1
|
Grygiel-Górniak B. Current Challenges in Yersinia Diagnosis and Treatment. Microorganisms 2025; 13:1133. [PMID: 40431305 PMCID: PMC12114158 DOI: 10.3390/microorganisms13051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/01/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Yersinia bacteria (Yersinia enterocolitica, Yersinia pseudotuberculosis) are commonly found in nature in all climatic zones and are isolated from food (mainly raw pork, unpasteurized milk, or contaminated water), soil, and surface water, rarely from contaminated blood. Yersinia infection occurs through sick or asymptomatic carriers and contact with the feces of infected animals. The invasion of specific bacterial serotypes into the host cell is based on the type 3 secretion system (T3SS), which directly introduces many effector proteins (Yersinia outer proteins-Yops) into the host cell. The course of yersiniosis can be acute or chronic, with the predominant symptoms of acute enteritis (rarely pseudo-appendicitis or septicemia develops). Clinical and laboratory diagnosis of yersiniosis is difficult. The infection requires confirmation by isolating Yersinia bacteria from feces or other biological materials, including lymph nodes, synovial fluid, urine, bile, or blood. The detection of antibodies in blood serum or synovial fluid is useful in the diagnostic process. The treatment of yersiniosis is mainly symptomatic. Uncomplicated infections (diarrhea and abdominal pain) usually do not require antibiotic therapy, which is indicated in severe cases. Surgical intervention is undertaken in the situations of intestinal necrosis. Given the diagnostic and therapeutic difficulties, this review discusses the prevalence of Y. enterocolitica and Y. pseudotuberculosis, their mechanisms of disease induction (virulence factors and host response), clinical manifestations, diagnostic and preventive methods, and treatment strategies in the context of current knowledge and available recommendations.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
2
|
Pătrînjan RT, Morar A, Ban-Cucerzan A, Popa SA, Imre M, Morar D, Imre K. Systematic Review of the Occurrence and Antimicrobial Resistance Profile of Foodborne Pathogens from Enterobacteriaceae in Wild Ungulates Within the European Countries. Pathogens 2024; 13:1046. [PMID: 39770307 PMCID: PMC11728525 DOI: 10.3390/pathogens13121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Game meat is derived from non-domesticated, free-ranging wild animals and plays an important role in human nutrition, but it is recognized as a source of food-borne and drug-resistant pathogens impacting food safety. The present review aimed to provide a comprehensive analysis of the frequency of isolation and antimicrobial resistance (AMR) profiles of major foodborne pathogens from the Enterobacteriaceae, including Salmonella, Escherichia, and Yersinia genera, in wild ungulates, across Europe in the 21st century. A systematic search was conducted via the Google Scholar database using the PRISMA guidelines. In this regard, the content of a total of 52 relevant scientific publications from both European Union (n = 10) and non-European Union countries (n = 3) was processed, highlighting the main scientific achievements and indicating knowledge gaps and future perspectives. The studies highlighted that Salmonella spp. was the most commonly encountered pathogen, and significant AMR levels were noticed for the isolated strains, especially against penicillin (32.8%) and amoxicillin (32.1%). This review underscores the importance of monitoring the presence of food-borne pathogens and their AMR in wildlife as important public health and food safety concerns.
Collapse
Affiliation(s)
- Răzvan-Tudor Pătrînjan
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timișoara, Romania; (A.M.); (A.B.-C.); (S.A.P.); (D.M.); (K.I.)
| | | | | | | | - Mirela Imre
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timișoara, Romania; (A.M.); (A.B.-C.); (S.A.P.); (D.M.); (K.I.)
| | | | | |
Collapse
|
3
|
Siddi G, Piras F, Meloni MP, Gymoese P, Torpdahl M, Fredriksson-Ahomaa M, Migoni M, Cabras D, Cuccu M, De Santis EPL, Scarano C. Hunted Wild Boars in Sardinia: Prevalence, Antimicrobial Resistance and Genomic Analysis of Salmonella and Yersinia enterocolitica. Foods 2023; 13:65. [PMID: 38201093 PMCID: PMC10778173 DOI: 10.3390/foods13010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this investigation was to evaluate Salmonella and Yersinia enterocolitica prevalence in wild boars hunted in Sardinia and further characterize the isolates and analyse antimicrobial resistance (AMR) patterns. In order to assess slaughtering hygiene, an evaluation of carcasses microbial contamination was also carried out. Between 2020 and 2022, samples were collected from 66 wild boars hunted during two hunting seasons from the area of two provinces in northern and central Sardinia (Italy). Samples collected included colon content samples, mesenteric lymph nodes samples and carcass surface samples. Salmonella and Y. enterocolitica detection was conducted on each sample; also, on carcass surface samples, total aerobic mesophilic count and Enterobacteriaceae count were evaluated. On Salmonella and Y. enterocolitica isolates, antimicrobial susceptibility was tested and whole genome sequencing was applied. Salmonella was identified in the colon content samples of 3/66 (4.5%) wild boars; isolates were S. enterica subs. salamae, S. ser. elomrane and S. enterica subs. enterica. Y. enterocolitica was detected from 20/66 (30.3%) wild boars: in 18/66 (27.3%) colon contents, in 3/66 (4.5%) mesenteric lymph nodes and in 3/49 (6.1%) carcass surface samples. In all, 24 Y. enterocolitica isolates were analysed and 20 different sequence types were detected, with the most common being ST860. Regarding AMR, no resistance was detected in Salmonella isolates, while expected resistance towards β-lactams (blaA gene) and streptogramin (vatF gene) was observed in Y. enterocolitica isolates (91.7% and 4.2%, respectively). The low presence of AMR is probably due to the low anthropic impact in the wild areas. Regarding the surface contamination of carcasses, values (mean ± standard deviation log10 CFU/cm2) were 2.46 ± 0.97 for ACC and 1.07 ± 1.18 for Enterobacteriaceae. The results of our study confirm that wild boars can serve as reservoirs and spreaders of Salmonella and Y. enterocolitica; the finding of Y. enterocolitica presence on carcass surface highlights how meat may become superficially contaminated, especially considering that contamination is linked to the conditions related to the hunting, handling and processing of game animals.
Collapse
Affiliation(s)
- Giuliana Siddi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Francesca Piras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Maria Pina Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Pernille Gymoese
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; (P.G.); (M.T.)
| | - Mia Torpdahl
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; (P.G.); (M.T.)
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Mattia Migoni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Daniela Cabras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Mario Cuccu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Enrico Pietro Luigi De Santis
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Christian Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| |
Collapse
|
4
|
Sannö A, Rosendal T, Aspán A, Backhans A, Jacobson M. Comparison of Multiple-Locus Variable-Number Tandem Repeat Analysis Profiles of Enteropathogenic Yersinia spp. Obtained from Humans, Domestic Pigs, Wild Boars, Rodents, Pork and Dog Food. Animals (Basel) 2023; 13:3055. [PMID: 37835661 PMCID: PMC10571951 DOI: 10.3390/ani13193055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The enteropathogenic Yersinia genus is commonly detected in wildlife including wild boars. Difficulties in its cultivation may hamper subsequent epidemiological studies and outbreak investigations. Multiple-locus variable-number tandem repeat analysis (MLVA) of Yersinia (Y.) enterocolitica and Y. pseudotuberculosis has proven useful in source attribution and epidemiological studies but has hitherto relied on the analysis of isolates. In the present study, MLVA profiles generated from 254 isolates of Y. enterocolitica indicated similarities between human, pig and rodent isolates. Further, MLVA analyses of 13 Y. pseudotuberculosis pure-cultured isolates were compared to MLVA analyses performed directly on the 14 PCR-positive enrichment broths from which the isolates originated, which showed matching MLVA profiles. This indicates that MLVA analysis performed directly on enrichment broths could be a useful method for molecular epidemiological investigations. In addition, 10 out of 32 samples of wild boar minced meat obtained from private hunters and from approved wild-game-handling establishments were PCR-positive for the presence of Y. enterocolitica and may indicate a risk for public health.
Collapse
Affiliation(s)
- Axel Sannö
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden;
| | - Thomas Rosendal
- Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Anna Aspán
- Department of Animal Health and Antibiotics, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Annette Backhans
- Department of Animal Health and Antibiotics, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden;
| |
Collapse
|
5
|
Altissimi C, Noé-Nordberg C, Ranucci D, Paulsen P. Presence of Foodborne Bacteria in Wild Boar and Wild Boar Meat-A Literature Survey for the Period 2012-2022. Foods 2023; 12:foods12081689. [PMID: 37107481 PMCID: PMC10137515 DOI: 10.3390/foods12081689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The wild boar is an abundant game species with high reproduction rates. The management of the wild boar population by hunting contributes to the meat supply and can help to avoid a spillover of transmissible animal diseases to domestic pigs, thus compromising food security. By the same token, wild boar can carry foodborne zoonotic pathogens, impacting food safety. We reviewed literature from 2012-2022 on biological hazards, which are considered in European Union legislation and in international standards on animal health. We identified 15 viral, 10 bacterial, and 5 parasitic agents and selected those nine bacteria that are zoonotic and can be transmitted to humans via food. The prevalence of Campylobacter, Listeria monocytogenes, Salmonella, Shiga toxin-producing E. coli, and Yersinia enterocolitica on muscle surfaces or in muscle tissues of wild boar varied from 0 to ca. 70%. One experimental study reported the transmission and survival of Mycobacterium on wild boar meat. Brucella, Coxiella burnetii, Listeria monocytogenes, and Mycobacteria have been isolated from the liver and spleen. For Brucella, studies stressed the occupational exposure risk, but no indication of meat-borne transmission was evident. Furthermore, the transmission of C. burnetii is most likely via vectors (i.e., ticks). In the absence of more detailed data for the European Union, it is advisable to focus on the efficacy of current game meat inspection and food safety management systems.
Collapse
Affiliation(s)
- Caterina Altissimi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy
| | | | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy
| | - Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
6
|
Bolzoni L, Bonardi S, Tansini C, Scaltriti E, Menozzi I, Morganti M, Conter M, Pongolini S. Different Roles of Wild Boars and Livestock in Salmonella Transmission to Humans in Italy. ECOHEALTH 2023; 20:122-132. [PMID: 36918504 PMCID: PMC10014403 DOI: 10.1007/s10393-023-01625-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/31/2023] [Indexed: 06/11/2023]
Abstract
Wild boar (Sus scrofa) is the most widely distributed large wildlife mammal worldwide. To investigate the transmission of Salmonella enterica amongst wild boars (Sus scrofa), humans, and livestock, we compared via pulsed-field gel electrophoresis and whole genome sequences the isolates of S. enterica serovar Typhimurium (biphasic and monophasic variants) and Enteritidis collected from wild boars, food-producing animals, and human patients in Emilia-Romagna region (Northern Italy) between 2017 and 2020. Specifically, we analysed 2175 isolates originated from human (1832), swine (117), bovine (128), poultry (76), and wild boar (22). The genomic analyses showed that wild boars shared most of their lineages of biphasic Typhimurium with bovines and most of Enteritidis with poultry, whilst we did not find any lineage shared with swine. Moreover, almost 17% of human biphasic Typhimurium and Enteritidis belonged to genomic clusters including wild boar isolates, but the inclusion of bovine and poultry isolates in the same clusters and the peculiar spatial distribution of the isolates suggested that human cases (and wild boar infections) likely originated from bovines and poultry. Consequently, wild boars appear not to play a significant role in infecting humans with these serovars, but seem to get infected themselves from livestock, probably through the environment.
Collapse
Affiliation(s)
- Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| | - Silvia Bonardi
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Strada del Taglio 10, 43126, Parma, Italy.
| | - Cesare Tansini
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Erica Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| | - Ilaria Menozzi
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| | - Marina Morganti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| | - Mauro Conter
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| |
Collapse
|
7
|
Pista A, Silveira L, Ribeiro S, Fontes M, Castro R, Coelho A, Furtado R, Lopes T, Maia C, Mixão V, Borges V, Sá A, Soeiro V, Correia CB, Gomes JP, Saraiva M, Oleastro M, Batista R. Pathogenic Escherichia coli, Salmonella spp. and Campylobacter spp. in Two Natural Conservation Centers of Wildlife in Portugal: Genotypic and Phenotypic Characterization. Microorganisms 2022; 10:2132. [PMID: 36363724 PMCID: PMC9694878 DOI: 10.3390/microorganisms10112132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
Human-wildlife coexistence may increase the potential risk of direct transmission of emergent or re-emergent zoonotic pathogens to humans. Intending to assess the occurrence of three important foodborne pathogens in wild animals of two wildlife conservation centers in Portugal, we investigated 132 fecal samples for the presence of Escherichia coli (Shiga toxin-producing E. coli (STEC) and non-STEC), Salmonella spp. and Campylobacter spp. A genotypic search for genes having virulence and antimicrobial resistance (AMR) was performed by means of PCR and Whole-Genome Sequencing (WGS) and phenotypic (serotyping and AMR profiles) characterization. Overall, 62 samples tested positive for at least one of these species: 27.3% for STEC, 11.4% for non-STEC, 3.0% for Salmonella spp. and 6.8% for Campylobacter spp. AMR was detected in four E. coli isolates and the only Campylobacter coli isolated in this study. WGS analysis revealed that 57.7% (30/52) of pathogenic E. coli integrated genetic clusters of highly closely related isolates (often involving different animal species), supporting the circulation and transmission of different pathogenic E. coli strains in the studied areas. These results support the idea that the health of humans, animals and ecosystems are interconnected, reinforcing the importance of a One Health approach to better monitor and control public health threats.
Collapse
Affiliation(s)
- Angela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Leonor Silveira
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Sofia Ribeiro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Mariana Fontes
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Rita Castro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Anabela Coelho
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Rosália Furtado
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Teresa Lopes
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Carla Maia
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Verónica Mixão
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Ana Sá
- Tapada Nacional de Mafra, Portão do Codeçal, 2640-602 Mafra, Portugal
| | - Vanessa Soeiro
- Centro de Recuperação do Parque Biológico de Gaia, Rua da Cunha, Avintes, 4430-812 Vila Nova de Gaia, Portugal
| | - Cristina Belo Correia
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Margarida Saraiva
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Rita Batista
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| |
Collapse
|
8
|
YERSINIA PSEUDOTUBERCULOSIS INFECTION IN LIONS (PANTHERA LEO) AT A ZOOLOGICAL PARK. J Zoo Wildl Med 2022; 53:593-599. [DOI: 10.1638/2021-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
|
9
|
Piras F, Spanu V, Siddi G, Gymoese P, Spanu C, Cibin V, Schjørring S, De Santis E, Scarano C. Whole-genome sequencing analysis of highly prevalent Salmonella serovars in wild boars from a national park in Sardinia. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Wang J, Liu M, Wang H, Wu Q, Ding Y, Xu T, Ma G, Zhong Y, Zhang J, Chen M, Xue L, Ye Q, Zeng H, Yang X, Yang R. Occurrence, molecular characterization, and antimicrobial susceptibility of Yersinia enterocolitica isolated from retail food samples in China. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Bonardi S, Tansini C, Cacchioli A, Soliani L, Poli L, Lamperti L, Corradi M, Gilioli S. Enterobacteriaceae and Salmonella contamination of wild boar ( Sus scrofa) carcasses: comparison between different sampling strategies. EUR J WILDLIFE RES 2021; 67:88. [PMID: 34602932 PMCID: PMC8475815 DOI: 10.1007/s10344-021-01531-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/25/2021] [Accepted: 09/04/2021] [Indexed: 10/27/2022]
Abstract
During 2020, a total of 64 wild boar carcasses were tested for Enterobacteriaceae count (EBC), Salmonella and Yersinia enterocolitica in the abdominal region (i) within 5 h after hunting in the game collection point and (ii) before dressing and processing in the game-handling establishment (GHE) (49 carcasses-average time interval between (i) and (ii): 4.3 days). Because of COVID-19 restrictions, 15 carcasses were transported to a near slaughterhouse (average time interval between (i) and (ii): 2.3 days). Mesenteric lymph nodes (MLNs) were collected and tested for Salmonella and Y. enterocolitica. Results are shown in relation to sampling A (49 carcasses-GHE) and sampling B (15 carcasses-slaughterhouse). Sampling A: EBC median values were (i) 2.51 log10 CFU/cm2 and (ii) 2.79 log10 CFU/cm2. EBC increase between (i) and (ii) was statistically significant (p = 0.001). Salmonella prevalence on carcasses varied from (i) 2.0 to (ii) 6.1%. Sampling B: EBC median values were (i) 3.1 log10 CFU/cm2 and (ii) 3.32 log10 CFU/cm2. EBC increase between (i) and (ii) was not statistically significant (p = 0.191). Salmonella prevalence on carcasses varied from (i) 6.7 to (ii) 0.0%. The prevalence (sampling A + B) of lymphatic Salmonella carriers was 7.8% (5/64). From carcasses and/or MNLs, the serovars Enteritidis, Typhimurium, Agama, Zaiman and Diarizonae O:50 (z) were detected. Y. enterocolitica was never isolated. Long chilling periods prior to wild game processing should be avoided, and carcasses should be tested at GHE rather than after shooting to proper reflect the microbial load of wild boar meat entering the food chain.
Collapse
Affiliation(s)
- Silvia Bonardi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Cesare Tansini
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Antonio Cacchioli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Laura Soliani
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia E Dell’Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126 Parma, Italy
| | - Luca Poli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Luca Lamperti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Margherita Corradi
- Management Body for Parks and Biodiversity “Emilia Occidentale”, 43038 Sala Baganza (PR), Italy
| | - Stefano Gilioli
- Management Body for Parks and Biodiversity “Emilia Occidentale”, 43038 Sala Baganza (PR), Italy
| |
Collapse
|
12
|
Evidence of Antimicrobial Resistance and Presence of Pathogenicity Genes in Yersinia enterocolitica Isolate from Wild Boars. Pathogens 2021; 10:pathogens10040398. [PMID: 33801613 PMCID: PMC8065425 DOI: 10.3390/pathogens10040398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Yersinia enterocolitica (Ye) is a very important zoonosis andwild boars play a pivotal role in its transmission. In the last decade, the wild boar population has undergone a strong increase that haspushed them towards urbanized areas, facilitating the human–wildlife interface and the spread of infectious diseases from wildlife to domestic animals and humans. Therefore, it is important to know the serotype, antimicrobial resistance and presence of pathogenicity genes of Yersinia enterocolitica (Ye) isolated in species. From 2013 to 2018, we analyzed the liver of 4890 wild boars hunted in Liguria region; we isolated and serotyped 126 Ye positive samples. A decisive role in the pathogenicity is given by the presence of virulence genes; in Ye isolated we found ystB (~70%), ymoA (45.2%), ail (43.6%) and ystA (~20%). Moreover, we evaluated the susceptibility at various antimicrobic agents (Ampicillin, Chloramphenicol, Enrofloxacin, Gentamicin, Kanamycin, Trimethoprim–Sulfamethoxazole, Sulfisoxazole, Ceftiofur and Tetracycline). The antibiotic resistance was analyzed, and we found a time-dependent increase. It is important to shed light on the role of the wild boars as a reserve of potentially dangerous diseases for humans, and also on the antibiotic resistance that represents a public health problem.
Collapse
|
13
|
Rivas L, Strydom H, Paine S, Wang J, Wright J. Yersiniosis in New Zealand. Pathogens 2021; 10:191. [PMID: 33578727 PMCID: PMC7916520 DOI: 10.3390/pathogens10020191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/19/2022] Open
Abstract
The rate of yersiniosis in New Zealand (NZ) is high compared with other developed countries, and rates have been increasing over recent years. Typically, >99% of human cases in NZ are attributed to Yersinia enterocolitica (YE), although in 2014, a large outbreak of 220 cases was caused by Yersinia pseudotuberculosis. Up until 2012, the most common NZ strain was YE biotype 4. The emergent strain since this time is YE biotype 2/3 serotype O:9. The pathogenic potential of some YE biotypes remains unclear. Most human cases of yersiniosis are considered sporadic without an identifiable source. Key restrictions in previous investigations included insufficient sensitivity for the isolation of Yersinia spp. from foods, although foodborne transmission is the most likely route of infection. In NZ, YE has been isolated from a variety of sick and healthy domestic and farm animals but the pathways from zoonotic reservoir to human remain unproven. Whole-genome sequencing provides unprecedented discriminatory power for typing Yersinia and is now being applied to NZ epidemiological investigations. A "One-Health" approach is necessary to elucidate the routes of transmission of Yersinia and consequently inform targeted interventions for the prevention and management of yersiniosis in NZ.
Collapse
Affiliation(s)
- Lucia Rivas
- Christchurch Science Centre, Institute of Environmental Science and Research Limited, Ilam, Christchurch 8041, New Zealand;
| | - Hugo Strydom
- National Centre for Biosecurity and Infectious Disease, Institute of Environmental Science and Research Limited, Upper Hutt, Wellington 5018, New Zealand;
| | - Shevaun Paine
- Kenepuru Science Centre, Institute of Environmental Science and Research Limited, Porirua, Wellington 5022, New Zealand; (S.P.); (J.W.)
| | - Jing Wang
- Kenepuru Science Centre, Institute of Environmental Science and Research Limited, Porirua, Wellington 5022, New Zealand; (S.P.); (J.W.)
| | - Jackie Wright
- National Centre for Biosecurity and Infectious Disease, Institute of Environmental Science and Research Limited, Upper Hutt, Wellington 5018, New Zealand;
| |
Collapse
|
14
|
|
15
|
Chatzopoulos DC, Vasileiou NGC, Ioannidi KS, Katsafadou AI, Mavrogianni VS, Michael CK, Katsarou EI, Karavanis E, Papadopoulos N, Sbiraki A, Athanasiou LV, Billinis C, Fthenakis GC. Experimental Study of the Potential Role of Salmonella enterica subsp. diarizonae in the Diarrhoeic Syndrome of Lambs. Pathogens 2021; 10:113. [PMID: 33498660 PMCID: PMC7912070 DOI: 10.3390/pathogens10020113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
The objectives of this experimental work were the evaluation of the potential role of Salmonella enterica subsp. diarizonae in diarrhoeic syndrome in lambs and the investigation of facets of the pathogenesis of the infection. In total, 12 lambs were challenged orally on the first day of life, with a S. enterica subsp. diarizonae isolate from a clinical case of diarrhoeic syndrome. Sequential blood, faecal and buccal samples were collected from lambs and faecal and milk samples were taken from their dams. Lambs were euthanised 1, 2, 4, 7, 10, 14 and 21 days after challenge. Samples were processed for recovery of the challenge organism; they were also subjected to examination by PCR for detection of the invA gene. Tissue samples from lambs were also examined as above and histopathologically. S. enterica subsp. diarizonae was recovered from faecal samples of all lambs, in total, from 45/77 samples (median duration: 2.4 days post-inoculation). It was also recovered from buccal samples (10/77) from seven lambs (median duration: 0.8 days), and from tissue samples (small intestine, abomasum, liver, gallbladder) of nine lambs. It was recovered from two consecutive milk samples from the same ewe, but not from any faecal sample from ewes. The invA gene was detected in samples from all lambs (median duration: 5.5 days in faecal and 1.3 days in buccal samples), as well as in milk samples from three ewes. Histopathological findings included abomasitis with subepithelial presence of eosinophils, lymphocytes and plasma cells, consistently observed in all lambs. In the small intestine, salient lesions initially included distension and oedema of intestinal villi, leucocytic infiltration and hyperplasia of lymphoid nodules with apparent germinal centres; this was followed at later stages by atrophy and/or degeneration of the lymphoid tissue of the intestine with marked subepithelial infiltration of lymphocytes, plasma cells and eosinophils.
Collapse
Affiliation(s)
- Dimitris C. Chatzopoulos
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (K.S.I.); (A.I.K.); (V.S.M.); (C.K.M.); (E.I.K.); (L.V.A.); (C.B.)
| | | | - Katerina S. Ioannidi
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (K.S.I.); (A.I.K.); (V.S.M.); (C.K.M.); (E.I.K.); (L.V.A.); (C.B.)
| | - Angeliki I. Katsafadou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (K.S.I.); (A.I.K.); (V.S.M.); (C.K.M.); (E.I.K.); (L.V.A.); (C.B.)
| | - Vasia S. Mavrogianni
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (K.S.I.); (A.I.K.); (V.S.M.); (C.K.M.); (E.I.K.); (L.V.A.); (C.B.)
| | - Charalambia K. Michael
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (K.S.I.); (A.I.K.); (V.S.M.); (C.K.M.); (E.I.K.); (L.V.A.); (C.B.)
| | - Eleni I. Katsarou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (K.S.I.); (A.I.K.); (V.S.M.); (C.K.M.); (E.I.K.); (L.V.A.); (C.B.)
| | - Emmanouil Karavanis
- Histopathology Laboratory, 3rd Veterinary Hospital of Greek Army, 57000 Thessaloniki, Greece; (E.K.); (N.P.)
| | - Nikolaos Papadopoulos
- Histopathology Laboratory, 3rd Veterinary Hospital of Greek Army, 57000 Thessaloniki, Greece; (E.K.); (N.P.)
| | - Afroditi Sbiraki
- Veterinary Laboratory of Halkida, Hellenic State Veterinary Service, 34150 Halkida, Greece;
| | - Labrini V. Athanasiou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (K.S.I.); (A.I.K.); (V.S.M.); (C.K.M.); (E.I.K.); (L.V.A.); (C.B.)
| | - Charalambos Billinis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (K.S.I.); (A.I.K.); (V.S.M.); (C.K.M.); (E.I.K.); (L.V.A.); (C.B.)
| | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (K.S.I.); (A.I.K.); (V.S.M.); (C.K.M.); (E.I.K.); (L.V.A.); (C.B.)
| |
Collapse
|
16
|
Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes in European Wild Boar ( Sus scrofa) Hunted in Tuscany (Central Italy). Pathogens 2021; 10:pathogens10020093. [PMID: 33498307 PMCID: PMC7909251 DOI: 10.3390/pathogens10020093] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Wild boar is an animal the population of which constantly increases in Europe. This animal plays an important role as a reservoir for several pathogens, including three of the most important zoonoses: salmonellosis, yersiniosis and listeriosis. The aim of this investigation was to evaluate the occurrence of antimicrobial-resistant and virulence factor genes of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes isolated from wild boar in Tuscany (Central Italy). During two consequent hunting seasons (2018/2019 and 2019/2020), rectal swabs, spleens and livers were collected from 287 hunted wild boar to isolate strains. Each isolate was tested to investigate its antimicrobial resistance and to detect virulence factor genes by PCR. Eighteen Salmonella strains (6.27%) were isolated. Of these, 66.7% were resistant to streptomycin, 13.4% to cephalothin, 6.67% to imipenem and one isolate (6.67%) was resistant simultaneously to five antimicrobials. Moreover, the most detected genes were sopE (73.4%), pipB (66.7%), sodCI (53.3%), spvR and spvC (46.7%). In total, 54 (17.8%) Yersinia enterocolitica were isolated; of them, 26 (48.1%), 9 (16.7%), 17 (31.5%), 1 (1.85%) and 1 (1.85%) belonged to biotypes 1, 2, 3, 4 and 5, respectively. All strains (100%) demonstrated resistance to cephalothin and 70.4% to amoxicillin-clavulanic acid, 55.6% to ampicillin, and 37.0% to cefoxitin. Additionally, the most detected genes were ystA (25.9%), inv (24.1%), ail (22.2%), ystB (18.5%) and virF (14.8%). Finally, only one Listeriamonocytogenes isolate (0.35%) was obtained, belonging to serogroup IVb, serovar 4b, and it was found to be resistant to cefoxitin, cefotaxime and nalidixic acid. The results highlighted the role of wild boar as a carrier for pathogenic and antimicrobial-resistant Salmonella spp., Yersinia enterocolitica and Listeria monocytogens, representing a possible reservoir for domestic animals and human pathogens.
Collapse
|
17
|
Fredriksson-Ahomaa M, London L, Skrzypczak T, Kantala T, Laamanen I, Biström M, Maunula L, Gadd T. Foodborne Zoonoses Common in Hunted Wild Boars. ECOHEALTH 2020; 17:512-522. [PMID: 33326058 PMCID: PMC8192372 DOI: 10.1007/s10393-020-01509-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 05/13/2023]
Abstract
The northern European wild boar population has increased during the last decade. Highest wild boar numbers in Finland have been reported in the southeastern part near the Russian border. Wild boars may be infected with several human and animal pathogens. In this study, we investigated the presence of important foodborne pathogens in wild boars hunted in 2016 in Finland using serology, PCR and culturing. Seroprevalence of Salmonella (38%) and Yersinia (56%) infections was high in wild boars. Antibodies to hepatitis E virus, Toxoplasma gondii and Brucella were found in 18%, 9% and 9% of the wild boars, respectively. Trichinella antibodies were detected in 1% of the animals. We recorded no differences in the seroprevalence between males and females. However, Yersinia and T. gondii antibodies were detected significantly more often in adults than in young individuals. Listeria monocytogenes (48%) and stx-positive Escherichia coli (33%) determinants were frequently detected in the visceral organs (spleen and kidneys) by PCR. Yersinia pseudotuberculosis O:1 and L. monocytogenes 2a and 4b were identified by culturing from the PCR-positive samples. Brucella suis biovar 2 was isolated from visceral organs. No African swine fever, classical swine fever or Aujeszky's disease were detected in the wild boars. Our study shows that wild boars are important reservoirs of foodborne pathogens.
Collapse
Affiliation(s)
- Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O.Box 66, 00014, Helsinki, Finland.
| | - Laura London
- Virology Unit, Finnish Food Authority, Helsinki, Finland
| | - Teresa Skrzypczak
- Veterinary Bacteriology and Pathology Unit, Finnish Food Authority, Helsinki, Finland
| | - Tuija Kantala
- Virology Unit, Finnish Food Authority, Helsinki, Finland
| | - Ilona Laamanen
- Virology Unit, Finnish Food Authority, Helsinki, Finland
| | - Mia Biström
- Veterinary Bacteriology and Pathology Unit, Finnish Food Authority, Helsinki, Finland
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O.Box 66, 00014, Helsinki, Finland
| | - Tuija Gadd
- Virology Unit, Finnish Food Authority, Helsinki, Finland
| |
Collapse
|
18
|
Nguyen SV, Muthappa DM, Eshwar AK, Buckley JF, Murphy BP, Stephan R, Lehner A, Fanning S. Comparative genomic insights into Yersinia hibernica - a commonly misidentified Yersinia enterocolitica-like organism. Microb Genom 2020; 6:mgen000411. [PMID: 32701425 PMCID: PMC7643974 DOI: 10.1099/mgen.0.000411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
Food-associated outbreaks linked to enteropathogenic Yersinia enterocolitica are of concern to public health. Pigs and their meat are recognized risk factors for transmission of Y. enterocolitica. This study aimed to describe the comparative genomics of Y. enterocolitica along with a number of misclassified Yersinia isolates, now constituting the recently described Yersinia hibernica. The latter was originally cultured from an environmental sample taken at a pig slaughterhouse. Unique features were identified in the genome of Y. hibernica, including a novel integrative conjugative element (ICE), denoted as ICEYh-1 contained within a 255 kbp region of plasticity. In addition, a zebrafish embryo infection model was adapted and applied to assess the virulence potential among Yersinia isolates including Y. hibernica.
Collapse
Affiliation(s)
- Scott Van Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Dechamma Mundanda Muthappa
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Athmanya K. Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - James F. Buckley
- Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, Co. Cork and Department of Microbiology, National University of Ireland, Cork, College Road, Cork, Ireland
| | - Brenda P. Murphy
- Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, Co. Cork and Department of Microbiology, National University of Ireland, Cork, College Road, Cork, Ireland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
- Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5AG, UK
| |
Collapse
|
19
|
Petersen HH, Takeuchi-Storm N, Enemark HL, Nielsen ST, Larsen G, Chriél M. Surveillance of important bacterial and parasitic infections in Danish wild boars (Sus scrofa). Acta Vet Scand 2020; 62:41. [PMID: 32746868 PMCID: PMC7398403 DOI: 10.1186/s13028-020-00539-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/28/2020] [Indexed: 11/25/2022] Open
Abstract
Background Similar to the situation in other European countries, Danish wild boars may harbour a wide range of pathogens infectious to humans and domestic pigs. Although wild boars must be kept behind fences in Denmark, hunting and consumption of the meat may cause zoonotic transmission. Moreover, most infections of wild boars are transmissible to domestic pigs, which may have important economic consequences. The aim of this study was to investigate whether Danish wild boars were infected with bacteria and parasites transmissible to humans or domestic pigs: Brucella suis, methicillin-resistant Staphylococcus aureus (MRSA), Salmonella spp., Trichinella spp., lungworms and gastrointestinal parasites, especially Ascaris suum. This is the first study to investigate the prevalence of these important pathogens in Danish wild boars. Results Wild boars from eight enclosures were analysed over a 5-year period. All tested wild boars were negative for B. suis (n = 240), MRSA (n = 244), Salmonella spp. (n = 115) and Trichinella spp. (n = 232), while eight parasite genera were identified in the faeces (n = 254): Ascaris suum, Capillaria sp., Cystoisospora suis, Eimeria spp., Metastrongylus sp. (lungworm), Strongyloides ransomi, Trichuris suis and strongylid eggs, i.e. strongyles not identified to the genera. Eimeria spp. and Metastrongylus sp. had the highest prevalence (92.3 and 79.5%, respectively) and were identified in wild boars from all eight enclosures, while the remaining parasite genera were present more sporadically. Conclusions Wild boars from Denmark constitute a low risk of transmitting B. suis, MRSA, Salmonella spp. and Trichinella spp. to humans or domestic pigs, while economically important parasites transmissible to domestic pigs are highly prevalent in the wild boar population.
Collapse
|
20
|
Bertelloni F, Cilia G, Bogi S, Ebani VV, Turini L, Nuvoloni R, Cerri D, Fratini F, Turchi B. Pathotypes and Antimicrobial Susceptibility of Escherichia Coli Isolated from Wild Boar ( Sus scrofa) in Tuscany. Animals (Basel) 2020; 10:E744. [PMID: 32344604 PMCID: PMC7222796 DOI: 10.3390/ani10040744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022] Open
Abstract
Wild boar are among the most widespread wild mammals in Europe. Although this species can act as a reservoir for different pathogens, data about its role as a carrier of pathogenic and antimicrobial-resistant Escherichia coli are still scarce. The aim of this study was to evaluate the occurrence of antimicrobial-resistant and pathogenic Escherichia coli in wild boar in the Tuscany region of Italy. During the hunting season of 2018-2019, E. coli was isolated from 175 of 200 animals and subjected to antimicrobial resistance tests and PCR for detection of resistance and virulence factor genes. The highest resistance rates were against cephalothin (94.3%), amoxicillin-clavulanic acid (87.4%), ampicillin (68.6%), and tetracycline (44.6%). The most detected resistance genes were blaCMY-2 (54.3%), sul1 (38.9%), sul2 (30.9%), and tetG (24.6%). Concerning genes encoding virulence factors, 55 of 175 isolates (31.4%) were negative for all tested genes. The most detected genes were hlyA (47.4%), astA (29.1%), stx2 (24.6%), eaeA (17.1%), and stx1 (11.4%). E. coli was classified as Shiga toxin-producing E. coli (STEC) (21.7%), enterohemorrhagic E. coli (EHEC) (6.3%), enteroaggregative E. coli (EAEC) (5.1%), and atypical enteropathogenic E. coli (aEPEC) (3.4%). Enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), and typical enteropathogenic E. coli (tEPEC) were not detected. Our results show that wild boars could carry pathogenic and antimicrobial-resistant E. coli, representing a possible reservoir of domestic animal and human pathogens.
Collapse
Affiliation(s)
- Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, 56126 Pisa, Italy; (G.C.); (S.B.); (V.V.E.); (L.T.); (R.N.); (D.C.); (F.F.); (B.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
PREVALENCE OF YERSINIA AMONG WILD SIKA DEER ( CERVUS NIPPON) AND BOARS ( SUS SCROFA) IN JAPAN. J Wildl Dis 2019; 56:270-277. [PMID: 31833814 DOI: 10.7589/2019-04-094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the prevalence of Yersinia, including pathogenic species such as Yersinia enterocolitica and Yersinia pseudotuberculosis, among wild sika deer (Cervus nippon) and boars (Sus scrofa) captured in Japan. The prevalence of Yersinia in the wild deer was 75% (207/277) and in the boars was 74% (40/54). A total of 417 isolates of nine Yersinia species were isolated from the animals examined: the largest number of isolates (48%, 200/417) were Y. enterocolitica biotype 1A. Pathogenic Y. enterocolitica 1B/O:8 were also isolated from two deer, and Y. pseudotuberculosis serogroups 3 and 4 were isolated from two boars and a deer, respectively. The pathogenic Y. enterocolitica 1B/O:8 isolates carried four virulence genes (ail, ystA, yadA, and virF), and Y. pseudotuberculosis serogroups 3 and 4 isolates carried three virulence genes (inv, yadA, and lcrF). Although the Y. enterocolitica 1B/O:8 and Y. pseudotuberculosis isolates were sensitive to almost all the antimicrobials tested, the two Y. enterocolitica 1B/O:8 isolates were resistant to azithromycin and ampicillin, and the three Y. pseudotuberculosis isolates were resistant only to azithromycin. These findings suggested that wild deer and boars might be important reservoirs for the agent causing human yersiniosis.
Collapse
|
22
|
Szczerba-Turek A, Siemionek J, Socha P, Bancerz-Kisiel A, Platt-Samoraj A, Lipczynska-Ilczuk K, Szweda W. Shiga toxin-producing Escherichia coli isolates from red deer (Cervus elaphus), roe deer (Capreolus capreolus) and fallow deer (Dama dama) in Poland. Food Microbiol 2019; 86:103352. [PMID: 31703865 DOI: 10.1016/j.fm.2019.103352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 01/17/2023]
Abstract
Shiga toxin-producing Escherichia (E.) coli (STEC) pathogens are responsible for the outbreaks of serious diseases in humans, including haemolytic uraemic syndrome (HUS), bloody diarrhoea (BD) and diarrhoea (D), and they pose a significant public health concern. Wild ruminants are an important environmental reservoir of foodborne pathogens that can cause serious illnesses in humans and contaminate fresh products. There is a general scarcity of published data about wildlife as a reservoir of foodborne pathogens in Poland, which is why the potential epidemiological risk associated with red deer, roe deer and fallow deer as reservoirs of STEC/AE-STEC strains was evaluated in this study. The aim of the study was to investigate the prevalence of STEC strains in red deer (Cervus elaphus), roe deer (Capreolus capreolus) and fallow deer (Dama dama) populations in north-eastern Poland, and to evaluate the potential health risk associated with wild ruminants carrying STEC/AE-STEC strains. We examined 252 rectal swabs obtained from 134 roe deer (Capreolus capreolus), 97 red deer (Cervus elaphus) and 21 fallow deer (Dama dama) in north-eastern Poland. The samples were enriched in modified buffered peptone water. Polymerase chain reaction (PCR) assays were conducted to determine the virulence profile of stx1, stx2 and eae or aggR genes, to identify the subtypes of stx1 and stx2 genes, and to perform O and H serotyping. E. coli O157:H7 isolates were detected in the rectal swabs collected from 1/134 roe deer (0.75%) and 4/97 red deer (4.1%), and they were not detected in fallow deer (Dama dama). The remaining E. coli serogroups, namely O26, O103, O111 and O145 that belong to the "top five" non-O157 serogroups, were detected in 15/134 roe deer (11.19%), 18/97 red deer (18.56%) and 2/21 fallow deer (9.52%). STEC/AE-STEC strains were detected in 33 roe deer isolates (24.63%), 21 red deer isolates (21.65%) and 2 fallow deer isolates (9.52%). According to the most recent FAO/WHO report, stx2a and eae genes are the primary virulence traits associated with HUS, and these genes were identified in one roe deer isolate and one red deer isolate. Stx2 was the predominant stx gene, and it was detected in 78.79% of roe deer and in 71.43% of red deer isolates. The results of this study confirmed that red deer and roe deer in north-eastern Poland are carriers of STEC/AE-STEC strains that are potentially pathogenic for humans. This is the first report documenting the virulence of STEC/AE-STEC strains from wild ruminants in Poland.
Collapse
Affiliation(s)
- Anna Szczerba-Turek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Jan Siemionek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland
| | - Piotr Socha
- Department of Animal Reproduction with a Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - Agata Bancerz-Kisiel
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland
| | - Aleksandra Platt-Samoraj
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland
| | - Karolina Lipczynska-Ilczuk
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland
| |
Collapse
|
23
|
Bonardi S, Bolzoni L, Zanoni RG, Morganti M, Corradi M, Gilioli S, Pongolini S. Limited Exchange of Salmonella Among Domestic Pigs and Wild Boars in Italy. ECOHEALTH 2019; 16:420-428. [PMID: 31119408 DOI: 10.1007/s10393-019-01418-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The study assessed Salmonella carriage in wild boars (Sus scrofa) and compared their isolates with those recovered from the domestic swine population of the same area of northern Italy (Emilia-Romagna), characterized by intensive pig farming and rather high density of wild boars. A total of 189 wild boars hunted during twelve months (2017-2018) were tested for Salmonella in mesenteric lymph nodes (MLN) and faecal samples. Antimicrobial resistance of recovered strains was tested against 14 antimicrobials. Salmonella was detected in 33/189 wild boars (17.5%), specifically from 30/189 MLN (15.9%) and 6/189 faecal samples (3.2%). Three animals were positive in both samples. Thirteen Salmonella serovars were identified, i.e. Typhimurium (the most common), Bovismorbificans, Coeln, Derby, Enteritidis, Gaminara, Hessarek, Houtenae IV, Kottbus, Napoli, Stanleyville, Thompson and Veneziana. Salmonella carriage was higher in warm than in cold months (P = 0.0013). Pregnancy status was never associated with Salmonella carriage, with significant difference in the recovery of the pathogen between non-pregnant and pregnant females (P = 0.003). Only one resistance pattern to streptomycin and tetracycline was found in 15 isolates (41.7%) belonging to Typhimurium (14/14; 100%) and Kottbus (1/3; 33.3%) serovars. Overlap with isolates from farmed pigs was limited at serotype level (Typhimurium, Derby, Enteritis, Bovismorbificans, Kottbus) and absent at PFGE level, and also antimicrobial resistance patterns were substantially different. This evidence indicates a substantial segregation of the two animal populations with regard to infectious contacts, possibly suggesting that biosecurity measures in place at industrial farm level limit the exchange of Salmonella.
Collapse
Affiliation(s)
- Silvia Bonardi
- Unit of Food Inspection, Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy.
| | - Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| | - Renato Giulio Zanoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, Ozzano Emilia, BO, Italy
| | - Marina Morganti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| | - Margherita Corradi
- Management Body for Parks and Biodiversity "Emilia Occidentale", Sala Baganza, PR, Italy
| | - Stefano Gilioli
- Management Body for Parks and Biodiversity "Emilia Occidentale", Sala Baganza, PR, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| |
Collapse
|
24
|
Szczerba-Turek A, Socha P, Bancerz-Kisiel A, Platt-Samoraj A, Lipczynska-Ilczuk K, Siemionek J, Kończyk K, Terech-Majewska E, Szweda W. Pathogenic potential to humans of Shiga toxin-producing Escherichia coli isolated from wild boars in Poland. Int J Food Microbiol 2019; 300:8-13. [PMID: 30991235 DOI: 10.1016/j.ijfoodmicro.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/26/2019] [Accepted: 04/09/2019] [Indexed: 11/27/2022]
Abstract
The aim of the study was to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) in the wild boar population of north-eastern Poland, and to evaluate the potential health risk associated with wild boars carrying STEC/AE-STEC strains. In Poland, the African Swine Fever (ASF) virus has been a growing problem in domestic pigs and wild boars, one of the main reservoirs of the virus, because of this hunters, veterinary practitioners and foresters thus face a greater risk of coming into contact with animals. Rectal swabs samples were obtained from 152 wild boars hunter-harvested in the 2017/2018 season (autumn-winter) in north-eastern Poland. The samples were enrichment in modified buffered peptone water. Polymerase chain reaction (PCR) assays were conducted to determine the virulence profile of stx1, stx2 and eae and aggR genes, identify subtypes of stx1 and stx2 genes, and perform O and H serotyping. STEC/AE-STEC virulence genes were detected in 43 isolates (28.29%): STEC in 17 isolates (11.18%) and AE-STEC in 26 isolates (17.11%), respectively. None of the tested isolates carried the aggR gene. The most dangerous AE-STEC virulence profile associated with HUS was found in 2 isolates (1.32%): stx1NS/stx2a/d/eae serotype ONT:H7 and stx2a/eae serotype O146:H7. Six of the 152 tested samples belonged to serogroup O157 (3.95%), including one AE-STEC isolate with virulence profile stx2g/eae and five EPEC isolates. The results of this study suggest that wild boars in north-eastern Poland can carry STEC/AE-STEC strains that are potentially pathogenic for humans. This is the first report documenting the virulence of STEC and AE-STEC isolates from wild boars in Poland.
Collapse
Affiliation(s)
- A Szczerba-Turek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - P Socha
- Department of Animal Reproduction with a Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - A Bancerz-Kisiel
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - A Platt-Samoraj
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - K Lipczynska-Ilczuk
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - J Siemionek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - K Kończyk
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - E Terech-Majewska
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|
25
|
Gil Molino M, García Sánchez A, Risco Pérez D, Gonçalves Blanco P, Quesada Molina A, Rey Pérez J, Martín Cano FE, Cerrato Horrillo R, Hermoso-de-Mendoza Salcedo J, Fernández Llario P. Prevalence of Salmonella spp. in tonsils, mandibular lymph nodes and faeces of wild boar from Spain and genetic relationship between isolates. Transbound Emerg Dis 2019; 66:1218-1226. [PMID: 30720247 DOI: 10.1111/tbed.13140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 11/27/2022]
Abstract
The importance of wild boars as game species in Spain is well known. Their feeding habits and intrusive behaviour, together with a progressively wider spreading of populations, increases the interactions of these animals with livestock and humans. Considering that wild boars could have a potential role in the transmission of certain pathogens as salmonellae, the aims of this study were to determine the prevalence of Salmonella spp. in wild boars hunted in central-western Spain, the occurrence of this pathogen in tonsils, mandibular lymph nodes and faeces (as markers for transmission risk), and to define the phylogenetic relationships among isolated strains, in order to investigate the circulation pathways of bacteria among tissues, animals and estates. Samples from 1,041 hunted wild boars were analysed for the presence of Salmonella spp. by bacteriological culture. Isolates were confirmed by PCR and serotyped in the Spanish national reference laboratory. The genetic relationships between strains were determined by PFGE. The results showed a 7.7% of positive animals (81 wild boars), being tonsils the organ most frequently colonised by Salmonella spp. (18.7%), followed by lymph nodes (5.1%) and faecal samples (2.9%). Serovars Enteritidis and Newport were the most frequent amongst the 34 different serovars obtained. The pulsed-field gel electrophoresis (PGFE) analysis showed a great genetic diversity, with serovars that exhibited different pulsotypes when isolated from different estates and multiple serovars in the same estate. In conclusion, this study reveals the importance of wild boars as carriers and possible transmitters of virulent and/or antimicrobial-resistant clones of Salmonella spp. to livestock and humans.
Collapse
Affiliation(s)
- María Gil Molino
- Unidad de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | - David Risco Pérez
- Innovación en Gestión y Conservación de Ungulados S.L., Cáceres, Spain
| | | | - Alberto Quesada Molina
- Departamento de Bioquimica, Biologia Molecular y Genetica, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.,INBIO G+C, Universidad de Extremadura, Cáceres, Spain
| | - Joaquín Rey Pérez
- Unidad de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|
26
|
Abstract
Wild boar populations around the world have increased dramatically over past decades. Climate change, generating milder winters with less snow, may affect their spread into northern regions. Wild boars can serve as reservoirs for a number of bacteria, viruses, and parasites, which are transmissible to humans and domestic animals through direct interaction with wild boars, through contaminated food or indirectly through contaminated environment. Disease transmission between wild boars, domestic animals, and humans is an increasing threat to human and animal health, especially in areas with high wild boar densities. This article reviews important foodborne zoonoses, including bacterial diseases (brucellosis, salmonellosis, tuberculosis, and yersiniosis), parasitic diseases (toxoplasmosis and trichinellosis), and the viral hepatitis E. The focus is on the prevalence of these diseases and the causative microbes in wild boars. The role of wild boars in transmitting these pathogens to humans and livestock is also briefly discussed.
Collapse
Affiliation(s)
- Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki , Helsinki, Finland
| |
Collapse
|
27
|
Yersinia pseudotuberculosis Prevalence and Diversity in Wild Boars in Northeast Germany. Appl Environ Microbiol 2018; 84:AEM.00675-18. [PMID: 29980552 DOI: 10.1128/aem.00675-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
In this study, the prevalence of Yersinia pseudotuberculosis in wild boars in northeast Germany was determined. For that purpose, the tonsils of 503 wild boars were sampled. The presence of Y. pseudotuberculosis was studied by diagnostic PCR. Positive samples were analyzed by cultural detection using a modified cold enrichment protocol. Ten Y. pseudotuberculosis isolates were obtained, which were characterized by biotyping, molecular serotyping, and multilocus sequence typing (MLST). In addition, whole-genome sequences and the antimicrobial susceptibility of the isolates were analyzed. Yersinia pseudotuberculosis was isolated from male and female animals, most of which were younger than 1 year. A prevalence of 2% (10/503) was determined by cultural detection, while 6.4% (32/503) of the animals were positive by PCR. The isolates belonged to the biotypes 1 and 2 and serotypes O:1a (n = 7), O:1b (n = 2), and O:4a (n = 1). MLST analysis revealed three sequence types, ST9, ST23, and ST42. Except one isolate, all isolates revealed a strong resistance to colistin. The relationship of the isolates was studied by whole-genome sequencing demonstrating that they belonged to four clades, exhibiting five different pulsed-field gel electrophoresis (PFGE) restriction patterns and a diverse composition of virulence genes. Six isolates harbored the virulence plasmid pYV. Besides two isolates, all isolates contained ail and inv genes and a complete or incomplete high-pathogenicity island (HPI). None of them possessed a gene for the superantigen YPM. The study shows that various Y. pseudotuberculosis strains exist in wild boars in northeast Germany, which may pose a risk to humans.IMPORTANCEYersinia pseudotuberculosis is a foodborne pathogen whose occurrence is poorly understood. One reason for this situation is the difficulty in isolating the species. The methods developed for the isolation of Yersinia enterocolitica are not well suited for Y. pseudotuberculosis We therefore designed a protocol which enabled the isolation of Y. pseudotuberculosis from a relatively high proportion of PCR-positive wild boar tonsils. The study indicates that wild boars in northeast Germany may carry a variety of Y. pseudotuberculosis strains, which differ in terms of their pathogenic potential and other properties. Since wild boars are widely distributed in German forests and even populate cities such as Berlin, they may transmit yersiniae to other animals and crop plants and may thus cause human infections through the consumption of contaminated food. Therefore, the prevalence of Y. pseudotuberculosis should be determined also in other animals and regions to learn more about the natural reservoir of this species.
Collapse
|
28
|
Sannö A, Rosendal T, Aspán A, Backhans A, Jacobson M. Distribution of enteropathogenic Yersinia spp. and Salmonella spp. in the Swedish wild boar population, and assessment of risk factors that may affect their prevalence. Acta Vet Scand 2018; 60:40. [PMID: 29970104 PMCID: PMC6029406 DOI: 10.1186/s13028-018-0395-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/24/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Pure Eurasian wild boars and/or hybrids with domestic pigs are present in the wild on most continents. These wild pigs have been demonstrated to carry a large number of zoonotic and epizootic pathogens such as Salmonella spp., Yersinia enterocolitica and Y. pseudotuberculosis. Wild boar populations throughout Europe are growing and more and more wild boar meat is being consumed, the majority within the homes of hunters without having passed a veterinary inspection. The aim of this study was to investigate if factors such as population density, level of artificial feeding, time since establishment of a given population, and the handling of animal by-products from slaughtered animals could influence the presence of these pathogens in the wild boar. RESULTS In total, 90 wild boars from 30 different populations in Sweden were sampled and analysed using a protocol combining pre-cultivation and PCR-detection. The results showed that 27% of the sampled wild boars were positive for Salmonella spp., 31% were positive for Y. enterocolitica and 22% were positive for Y. pseudotuberculosis. In 80% of the sampled populations, at least one wild boar was positive for one of these enteropathogens and in total, 60% of the animals carried at least one of the investigated enteropathogens. The presumptive risk factors were analysed using a case-control approach, however, no significant associations were found. CONCLUSION Human enteropathogens are commonly carried by wild boars, mainly in the tonsils, and can thus constitute a risk for contamination of the carcass and meat during slaughter. Based on the present results, the effect of reducing population densities and number of artificial feeding places might be limited.
Collapse
Affiliation(s)
- Axel Sannö
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, 750 07 Uppsala, Sweden
| | - Thomas Rosendal
- Department of Disease Control and Epidemiology, National Veterinary Institute, Uppsala, Sweden
| | - Anna Aspán
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, 750 07 Uppsala, Sweden
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Annette Backhans
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, 750 07 Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, 750 07 Uppsala, Sweden
| |
Collapse
|
29
|
Råsbäck T, Rosendal T, Stampe M, Sannö A, Aspán A, Järnevi K, Lahti ET. Prevalence of human pathogenic Yersinia enterocolitica in Swedish pig farms. Acta Vet Scand 2018; 60:39. [PMID: 29940995 PMCID: PMC6020225 DOI: 10.1186/s13028-018-0393-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/18/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Pigs are the most important reservoir for human pathogenic Yersinia enterocolitica. We investigated the herd prevalence of human pathogenic Y. enterocolitica in Swedish pig farms by analysing pen faecal samples using a cold enrichment of 1 week and thereafter subsequent plating onto chromogenic selective media (CAY agar). RESULTS Pathogenic Y. enterocolitica was found in 32 (30.5%) of the 105 sampled farms with finisher pigs. Bioserotype 4/O:3 was identified at all but one farm, where 2/O:9 was identified. Pen-prevalence within the positive herds varied from 1/4 to 4/4 pens. The calculated intra-class correlation coefficient ICC (0.89) from a model with a random effect for grouping within herd indicated a very high degree of clustering by herd. None of the explored risk factors, including herd size, herd type, pig flow, feed type, access to outdoors, evidence of birds and rodents in the herd, usage of straw, number of pigs in sampled pen and age of pigs in pen were significantly associated with Y. enterocolitica status of the pen. The use of high pressure washing with cold water was significantly associated with Y. enterocolitica in the pen (OR = 84.77, 4.05-1772). Two culture methods were assessed for detection of Y. enterocolitica, one of which included the use of a chromogenic agar (CAY agar) intended for detection of human pathogenic Y. enterocolitica. The chromogenic media was found equal or superior to traditional methods and was used in this study. The isolates obtained were characterised by biotyping, serotyping, mass spectrometry (MALDI-TOF) and PCR. Characterisation by MALDI-TOF gave identical results to that of conventional bioserotyping. All porcine isolates were positive for the ail and inv genes by PCR, indicating that the isolates were most likely pathogenic to humans. CONCLUSIONS Human pathogenic Y. enterocolitica was found in nearly one-third of the Swedish pig farms with finisher pigs. The use of high pressure washing with cold water was associated with the presence of Y. enterocolitica in the pen. A modified culturing method using a chromogenic agar was efficient for detection of pathogenic Y. enterocolitica in pig faeces. The use of masspectrometry for identification and subtyping was in agreement with conventional biotyping and serotyping methods.
Collapse
Affiliation(s)
- Therese Råsbäck
- Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Thomas Rosendal
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Michael Stampe
- Farm and Animal Health, Kungsängens Gård 6B, 753 23 Uppsala, Sweden
| | - Axel Sannö
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7070, 750 07 Uppsala, Sweden
| | - Anna Aspán
- Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7070, 750 07 Uppsala, Sweden
| | - Katarina Järnevi
- Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Elina Tast Lahti
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| |
Collapse
|
30
|
Sannö A, Jacobson M, Sterner S, Thisted-Lambertz S, Aspán A. The development of a screening protocol for Salmonella spp. and enteropathogenic Yersinia spp. in samples from wild boar (Sus scrofa) also generating MLVA-data for Y. enterocolitica and Y. pseudotuberculosis. J Microbiol Methods 2018; 150:32-38. [PMID: 29792943 DOI: 10.1016/j.mimet.2018.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 02/02/2023]
Abstract
Salmonellosis and yersiniosis are notifiable human diseases that are commonly associated with contaminated food. Domestic pigs as well as wild boars and other wild-life have been identified as reservoirs of these bacteria. Methods for cultivation and molecular epidemiological investigations of Salmonella spp. are well established, however, cultivation of enteropathogenic Yersinia spp. is time- consuming and the commonly used method for molecular epidemiological investigations, pulsed-field gel electrophoresis, lack in discriminatory power. The aim of this study was to develop and evaluate a screening protocol well suited for wildlife samples and other highly contaminated samples. The method is based on PCR-screening followed by Multiple Loci Variant number tandem repeat Analysis (MLVA) on enrichment broth to obtain molecular epidemiological data for enteropathogenic Yersinia spp. without the need for pure isolates. The performance of the protocol was evaluated using wild boar samples (n=354) including tonsils, faeces and lymph nodes from 90 Swedish wild boars. The new protocol performed as well as or better than the established ISO-standards for detection and cultivation of Y. enterocolitica and Salmonella spp., however for cultivation of Y. pseudotuberculosis, further development is needed. The selection for motility seems beneficial for the enrichment of Salmonella spp. and Y. enterocolitica. Further, the selective enrichment prior to PCR-analysis eliminates inhibitory factors present in the original sample. In total, ten isolates of Y. enterocolitica of various bio-serotypes were obtained, and the MLVA-profile of these isolates were consistent with the profiles from the corresponding enrichment broth. Further, 22 isolates of Salmonella spp. comprising six different serovars were obtained with S. Fulica, S. Hadar and a monophasic S. Typhimurium being the most common. In conclusion, the presented screening protocol offers a rapid and efficient way to obtain prevalence data from a large sample set as well as MLVA-data within a short time frame. These results can hence improve the knowledge on the epidemiology and distribution of these pathogens and their importance to public health.
Collapse
Affiliation(s)
- Axel Sannö
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Sandra Sterner
- School of Health Sciences, Örebro University, Örebro, Sweden.
| | | | - Anna Aspán
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
31
|
Identification of Yersinia at the Species and Subspecies Levels Is Challenging. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Prevalence, characterization and antimicrobial susceptibility of Yersinia enterocolitica and other Yersinia species found in fruits and vegetables from the European Union. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Brown VR, Bowen RA, Bosco‐Lauth AM. Zoonotic pathogens from feral swine that pose a significant threat to public health. Transbound Emerg Dis 2018; 65:649-659. [DOI: 10.1111/tbed.12820] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 12/30/2022]
Affiliation(s)
- V. R. Brown
- Department of Biomedical Sciences Colorado State University Fort Collins CO USA
| | - R. A. Bowen
- Department of Biomedical Sciences Colorado State University Fort Collins CO USA
| | - A. M. Bosco‐Lauth
- Department of Biomedical Sciences Colorado State University Fort Collins CO USA
| |
Collapse
|
34
|
Söderqvist K. Is your lunch salad safe to eat? Occurrence of bacterial pathogens and potential for pathogen growth in pre-packed ready-to-eat mixed-ingredient salads. Infect Ecol Epidemiol 2017; 7:1407216. [PMID: 29230273 PMCID: PMC5717711 DOI: 10.1080/20008686.2017.1407216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/09/2017] [Indexed: 10/25/2022] Open
Abstract
As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw (e.g. leafy vegetables and tomatoes) and processed (e.g. chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g. when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g. cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage.
Collapse
Affiliation(s)
- Karin Söderqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
35
|
Estimates of the burden of illness for eight enteric pathogens associated with animal contact in Canada. Epidemiol Infect 2017; 145:3413-3423. [PMID: 29168450 PMCID: PMC9148765 DOI: 10.1017/s0950268817002436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Enteric pathogens are commonly known to be transmitted through food or water; however, contact with animals is another important transmission route. This study estimated the annual burden of illness attributable to animal contact for eight enteric pathogens in Canada. Using data from a Canadian expert elicitation on transmission routes, the proportion of enteric illnesses attributable to animal contact was estimated for each pathogen to estimate the annual number of illnesses, hospitalizations and deaths in Canada. For each estimate, a mean and probability intervals were generated. Of all illnesses caused by these eight pathogens, 16% were estimated attributable to animal contact. This estimate translates to 86 000 (31 000–166 000) illnesses, 488 (186–890) hospitalizations and 12 (2–28) deaths annually for the eight pathogens combined. Campylobacter spp. is the leading cause of illnesses annually, with an estimated 38 000 (14 000–71 000) illnesses occurring each year, followed by non-typhoidal Salmonella spp. (17 000, 6000–32 000). The majority of hospitalizations were attributable to non-typhoidal Salmonella spp. (36%) and Campylobacter spp. (31%). Non-typhoidal Salmonella spp. (28%) and Listeria monocytogenes (31%) were responsible for the majority of the estimated deaths. These results identify farm animal and pet/pet food exposure as key pathways of transmission for several pathogens. The estimated burden of illness associated with animal contact is substantial.
Collapse
|
36
|
Detection, seroprevalence and antimicrobial resistance of Yersinia enterocolitica and Yersinia pseudotuberculosis in pig tonsils in Northern Italy. Int J Food Microbiol 2016; 235:125-32. [DOI: 10.1016/j.ijfoodmicro.2016.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/06/2016] [Accepted: 07/27/2016] [Indexed: 11/17/2022]
|
37
|
Nowakiewicz A, Zięba P, Ziółkowska G, Gnat S, Muszyńska M, Tomczuk K, Majer Dziedzic B, Ulbrych Ł, Trościańczyk A. Free-Living Species of Carnivorous Mammals in Poland: Red Fox, Beech Marten, and Raccoon as a Potential Reservoir of Salmonella, Yersinia, Listeria spp. and Coagulase-Positive Staphylococcus. PLoS One 2016; 11:e0155533. [PMID: 27171434 PMCID: PMC4865137 DOI: 10.1371/journal.pone.0155533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/29/2016] [Indexed: 12/01/2022] Open
Abstract
The objective of the study was to examine a population of free-living carnivorous mammals most commonly found in Poland (red fox, beech marten, and raccoon) for the occurrence of bacteria that are potentially pathogenic for humans and other animal species and to determine their virulence potential (the presence of selected virulence genes). From the total pool of isolates obtained (n = 328), we selected 90 belonging to species that pose the greatest potential threat to human health: Salmonella spp. (n = 19; 4.51%), Yersinia enterocolitica (n = 10; 2.37%), Listeria monocytogenes and L. ivanovii (n = 21), and Staphylococcus aureus (n = 40; 9.5%). The Salmonella spp. isolates represented three different subspecies; S. enterica subsp. enterica accounted for a significant proportion (15/19), and most of the serotypes isolated (S. Typhimurium, S. Infantis, S. Newport and S. Enteritidis) were among the 10 non-typhoidal Salmonella serotypes that are most often responsible for infections in Europe, including Poland. Y. enterococlitica was detected in the smallest percentage of animals, but 60% of strains among the isolates tested possessed the ail gene, which is responsible for attachment and invasion. Potentially pathogenic Listeria species were isolated from approx. 5% of the animals. The presence of all tested virulence genes was shown in 35% of L. monocytogenes strains, while in the case of the other strains, the genes occurred in varying numbers and configurations. The presence of the inlA, inlC, hlyA, and iap genes was noted in all strains, whereas the genes encoding PI-PLC, actin, and internalin Imo2821 were present in varying percentages (from 80% to 55%). S. aureus was obtained from 40 individuals. Most isolates possessed the hla, hld (95% for each), and hlb (32.5%) genes encoding hemolysins as well as the gene encoding leukotoxin lukED (70%). In a similar percentage of strains (77.5%), the presence of at least one gene encoding enterotoxin was found, with 12.5% exhibiting the presence of egc-like variants. In two animals, we also noted the gene encoding the TSST-1 toxin. The results of the study showed that free-living animals may be a significant reservoir of bacteria that are potentially pathogenic for humans. The results of the statistical analysis revealed that, among the animals species studied, the red fox constitutes the most important source of infections.
Collapse
Affiliation(s)
- Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine University of Life Sciences, Lublin, Poland
| | | | - Grażyna Ziółkowska
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine University of Life Sciences, Lublin, Poland
| | - Sebastian Gnat
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine University of Life Sciences, Lublin, Poland
| | | | - Krzysztof Tomczuk
- Sub-Department of Parasitology and Invasive Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Barbara Majer Dziedzic
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine University of Life Sciences, Lublin, Poland
| | | | - Aleksandra Trościańczyk
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine University of Life Sciences, Lublin, Poland
| |
Collapse
|
38
|
Lorencova A, Babak V, Lamka J. Serological Prevalence of Enteropathogenic Yersinia spp. in Pigs and Wild Boars from Different Production Systems in the Moravian Region, Czech Republic. Foodborne Pathog Dis 2016; 13:275-9. [PMID: 26982547 DOI: 10.1089/fpd.2015.2086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human yersiniosis caused by pathogenic Yersinia spp. is one of the most common reported zoonoses in the European Union and pigs are considered as the major reservoir of these bacteria. Serological testing represents a suitable method to obtain information about the prevalence of enteropathogenic Yersinia spp. in food animals. The prevalence of antibodies against enteropathogenic Yersinia spp. was studied in 319 slaughtered pigs and 135 wild boars from different production systems in the Moravian region (Czech Republic) using a commercially available ELISA test (an apparent prevalence). The seroprevalence was significantly associated with the type of breeding system, with the lowest seroprevalence being observed in household-raised pigs (13/29, 44.8%). No significant difference between the prevalence of anti-Yersinia antibodies in conventional (146/180, 81.1%) and organic pigs (92/110, 83.6%) was found. Antibodies were found in 65.9% (89/135) of wild boars without a significant difference between adult (23/41, 56.1%) and young (66/94, 70.2%) animals. Seropositivity was significantly higher in domestic (251/319, 78.7% in total) compared to feral pigs. A Bayesian approach taking into account the sensitivity and specificity of the ELISA test was used to estimate the true prevalence of anti-Yersinia antibodies in pigs and wild boars. According to our results, domestic pigs and wild boars proved to be an important reservoir of enteropathogenic Yersinia in the Czech Republic. Attention should be paid to good hygienic practice during slaughtering and handling of meat to prevent meat contamination and subsequently human infection.
Collapse
Affiliation(s)
- Alena Lorencova
- 1 Department of Food and Feed Safety, Veterinary Research Institute , Brno, Czech Republic
| | - Vladimir Babak
- 1 Department of Food and Feed Safety, Veterinary Research Institute , Brno, Czech Republic
| | - Jiri Lamka
- 2 Faculty of Pharmacy in Hradec Kralove, Charles University, Prague , Czech Republic
| |
Collapse
|
39
|
Arrausi-Subiza M, Gerrikagoitia X, Alvarez V, Ibabe JC, Barral M. Prevalence of Yersinia enterocolitica and Yersinia pseudotuberculosis in wild boars in the Basque Country, northern Spain. Acta Vet Scand 2016; 58:4. [PMID: 26790625 PMCID: PMC4719535 DOI: 10.1186/s13028-016-0184-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 01/03/2016] [Indexed: 11/26/2022] Open
Abstract
Background Yersiniosis is a zoonosis widely distributed in Europe and swine carry different serotypes of Yersinia enterocolitica and Y. pseudotuberculosis. The aim of this study was to determine the prevalence of Y. enterocolitica and Y. pseudotuberculosis in wild boars in northern Spain. The blood of wild boars (n = 505) was sampled between 2001 and 2012. Seroprevalence was determined in 490 serum samples with an indirect enzyme-linked immunosorbent assay. Seventy-two of the animals were also examined for the presence of Y. enterocolitica or Y. pseudotuberculosis in the tonsils with real-time polymerase chain reaction. All the tonsils were analysed twice, directly and after cold enrichment in phosphate-buffered saline supplemented with 1 % mannitol and 0.15 % bile salts. Results Antibodies directed against Y. enterocolitica and Y. pseudotuberculosis were detected in 52.5 % of the animals. Yersinia enterocolitica was detected with real-time polymerase chain reaction in 33.3 % of the wild boars and Y. pseudotuberculosis in 25 %. Significant differences were observed according to the sampling year, and the highest prevalence was during winter and spring. The highest antibody levels and Y.enterocolitica prevalence were observed in mountainous areas at altitudes higher than 600 m, with very cold winters, and with the highest annual rainfall for each dominant climate. Areas with low and medium livestock populations were associated with the highest seroprevalence of Yersinia spp. in wild boars, whereas areas with high ovine populations had the highest prevalence of Y. enterocolitica. Conclusions This study shows that Y. enterocolitica and Y. pseudotuberculosis are highly prevalent among wild boars in the Basque country, with Y. enterocolitica most prevalent. The risk of infection among wild boars is influenced by the season and the area in which they live. Electronic supplementary material The online version of this article (doi:10.1186/s13028-016-0184-9) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Cummings KJ, Rodriguez‐Rivera LD, Grigar MK, Rankin SC, Mesenbrink BT, Leland BR, Bodenchuk MJ. Prevalence and Characterization of
Salmonella
Isolated from Feral Pigs Throughout Texas. Zoonoses Public Health 2015; 63:436-41. [DOI: 10.1111/zph.12244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - B. R. Leland
- United States Department of Agriculture San Antonio TX USA
| | | |
Collapse
|
41
|
Chiari M, Ferrari N, Giardiello D, Lanfranchi P, Zanoni M, Lavazza A, Alborali LG. Isolation and identification of Salmonella spp. from red foxes (Vulpes vulpes) and badgers (Meles meles) in northern Italy. Acta Vet Scand 2014; 56:86. [PMID: 25492524 PMCID: PMC4266207 DOI: 10.1186/s13028-014-0086-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/03/2014] [Indexed: 11/19/2022] Open
Abstract
Background Salmonella spp. have been isolated from a wide range of wild animals. Opportunistic wild carnivores such as red foxes (Vulpes vulpes) and badgers (Meles meles) may act as environmental indicators or as potential sources of salmonellosis in humans. The present study characterizes Salmonella spp. isolated from the intestinal contents of hunted or dead red foxes (n = 509) and badgers (n = 17) in northern Italy. Findings Thirty-one strains of Salmonella belonging to 3 Salmonella enterica subspecies were isolated. Fourteen different serovars of S. enterica subsp. enterica were identified, among which were serovars often associated with human illness. Conclusions Wild opportunistic predators can influence the probability of infection of both domestic animals and humans through active shedding of the pathogen to the environment. The epidemiological role of wild carnivores in the spread of salmonellosis needs to be further studied.
Collapse
|
42
|
Laukkanen-Ninios R, Fredriksson-Ahomaa M, Korkeala H. EnteropathogenicYersiniain the Pork Production Chain: Challenges for Control. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Riikka Laukkanen-Ninios
- Dept. of Food Hygiene and Environmental Health; Faculty of Veterinary Medicine; Univ. of Helsinki; P.O. Box 66, 00014 Helsinki Finland
| | - Maria Fredriksson-Ahomaa
- Dept. of Food Hygiene and Environmental Health; Faculty of Veterinary Medicine; Univ. of Helsinki; P.O. Box 66, 00014 Helsinki Finland
| | - Hannu Korkeala
- Dept. of Food Hygiene and Environmental Health; Faculty of Veterinary Medicine; Univ. of Helsinki; P.O. Box 66, 00014 Helsinki Finland
| |
Collapse
|