wild rodents in the northern foothills of the Dabie Mountains and identified two novel Cryptosporidium genotypes, along with a new subtype, C. viatorum-XVgA4. The findings highlight the genetic diversity of Cryptosporidium spp., underscoring the increased risk of Cryptosporidium spp. transmission posed by local wild rodents population. It suggests that host-specific factors should be considered in epidemiological surveillance and control strategies of Cryptosporidium spp., which is of great significance for the prevention and control of Cryptosporidiosis.
Collapse
Affiliation(s)
- Mengyao Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, People’s Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Quality and Safety Control of Poultry Products, Zhengzhou, Henan, People’s Republic of China
| | - Yin Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, People’s Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Quality and Safety Control of Poultry Products, Zhengzhou, Henan, People’s Republic of China
| | - Pitambar Dhakal
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, People’s Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Quality and Safety Control of Poultry Products, Zhengzhou, Henan, People’s Republic of China
| | - Zi Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, People’s Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Quality and Safety Control of Poultry Products, Zhengzhou, Henan, People’s Republic of China
| | - Jiashu Lang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, People’s Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Quality and Safety Control of Poultry Products, Zhengzhou, Henan, People’s Republic of China
| | - Chaofeng Ma
- Technical Service Center for Animal husbandry and Veterinary Medicine of Xinyang, Xinyang, Henan, People’s Republic of China
| | - Yuhong Jiang
- Technology Exension Center for Animal husbandry and Veterinary Medicine of Shangcheng County, Shangcheng, Henan, People’s Republic of China
| | - Congzhou Wang
- Bureau of Agriculture and Rural Affairs of Shangcheng County, Shangcheng, Henan, People’s Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, People’s Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Quality and Safety Control of Poultry Products, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
2
|
Boks M, Lilja M, Lindam A, Widerström M, Persson A, Karling P, Sjöström M. Long-term symptoms in children after a Cryptosporidium hominis outbreak in Sweden: a 10-year follow-up. Parasitol Res 2025; 124:13. [PMID: 39862254 PMCID: PMC11762772 DOI: 10.1007/s00436-025-08455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
In 2010, a Cryptosporidium hominis outbreak resulted in 27,000 clinical cryptosporidiosis cases (45% of the population) in Östersund, Sweden. Long-term abdominal and joint symptoms are common following cryptosporidiosis in adults, and it can affect the development of children in low-income countries. We investigated the potential consequences for children in a high-income setting. In 2011, we prospectively surveyed 600 randomly selected children aged 0-5 years from Östersund. Cases were defined as respondents reporting new episodes of diarrhoea during the outbreak. After 10 years, respondents received a follow-up questionnaire about long-term symptoms (n = 423). We used X2 and Mann-Whitney U tests to assess between-group differences in demographics and the mean number of symptoms. Logistic regressions adjusted for sex, age, and prior issues with loose stools were used to examine associations between case status and symptoms reported at follow-up. We retrieved data on healthcare visits from patient records. In total, 121 cases and 174 non-cases responded to the follow-up questionnaire (69.7%). Cases reported 1.74 (median 1.00, range 0-14) symptoms and non-cases 1.37 (median 0.00, range 0-11) symptoms (p = 0.029). Cases were more likely to report joint symptoms (aOR 4.0, CI 1.3-12.0) and fatigue (aOR 1.9, CI 1.1-3.4), but numbers were generally low. We found no between-group differences in abdominal symptoms, healthcare utilization, or disease diagnoses. Children aged 0-5 years from high-income countries may experience long-term symptoms after cryptosporidiosis, but may not be affected to the same extent as adults or their peers living in low-income countries.
Collapse
Affiliation(s)
- Marije Boks
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - Mikael Lilja
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development-Östersund, Umeå University, Umeå, Sweden
| | - Anna Lindam
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development-Östersund, Umeå University, Umeå, Sweden
| | | | - Angelica Persson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Pontus Karling
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Malin Sjöström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Colito DA, Pinto Linaza AX, García-Livia K, Baz-González E, Martin-Carrillo N, Da Costa Lima HS, Dorta-Guerra R, Foronda P. Molecular characterization of Cryptosporidium spp. in symptomatic children from Cape Verde. Acta Trop 2025; 261:107498. [PMID: 39672292 DOI: 10.1016/j.actatropica.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Cryptosporidiosis has been identified as one of the leading causes of diarrhea and diarrhea-associated deaths in young children in sub-Saharan Africa. In Cape Verde, available data on human infections caused by Cryptosporidium spp. are limited. The aim of the present study was to analyze the molecular epidemiology of Cryptosporidium spp. in Cape Verde. Stool samples were obtained from patients on the Santiago and Sal islands (Cape Verde); 10/105 (9.5 % CI: 4.7; 16.8) from the Santiago Island and 4/85 (4.7 % CI: 1.3; 11.6) from the Sal Island presented Cryptosporidium sp., and were analyzed by nested-PCR of the SSU rRNA gene and nested-PCR of the 60 kDa glycoprotein gene for subtyping. Two species, Cryptosporidium hominis and Cryptosporidium felis, were identified. In Santiago Island, only C. hominis was detected, while both species were found in Sal Island. Cryptosporidium hominis IfA 14G1R5 subtype was identified in children from Santiago and Sal. Although the consumption of non-bottled water is a risk factor for infection by Cryptosporidium spp. on Santiago Island, none of the factors analysed (age, gender, clinical symptoms, source of drinking water, presence of animals at home, attending kindergarten or school, and having a bathroom at home) were significantly related to the presence of Cryptosporidium spp. in Sal Island. Cryptosporidium hominis is the most commonly identified species associated with cryptosporidiosis in the studied population, indicating a predominance of anthroponotic transmission. This study provides the first data on C. hominis subtyping in Cape Verde and the first report of C. felis in humans from this region, demonstrating the possibility of zoonotic transmission. The obtained results highlight the need for further molecular and epidemiological studies of Cryptosporidium spp. infections in human and animals from Cape Verde, in order to investigate the transmission dynamics of cryptosporidiosis and develop effective control strategies to prevent the spread of the disease.
Collapse
Affiliation(s)
- Denise Andrade Colito
- Faculty of Science and Technology, University of Cape Verde, Cidade da Praia, Santiago, Cape Verde
| | - Antton Xabier Pinto Linaza
- Emprofac SARL SEDE, Zona Industrial de Tira Chapéu, Caixa Postal n. 59, Cidade da Praia, Santiago, Cape Verde; Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203 San Cristóbal de La Laguna, Spain
| | - Katherine García-Livia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203, San Cristóbal de La Laguna, Spain
| | - Edgar Baz-González
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203, San Cristóbal de La Laguna, Spain; Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203 San Cristóbal de La Laguna, Spain
| | - Natalia Martin-Carrillo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203, San Cristóbal de La Laguna, Spain; Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203 San Cristóbal de La Laguna, Spain
| | - Hailton Spencer Da Costa Lima
- Faculty of Science and Technology, University of Cape Verde, Cidade da Praia, Santiago, Cape Verde; Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203 San Cristóbal de La Laguna, Spain
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203, San Cristóbal de La Laguna, Spain; Departamento de Matemáticas, Estadística e IO, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203, San Cristóbal de La Laguna, Spain
| | - Pilar Foronda
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez s/n, 38203, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
4
|
Huang W, He W, Huang Y, Tang Y, Chen M, Sun L, Yang Z, Hou T, Liu H, Chen H, Wang T, Li N, Guo Y, Xiao L, Feng Y. Multicopy subtelomeric genes underlie animal infectivity of divergent Cryptosporidium hominis subtypes. Nat Commun 2024; 15:10774. [PMID: 39737947 PMCID: PMC11685829 DOI: 10.1038/s41467-024-54995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The anthroponotic Cryptosporidium hominis differs from the zoonotic C. parvum in its lack of infectivity to animals, but several divergent subtypes have recently been found in nonhuman primates and equines. Here, we sequence 17 animal C. hominis isolates and generate a new IbA12G3 genome at the chromosome level. Comparative analysis with 222 human isolates shows significant genetic divergence of the animal isolates, with genetic recombination among them. They have additional subtelomeric insulinase and MEDLE genes. In interferon-γ knockout mice, three monkey isolates show differences in infectivity and induce higher and longer oocyst shedding than a reference C. parvum isolate. Deletion of the MEDLE genes significantly reduces the growth and pathogenicity of a virulent strain in mice. Co-infection of two fluorescence-tagged C. hominis subtypes produces bicolored oocysts, supporting the conclusion that mixed subtype infections can lead to genetic recombination. These data provide insight into potential determinants of host infectivity in Cryptosporidium, and a convenient animal model for biological studies of C. hominis.
Collapse
Affiliation(s)
- Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei He
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Huang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongping Tang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Chen
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lianbei Sun
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuwei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huimin Liu
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haoyu Chen
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianpeng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Tipu JH, Sivertsen A, Afset JE, Sandven L, Brekke H, Lund HM, Elburg LS, Gaustad P, Lier T, Tverelv LR, Johansen ØH, Robertson LJ, Hanevik K. Cryptosporidium species and subtypes in Norway: predominance of C. parvum and emergence of C. mortiferum. Emerg Microbes Infect 2024; 13:2412624. [PMID: 39361548 PMCID: PMC11485689 DOI: 10.1080/22221751.2024.2412624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
PCR-based diagnostics has revealed the previously largely unknown Cryptosporidium transmission and infections in high-income countries. This study aimed to determine domestic and imported subtypes of Cryptosporidium species in Norway, evaluate their demographic distribution, and identify potential small outbreaks. Cryptosporidium-positive human faecal samples were obtained from six medical microbiology laboratories between February 2022 and January 2024, together with 22 Cryptosporidium-positive animal samples. Species and subtypes were identified by sequencing PCR products from gp60 and SSU rRNA genes. Most cryptosporidiosis cases occurred during late summer/early autumn, primarily in children and young adults. Of 550 human samples, 359 were successfully characterized molecularly (65%), revealing infection with 10 different Cryptosporidium species. C. parvum occurred in 245 (68%) human isolates with IIa and IId being major allele families, with distinct regional distribution patterns of common subtypes. A kindergarten outbreak with 5 cases was due to C. parvum IIaA14G1R1. C. mortiferum was identified in 33 (9.2%) human cases of which 24 were known to be of domestic origin, making it the second most common species in human autochthonous cases in Norway. All C. mortiferum isolates were of the same genotype; XIVaA20G2T1, including 13 cases from a suspected small outbreak in Trøndelag. C. hominis occurred in 68 typed cases (19%), but mostly in infections acquired abroad, with allele families Ib and If occurring most often. In conclusion, this study of recent Cryptosporidium spp. and subtypes in Norway, highlights the predominance of C. parvum and the emergence of C. mortiferum among autochthonous cases.
Collapse
Affiliation(s)
- Jahid Hasan Tipu
- Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Audun Sivertsen
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Jan-Egil Afset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lars Sandven
- Department of Internal Medicine, Førde Central Hospital, Førde, Norway
| | - Hanne Brekke
- Department of Medical Microbiology, Oslo University Hospital, Oslo, Norway
| | | | | | - Peter Gaustad
- Fürst Medical Laboratory, Oslo, Norway
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tore Lier
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Liv Reidun Tverelv
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | | | - Lucy J. Robertson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Bujila I, Ohlson A, Hansen A, Agudelo L, Kühlmann-Berenzon S, Galanis I, Hall I, Gustavsson AM, Lebbad M, Lindblad M, Rönnberg C, Rehn M. Outbreak of the novel Cryptosporidium parvum IIγA11 linked to salad bars in Sweden, December 2023. Epidemiol Infect 2024; 152:e140. [PMID: 39552133 PMCID: PMC11574604 DOI: 10.1017/s0950268824001432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
We report a foodborne outbreak of the previously undetected Cryptosporidium parvum gp60 subtype IIγA11. In December 2023, notifications of cryptosporidiosis cases increased in Sweden, prompting the initiation of a national outbreak investigation, and a case-control study was performed to identify the source. We identified 60 cases between 15 December 2023 and 1 January 2024. The median age was 44 years (range: 16-81), and 73% were women. Controls were recruited from a national random pool; frequency was matched by age group and sex. Compared to controls, cases were more likely to have consumed items from salad bars in grocery stores (8% vs. 85%; adjusted odds ratios [aOR]: 58; 95% confidence interval [CI]: 22-186). In regards to food items from the salad bars, cases were more likely to have consumed kale mix salad compared to controls (62% vs. 32%; aOR: 3.6; 95%CI: 1.2-12). Trace-back investigations identified kale producers from Sweden, Belgium, and Spain, but no particular grower was identified, and no food samples were available for microbiological analysis. Our investigation indicates that leafy greens such as kale may contain Cryptosporidium spp. and cause outbreaks and it is important to understand how the contamination occurs to prevent future outbreaks and apply adequate preventive measures.
Collapse
Affiliation(s)
- Ioana Bujila
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Anna Ohlson
- Department of Communicable Disease Control and Health Protection, Public Health Agency of Sweden, Solna, Sweden
- ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Anette Hansen
- Department of Communicable Disease Control and Health Protection, Public Health Agency of Sweden, Solna, Sweden
| | - Lady Agudelo
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Sharon Kühlmann-Berenzon
- Department of Public Health Analysis and Data Management, Public Health Agency of Sweden, Solna, Sweden
| | - Ilias Galanis
- Department of Public Health Analysis and Data Management, Public Health Agency of Sweden, Solna, Sweden
| | - Ingela Hall
- Department of Communicable Disease Control and Prevention, Jönköping County Council, Jönköping, Sweden
| | - Ann-Mari Gustavsson
- Department of Communicable Disease Control and Prevention, Värmland County Council, Karlstad, Sweden
| | - Marianne Lebbad
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | | | - Caroline Rönnberg
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Moa Rehn
- Department of Communicable Disease Control and Health Protection, Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
7
|
Ali M, Ji Y, Xu C, Hina Q, Javed U, Li K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals (Basel) 2024; 14:3287. [PMID: 39595339 PMCID: PMC11591251 DOI: 10.3390/ani14223287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
A sharp rise in the global population and improved lifestyles has led to questions about the quality of both food and water. Among protozoan parasites, Cryptosporidium is of great importance in this regard. Hence, Cryptosporidium's associated risk factors, its unique characteristics compared to other protozoan parasites, its zoonotic transmission, and associated economic losses in the public health and livestock sectors need to be focused on from a One Health perspective, including collaboration by experts from all three sectors. Cryptosporidium, being the fifth largest food threat, and the second largest cause of mortality in children under five years of age, is of great significance. The contamination of vegetables, fresh fruits, juices, unpasteurized raw milk, uncooked meat, and fish by Cryptosporidium oocysts occurs through infected food handlers, sewage-based contamination, agricultural effluents, infected animal manure being used as biofertilizer, etc., leading to severe foodborne outbreaks. The only Food and Drug Administration (FDA)-approved drug, Nitazoxanide (NTZ), provides inconsistent results in all groups of patients, and currently, there is no vaccine against it. The prime concerns of this review are to provide a deep insight into the Cryptosporidium's global burden, associated water- and foodborne outbreaks, and some future perspectives in an attempt to effectively manage this protozoal disease. A thorough literature search was performed to organize the most relevant, latest, and quantified data, justifying the title. The estimation of its true burden, strategies to break the transmission pathways and life cycle of Cryptosporidium, and the search for vaccine targets through genome editing technology represent some future research perspectives.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaru Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Usama Javed
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Brusa V, Costa M, Oteiza JM, Galli L, Barril PA, Leotta GA, Signorini M. Prioritization of vegetable-borne biological hazards in Argentina using a multicriteria decision analysis tool. FOOD SCI TECHNOL INT 2024; 30:680-696. [PMID: 37306110 DOI: 10.1177/10820132231180640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vegetables, especially those eaten raw, have been implicated in several foodborne disease outbreaks. Since multiple vegetable matrices and hazards are involved, risk managers have to prioritize those with the greatest impact on public health to design control strategies. In this study, a scientific-based risk ranking of foodborne pathogens transmitted by leafy green vegetables in Argentina was performed. The prioritization process included hazard identification, evaluation criteria identification and definition, criteria weighting, expert survey design and selection and call for experts, hazard score calculation, hazard ranking and variation coefficient, and result analysis. Regression tree analysis determined four risk clusters: high (Cryptosporidum spp., Toxoplasma gondii, Norovirus), moderate (Giardia spp., Listeria spp., Shigella sonnei), low (Shiga toxin-producing Escherichia coli, Ascaris spp., Entamoeba histolytica, Salmonella spp., Rotavirus, Enterovirus) and very low (Campylobacter jejuni, hepatitis A virus and Yersinia pseudotuberculosis). Diseases caused by Norovirus, Cryptosporidium spp. and T. gondii do not require mandatory notification. Neither viruses nor parasites are included as microbiological criteria for foodstuff. The lack of outbreak studies did not allow to accurately identify vegetables as a source of Norovirus disease. Information on listeriosis cases or outbreaks due to vegetable consumption was not available. Shigella spp. was the main responsible for bacterial diarrhea, but it has not been epidemiologically associated with vegetable consumption. The quality of the available information for all hazards studied was very low and low. The implementation of good practice guidelines throughout the entire vegetable production chain could prevent the presence of the identified hazards. The current study allowed the identification of vacancy areas and could help reinforce the need for performing epidemiological studies on foodborne diseases potentially associated with vegetable consumption in Argentina.
Collapse
Affiliation(s)
- Victoria Brusa
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP - CONICET LA PLATA), La Plata, Argentina
| | - Magdalena Costa
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP - CONICET LA PLATA), La Plata, Argentina
| | - Juan M Oteiza
- Centro de Investigación y Asistencia Técnica a la Industria (CIATI), Expedicionarios del desierto 1310, Neuquén, Argentina
| | - Lucía Galli
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP - CONICET LA PLATA), La Plata, Argentina
| | - Patricia A Barril
- Centro de Investigación y Asistencia Técnica a la Industria (CIATI), Expedicionarios del desierto 1310, Neuquén, Argentina
| | - Gerardo A Leotta
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP - CONICET LA PLATA), La Plata, Argentina
| | - Marcelo Signorini
- IDICAL - Instituto de Investigación de la Cadena Láctea (CONICET SANTA FE - INTA), Rafaela, Santa Fe, Argentina
| |
Collapse
|
9
|
Procter M, Savikumar S, Hamdan L, Al Naqbi S, Kváč M, Schuster RK, Qablan MA. Genetic diversity of Cryptosporidium species from diarrhoeic ungulates in the United Arab Emirates. Vet Parasitol Reg Stud Reports 2024; 54:101067. [PMID: 39237224 DOI: 10.1016/j.vprsr.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 09/07/2024]
Abstract
Cryptosporidiosis has previously been reported in animals, humans, and water sources in the United Arab Emirates (UAE). However, most reports were only to the genus level, or generically identified as cryptosporidiosis. We aimed to investigate the genetic diversity of Cryptosporidium species occurring in diarrhetic ungulates which were brought to the Central Veterinary Research Laboratory (CVRL) in Dubai. Using a combination of microscopic and molecular methods, we identified five species of Cryptosporidium occurring among ungulates in the UAE, namely C. parvum, C. hominis, C. xiaoi, C. meleagridis, and C. equi. Cryptosporidium parvum was the most prevalent species in our samples. Furthermore, we identified subtypes of C. parvum and C. hominis, which are involved in both human and animal cryptosporidiosis. This is also the first reported occurrence of Cryptosporidium spp. in the Arabian Tahr, to our knowledge. Since the animals examined were all in contact with humans, the possibility of zoonotic spread is possible. Our study correlates with previous reports in the region, building upon the identification of Cryptosporidium sp. However, there is a need to further investigate the endemic populations of Cryptosporidium, including more hosts, sampling asymptomatic animals, and location data.
Collapse
Affiliation(s)
- M Procter
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - S Savikumar
- Central Veterinary Research Laboratory, PO Box 597, Dubai, United Arab Emirates
| | - L Hamdan
- Department of Veterinary Medicine, College Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - S Al Naqbi
- Department of Veterinary Medicine, College Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - M Kváč
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, 370 05 České Budějovice, Czech Republic; Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - R K Schuster
- Central Veterinary Research Laboratory, PO Box 597, Dubai, United Arab Emirates
| | - M A Qablan
- Department of Veterinary Medicine, College Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
10
|
Stensvold CR, Larsen TG, Grüttner J, Nielsen L, Engberg J, Lebbad M. Rodent-adapted Cryptosporidium infection in humans: Seven new cases and review of the literature. One Health 2024; 18:100682. [PMID: 39010954 PMCID: PMC11247268 DOI: 10.1016/j.onehlt.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 07/17/2024] Open
Abstract
Cases of cryptosporidiosis in humans have been reported with strong indication of transmission from rodents. Here, we report seven new human cases of cryptosporidiosis involving rodent-adapted species (Cryptosporidium ditrichi [n = 1], Cryptosporidium mortiferum [n = 4; previously known as Cryptosporidium chipmunk genotype I], Cryptosporidium tyzzeri [n = 1], and Cryptosporidium viatorum [n = 1]) and review cases of human infection caused by these four species published to date. The seven new cases were detected in Denmark within a period of twelve months from 2022 to 2023. Only the C. tyzzeri and C. viatorum cases were associated with travel outside Denmark. The total number of human cases of cryptosporidiosis due to C. ditrichi and C. tyzzeri documented to date globally are still limited (4 and 7, respectively), whereas cases involving C. viatorum and C. mortiferum have been detected to a larger extent (43 and 63 cases, respectively). The four new cases of C. mortiferum were all of the XIVaA20G2T1 subtype, which is the only subtype identified so far in Scandinavia, and which is a subtype not yet found outside of Scandinavia. The new C. viatorum case was identified as the XVaA3g subtype. The C. tyzzeri case was subtyped as IXbA6. No subtype data were produced for C. ditrichi due to lack of a subtype assay. Review of existing data suggests the presence of C. ditrichi and C. mortiferum primarily in northern countries and C. tyzzeri and C. viatorum primarily in warmer climates. While our data may further support the role of Cryptosporidium as a cause of zoonotic disease, case descriptions should be obtained where possible to determine if Cryptosporidium species primarily adapted to rodents are the likely cause of symptoms or just an incidental finding.
Collapse
Affiliation(s)
- Christen Rune Stensvold
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Tine Graakjær Larsen
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Jana Grüttner
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Lene Nielsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Herlev and Gentofte, Denmark
| | - Jørgen Engberg
- Department of Clinical Microbiology, Zealand University Hospital, Roskilde, Denmark
| | | |
Collapse
|
11
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. Critters and contamination: Zoonotic protozoans in urban rodents and water quality. WATER RESEARCH 2024; 251:121165. [PMID: 38290188 DOI: 10.1016/j.watres.2024.121165] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Rodents represent the single largest group within mammals and host a diverse array of zoonotic pathogens. Urbanisation impacts wild mammals, including rodents, leading to habitat loss but also providing new resources. Urban-adapted (synanthropic) rodents, such as the brown rat (R. norvegicus), black rat (R. rattus), and house mouse (Mus musculus), have long successfully adapted to living close to humans and are known carriers of zoonotic pathogens. Two important enteric, zoonotic protozoan parasites, carried by rodents, include Cryptosporidium and Giardia. Their environmental stages (oocysts/cysts), released in faeces, can contaminate surface and wastewaters, are resistant to common drinking water disinfectants and can cause water-borne related gastritis outbreaks. At least 48 species of Cryptosporidium have been described, with C. hominis and C. parvum responsible for the majority of human infections, while Giardia duodenalis assemblages A and B are the main human-infectious assemblages. Molecular characterisation is crucial to assess the public health risk linked to rodent-related water contamination due to morphological overlap between species. This review explores the global molecular diversity of these parasites in rodents, with a focus on evaluating the zoonotic risk from contamination of water and wasterwater with Cryptosporidium and Giardia oocysts/cysts from synanthropic rodents. Analysis indicates that while zoonotic Cryptosporidium and Giardia are prevalent in farmed and pet rodents, host-specific Cryptosporidium and Giardia species dominate in urban adapted rodents, and therefore the risks posed by these rodents in the transmission of zoonotic Cryptosporidium and Giardia are relatively low. Many knowledge gaps remain however, and therefore understanding the intricate dynamics of these parasites in rodent populations is essential for managing their impact on human health and water quality. This knowledge can inform strategies to reduce disease transmission and ensure safe drinking water in urban and peri‑urban areas.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
12
|
Bujila I, Troell K, Ögren J, Hansen A, Killander G, Agudelo L, Lebbad M, Beser J. Cryptosporidium species and subtypes identified in human domestic cases through the national microbiological surveillance programme in Sweden from 2018 to 2022. BMC Infect Dis 2024; 24:146. [PMID: 38291399 PMCID: PMC10826111 DOI: 10.1186/s12879-024-09049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The intestinal protozoan parasite Cryptosporidium is an important cause of diarrheal disease worldwide. A national microbiological surveillance programme was implemented in Sweden in 2018 in order to increase knowledge of the molecular epidemiology of human cryptosporidiosis to better understand transmission patterns and potential zoonotic sources. This article summarises the results of the first five years of the surveillance programme. METHODS Cryptosporidium-positive faecal and DNA samples from domestically acquired infections were collected from clinical microbiological laboratories in Sweden. Species and subtype determination was performed using 60 kDa glycoprotein and/or small subunit ribosomal RNA gene analysis. RESULTS Between 2018 and 2022, 1654 samples were analysed and 11 different species were identified: C. parvum (n = 1412), C. mortiferum (n = 59), C. hominis (n = 56), C. erinacei (n = 11), C. cuniculus (n = 5), C. meleagridis (n = 3), C. equi (n = 2), C. ubiquitum (n = 2), and one each of C. canis, C. ditrichi and C. felis. Subtyping revealed seven subtype families of C. parvum (new subtype families IIy and IIz) and 69 different subtypes (11 new subtypes). The most common C. parvum subtypes were IIdA22G1c, IIdA24G1, IIdA15G2R1 and IIaA16G1R1b. For C. hominis, four different subtype families and nine different subtypes (two new subtypes) were identified. For additional species, two new subtype families (IIIk and VId) and nine new subtypes were identified. All successfully subtyped C. mortiferum cases were subtype XIVaA20G2T1, confirming previous findings in Sweden. Several outbreaks were identified of which the majority were foodborne and a few were due to direct contact with infected animals. CONCLUSION Infection with C. parvum is the leading cause of human cryptosporidiosis acquired in Sweden, where more than 90% of domestic cases are caused by this zoonotic species and only a small proportion of cases are due to infection with other species. The rodent-associated C. mortiferum is considered an emerging zoonotic species in Sweden and the number of domestically acquired human cases has surpassed that of infection with C. hominis. A high diversity of species and subtypes, as well as diversity within the same subtype, was detected. Also, cryptosporidiosis appears to affect adults to a great extent in Sweden.
Collapse
Affiliation(s)
- Ioana Bujila
- Department of Microbiology, Unit of Parasitology, Public Health Agency of Sweden, Solna, Sweden.
| | - Karin Troell
- Department of Microbiology, National Veterinary Agency, Uppsala, Sweden
- Norwegian Veterinary Institute, Ås, Norway
| | - Jessica Ögren
- Division of Clinical Microbiology, Laboratory Medicine, Jönköping County, Jönköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anette Hansen
- Department of Communicable Disease Control and Health Protection, Unit of Zoonoses and Antibiotic Resistance, Public Health Agency of Sweden, Solna, Sweden
| | - Gustav Killander
- Department of Microbiology, Unit of Parasitology, Public Health Agency of Sweden, Solna, Sweden
| | - Lady Agudelo
- Department of Microbiology, Unit of Parasitology, Public Health Agency of Sweden, Solna, Sweden
| | - Marianne Lebbad
- Department of Microbiology, Unit of Parasitology, Public Health Agency of Sweden, Solna, Sweden
| | - Jessica Beser
- Department of Microbiology, Unit of Parasitology, Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
13
|
Kim AY, Alkathiri B, Lee S, Min KD, Kim S, Lee SM, Lee WK, Kwak D, Lee SH. Outbreak of severe diarrhea due to zoonotic Cryptosporidium parvum and C. xiaoi in goat kids in Chungcheongbuk-do, Korea. Parasitol Res 2023; 122:2045-2054. [PMID: 37347287 DOI: 10.1007/s00436-023-07904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Severe diarrhea was reported in goat kids in Chungcheongbuk-do, Korea, from 2021 to 2023, and Cryptosporidium infection was suspected. To confirm the cause of this outbreak, fecal samples were collected from goat farms where diarrhea had been reported and analyzed for Cryptosporidium infection using a molecular assay. A total of 65 fecal samples, including 37 from goats with diarrhea and 28 from goats without diarrhea, were collected from six goat farms. Forty-eight of the goats were kids (<2 months) and 17 were adults (>1 year). Cryptosporidium was identified in 53.8% (35/65) of total samples. Overall, 86.5% (32/37) of the diarrheic fecal samples tested positive; however, Cryptosporidium was not detected in any fecal sample from non-diarrheic adult goats. Therefore, cryptosporidiosis was significantly associated with diarrhea in goat kids, and adult goats were not responsible for transmission of Cryptosporidium to them. Phylogenetic analysis and molecular characterization revealed two Cryptosporidium species, namely, C. parvum (n = 28) and C. xiaoi (n = 7). In the C. parvum-positive samples, gp60 gene analysis revealed three zoonotic subtypes-IIaA18G3R1, IIdA15G1, and IIdA16G1. To the best of our knowledge, this study is the first to identify C. parvum IIaA18G3R1 and IIdA16G1 in goats, as well as the first to identify C. xiaoi in goats in Korea. These results suggest that goat kids play an important role as reservoir hosts for different Cryptosporidium species and that continuous monitoring with biosecurity measures is necessary to control cryptosporidiosis outbreaks.
Collapse
Affiliation(s)
- Ah-Young Kim
- Animal Quarantine Division, Agricultural Policy Bureau, Chungcheongbuk-do, Korea
- Graduate of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Korea
| | - Badriah Alkathiri
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Subin Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Duk Min
- Graduate of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Soochong Kim
- Graduate of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Wan-Kyu Lee
- Graduate of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Dongmi Kwak
- College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Seung-Hun Lee
- Graduate of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Korea.
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
14
|
Tůmová L, Ježková J, Prediger J, Holubová N, Sak B, Konečný R, Květoňová D, Hlásková L, Rost M, McEvoy J, Xiao L, Santín M, Kváč M. Cryptosporidium mortiferum n. sp. (Apicomplexa: Cryptosporidiidae), the species causing lethal cryptosporidiosis in Eurasian red squirrels (Sciurus vulgaris). Parasit Vectors 2023; 16:235. [PMID: 37454101 DOI: 10.1186/s13071-023-05844-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cryptosporidium spp. are globally distributed parasites that infect epithelial cells in the microvillus border of the gastrointestinal tract of all classes of vertebrates. Cryptosporidium chipmunk genotype I is a common parasite in North American tree squirrels. It was introduced into Europe with eastern gray squirrels and poses an infection risk to native European squirrel species, for which infection is fatal. In this study, the biology and genetic variability of different isolates of chipmunk genotype I were investigated. METHODS The genetic diversity of Cryptosporidium chipmunk genotype I was analyzed by PCR/sequencing of the SSU rRNA, actin, HSP70, COWP, TRAP-C1 and gp60 genes. The biology of chipmunk genotype I, including oocyst size, localization of the life cycle stages and pathology, was examined by light and electron microscopy and histology. Infectivity to Eurasian red squirrels and eastern gray squirrels was verified experimentally. RESULTS Phylogenic analyses at studied genes revealed that chipmunk genotype I is genetically distinct from other Cryptosporidium spp. No detectable infection occurred in chickens and guinea pigs experimentally inoculated with chipmunk genotype I, while in laboratory mice, ferrets, gerbils, Eurasian red squirrels and eastern gray squirrels, oocyst shedding began between 4 and 11 days post infection. While infection in mice, gerbils, ferrets and eastern gray squirrels was asymptomatic or had mild clinical signs, Eurasian red squirrels developed severe cryptosporidiosis that resulted in host death. The rapid onset of clinical signs characterized by severe diarrhea, apathy, loss of appetite and subsequent death of the individual may explain the sporadic occurrence of this Cryptosporidium in field studies and its concurrent spread in the population of native European squirrels. Oocysts obtained from a naturally infected human, the original inoculum, were 5.64 × 5.37 μm and did not differ in size from oocysts obtained from experimentally infected hosts. Cryptosporidium chipmunk genotype I infection was localized exclusively in the cecum and anterior part of the colon. CONCLUSIONS Based on these differences in genetics, host specificity and pathogenicity, we propose the name Cryptosporidium mortiferum n. sp. for this parasite previously known as Cryptosporidium chipmunk genotype I.
Collapse
Affiliation(s)
- Lenka Tůmová
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jana Ježková
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic
| | - Jitka Prediger
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic
| | - Nikola Holubová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Roman Konečný
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Lenka Hlásková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Michael Rost
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic
| | - John McEvoy
- Microbiological Sciences Department, North Dakota State University, 1523 Centennial Blvd, Van Es Hall, Fargo, ND, 58102, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Monica Santín
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Martin Kváč
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 37005, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
15
|
Boks M, Lilja M, Widerström M, Karling P, Lindam A, Sjöström M. Persisting symptoms after Cryptosporidium hominis outbreak: a 10-year follow-up from Östersund, Sweden. Parasitol Res 2023:10.1007/s00436-023-07866-8. [PMID: 37199767 DOI: 10.1007/s00436-023-07866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
In late 2010, an outbreak of Cryptosporidium hominis affected 27,000 inhabitants (45%) of Östersund, Sweden. Previous research shows that abdomen and joint symptoms commonly persist up to 5 years post-infection. It is unknown whether Cryptosporidium is associated with sequelae for a longer duration, how persisting symptoms present over time, and whether sequelae are associated with prolonged infection. In this prospective cohort study, a randomly selected cohort in Östersund was surveyed about cryptosporidiosis symptoms in 2011 (response rate 69.2%). A case was defined as a respondent reporting new diarrhoea episodes during the outbreak. Follow-up questionnaires were sent after 5 and 10 years. Logistic regressions were used to examine associations between case status and symptoms reported after 10 years, with results presented as adjusted odds ratios (aOR) with 95% confidence intervals. Consistency of symptoms and associations with case status and number of days with symptoms during outbreak were analysed using X2 and Mann-Whitney U tests. The response rate after 10 years was 74% (n = 538). Case status was associated with reporting symptoms, with aOR of ~3 for abdominal symptoms and ~2 for joint symptoms. Cases were more likely to report consistent symptoms. Cases with consistent abdominal symptoms at follow-up reported 9.2 days with symptoms during the outbreak (SD 8.1), compared to 6.6 days (SD 6.1) for cases reporting varying or no symptoms (p = 0.003). We conclude that cryptosporidiosis was associated with an up to threefold risk for reporting symptoms 10 years post-infection. Consistent symptoms were associated with prolonged infection.
Collapse
Affiliation(s)
- Marije Boks
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - Mikael Lilja
- Unit of Research, Education and Development - Östersund, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Pontus Karling
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anna Lindam
- Unit of Research, Education and Development - Östersund, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Malin Sjöström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Hoque S, Pinto P, Ribeiro CA, Canniere E, Daandels Y, Dellevoet M, Bourgeois A, Hammouma O, Hunter P, Gentekaki E, Kváč M, Follet J, Tsaousis AD. Follow-up investigation into Cryptosporidium prevalence and transmission in Western European dairy farms. Vet Parasitol 2023; 318:109920. [PMID: 37030025 DOI: 10.1016/j.vetpar.2023.109920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Cryptosporidium parvum is an enteric parasite and a major contributor to acute enteritis in calves worldwide, causing an important economic burden for farmers. This parasite poses a major public health threat through transmission between livestock and humans. Our previous pilot study in Western Europe revealed a high prevalence of Cryptosporidium in calves of dairy farms. In the sequel study herein, 936 faecal samples were collected from the same 51 dairy farms across Belgium, France, and the Netherlands. Following DNA extraction, Cryptosporidium screening was carried out using nested-PCR amplification targeting the SSU rRNA gene. All positive samples were sequenced, and phylogenetic analyses were used to identify the Cryptosporidium spp. present. The 60 kDa glycoprotein (gp60) gene was also sequenced to determine the C. parvum subtypes present. Prevalence of Cryptosporidium ranged from 23.3% to 25%, across the three countries surveyed. The parasite was found in most of the farms sampled, with 90.2% testing positive. Cryptosporidium parvum, C. bovis, C. ryanae and C. andersoni were all identified, with the former being the most predominant, representing 71.4% of all infections. Cryptosporidium parvum was associated with pre-weaned calves, while other species were associated with older animals. Subtyping of gp60 gene revealed nine subtypes, eight of which have previously been reported to cause clinical disease in humans. Similarly to the first study, vertical transmission was not a major contributor to Cryptosporidium spread. Our study highlights the need for further investigation into cryptosporidiosis transmission, and future studies will require a One Health approach to reduce the impact of this disease.
Collapse
|
17
|
Nasser AM. Transmission of Cryptosporidium by Fresh Vegetables. J Food Prot 2022; 85:1737-1744. [PMID: 36048914 DOI: 10.4315/jfp-22-152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Consumption of fresh fruits and vegetables is increasing thanks to a greater awareness of the human health benefits. Vegetables may become contaminated by enteric pathogens (protozoan parasites, bacteria, and viruses) by irrigation with contaminated water, fertilization with fresh animal manure, or by infected food handlers. Cryptosporidium spp. are fecal-oral protozoan parasites, known to be highly persistent in the environment. Efficient methods were developed for releasing and concentrating Cryptosporidium oocysts from leafy vegetables, and sensitive and specific methods were applied for detection. The aims of this review are to discuss the development and optimization of methods applied to elute, concentrate, and detect oocysts from leafy vegetables, to review the prevalence of Cryptosporidium oocysts on fresh leafy vegetables from various parts of the world, and to discuss cryptosporidiosis outbreaks resulting from the consumption of leafy vegetables. Three solutions were used with comparable efficiency to release oocysts from leafy vegetables: 1 M glycine solution; 0.1% Alconox; and filter elution buffer, with an efficiency of 36.2, 72.6, and 44%, respectively. The prevalence of Cryptosporidium oocysts was reported in developed, as well as from developing countries, although simple detection methods were applied. Most of the cryptosporidiosis outbreaks were reported in developed countries, which can be related to the efficient surveillance system. Transmission of infectious pathogens, such as Cryptosporidium, may be facilitated by fresh vegetables, which are imported and transferred from less developed to highly developed countries and consumed uncooked. Monitoring of Cryptosporidium oocysts by sensitive detection methods may enhance measures to prevent transmission by freshly consumed vegetables. HIGHLIGHTS
Collapse
Affiliation(s)
- Abidelfatah M Nasser
- Water Quality Research Laboratory, National Public Health Laboratory, Ministry of Health, 69 Ben Zvi Road, Tel Aviv-Jaffa 6810416, Israel
| |
Collapse
|
18
|
Pestechian N, Mohammadi Manesh R, Tavakoli S, Mokarian F, Rahmani M. Identification and Subtyping of Cryptosporidium parvum and Cryptosporidium hominis in Cancer Patients, Isfahan Province, Central Iran. IRANIAN JOURNAL OF PARASITOLOGY 2022; 17:497-505. [PMID: 36694568 PMCID: PMC9825695 DOI: 10.18502/ijpa.v17i4.11277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022]
Abstract
Background Cryptosporidium spp. are protozoan parasites that cause diarrhea in humans and animals. Subtyping data about Cryptosporidium spp. in Isfahan, Iran is limited; therefore, we aimed to study the prevalence rate of Cryptosporidium spp. in cancer patients, associated risk factors, and subtypes of Cryptosporidium spp. Methods Fecal samples were collected from 187 cancer patients from the Oncology Department of Seyed-al-Shohada Hospital, Isfahan University of Medical Sciences during 2014-2020 and screened for Cryptosporidium spp. using microscopical techniques. Nested PCR amplifying 18S rRNA gene was used to detect Cryptosporidium spp. in samples, followed by subtyping using nested PCR amplifying gp60 sequences. Results Overall, the rate of infection with Cryptosporidium spp. was 4.3% (n=8). Five samples out of eight samples were identified as Cryptosporidium spp. using a nested PCR for the 18S rRNA gene, two subtypes of C. parvum named IIaA18G3R1 (n = 2) and IIaA17G2R1 (n = 2), and one subtype of C. hominis named IbA6G3 were identified by sequencing of the gp60. The IbA6G3 subtype has rarely been detected in other investigations. Conclusion This is the first survey on the subtyping of Cryptosporidium spp. in this region. The results of the present survey show both zoonotic and anthroponotic transmission routes in the region.
Collapse
Affiliation(s)
- Nader Pestechian
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mohammadi Manesh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sanaz Tavakoli
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Mokarian
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Rahmani
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Kaupke A, Rzeżutka A. Population genetics of Cryptosporidium parvum subtypes in cattle in Poland: the geographical change of strain prevalence and circulation over time. BMC Vet Res 2022; 18:263. [PMID: 35794543 PMCID: PMC9258080 DOI: 10.1186/s12917-022-03328-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cryptosporidium parvum (C. parvum) is a cosmopolitan parasite that infects various livestock animals including cattle. Microsatellite typing tools for identification of C. parvum subtypes are currently employed to better understand the species-specific epidemiology of cattle cryptosporidiosis. The aim of this study was to analyse the population genetics of C. parvum strains infecting cattle and recognise geographical distribution and time-span correlations in subtype prevalence in Poland. In total, 1601 faecal samples were collected from 2014 to 2018 from healthy cattle from dairy, meat and mixed breeds at the age of 1 week to 4 months. The 267 farms visited were randomly selected and represented all Polish provinces. PCR–RFLP based identification of C. parvum at the 18 small subunit ribosomal RNA (SSU rRNA) locus was performed, followed by strain subtyping by GP60-PCR. Results The overall prevalence of C. parvum in Polish cattle was estimated at 6.2% (100/1601). Animals below the age of 1 month were the major host for this parasite. Excluding one breed, that of dairy-meat mixed, there were no significant differences observed between breed and presence of C. parvum infections (95% TPIAll breeds: 1.67–73.53%; POPR = 0.05—0.95). Infected animals were detected in 15 out of 16 Polish provinces, with significant regional prevalence diffrences (Kruskal–Wallis rank sum test, Kruskal–Wallis χ2 = 13.46, p < 0.001). When the population genetics of C. parvum strains were analysed, 11 parasite subtypes from the IIa and IId genetic families were identified. Compared to other parasite strains, IIaA17G1R1 and IIaA17G2R1 appeared at statistically significantly higher frequency (F-test, F = 3.39; p = 0.0003). The prevalence of C. parvum subtypes in cattle was breed-related (Chi-squared test, χ2 = 143.6; p < 0.001). Conclusions The analysis of the population genetics of C. parvum subtypes showed that strains from the IIa subtype family predominated in the tested cattle population. However, relations in changes of subtype prevalence and circulation over time were observed. They were associated with the disappearance of some strains and emergence of new variants from the same genetic family in different geographical locations. C. parvum subtypes from the IIa allele family predominated in the tested cattle. The prevalence of C. parvum subtypes in cattle was breed-related. Dynamicity in the population C. parvum strains circulating in cattle was shown.
Collapse
|
20
|
Ren P, Yang X, Wang T, Hou Y, Zhang Z. Proteome-wide prediction and analysis of the Cryptosporidium parvum protein-protein interaction network through integrative methods. Comput Struct Biotechnol J 2022; 20:2322-2331. [PMID: 35615014 PMCID: PMC9120227 DOI: 10.1016/j.csbj.2022.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022] Open
Abstract
By combining a sequence embedding technique (i.e., Doc2Vec) and a di-peptide composition representation to convert protein sequences into feature vectors, we proposed an RF classifier trained on the Plasmodium falciparum dataset for predicting Cryptosporidium parvum PPIs. A high-confidence Cryptosporidium parvum PPI network was identified by conjoining interolog mapping, domain-domain interaction-based inference, and the RF classifier. Some detected hub proteins and functional modules provided clues for an in-depth biological understanding of Cryptosporidium parvum.
As one of the most studied Apicomplexan parasite Cryptosporidium, Cryptosporidium parvum (C. parvum) causes worldwide serious diarrhea disease cryptosporidiosis, which can be deadly to immunodeficiency individuals, newly born children, and animals. Proteome-wide identification of protein–protein interactions (PPIs) has proven valuable in the systematic understanding of the genome-phenome relationship. However, the PPIs of C. parvum are largely unknown because of the limited experimental studies carried out. Therefore, we took full advantage of three bioinformatics methods, i.e., interolog mapping (IM), domain-domain interaction (DDI)-based inference, and machine learning (ML) method, to jointly predict PPIs of C. parvum. Due to the lack of experimental PPIs of C. parvum, we used the PPI data of Plasmodium falciparum (P. falciparum), which owned the largest number of PPIs in Apicomplexa, to train an ML model to infer C. parvum PPIs. We utilized consistent results of these three methods as the predicted high-confidence PPI network, which contains 4,578 PPIs covering 554 proteins. To further explore the biological significance of the constructed PPI network, we also conducted essential network and protein functional analysis, mainly focusing on hub proteins and functional modules. We anticipate the constructed PPI network can become an important data resource to accelerate the functional genomics studies of C. parvum as well as offer new hints to the target discovery in developing drugs/vaccines.
Collapse
|
21
|
Sjöström M, Arvidsson M, Söderström L, Lilja M, Lindh J, Widerström M. Outbreak of Cryptosporidium hominis in northern Sweden: persisting symptoms in a 5-year follow-up. Parasitol Res 2022; 121:2043-2049. [PMID: 35451705 PMCID: PMC9192462 DOI: 10.1007/s00436-022-07524-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
In 2010-2011, a waterborne outbreak of the parasite, Cryptosporidium hominis, affected approximately 27,000 inhabitants in the city of Östersund, Sweden. Previous research suggested that post-infectious symptoms, such as gastrointestinal symptoms and joint pain, could persist for up to 2 years after the initial infection. In this study, we investigated whether the parasite caused post-infectious sequelae for up to 5 years after the outbreak. Prospective cohort study. A randomly selected cohort of individuals residing in Östersund at the time of the outbreak was sent a postal questionnaire in 2011. Responders were sent a follow-up questionnaire in 2016 and completed items on whether they experienced a list of symptoms. We examined whether outbreak cases were more likely than non-cases to report post-infectious symptoms 5 years later. We analysed data using logistic regression and calculated odds ratios with 95% confidence intervals. The analysis included 626 individuals. Among the 262 individuals infected during the outbreak, 56.5% reported symptoms at follow-up. Compared to non-cases, outbreak cases were more likely to report watery diarrhoea, diarrhoea, swollen joints, abdominal pain, bloating, joint discomfort, acid indigestion, alternating bowel habits, joint pain, ocular pain, nausea, and fatigue at the follow-up, after adjusting for age and sex. Our findings suggested that cryptosporidiosis was mainly associated with gastrointestinal- and joint-related post-infectious symptoms for up to 5 years after the infection.
Collapse
Affiliation(s)
- Malin Sjöström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - M Arvidsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - L Söderström
- Unit of Research, Education and Development-Östersund Hospital, Östersund, Sweden
| | - M Lilja
- Department of Public Health and Clinical Medicine, Unit of Research, Education, and Development, Östersund Hospital, Umeå University, Umeå, Sweden
| | - J Lindh
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - M Widerström
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Hu S, Wan M, Huang W, Wang W, Liang R, Su D, Li N, Xiao L, Feng Y, Guo Y. Age and episode-associated occurrence of Cryptosporidium species and subtypes in a birth-cohort of dairy calves. Transbound Emerg Dis 2022; 69:e1710-e1720. [PMID: 35291057 DOI: 10.1111/tbed.14507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
The role of species-specific immunity in infection patterns of Cryptosporidium spp. in humans and farm animals is not well understood. In the present study, the dynamics of Cryptosporidium infections in a natural cryptosporidiosis model was examined using genotyping, subtyping and whole genome sequencing tools. In a cross-sectional survey of Cryptosporidium spp. in 934 dairy cattle on one farm, marked age-associated differences in the distribution of Cryptosporidium species and C. bovis subtypes were observed. In a closely followed longitudinal birth cohort study of 81 calves over a 9-month period, shedding of C. parvum oocysts started at 4 days, peaked at 2 weeks, and ended mostly by 4 weeks. In contrast, the shedding of C. bovis oocysts started at 2 weeks, peaked initially at 6 weeks, and had a second wave during 15th to 23rd weeks. For C. ryanae, calves had mostly only one episode of infection, with accumulative infection increasing much slower than C. parvum and C. bovis. Overall, the accumulative infection rates and mean duration of oocyst shedding for calves in the cohort were 97.4% (76/78) and 2.3 weeks, 100.0% (80/80) and 3.9 weeks, and 78.7% (63/80) and 3.2 weeks for C. parvum, C. bovis, and C. ryanae, respectively. The oocyst shedding intensity was much lower in C. bovis and C. ryanae infections compared with C. parvum infection, and in the second episode of C. bovis infection compared with the first episode. The two episodes of C. bovis infections were caused by different genome types that differed mostly in nine genes. Cryptosporidium parvum infection was associated with the occurrence of watery diarrhea. Data from the natural history study of cryptosporidiosis indicate that despite the existence of acquired immunity against homologous pathogens, neonatal animals experience waves of Cryptosporidium infections by different species and genome types. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Suhui Hu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Muchun Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weijian Wang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ruobing Liang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dongle Su
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
23
|
Essendi WM, Muleke C, Miheso M, Otachi E. Genetic diversity of Cryptosporidium species in Njoro Sub County, Nakuru, Kenya. J Parasit Dis 2022; 46:262-271. [PMID: 35299918 PMCID: PMC8901856 DOI: 10.1007/s12639-021-01444-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/21/2021] [Indexed: 11/24/2022] Open
Abstract
Cryptosporidium spp. cause cryptosporidiosis in humans through zoonotic and anthroponotic transmission. Previous studies illustrated the significance of domestic animals as reservoirs of this parasite. Cryptosporidium occurs in Njoro River; a main source of water to humans and animals. However, there is no information on the Cryptosporidium spp. and genotypes circulating in Njoro Sub County. A total of 2174 samples from humans, cattle, chickens, sheep and goats were assessed for the presence of Cryptosporidium spp. Thirty-three positive samples were subsequently successfully sequenced and compared to Cryptosporidium sequences in the GenBank repository using NCBI's (National Center for Biotechnology Information) online BLAST (Basic Local Alignment Search Tool) algorithmic program. Sequence alignment was done using the Clustal W program and phylogenetic analysis was executed in MEGA X (Molecular Evolutionary Genetics Analysis version X). The prevalence of cryptosporidiosis in Njoro Sub County is 6.99%. Cryptosporidium spp. present in the watershed showed great genetic diversity and nine Cryptosporidium species were recorded: Cryptosporidium parvum, Cryptosporidium hominis, Cryptosporidium ubiquitum, Cryptosporidium meleagridis, Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium muris, Cryptosporidium xiaoi and Cryptosporidium viatorum. This is the first study to report the presence of C. viatorum in Kenya. Cattle is the major reservoir of zoonotic Cryptosporidium spp. while goats harbored the lowest number of species. Humans and domestic animals drink the contaminated water from Njoro River, humans are therefore, exposed to a high cryptosporidiosis risk.
Collapse
Affiliation(s)
| | - Charles Muleke
- Department of Biological Sciences, Egerton University, P.O. Box 536-20115, Egerton, Kenya
| | - Manfred Miheso
- Kenya Agricultural and Livestock Research Organization, Food Crops Research Centre Njoro, Njoro, Kenya
| | - Elick Otachi
- Department of Biological Sciences, Egerton University, P.O. Box 536-20115, Egerton, Kenya
| |
Collapse
|
24
|
Ahlinder J, Svedberg AL, Nystedt A, Dryselius R, Jacobsson K, Hägglund M, Brindefalk B, Forsman M, Ottoson J, Troell K. Use of metagenomic microbial source tracking to investigate the source of a foodborne outbreak of cryptosporidiosis. Food Waterborne Parasitol 2022; 26:e00142. [PMID: 35024477 PMCID: PMC8728467 DOI: 10.1016/j.fawpar.2021.e00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Cryptosporidium is a protozoan parasite of global public health importance that causes gastroenteritis in a variety of vertebrate hosts, with many human outbreaks reported yearly, often from ingestion of contaminated water or food. Despite the major public health implications, little is typically known about sources of contamination of disease outbreaks caused by Cryptosporidium. Here, we study a national foodborne outbreak resulted from infection with Cryptosporidium parvum via romaine lettuce, with the main goal to trace the source of the parasite. To do so, we combined traditional outbreak investigation methods with molecular detection and characterization methods (i.e. PCR based typing, amplicon and shotgun sequencing) of romaine lettuce samples collected at the same farm from which the contaminated food was produced. Using 18S rRNA typing, we detected C. parvum in two out of three lettuce samples, which was supported by detections in the metagenome analysis. Microbial source tracking analysis of the lettuce samples suggested sewage water as a likely source of the contamination, albeit with some uncertainty. In addition, the high degree of overlap in bacterial species content with a public human gut microbial database corroborated the source tracking results. The combination of traditional and molecular based methods applied here is a promising tool for future source tracking investigations of food- and waterborne outbreaks of Cryptosporidium spp. and can help to control and mitigate contamination risks.
Collapse
Affiliation(s)
- J. Ahlinder
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, Umeå, Sweden
| | - A.-L. Svedberg
- Department of Infection control, Region Norrbotten, Luleå, Sweden
| | - A. Nystedt
- Department of Infection control, Region Norrbotten, Luleå, Sweden
| | - R. Dryselius
- Department of Biology, National Food Agency, Uppsala, Sweden
| | - K. Jacobsson
- Department of Biology, National Food Agency, Uppsala, Sweden
| | - M. Hägglund
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Facility, Stockholm, Sweden
| | - B. Brindefalk
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, Umeå, Sweden
| | - M. Forsman
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, Umeå, Sweden
| | - J. Ottoson
- Department of Risk and benefit assessment, National Food Agency, Uppsala, Sweden
| | - K. Troell
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala university, Uppsala, Sweden
| |
Collapse
|
25
|
Guo Y, Ryan U, Feng Y, Xiao L. Association of Common Zoonotic Pathogens With Concentrated Animal Feeding Operations. Front Microbiol 2022; 12:810142. [PMID: 35082774 PMCID: PMC8784678 DOI: 10.3389/fmicb.2021.810142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Animal farming has intensified significantly in recent decades, with the emergence of concentrated animal feeding operations (CAFOs) in industrialized nations. The congregation of susceptible animals in CAFOs can lead to heavy environmental contamination with pathogens, promoting the emergence of hyper-transmissible, and virulent pathogens. As a result, CAFOs have been associated with emergence of highly pathogenic avian influenza viruses, hepatitis E virus, Escherichia coli O157:H7, Streptococcus suis, livestock-associated methicillin-resistant Staphylococcus aureus, and Cryptosporidium parvum in farm animals. This has led to increased transmission of zoonotic pathogens in humans and changes in disease patterns in general communities. They are exemplified by the common occurrence of outbreaks of illnesses through direct and indirect contact with farm animals, and wide occurrence of similar serotypes or subtypes in both humans and farm animals in industrialized nations. Therefore, control measures should be developed to slow down the dispersal of zoonotic pathogens associated with CAFOs and prevent the emergence of new pathogens of epidemic and pandemic potential.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Una Ryan
- Vector- and Water-Borne Pathogen Research Group, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
26
|
Development and evaluation of a molecular based protocol for detection and quantification of Cryptosporidium spp. In wastewater. Exp Parasitol 2022; 234:108216. [DOI: 10.1016/j.exppara.2022.108216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
27
|
Ni HB, Sun YZ, Qin SY, Wang YC, Zhao Q, Sun ZY, Zhang M, Yang D, Feng ZH, Guan ZH, Qiu HY, Wang HX, Xue NY, Sun HT. Molecular Detection of Cryptosporidium spp. and Enterocytozoon bieneusi Infection in Wild Rodents From Six Provinces in China. Front Cell Infect Microbiol 2021; 11:783508. [PMID: 34900760 PMCID: PMC8656357 DOI: 10.3389/fcimb.2021.783508] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Enterocytozoon (E.) bieneusi and Cryptosporidium spp. are the most important zoonotic enteric pathogens associated with diarrheal diseases in animals and humans. However, it is still not known whether E. bieneusi and Cryptosporidium spp. are carried by wild rodents in Shanxi, Guangxi, Zhejiang, Shandong, and Inner Mongolia, China. In the present study, a total of 536 feces samples were collected from Rattus (R.) norvegicus, Mus musculus, Spermophilus (S.) dauricus, and Lasiopodomys brandti in six provinces of China, and were detected by PCR amplification of the SSU rRNA gene of Cryptosporidium spp. and ITS gene of E. bieneusi from June 2017 to November 2020. Among 536 wild rodents, 62 (11.6%) and 18 (3.4%) samples were detected as E. bieneusi- and Cryptosporidium spp.-positive, respectively. Differential prevalence rates of E. bieneusi and Cryptosporidium spp. were found in different regions. E. bieneusi was more prevalent in R. norvegicus, whereas Cryptosporidium spp. was more frequently identified in S. dauricus. Sequence analysis indicated that three known Cryptosporidium species/genotypes (Cryptosporidium viatorum, Cryptosporidium felis, and Cryptosporidium sp. rat genotype II/III) and two uncertain Cryptosporidium species (Cryptosporidium sp. novel1 and Cryptosporidium sp. novel2) were present in the investigated wild rodents. Meanwhile, 5 known E. bieneusi genotypes (XJP-II, EbpC, EbpA, D, and NCF7) and 11 novel E. bieneusi genotypes (ZJR1 to ZJR7, GXM1, HLJC1, HLJC2, and SDR1) were also observed. This is the first report for existence of E. bieneusi and Cryptosporidium spp. in wild rodents in Shanxi, Guangxi, Zhejiang, and Shandong, China. The present study also demonstrated the existence of E. bieneusi and Cryptosporidium spp. in S. dauricus worldwide for the first time. This study not only provided the basic data for the distribution of E. bieneusi and Cryptosporidium genotypes/species, but also expanded the host range of the two parasites. Moreover, the zoonotic E. bieneusi and Cryptosporidium species/genotypes were identified in the present study, suggesting wild rodents are a potential source of human infections.
Collapse
Affiliation(s)
- Hong-Bo Ni
- College of Life Science, Changchun Sci-Tech University, Shuangyang, China.,College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu-Zhe Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Si-Yuan Qin
- Center of Prevention and Control Biological Disaster, State Forestry and Grassland Administration, Shenyang, China
| | - Yan-Chun Wang
- Veterinary Department, Muyuan Foods Co., Ltd., Nanyang, China
| | - Quan Zhao
- College of Life Science, Changchun Sci-Tech University, Shuangyang, China
| | - Zheng-Yao Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Miao Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ding Yang
- Center of Prevention and Control Biological Disaster, State Forestry and Grassland Administration, Shenyang, China
| | - Zhi-Hui Feng
- Center of Prevention and Control Biological Disaster, State Forestry and Grassland Administration, Shenyang, China
| | - Zheng-Hao Guan
- Center of Prevention and Control Biological Disaster, State Forestry and Grassland Administration, Shenyang, China
| | - Hong-Yu Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hao-Xian Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Nian-Yu Xue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - He-Ting Sun
- Center of Prevention and Control Biological Disaster, State Forestry and Grassland Administration, Shenyang, China
| |
Collapse
|
28
|
Cryptosporidium spp. in wild murids (Rodentia) from Corsica, France. Parasitol Res 2021; 121:345-354. [PMID: 34816301 PMCID: PMC8748365 DOI: 10.1007/s00436-021-07369-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/01/2021] [Indexed: 11/04/2022]
Abstract
Cryptosporidium spp. are worldwide protozoan parasites that can affect to a broad range of vertebrate hosts, including rodents. In the island of Corsica (France), there are no previous data about these protozoa infecting wild rodents. To estimate the distribution and occurrence, a total of 117 wild murine rodents of the species Rattus rattus (84), Mus musculus domesticus (21), Apodemus sylvaticus (11), and Rattus norvegicus (1) were captured in 24 different biotopes. Fecal samples were screened for Cryptosporidium spp. by nested PCR to amplify an 830 bp fragment of the 18S rRNA gene. As general occurrence, 15.4% of the rodents analyzed were positive for Cryptosporidium spp., being detected widely distributed along the island in R. rattus (17.6%) and M. m. domesticus (14.3%). Cryptosporidium viatorum, Cryptosporidium sp. rat genotype II, and Cryptosporidium sp. rat genotype III were successfully identified in R. rattus. The results herein reported provide the first data on Cryptosporidium spp. in wild murine species from a Mediterranean island and constitute the first report of the zoonotic species C. viatorum in R. rattus. Although a low occurrence of Cryptosporidium spp. in murids was obtained and only in one animal the zoonotic species C. viatorum was identified, our results highlight that wild murine rodents from Corsica could mediate in the maintenance and transmission of this protozoan to the environment and other hosts including humans and animals. Further studies are required to better understand the epidemiology of Cryptosporidium spp. in wild rodents from Corsica and their possible public health repercussions.
Collapse
|
29
|
Ryan U, Zahedi A, Feng Y, Xiao L. An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals (Basel) 2021; 11:3307. [PMID: 34828043 PMCID: PMC8614385 DOI: 10.3390/ani11113307] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The enteric parasite, Cryptosporidium is a major cause of diarrhoeal illness in humans and animals worldwide. No effective therapeutics or vaccines are available and therefore control is dependent on understanding transmission dynamics. The development of molecular detection and typing tools has resulted in the identification of a large number of cryptic species and genotypes and facilitated our understanding of their potential for zoonotic transmission. Of the 44 recognised Cryptosporidium species and >120 genotypes, 19 species, and four genotypes have been reported in humans with C. hominis, C. parvum, C. meleagridis, C. canis and C. felis being the most prevalent. The development of typing tools that are still lacking some zoonotic species and genotypes and more extensive molecular epidemiological studies in countries where the potential for transmission is highest are required to further our understanding of this important zoonotic pathogen. Similarly, whole-genome sequencing (WGS) and amplicon next-generation sequencing (NGS) are important for more accurately tracking transmission and understanding the mechanisms behind host specificity.
Collapse
Affiliation(s)
- Una Ryan
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
30
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Sardar SK, Ghosal A, Saito-Nakano Y, Dutta S, Nozaki T, Ganguly S. Molecular Identification of Cryptosporidium viatorum Infection in a Patient Suffering from Unusual Cryptosporidiosis in West Bengal, India. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:409-413. [PMID: 34470093 PMCID: PMC8413857 DOI: 10.3347/kjp.2021.59.4.409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Abstract
In this study, we have collected and screened a total of 268 stool samples from diarrheal patients admitted to an Infectious disease hospital in Kolkata for the presence of Cryptosporidium spp. The initial diagnosis was carried out by microscopy followed by genus specific polymerase chain reaction assays based on 70 kDa heat shock proteins (HSP70). DNA sequencing of the amplified locus has been employed for determination of genetic diversity of the local isolates. Out of 268 collected samples, 12 (4.48%) were positive for Cryptosporidium spp. Sequences analysis of 70 kDa heat shock proteins locus in 12 Cryptosporidium local isolates revealed that 2.24% and 1.86% of samples were showing 99% to 100% identity with C. parvum and C. hominis. Along with the other 2 major species one recently described globally distributed pathogenic species Cryptosporidium viatorum has been identified. The HSP70 locus sequence of the isolate showed 100% similarity with a previously described isolate of C. viatorum (Accession No. JX978274.1, JX978273.1, and JN846706.1) present in GenBank.
Collapse
Affiliation(s)
- Sanjib Kumar Sardar
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| | - Ajanta Ghosal
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P33 CIT Road, Scheme XM, Kolkata 700010, West Bengal, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sandipan Ganguly
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| |
Collapse
|
32
|
O'Leary JK, Sleator RD, Lucey B. Cryptosporidium spp. diagnosis and research in the 21 st century. Food Waterborne Parasitol 2021; 24:e00131. [PMID: 34471706 PMCID: PMC8390533 DOI: 10.1016/j.fawpar.2021.e00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
The protozoan parasite Cryptosporidium has emerged as a leading cause of diarrhoeal illness worldwide, posing a significant threat to young children and immunocompromised patients. While endemic in the vast majority of developing countries, Cryptosporidium also has the potential to cause waterborne epidemics and large scale outbreaks in both developing and developed nations. Anthroponontic and zoonotic transmission routes are well defined, with the ingestion of faecally contaminated food and water supplies a common source of infection. Microscopy, the current diagnostic mainstay, is considered by many to be suboptimal. This has prompted a shift towards alternative diagnostic techniques in the advent of the molecular era. Molecular methods, particularly PCR, are gaining traction in a diagnostic capacity over microscopy in the diagnosis of cryptosporidiosis, given the laborious and often tedious nature of the latter. Until now, developments in the field of Cryptosporidium detection and research have been somewhat hampered by the intractable nature of this parasite. However, recent advances in the field have taken the tentative first steps towards bringing Cryptosporidium research into the 21st century. Herein, we provide a review of these advances.
Collapse
Affiliation(s)
- Jennifer K. O'Leary
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Roy D. Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| |
Collapse
|
33
|
Dettwiler I, Troell K, Robinson G, Chalmers RM, Basso W, Rentería-Solís ZM, Daugschies A, Mühlethaler K, Dale M, Basapathi Raghavendra J, Ruf MT, Poppert S, Meylan M, Olias P. TIDE analysis of Cryptosporidium infections by gp60 typing reveals obscured mixed infections. J Infect Dis 2021; 225:686-695. [PMID: 34417806 DOI: 10.1093/infdis/jiab417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cryptosporidiosis is a parasitic disease associated with potentially fatal diarrhea. The most used method in Cryptosporidium subtyping is based on the glycoprotein gene gp60. Each infection can represent a parasite population, and it is important to investigate the influence on transmission and virulence, as well as any impact on public health investigations. However, an easy-to-use method for detection is lacking. METHODS Here we report on the use of the bioinformatic program TIDE for deconvolution of gp60 chromatograms. A combination of single oocyst analysis and cloning successfully confirmed the within-sample parasite population diversity. Retrospective sample analysis was conducted on archived chromatograms. RESULTS For C. parvum, 8.6% multi-strain infections (13 out of 152) obscured by currently used consensus base calling were detected. Importantly, we show that single oocysts can harbor a mixed population of sporozoites. We also identified a striking dominance of unappreciated polymerase stutter artefacts in all 218 chromatograms analyzed, challenging the uncritical use of gp60 typing. DISCUSSION We demonstrate the value of a new easy-to-use analytical procedure for critical characterization of C. parvum and C. hominis in epidemiological investigations, also applicable in retrospect. Our findings illuminate the hidden parasite diversity with important implications for tracing zoonotic and person-to-person transmissions.
Collapse
Affiliation(s)
- Ines Dettwiler
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Karin Troell
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom.,Swansea University Medical School, Swansea, United Kingdom
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom.,Swansea University Medical School, Swansea, United Kingdom
| | - Walter Basso
- Institute of Parasitology, University of Bern, Bern, Switzerland
| | | | - Arwid Daugschies
- Institute for Parasitology, University of Leipzig, Leipzig, Germany
| | - Konrad Mühlethaler
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mariko Dale
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | | | - Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University Basel, Basel, Switzerland
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University Basel, Basel, Switzerland
| | | | - Philipp Olias
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Hailu AW, Degarege A, Adamu H, Costa D, Villier V, Mouhajir A, Favennec L, Razakandrainibe R, Petros B. Molecular characterization of Cryptosporidium spp. from humans in Ethiopia. PLoS One 2021; 16:e0253186. [PMID: 34115820 PMCID: PMC8195372 DOI: 10.1371/journal.pone.0253186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Data on the distribution and genotype of Cryptosporidium species is limited in Ethiopia. This study examined the presence and genetic diversity of Cryptosporidium species circulating in Ethiopian human population. Stool samples collected from patients who visited rural (n = 94) and urban (n = 93) health centers in Wurgissa and Hawassa district, respectively, were examined for the presence of Cryptosporidium spp. using microscopy, nested PCR and real-time PCR. To detect infection with PCR, analysis of 18S ribosomal RNA was performed. Subtyping was performed by sequencing a fragment of GP60 gene. The overall prevalence of infection was 46% (n = 86) by microscope and PCR. When 48 (out of 86) PCR positive samples were genotyped, two species were identified: C. parvum (n = 40) and C. hominis (n = 8). When 15 of the 40 C. parvum isolates were subtyped, zoonotic subtypes of IIaA14G1R1 (n = 1), IIaA15G2R1 (n = 1), IIaA16G1R1 (n = 2), IIaA16G3R1 (n = 2), IIaA17G1R1 (n = 1), IIaA19G1R1 (n = 1), IIaA20G1R1 (n = 3), IIaA22G1R1 (n = 1), IIaA22G2R1 (n = 1), IIdA23G1 (n = 1) and IIdA24G1 (n = 1) were identified. When 6 of the 8 C. hominis isolates were subtyped, subtypes IaA20 (n = 5), and IdA21(n = 1) were identified. This study suggests that C. parvum and C. hominis are causes of cryptosporidiosis in human in the Wurgissa district and Hawassa in Ethiopia. Zoonotic transmission might be the main route of transmission.
Collapse
Affiliation(s)
- Ambachew W. Hailu
- Department of Microbial Cellular and Molecular Biology, Biomedical Sciences Stream Addis Ababa University, Addis Ababa, Ethiopia
- * E-mail:
| | - Abraham Degarege
- Department of Epidemiology, University of Nebraska Medical Center College of Public Health, Omaha, Nebraska, United States of America
| | - Haileeyesus Adamu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Damien Costa
- Université de Rouen Normandie, EA7510 ESCAPE, CNR Laboratoire Expert Cryptosporidioses, CHU-Rouen, Rouen, France
| | - Venceslas Villier
- Université de Rouen Normandie, EA7510 ESCAPE, CNR Laboratoire Expert Cryptosporidioses, CHU-Rouen, Rouen, France
| | - Abdelmounaim Mouhajir
- Université de Rouen Normandie, EA7510 ESCAPE, CNR Laboratoire Expert Cryptosporidioses, CHU-Rouen, Rouen, France
| | - Loic Favennec
- Université de Rouen Normandie, EA7510 ESCAPE, CNR Laboratoire Expert Cryptosporidioses, CHU-Rouen, Rouen, France
| | - Romy Razakandrainibe
- Université de Rouen Normandie, EA7510 ESCAPE, CNR Laboratoire Expert Cryptosporidioses, CHU-Rouen, Rouen, France
| | - Beyene Petros
- Department of Microbial Cellular and Molecular Biology, Biomedical Sciences Stream Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
35
|
Cryptosporidium chipmunk genotype I - An emerging cause of human cryptosporidiosis in Sweden. INFECTION GENETICS AND EVOLUTION 2021; 92:104895. [PMID: 33971308 DOI: 10.1016/j.meegid.2021.104895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Most cases of cryptosporidiosis in humans are caused by Cryptosporidium parvum or Cryptosporidium hominis. However, more uncommon species are increasingly being recognised to cause infection in humans. Here we report that Cryptosporidium chipmunk genotype I, which has various rodents as its natural host, is the third most common source of human cryptosporidiosis in Sweden. We also describe the first small outbreak of cryptosporidiosis caused by Cryptosporidium chipmunk genotype I and report the first case of zoonotic transmission of Cryptosporidium chipmunk genotype I from a red squirrel to a human. Cryptosporidium chipmunk genotype I was identified in 20 human cases, including 16 sporadic cases, three outbreak-related cases, and one zoonotic case, as well as in two squirrel samples. Gp60 subtyping which was successful for 19 human cases and two squirrel samples showed that all samples harboured the same subtype, XIVaA20G2T1. The work presented here suggests that red squirrel is a natural host of Cryptosporidium chipmunk genotype I and that infection with Cryptosporidium chipmunk genotype I is an emerging cause of domestic cryptosporidiosis in Sweden and a potential source of outbreaks.
Collapse
|
36
|
Lebbad M, Winiecka-Krusnell J, Stensvold CR, Beser J. High Diversity of Cryptosporidium Species and Subtypes Identified in Cryptosporidiosis Acquired in Sweden and Abroad. Pathogens 2021; 10:pathogens10050523. [PMID: 33926039 PMCID: PMC8147002 DOI: 10.3390/pathogens10050523] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The intestinal protozoan parasite Cryptosporidium is an important cause of diarrheal disease worldwide. The aim of this study was to expand the knowledge on the molecular epidemiology of human cryptosporidiosis in Sweden to better understand transmission patterns and potential zoonotic sources. Cryptosporidium-positive fecal samples were collected between January 2013 and December 2014 from 12 regional clinical microbiology laboratories in Sweden. Species and subtype determination was achieved using small subunit ribosomal RNA and 60 kDa glycoprotein gene analysis. Samples were available for 398 patients, of whom 250 (63%) and 138 (35%) had acquired the infection in Sweden and abroad, respectively. Species identification was successful for 95% (379/398) of the samples, revealing 12 species/genotypes: Cryptosporidium parvum (n = 299), C. hominis (n = 49), C. meleagridis (n = 8), C. cuniculus (n = 5), Cryptosporidium chipmunk genotype I (n = 5), C. felis (n = 4), C. erinacei (n = 2), C. ubiquitum (n = 2), and one each of C. suis, C. viatorum, C. ditrichi, and Cryptosporidium horse genotype. One patient was co-infected with C. parvum and C. hominis. Subtyping was successful for all species/genotypes, except for C. ditrichi, and revealed large diversity, with 29 subtype families (including 4 novel ones: C. parvum IIr, IIs, IIt, and Cryptosporidium horse genotype Vic) and 81 different subtypes. The most common subtype families were IIa (n = 164) and IId (n = 118) for C. parvum and Ib (n = 26) and Ia (n = 12) for C. hominis. Infections caused by the zoonotic C. parvum subtype families IIa and IId dominated both in patients infected in Sweden and abroad, while most C. hominis cases were travel-related. Infections caused by non-hominis and non-parvum species were quite common (8%) and equally represented in cases infected in Sweden and abroad.
Collapse
Affiliation(s)
- Marianne Lebbad
- Department of Microbiology, Public Health Agency of Sweden, 171 82 Solna, Sweden; (M.L.); (J.W.-K.)
| | | | - Christen Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, DK-2300 Copenhagen S, Denmark;
| | - Jessica Beser
- Department of Microbiology, Public Health Agency of Sweden, 171 82 Solna, Sweden; (M.L.); (J.W.-K.)
- Correspondence:
| |
Collapse
|
37
|
Braima K, Zahedi A, Egan S, Austen J, Xiao L, Feng Y, Witham B, Pingault N, Perera S, Oskam C, Reid S, Ryan U. Molecular analysis of cryptosporidiosis cases in Western Australia in 2019 and 2020 supports the occurrence of two swimming pool associated outbreaks and reveals the emergence of a rare C. hominis IbA12G3 subtype. INFECTION GENETICS AND EVOLUTION 2021; 92:104859. [PMID: 33848684 DOI: 10.1016/j.meegid.2021.104859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022]
Abstract
Cryptosporidium is an important protozoan parasite and due to its resistance to chlorine is a major cause of swimming pool-associated gastroenteritis outbreaks. The present study combined contact tracing and molecular techniques to analyse cryptosporidiosis cases and outbreaks in Western Australia in 2019 and 2020. In the 2019 outbreak, subtyping at the 60 kDa glycoprotein (gp60) gene identified 89.0% (16/18) of samples were caused by the C. hominis IdA15G1 subtype. Amplicon next generation sequencing (NGS) at the gp60 locus identified five C. hominis IdA15G1 subtype samples that also had C. hominis IdA14 subtype DNA, while multi locus sequence typing (MLST) analysis on a subset (n = 14) of C. hominis samples identified three IdA15G1 samples with a 6 bp insertion at the end of the trinucleotide repeat region of the cp47 gene. In 2020, 88.0% (73/83) of samples typed were caused by the relatively rare C. hominis subtype IbA12G3. Four mixed infections were observed by NGS with three IdA15G1/ IdA14 mixtures and one C. parvum IIaA18G3R1 sample mixed with IIaA16G3R1. No genetic diversity using MLST was detected. Epidemiological and molecular data indicates that the outbreaks in 2019 and 2020 were each potentially from swimming pool point sources and a new C. hominis subtype IbA12G3 is emerging in Australia. The findings of the present study are important for understanding the introduction and transmission of rare Cryptosporidium subtypes to vulnerable populations.
Collapse
Affiliation(s)
- Kamil Braima
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia.
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Siobhon Egan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Jill Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Benjamin Witham
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Nevada Pingault
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Shalinie Perera
- Western Diagnostic Pathology, Perth, Western Australia 6154, Australia
| | - Charlotte Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Simon Reid
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, Queensland 4006, Australia
| | - Una Ryan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
38
|
Guo Y, Li N, Feng Y, Xiao L. Zoonotic parasites in farmed exotic animals in China: Implications to public health. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:241-247. [PMID: 33898224 PMCID: PMC8056123 DOI: 10.1016/j.ijppaw.2021.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Several species of wild mammals are farmed in China as part of the rural development and poverty alleviation, including fur animals, bamboo rats, and macaque monkeys. Concerns have been raised on the potential dispersal of pathogens to humans and other farm animals brought in from native habitats. Numerous studies have been conducted on the genetic identity and public health potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in these newly farmed exotic animals. The data generated have shown a high prevalence of the pathogens in farmed wildlife, probably due to the stress from the short captivity and congregation of large numbers of susceptible animals. Host adaptation at species/genotype and subtype levels has reduced the potential for cross-species and zoonotic transmission of pathogens, but the farm environment appears to favor the transmission of some species, genotypes, and subtypes, with reduced pathogen diversity compared with their wild relatives. Most genotypes and subtypes of the pathogens detected appear to be brought in from their native habitats. A few of the subtypes have emerged as human pathogens. One Health measures should be developed to slow the dispersal of indigenous pathogens among farmed exotic animals and prevent their spillover to other farm animals and humans.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
39
|
Small ruminants and zoonotic cryptosporidiosis. Parasitol Res 2021; 120:4189-4198. [PMID: 33712929 DOI: 10.1007/s00436-021-07116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Sheep and goats are commonly infected with three Cryptosporidium species, including Cryptosporidium parvum, Cryptosporidium ubiquitum, and Cryptosporidium xiaoi, which differ from each in prevalence, geographic distribution, and public health importance. While C. parvum appears to be a dominant species in small ruminants in European countries, its occurrence in most African, Asian, and American countries appear to be limited. As a result, zoonotic infections due to contact with lambs and goat kids are common in European countries, leading to frequent reports of outbreaks of cryptosporidiosis on petting farms. In contrast, C. xiaoi is the dominant species elsewhere, and mostly does not infect humans. While C. ubiquitum is another zoonotic species, it occurs in sheep and goats at much lower frequency. Host adaptation appears to be present in both C. parvum and C. ubiquitum, consisting of several subtype families with different host preference. The host-adapted nature of C. parvum and C. ubiquitum has allowed the use of subtyping tools in tracking infection sources. This has led to the identification of geographic differences in the importance of small ruminants in epidemiology of human cryptosporidiosis. These tools have also been used effectively in linking zoonotic transmission of C. parvum between outbreak cases and the suspected animals. Further studies should be directly elucidating the reasons for differences in the distribution and public health importance of major Cryptosporidium species in sheep and goats.
Collapse
|
40
|
Molecular Epidemiology of Human Cryptosporidiosis in Low- and Middle-Income Countries. Clin Microbiol Rev 2021; 34:34/2/e00087-19. [PMID: 33627442 DOI: 10.1128/cmr.00087-19] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cryptosporidiosis is one of the most important causes of moderate to severe diarrhea and diarrhea-related mortality in children under 2 years of age in low- and middle-income countries. In recent decades, genotyping and subtyping tools have been used in epidemiological studies of human cryptosporidiosis. Results of these studies suggest that higher genetic diversity of Cryptosporidium spp. is present in humans in these countries at both species and subtype levels and that anthroponotic transmission plays a major role in human cryptosporidiosis. Cryptosporidium hominis is the most common Cryptosporidium species in humans in almost all the low- and middle-income countries examined, with five subtype families (namely, Ia, Ib, Id, Ie, and If) being commonly found in most regions. In addition, most Cryptosporidium parvum infections in these areas are caused by the anthroponotic IIc subtype family rather than the zoonotic IIa subtype family. There is geographic segregation in Cryptosporidium hominis subtypes, as revealed by multilocus subtyping. Concurrent and sequential infections with different Cryptosporidium species and subtypes are common, as immunity against reinfection and cross protection against different Cryptosporidium species are partial. Differences in clinical presentations have been observed among Cryptosporidium species and C. hominis subtypes. These observations suggest that WASH (water, sanitation, and hygiene)-based interventions should be implemented to prevent and control human cryptosporidiosis in low- and middle-income countries.
Collapse
|
41
|
Guy RA, Yanta CA, Muchaal PK, Rankin MA, Thivierge K, Lau R, Boggild AK. Molecular characterization of Cryptosporidium isolates from humans in Ontario, Canada. Parasit Vectors 2021; 14:69. [PMID: 33482898 PMCID: PMC7821412 DOI: 10.1186/s13071-020-04546-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/13/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cryptosporidiosis is a gastrointestinal disease with global distribution. It has been a reportable disease in Canada since 2000; however, routine molecular surveillance is not conducted. Therefore, sources of contamination are unknown. The aim of this project was to identify species and subtypes of Cryptosporidium in clinical cases from Ontario, the largest province in Canada, representing one third of the Canadian population, in order to understand transmission patterns. METHODS A total of 169 frozen, banked, unpreserved stool specimens that were microscopy positive for Cryptosporidium over the period 2008-2017 were characterized using molecular tools. A subset of the 169 specimens were replicate samples from individual cases. DNA was extracted directly from the stool and nested PCR followed by Sanger sequencing was conducted targeting the small subunit ribosomal RNA (SSU) and glycoprotein 60 (gp60) genes. RESULTS Molecular typing data and limited demographic data were obtained for 129 cases of cryptosporidiosis. Of these cases, 91 (70.5 %) were due to Cryptosporidium parvum and 24 (18.6%) were due to Cryptosporidium hominis. Mixed infections of C. parvum and C. hominis occurred in four (3.1%) cases. Five other species observed were Cryptosporidium ubiquitum (n = 5), Cryptosporidium felis (n = 2), Cryptosporidium meleagridis (n = 1), Cryptosporidium cuniculus (n = 1) and Cryptosporidium muris (n = 1). Subtyping the gp60 gene revealed 5 allelic families and 17 subtypes of C. hominis and 3 allelic families and 17 subtypes of C. parvum. The most frequent subtype of C. hominis was IbA10G2 (22.3%) and of C. parvum was IIaA15G2R1 (62.4%). CONCLUSIONS The majority of isolates in this study were C. parvum, supporting the notion that zoonotic transmission is the main route of cryptosporidiosis transmission in Ontario. Nonetheless, the observation of C. hominis in about a quarter of cases suggests that anthroponotic transmission is also an important contributor to cryptosporidiosis pathogenesis in Ontario.
Collapse
Affiliation(s)
- Rebecca A. Guy
- Parasite Biology Unit/Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON N1G 3W4 Canada
| | - Christine A. Yanta
- Parasite Biology Unit/Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON N1G 3W4 Canada
| | - Pia K. Muchaal
- Centre for Food-borne, Environmental & Zoonotic Infectious Diseases, Public Health Agency of Canada, 370 Woodlawn Road West, Guelph, ON N1H 7M7 Canada
| | - Marisa A. Rankin
- Parasite Biology Unit/Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON N1G 3W4 Canada
| | - Karine Thivierge
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, 20045, chemin Sainte-Marie, Sainte-Anne-de-Bellevue, Québec H9X 3R5 Canada
| | - Rachel Lau
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, M5G 1M1 Canada
| | - Andrea K. Boggild
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, M5G 1M1 Canada
- Tropical Disease Unit, Toronto General Hospital, Toronto, M5G 2C4 Canada
- Faculty of Medicine, University of Toronto, Toronto, M5S 1A8 Canada
| |
Collapse
|
42
|
Wu Y, Gong B, Liu X, Jiang Y, Cao J, Yao L, Li H, Liu A, Shen Y. Identification of Uncommon Cryptosporidium viatorum (a Novel Subtype XVcA2G1c) and Cryptosporidium andersoni as Well as Common Giardia duodenalis Assemblages A and B in Humans in Myanmar. Front Cell Infect Microbiol 2020; 10:614053. [PMID: 33324584 PMCID: PMC7724083 DOI: 10.3389/fcimb.2020.614053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022] Open
Abstract
Cryptosporidium and Giardia are two important zoonotic intestinal protozoa responsible for diarrheal diseases in humans and animals worldwide. Feces from infected hosts, water and food contaminated by Cryptosporidium oocysts and Giardia cysts as well as predictors such as poverty have been involved in their transmission. Myanmar is one of the world’s most impoverished countries. To date, there are few epidemiological studies of Cryptosporidium and Giardia in humans. To understand the prevalence and genetic characterization of Cryptosporidium spp. and Giardia duodenalis in humans in Myanmar, a molecular epidemiological investigation of the two protozoa was conducted in four villages of Shan State. 172 fecal specimens were collected from Wa people (one each) and identified for the presence of Cryptosporidium spp. and G. duodenalis by sequence analysis of their respective small subunit ribosomal RNA genes. 1.74% of investigated people were infected with Cryptosporidium spp.—C. andersoni (n = 2) and C. viatorum (n = 1) while 11.05% infected with G. duodenalis—assemblages A (n = 6) and B (n = 13). By sequence analysis of 60-kDa glycoprotein gene, the C. viatorum isolate belonged to a novel subtype XVcA2G1c. DNA preparations positive for G. duodenalis were further subtyped. Five of them were amplified and sequenced successfully: different assemblage B sequences (n = 2) at the triosephosphate isomerase (tpi) locus; sub-assemblage AII sequence (n = 1) and identical assemblage B sequences (n = 2) at the β-giardin (bg) locus. This is the first molecular epidemiological study of Cryptosporidium spp. and G. duodenalis in humans in Myanmar at both genotype and subtype levels. Due to unclear transmission patterns and dynamics of Cryptosporidium spp. and G. duodenalis, future research effort should focus on molecular epidemiological investigations of the two parasites in humans and animals living in close contact in the investigated areas, even in whole Myanmar. These data will aid in making efficient control strategies to intervene with and prevent occurrence of both diseases.
Collapse
Affiliation(s)
- Yanchen Wu
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Baiyan Gong
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiaohua Liu
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, China
| | - Lan Yao
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - He Li
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Aiqin Liu
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, China
| |
Collapse
|
43
|
Cryptosporidium Species and C. parvum Subtypes in Farmed Bamboo Rats. Pathogens 2020; 9:pathogens9121018. [PMID: 33276616 PMCID: PMC7761605 DOI: 10.3390/pathogens9121018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/06/2023] Open
Abstract
Bamboo rats (Rhizomys sinensis) are widely farmed in Guangdong, China, but the distribution and public health potential of Cryptosporidium spp. in them are unclear. In this study, 724 fecal specimens were collected from bamboo rats in Guangdong Province and analyzed for Cryptosporidium spp. using PCR and sequence analyses of the small subunit rRNA gene. The overall detection rate of Cryptosporidium spp. was 12.2% (88/724). By age, the detection rate in animals under 2 months (23.2% or 13/56) was significantly higher than in animals over 2 months (11.2% or 75/668; χ2 = 6.95, df = 1, p = 0.0084). By reproduction status, the detection rate of Cryptosporidium spp. in nursing animals (23.1% or 27/117) was significantly higher than in other reproduction statuses (6.8% or 4/59; χ2 = 7.18, df = 1, p = 0.0074). Five Cryptosporidium species and genotypes were detected, including Cryptosporidium bamboo rat genotype I (n = 49), C. parvum (n = 31), Cryptosporidium bamboo rat genotype III (n = 5), C. occultus (n = 2), and C. muris (n = 1). The average numbers of oocysts per gram of feces for these Cryptosporidium spp. were 14,074, 494,636, 9239, 394, and 323, respectively. The genetic uniqueness of bamboo rat genotypes I and III was confirmed by sequence analyses of the 70 kDa heat shock protein and actin genes. Subtyping C. parvum by sequence analysis of the 60 kDa glycoprotein gene identified the presence of IIoA15G1 (n = 20) and IIpA6 (n = 2) subtypes. The results of this study indicated that Cryptosporidium spp. are common in bamboo rats in Guangdong, and some of the Cryptosporidium spp. in these animals are known human pathogens.
Collapse
|
44
|
Wang Y, Zhang B, Li J, Yu S, Zhang N, Liu S, Zhang Y, Li J, Ma N, Cai Y, Zhao Q. Development of a Quantitative Real-Time PCR Assay for Detection of Cryptosporidium spp. Infection and Threatening Caused by Cryptosporidium parvum Subtype IIdA19G1 in Diarrhea Calves from Northeastern China. Vector Borne Zoonotic Dis 2020; 21:179-190. [PMID: 33259769 DOI: 10.1089/vbz.2020.2674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Parasitic diarrheal disease is a major cause of morbidity and mortality in the developing world. Calves are highly susceptible to Cryptosporidium spp. infection that resulted in diarrhea, growth retardation, and weight loss, and was one of the most common enteropathogens. It is especially difficult for molecular detection of calves with inapparent or subclinical infections of cryptosporidiosis. In view of this, this study established a real-time quantitative PCR (RT-qPCR) detection method to clarify its epidemic characteristics, based on Cryptosporidium 18S rRNA gene with the 150 bp product length to investigate the infection of Cryptosporidium spp. in northeastern China The standard curve equation is Ct = -2.91 × lg (Cryptosporidium spp. copies) +10.18, with better sensitivity, stability, and reproducibility. A total of 148 out of 425 fecal samples (34.82%) were detected Cryptosporidium positive with RT-qPCR, including (36.11%) in Heilongjiang province (29.60%), (29.6%) in Jilin province, and (37.50%) in Liaoning province. The infection prevalence of Cryptosporidium parvum, Cryptosporidium ryanae, Cryptosporidium andersoni, and Cryptosporidium bovis from calves in order from high to low was 14.35% (95% confidence interval [CI], 11.2-18.1), 6.12 (95% CI, 4.0-8.8), 2.35 (95% CI, 1.1-4.3), and 0.47 (95% CI, 0.1-1.7), respectively, suggesting C. parvum was the predominant species in calves in northeastern China. Using 60-kDa glycoprotein gp60 gene, all of the 61 C. parvum-positive specimens were further precisely confirmed to IIdA19G1 subtype. This suggested that IIdA19G1 subtype of C. parvum could threaten to cause diarrhea calves from notheastern China (p < 0.01). The prevalence of 34.82% (148/425) using RT-qPCR had a significant difference compared with the prevalence of nested-PCR (23.29%) and microscopic examination (3.76%). The findings improved the epidemiological knowledge of calves infected with cryptosporidiosis in China, highlighting the importance of ongoing Cryptosporidium surveillance.
Collapse
Affiliation(s)
- Yanchun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Baihui Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingping Li
- College of Animal Medicine, Shangdong Vocational Animal Science and Veterinary University, Weifang, China
| | - Songling Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shuting Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jian Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ning Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Quan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
45
|
O' Leary JK, Blake L, Corcoran GD, Sleator RD, Lucey B. Development of novel methodology for the molecular differentiation of Cryptosporidium parvum gp60 subtypes via high resolution melting analysis. MethodsX 2020; 7:101157. [PMID: 33318958 PMCID: PMC7724200 DOI: 10.1016/j.mex.2020.101157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/19/2020] [Indexed: 12/04/2022] Open
Abstract
Cryptosporidium species subtypes are generally identified via DNA sequencing of the gp60 gene tandem repeat motif region. Due to the immunogenic nature of its glycoprotein products, gp60 is subject to host selective pressures, genetic recombination and evolutionary processes that drive extensive polymorphism at this locus. The elucidation of the polymorphic nature of this gene has led to the current mainstay in Cryptosporidium subtyping nomenclature. This study aimed to develop a real-time polymerase chain reaction based method utilising a post-PCR application, high resolution melting (HRM) analysis, in conjunction with the abovementioned gp60 nomenclature system, in order to differentiate between Cryptosporidium parvum gp60 subtypes. Subtype differentiation is based on the difference between the melting temperatures of individual subtypes conferred by variations in the polymorphic region of gp60. • Nested gp60 primers were designed to amplify a target region of <200 base pairs for effective HRM analysis • This method presents a rapid, sensitive, cost effective alternative to conventional sequencing. • This method is highly flexible and may be applied to other loci in order to facilitate multi-locus analysis and improve the discriminative abilities of the method.
Collapse
Affiliation(s)
- Jennifer K O' Leary
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Liam Blake
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Gerard D Corcoran
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| |
Collapse
|
46
|
Robertson LJ, Johansen ØH, Kifleyohannes T, Efunshile AM, Terefe G. Cryptosporidium Infections in Africa-How Important Is Zoonotic Transmission? A Review of the Evidence. Front Vet Sci 2020; 7:575881. [PMID: 33195574 PMCID: PMC7580383 DOI: 10.3389/fvets.2020.575881] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023] Open
Abstract
Cryptosporidium, a protozoan parasite in the phylum Apicomplexa, is the etiological agent of cryptosporidiosis, an intestinal infection characterized by profuse watery diarrhea. Over 30 species of Cryptosporidium are recognized, some host specific whereas others infect a broader host range. Cryptosporidium hominis and Cryptosporidium parvum are the species most commonly associated with human infection; C. hominis is largely associated only with human infections, but C. parvum is also associated with infection in animals, especially young ruminants. In some regions, cryptosporidiosis is a serious veterinary problem, particularly for calves, and lambs. Many outbreaks of human cryptosporidiosis have been associated with zoonotic transmission following contact with infected animals. In Africa, where cryptosporidiosis is a major contributor to pediatric morbidity and mortality, evidence suggests transmission is principally anthroponotic. Given the frequent close contact between humans and animals in Africa, the apparent predominance of human-to-human transmission is both interesting and puzzling. In this article, after a brief "text book" introduction to the parasite, we consider in separate sections the different aspects of relevance to Cryptosporidium transmission in African countries, describing different aspects of the various species and subtypes in human and animal infections, considering livestock management practices in different African countries, and looking for any characteristic "hot spots" where zoonotic transmission has apparently occurred. Studies where transmission networks have been investigated are particularly relevant. Finally, in a separate section, we try to gather these different strands of evidence together in order to assess the reasons behind the apparent predominance of anthroponotic transmission in Africa. Reviewing the available evidence provides an opportunity to re-think transmission pathways, not only in Africa but also elsewhere, and also to pose questions. Does the predominance of human-to-human transmission in Africa reflect a relative absence of zoonotic C. parvum in African livestock? Are Africans less susceptible to zoonotic Cryptosporidium infection, perhaps resulting from early immunostimulation by C. hominis or due to inherent genetic traits? Is the African environment-in all its variety-simply more detrimental to oocyst survival? Will the so-called hypertransmissible subtypes, currently relatively rare in Africa, be introduced from Europe or elsewhere, and, if so, will they fade out or establish and spread? Our intention with this manuscript is not only to summarize and consolidate diverse data, thereby providing an overview of data gaps, but also to provide food for thought regarding transmission of a parasite that continues to have a considerable impact on both human and animal health.
Collapse
Affiliation(s)
- Lucy J. Robertson
- Parasitology Laboratory, Department of Paraclinical Science, Faculty of Veterinary Medicine Norwegian University of Life Sciences, Oslo, Norway
| | - Øystein Haarklau Johansen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Tsegabirhan Kifleyohannes
- Parasitology Laboratory, Department of Paraclinical Science, Faculty of Veterinary Medicine Norwegian University of Life Sciences, Oslo, Norway
- Department of Veterinary Basic and Diagnostic Sciences, College of Veterinary Medicine, Mekelle University, Mekelle, Ethiopia
| | - Akinwale Michael Efunshile
- Department of Medical Microbiology, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
- Department of Medical Microbiology, Ebonyi State University, Abakaliki, Nigeria
| | - Getachew Terefe
- College of Veterinary Medicine and Agriculture, Department of Pathology and Parasitology, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
47
|
Zahedi A, Ryan U. Cryptosporidium – An update with an emphasis on foodborne and waterborne transmission. Res Vet Sci 2020; 132:500-512. [DOI: 10.1016/j.rvsc.2020.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
|
48
|
Carter BL, Chalmers RM, Davies AP. Health sequelae of human cryptosporidiosis in industrialised countries: a systematic review. Parasit Vectors 2020; 13:443. [PMID: 32887663 PMCID: PMC7650228 DOI: 10.1186/s13071-020-04308-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptosporidium is a protozoan parasite which is a common cause of gastroenteritis worldwide. In developing countries, it is one of the most important causes of moderate to severe diarrhoea in young children; in industrialised countries it is a cause of outbreaks of gastroenteritis associated with drinking water, swimming pools and other environmental sources and a particular concern in certain immunocompromised patient groups, where it can cause severe disease. However, over recent years, longer-term sequelae of infection have been recognised and a number of studies have been published on this topic. The purpose of this systematic review was to examine the literature in order to better understand the medium- to long-term impact of cryptosporidiosis. METHODS This was a systematic review of studies in PubMed, ProQuest and Web of Science databases, with no limitations on publication year or language. Studies from any country were included in qualitative synthesis, but only those in industrialised countries were included in quantitative analysis. RESULTS Fifteen studies were identified for qualitative analysis which included 3670 Cryptosporidium cases; eight studies conducted in Europe between 2004-2019 were suitable for quantitative analysis, including five case-control studies. The most common reported long-term sequelae were diarrhoea (25%), abdominal pain (25%), nausea (24%), fatigue (24%) and headache (21%). Overall, long-term sequelae were more prevalent following infection with Cryptosporidium hominis, with only weight loss and blood in stool being more prevalent following infection with Cryptosporidium parvum. Analysis of the case-control studies found that individuals were 6 times more likely to report chronic diarrhoea and weight loss up to 28 months after a Cryptosporidium infection than were controls. Long-term abdominal pain, loss of appetite, fatigue, vomiting, joint pain, headache and eye pain were also between 2-3 times more likely following a Cryptosporidium infection. CONCLUSIONS This is the first systematic review of the long-term sequelae of cryptosporidiosis. A better understanding of long-term outcomes of cryptosporidiosis is valuable to inform the expectations of clinicians and their patients, and public health policy-makers regarding the control and prevention of this infection. Systematic review registration PROSPERO Registration number CRD42019141311.
Collapse
Affiliation(s)
- Bethan L Carter
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Rachel M Chalmers
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK.,Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty Lane, Swansea, Wales, UK
| | - Angharad P Davies
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK. .,Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty Lane, Swansea, Wales, UK.
| |
Collapse
|
49
|
O' Leary JK, Blake L, Corcoran GD, Sleator RD, Lucey B. Increased diversity and novel subtypes among clinical Cryptosporidium parvum and Cryptosporidium hominis isolates in Southern Ireland. Exp Parasitol 2020; 218:107967. [PMID: 32858044 DOI: 10.1016/j.exppara.2020.107967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Reported incidence rates of cryptosporidiosis in Ireland are consistently among the highest in Europe. Despite the national prevalence of this enteric parasite and the compulsory nature of incidence surveillance and reporting, in-depth analyses seeking to genotype clinical isolates of Cryptosporidium on an intra-species level are rarely undertaken in Ireland. This molecular epidemiology study of 163 clinical Cryptosporidium isolates was conducted in Southern Ireland, from 2015 to 2018, in order to ascertain population subtype heterogeneity. Analysis was conducted via real-time PCR amplification and gp60 gene sequencing, which successfully determined the subtype designation of 149 of the 163 (91.4%) tested isolates. Overall, 12 C. parvum and five C. hominis subtypes were identified, with the incidence of the regionally predominant C. parvum species found to primarily occur during springtime months, while C. hominis incidence was largely confined to late summer and autumnal months. Additionally, one C. parvum and four C. hominis subtypes were newly reported by this study, having not been previously identified in clinical or livestock infection in Ireland. Overall, these data give insight into the diversification of the Cryptosporidium population and emergent subtypes, while also allowing comparisons to be made with clinical epidemiological profiles reported previously in Ireland and elsewhere.
Collapse
Affiliation(s)
- Jennifer K O' Leary
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Liam Blake
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Gerard D Corcoran
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland.
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| |
Collapse
|
50
|
Abdelmaksoud HF, El-Ashkar AM, Elgohary SA, El-Wakil ES. Potential therapeutic and prophylactic effects of Asafoetida in murine cryptosporidiosis. J Parasit Dis 2020; 44:646-653. [PMID: 32801519 DOI: 10.1007/s12639-020-01241-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/08/2020] [Indexed: 11/29/2022] Open
Abstract
Cryptosporidium parvum is an important coccidian parasite that could infect the intestine, respiratory and biliary tracts of man and animals. This study aims to test the potential therapeutic and prophylactic effects of a natural herbal agent (Asafoetida) versus the nowadays drug of choice (Nitazoxanide). Fifty bred female, white Albino mice of CDI strain were divided into 5 groups; group I (GI): immunosuppressed, infected with C. parvum and treated with Asafoetida, group II (GII): immunosuppressed, prophylactically treated with Asafoetida for 7 days prior to infection, group III (GIII): immunosuppressed, infected and treated with Nitazoxanide, group IV (GIV): immunosuppressed and infected (Positive control), group V (GV): immunosuppressed and non infected (Negative control). Parasitological and histopatholgical examinations of the stool, ileocaecal and liver specimens were performed for the study groups. GI showed reduction of the mean oocyst count in stool with improvement of the pathological changes at the ileocaecal region with preservation of hepatic architecture. Results of GI were better than GII and GIV but not as good as GIII. GII showed the least improvement among the test groups. GIII showed the best response between the test groups. GIV show no statistical significant difference between the mean oocyst count in the mice stool at the time of infection and 7 days after infection. It was therefore concluded that Asafoetida is a promising natural therapeutic and prophylactic agent against cryptosporidiosis while, Nitazoxanide is the best chemotherapeutic agent against cryptosporidiosis.
Collapse
Affiliation(s)
| | - Ayman M El-Ashkar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Department of Basic Medical Science, College of Medicine, University of Bisha, Bisha, Kingdom of Saudi Arabia
| | - Sh A Elgohary
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman S El-Wakil
- Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|