1
|
Guillen-Chable F, Rodríguez Corona U, Pereira-Santana A, Bayona A, Rodríguez-Zapata LC, Aquino C, Šebestová L, Vitale N, Hozak P, Castano E. Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids. Cells 2020; 9:cells9051143. [PMID: 32384686 PMCID: PMC7290794 DOI: 10.3390/cells9051143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Fibrillarin is a highly conserved nucleolar methyltransferase responsible for ribosomal RNA methylation across evolution from Archaea to humans. It has been reported that fibrillarin is involved in the methylation of histone H2A in nucleoli and other processes, including viral progression, cellular stress, nuclear shape, and cell cycle progression. We show that fibrillarin has an additional activity as a ribonuclease. The activity is affected by phosphoinositides and phosphatidic acid and insensitive to ribonuclease inhibitors. Furthermore, the presence of phosphatidic acid releases the fibrillarin-U3 snoRNA complex. We show that the ribonuclease activity localizes to the GAR (glycine/arginine-rich) domain conserved in a small group of RNA interacting proteins. The introduction of the GAR domain occurred in evolution in the transition from archaea to eukaryotic cells. The interaction of this domain with phospholipids may allow a phase separation of this protein in nucleoli.
Collapse
Affiliation(s)
- Francisco Guillen-Chable
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Ulises Rodríguez Corona
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Alejandro Pereira-Santana
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, el Bajio, Zapopan C.P. 45019, Jalisco, Mexico;
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Alcaldia Benito Juarez C.P. 03940, Ciudad de Mexico, Mexico
| | - Andrea Bayona
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Luis Carlos Rodríguez-Zapata
- Biotechnology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatan, Mexico;
| | - Cecilia Aquino
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Lenka Šebestová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the CAS, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic; (L.Š.); (P.H.)
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Nicolas Vitale
- Institute of Celullar and Integrative Neuroscience (INCI), UPR-3212 The French National Centre for Scientific Research & University of Strasbourg, 67000 Strasbourg, France;
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the CAS, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic; (L.Š.); (P.H.)
| | - Enrique Castano
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
- Correspondence:
| |
Collapse
|
2
|
Burke MF, McLaurin DM, Logan MK, Hebert MD. Alteration of 28S rRNA 2'- O-methylation by etoposide correlates with decreased SMN phosphorylation and reduced Drosha levels. Biol Open 2019; 8:bio041848. [PMID: 30858166 PMCID: PMC6451326 DOI: 10.1242/bio.041848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
The most common types of modification in human rRNA are pseudouridylation and 2'-O ribose methylation. These modifications are performed by small nucleolar ribonucleoproteins (snoRNPs) which contain a guide RNA (snoRNA) that base pairs at specific sites within the rRNA to direct the modification. rRNA modifications can vary, generating ribosome heterogeneity. One possible method that can be used to regulate rRNA modifications is by controlling snoRNP activity. RNA fragments derived from some small Cajal body-specific RNAs (scaRNA 2, 9 and 17) may influence snoRNP activity. Most scaRNAs accumulate in the Cajal body - a subnuclear domain - where they participate in the biogenesis of small nuclear RNPs, but scaRNA 2, 9 and 17 generate nucleolus-enriched fragments of unclear function, and we hypothesize that these fragments form regulatory RNPs that impact snoRNP activity and modulate rRNA modifications. Our previous work has shown that SMN, Drosha and various stresses, including etoposide treatment, may alter regulatory RNP formation. Here we demonstrate that etoposide treatment decreases the phosphorylation of SMN, reduces Drosha levels and increases the 2'-O-methylation of two sites within 28S rRNA. These findings further support a role for SMN and Drosha in regulating rRNA modification, possibly by affecting snoRNP or regulatory RNP activity.
Collapse
Affiliation(s)
- Marilyn F Burke
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
3
|
Logan MK, Burke MF, Hebert MD. Altered dynamics of scaRNA2 and scaRNA9 in response to stress correlates with disrupted nuclear organization. Biol Open 2018; 7:bio.037101. [PMID: 30177550 PMCID: PMC6176948 DOI: 10.1242/bio.037101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small Cajal body-specific RNAs (scaRNAs) are part of small Cajal body-specific ribonucleoproteins (scaRNPs) that modify small nuclear RNA (snRNA) in Cajal bodies (CBs). Several scaRNAs (scaRNA 2, 9 and 17) have been found to generate smaller, nucleolus-enriched fragments. We hypothesize that the fragments derived from scaRNA 2, 9 and 17 form regulatory RNPs that influence the level of modifications within rRNA by altering small nucleolar RNP (snoRNP) activity. Here we show that external factors such as DNA damaging agents can alter the scaRNA9 full length to processed fragment ratio. We also show that full-length scaRNA2 levels are likewise impacted by DNA damage, which correlates with the disruption of SMN, coilin and WRAP53 co-localization in CBs. The dynamics of scaRNA9 were also shown to be affected by Drosha levels, which suggests that this protein may participate in the biogenesis and processing of this non-coding RNA. Identification of factors that contribute to scaRNA 2, 9 and 17 processing may facilitate an assessment of how external stress can lead to changes in rRNA modifications.
Collapse
Affiliation(s)
- Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Marilyn F Burke
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
4
|
Terns MP, Terns RM. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr 2018; 10:17-39. [PMID: 11868985 PMCID: PMC5977530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The small nucleolar RNAs (snoRNAs) are an abundant class of trans-acting RNAs that function in ribosome biogenesis in the eukaryotic nucleolus. Elegant work has revealed that most known snoRNAs guide modification of pre-ribosomal RNA (pre-rRNA) by base pairing near target sites. Other snoRNAs are involved in cleavage of pre-rRNA by mechanisms that have not yet been detailed. Moreover, our appreciation of the cellular roles of the snoRNAs is expanding with new evidence that snoRNAs also target modification of small nuclear RNAs and messenger RNAs. Many snoRNAs are produced by unorthodox modes of biogenesis including salvage from introns of pre-mRNAs. The recent discovery that homologs of snoRNAs as well as associated proteins exist in the domain Archaea indicates that the RNA-guided RNA modification system is of ancient evolutionary origin. In addition, it has become clear that the RNA component of vertebrate telomerase (an enzyme implicated in cancer and cellular senescence) is related to snoRNAs. During its evolution, vertebrate telomerase RNA appears to have co-opted a snoRNA domain that is essential for the function of telomerase RNA in vivo. The unique properties of snoRNAs are now being harnessed for basic research and therapeutic applications.
Collapse
MESH Headings
- Animals
- Base Pairing
- Biological Transport
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Eukaryotic Cells/metabolism
- Evolution, Molecular
- Methylation
- Prokaryotic Cells/metabolism
- Pseudouridine/metabolism
- RNA/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/physiology
- RNA, Catalytic/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Small Nucleolar/physiology
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribosomes/metabolism
- Species Specificity
- Structure-Activity Relationship
- Telomerase/metabolism
Collapse
Affiliation(s)
- Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA.
| | | |
Collapse
|
5
|
Poole AR, Vicino I, Adachi H, Yu YT, Hebert MD. Regulatory RNPs: a novel class of ribonucleoproteins that potentially contribute to ribosome heterogeneity. Biol Open 2017; 6:1342-1354. [PMID: 28808137 PMCID: PMC5612246 DOI: 10.1242/bio.028092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many ribonucleoproteins (RNPs), which are comprised of noncoding RNA and associated proteins, are involved in essential cellular processes such as translation and pre-mRNA splicing. One class of RNP is the small Cajal body-specific RNP (scaRNP), which contributes to the biogenesis of small nuclear RNPs (snRNPs) that are central components of the spliceosome. Three scaRNAs are internally processed, generating stable nucleolus-enriched RNAs of unknown function. Here, we provide data that show that these RNAs become part of RNPs we term regulatory RNPs (regRNPs). Most modifications within rRNA (predominantly pseudouridylation and ribose 2′-O-methylation) are conducted by small nucleolar RNPs (snoRNPs), and we provide evidence that the activity of at least some of these snoRNPs is under the control of regRNPs. Because modifications within rRNA can vary in different physiological or pathological situations, rRNA modifications are thought to be the major source of ribosome heterogeneity. Our identification of regRNPs thus provides a potential mechanism for how ribosome heterogeneity may be accomplished. This work also provides additional functional connections between the Cajal body and the nucleolus. Summary: Processed scaRNAs give rise to a novel regulatory RNP, which regulates the modification of ribosomal RNA. These findings provide insight into the mechanisms governing ribosome heterogeneity.
Collapse
Affiliation(s)
- Aaron R Poole
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Ian Vicino
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael D Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
6
|
Pastorek L, Sobol M, Hozák P. Colocalization coefficients evaluating the distribution of molecular targets in microscopy methods based on pointed patterns. Histochem Cell Biol 2016; 146:391-406. [PMID: 27460592 PMCID: PMC5037163 DOI: 10.1007/s00418-016-1467-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 01/28/2023]
Abstract
In biomedical studies, the colocalization is commonly understood as the overlap between distinctive labelings in images. This term is usually associated especially with quantitative evaluation of the immunostaining in fluorescence microscopy. On the other hand, the evaluation of the immunolabeling colocalization in the electron microscopy images is still under-investigated and biased by the subjective and non-quantitative interpretation of the image data. We introduce a novel computational technique for quantifying the level of colocalization in pointed patterns. Our approach follows the idea included in the widely used Manders' colocalization coefficients in fluorescence microscopy and represents its counterpart for electron microscopy. In presented methodology, colocalization is understood as the product of the spatial interactions at the single-particle (single-molecule) level. Our approach extends the current significance testing in the immunoelectron microscopy images and establishes the descriptive colocalization coefficients. To demonstrate the performance of the proposed coefficients, we investigated the level of spatial interactions of phosphatidylinositol 4,5-bisphosphate with fibrillarin in nucleoli. We compared the electron microscopy colocalization coefficients with Manders' colocalization coefficients for confocal microscopy and super-resolution structured illumination microscopy. The similar tendency of the values obtained using different colocalization approaches suggests the biological validity of the scientific conclusions. The presented methodology represents a good basis for further development of the quantitative analysis of immunoelectron microscopy data and can be used for studying molecular interactions at the ultrastructural level. Moreover, this methodology can be applied also to the other super-resolution microscopy techniques focused on characterization of discrete pointed structures.
Collapse
Affiliation(s)
- Lukáš Pastorek
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
- Microscopy Centre, Institute of Molecular Genetics ASCR v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
- Microscopy Centre, Institute of Molecular Genetics ASCR v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
- Microscopy Centre, Institute of Molecular Genetics ASCR v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
- Laboratory of Epigenetics of the Cell Nucleus, Division BIOCEV, Institute of Molecular Genetics of the ASCR v. v. i., Průmyslová 595, 252 50, Vestec, Czech Republic.
| |
Collapse
|
7
|
Calo E, Flynn RA, Martin L, Spitale RC, Chang HY, Wysocka J. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 2014; 518:249-53. [PMID: 25470060 DOI: 10.1038/nature13923] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022]
Abstract
DEAD-box RNA helicases are vital for the regulation of various aspects of the RNA life cycle, but the molecular underpinnings of their involvement, particularly in mammalian cells, remain poorly understood. Here we show that the DEAD-box RNA helicase DDX21 can sense the transcriptional status of both RNA polymerase (Pol) I and II to control multiple steps of ribosome biogenesis in human cells. We demonstrate that DDX21 widely associates with Pol I- and Pol II-transcribed genes and with diverse species of RNA, most prominently with non-coding RNAs involved in the formation of ribonucleoprotein complexes, including ribosomal RNA, small nucleolar RNAs (snoRNAs) and 7SK RNA. Although broad, these molecular interactions, both at the chromatin and RNA level, exhibit remarkable specificity for the regulation of ribosomal genes. In the nucleolus, DDX21 occupies the transcribed rDNA locus, directly contacts both rRNA and snoRNAs, and promotes rRNA transcription, processing and modification. In the nucleoplasm, DDX21 binds 7SK RNA and, as a component of the 7SK small nuclear ribonucleoprotein (snRNP) complex, is recruited to the promoters of Pol II-transcribed genes encoding ribosomal proteins and snoRNAs. Promoter-bound DDX21 facilitates the release of the positive transcription elongation factor b (P-TEFb) from the 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes. Our results uncover the multifaceted role of DDX21 in multiple steps of ribosome biogenesis, and provide evidence implicating a mammalian RNA helicase in RNA modification and Pol II elongation control.
Collapse
Affiliation(s)
- Eliezer Calo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ryan A Flynn
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lance Martin
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert C Spitale
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joanna Wysocka
- 1] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
8
|
Stępiński D. Functional ultrastructure of the plant nucleolus. PROTOPLASMA 2014; 251:1285-306. [PMID: 24756369 PMCID: PMC4209244 DOI: 10.1007/s00709-014-0648-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 04/08/2014] [Indexed: 05/23/2023]
Abstract
Nucleoli are nuclear domains present in almost all eukaryotic cells. They not only specialize in the production of ribosomal subunits but also play roles in many fundamental cellular activities. Concerning ribosome biosynthesis, particular stages of this process, i.e., ribosomal DNA transcription, primary RNA transcript processing, and ribosome assembly proceed in precisely defined nucleolar subdomains. Although eukaryotic nucleoli are conservative in respect of their main function, clear morphological differences between these structures can be noticed between individual kingdoms. In most cases, a plant nucleolus shows well-ordered structure in which four main ultrastructural components can be distinguished: fibrillar centers, dense fibrillar component, granular component, and nucleolar vacuoles. Nucleolar chromatin is an additional crucial structural component of this organelle. Nucleolonema, although it is not always an unequivocally distinguished nucleolar domain, has often been described as a well-grounded morphological element, especially of plant nucleoli. The ratios and morphology of particular subcompartments of a nucleolus can change depending on its metabolic activity which in turn is correlated with the physiological state of a cell, cell type, cell cycle phase, as well as with environmental influence. Precise attribution of functions to particular nucleolar subregions in the process of ribosome biosynthesis is now possible using various approaches. The presented description of plant nucleolar morphology summarizes previous knowledge regarding the function of nucleoli as well as of their particular subdomains not only in the course of ribosome biosynthesis.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland,
| |
Collapse
|
9
|
Rakitina DV, Taliansky M, Brown JWS, Kalinina NO. Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res 2011; 39:8869-80. [PMID: 21785141 PMCID: PMC3203579 DOI: 10.1093/nar/gkr594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fibrillarin, one of the major proteins of the nucleolus, plays several essential roles in ribosome biogenesis including pre-rRNA processing and 2′-O-ribose methylation of rRNA and snRNAs. Recently, it has been shown that fibrillarin plays a role in virus infections and is associated with viral RNPs. Here, we demonstrate the ability of recombinant fibrillarin 2 from Arabidopsis thaliana (AtFib2) to interact with RNAs of different lengths and types including rRNA, snoRNA, snRNA, siRNA and viral RNAs in vitro. Our data also indicate that AtFib2 possesses two RNA-binding sites in the central (138–179 amino acids) and C-terminal (225–281 amino acids) parts of the protein, respectively. The conserved GCVYAVEF octamer does not bind RNA directly as suggested earlier, but may assist with the proper folding of the central RNA-binding site.
Collapse
Affiliation(s)
- D. V. Rakitina
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| | - Michael Taliansky
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
- *To whom correspondence should be addressed. Tel: +44(0)1382562731; Fax: +44 (0)1382 562426;
| | - J. W. S. Brown
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| | - N. O. Kalinina
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| |
Collapse
|
10
|
Koh CM, Gurel B, Sutcliffe S, Aryee MJ, Schultz D, Iwata T, Uemura M, Zeller KI, Anele U, Zheng Q, Hicks JL, Nelson WG, Dang CV, Yegnasubramanian S, De Marzo AM. Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1824-34. [PMID: 21435462 DOI: 10.1016/j.ajpath.2010.12.040] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/28/2010] [Accepted: 12/09/2010] [Indexed: 12/19/2022]
Abstract
Increased nucleolar size and number are hallmark features of many cancers. In prostate cancer, nucleolar enlargement and increased numbers are some of the earliest morphological changes associated with development of premalignant prostate intraepithelial neoplasia (PIN) lesions and invasive adenocarcinomas. However, the molecular mechanisms that induce nucleolar alterations in PIN and prostate cancer remain largely unknown. We verify that activation of the MYC oncogene, which is overexpressed in most human PIN and prostatic adenocarcinomas, leads to formation of enlarged nucleoli and increased nucleolar number in prostate luminal epithelial cells in vivo. In prostate cancer cells in vitro, MYC expression is needed for maintenance of nucleolar number, and a nucleolar program of gene expression. To begin to decipher the functional relevance of this transcriptional program in prostate cancer, we examined FBL (encoding fibrillarin), a MYC target gene, and report that fibrillarin is required for proliferation, clonogenic survival, and proper ribosomal RNA accumulation/processing in human prostate cancer cells. Further, fibrillarin is overexpressed in PIN lesions induced by MYC overexpression in the mouse prostate, and in human clinical prostate adenocarcinoma and PIN lesions, where its expression correlates with MYC levels. These studies demonstrate that overexpression of the MYC oncogene increases nucleolar number and size and a nucleolar program of gene expression in prostate epithelial cells, thus providing a molecular mechanism responsible for hallmark nucleolar alterations in prostatic neoplasia.
Collapse
Affiliation(s)
- Cheryl M Koh
- Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21231 , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Barygina VV, Veiko VP, Zatsepina OV. Analysis of nucleolar protein fibrillarin mobility and functional state in living HeLa cells. BIOCHEMISTRY (MOSCOW) 2010; 75:979-88. [PMID: 21073418 DOI: 10.1134/s0006297910080055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibrillarin is an evolutionarily-conserved and obligatory protein component of eukaryotic cell nucleoli involved in pre-rRNA processing and methylation. In vertebrates the fibrillarin molecule contains two cysteine residues (Cys99 and Cys268) whose sulfhydryl groups are able to establish intramolecular -S-S- bridges. However, the functional state of fibrillarin with reduced or oxidized thiol groups is still practically unstudied. Besides, there are no data in the literature concerning existence of the -S-S- fibrillarin form in human cells. To answer these questions, we used plasmids encoding native human fibrillarin and its mutant form devoid of cysteine residues (fibrillarinC99/268S) fused with EGFP for temporary transfection of HeLa cells. The mobile fraction localizing the enzymatically active protein molecules and the fluorescence half-recovery time characterizing the rate of enzymatic reactions were determined by the FRAP technique using a confocal laser scanning microscope. Measurements were carried out at 37 and 27°C. The results show that the fibrillarin pool in HeLa cells includes two protein forms, with reduced SH groups and with oxidized SH groups forming intramolecular -S-S- bridges between Cys99 and Cys268. However, the absence of Cys99 and Cys268 has no effect on intracellular localization of fibrillarin and its main dynamic parameters. The human fibrillarin form without disulfide bridges is included into the mobile protein fraction and is consistent with its functionally active state.
Collapse
Affiliation(s)
- V V Barygina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Recent advances in our understanding of innate immunity and inflammation have direct bearing on how we understand autoimmunity, fibrosis and how innate immune sensors might stimulate both of these key features of systemic sclerosis (SSc) RECENT FINDINGS Nucleic acid containing immune complexes activate toll-like receptors (TLRs) and induce expression of interferon responsive genes (IRGs) and autoantibodies in systemic lupus erythematosus (SLE). Recent studies indicate that increased SSc expression of IRGs may also be mediated by nucleic acid containing immune complexes. An expanding array of non-TLR innate immune pathways has recently been discovered. In particular, nalp3 mediated inflammasome activation of caspase-1 and conversion of pro-IL-1 to IL-1 play a key role in silica-mediated and bleomycin-mediated pulmonary fibrosis. TLR activation stimulates other inflammatory mediators, such as IL-1, IL-6 and TNFa in macrophages and dendritic cells. Activation of these and other inflammatory mediators, through TLR and non-TLR sensors, may cooperate to upregulate fibrotic mediators such as TGFbeta and IL-13. SUMMARY These observations provide a new paradigm for understanding the relationship between immunity/inflammation and fibrosis. New therapeutics, including TLR agonists and antagonists, and IFN inhibitors are currently under investigation. Further understandings of inflammasome-mediated fibrosis may provide further insights into SSc pathogenesis.
Collapse
Affiliation(s)
- Robert Lafyatis
- Rheumatology Section, Boston University School of Medicine, Boston, MA
| | - Michael York
- Rheumatology Section, Boston University School of Medicine, Boston, MA
| |
Collapse
|
13
|
Stepiński D. Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybean root meristematic cells treated with chilling stress and after recovery. PROTOPLASMA 2009; 235:77-89. [PMID: 19241118 DOI: 10.1007/s00709-009-0033-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 01/19/2009] [Indexed: 05/03/2023]
Abstract
The nucleolar proteins, fibrillarin and nucleophosmin, have been identified immunofluorescently in the root meristematic cells of soybean seedlings under varying experimental conditions: at 25 degrees C (control), chilling at 10 degrees C for 3 h and 4 days and recovery from the chilling stress at 25 degrees C. In each experimental variant, the immunofluorescence signals were present solely at the nucleolar territories. Fluorescent staining for both proteins was mainly in the shape of circular domains that are assumed to correspond to the dense fibrillar component of the nucleoli. The fewest fluorescent domains were observed in the nucleoli of chilled plants, and the highest number was observed in the plants recovered after chilling. This difference in the number of circular domains in the nucleoli of each variant may indicate various levels of these proteins in each variant. Both the number of circular domains and the level of these nucleolar proteins changed with changes in the transcriptional activity of the nucleoli, with the more metabolically active cell having higher numbers of active areas in the nucleolus and higher levels of nucleolar proteins, and conversely. Electron microscopic studies revealed differences in the ultrastructure of the nucleoli in all experimental variants and confirmed that the number of fibrillar centres surrounded by dense fibrillar component was the lowest in the nucleoli of chilled plants, and the highest in the nucleoli of recovered seedlings.
Collapse
Affiliation(s)
- Dariusz Stepiński
- Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90-231, Łódź, Poland.
| |
Collapse
|
14
|
Identification of genes that function in the biogenesis and localization of small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol 2008; 28:3686-99. [PMID: 18378690 DOI: 10.1128/mcb.01115-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.
Collapse
|
15
|
García JH, Osuna MD, Castrejon FM, Enriquez LG, Reyes PA, Hermosillo JJC. Methods to detect antifibrillarin antibodies in patients with systemic sclerosis (SSc): a comparison. J Clin Lab Anal 2004; 18:19-26. [PMID: 14730553 PMCID: PMC6808019 DOI: 10.1002/jcla.20003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Autoantibodies against nucleolar antigens are common in systemic sclerosis (SSc). They include autoantibodies against fibrillarin (Fb), which are serological markers for SSc. Fb is associated with the evolutionally-conserved box C/D of small nucleolar RNAs (snoRNAs). We compared indirect immunofluorescence (IIF), Western blot (WB), and immunoprecipitation (IPP) of total small RNAs assays to determine which of these techniques is most specific for the detection of snoRNPs. We also examined the frequency and specificity of autoantibodies from SSc patients to snoRNAs, snRNAs, and scRNAs, and concluded that 1) IIF can not determine autoantibody specificity against Fb, 2) 36% of SSc sera were false-negative by WB, and 3) by IPP, anti-Fb autoantibodies from SSc patients can bind U3, U8, U13, U15, and U22 snoRNAs.
Collapse
Affiliation(s)
- Josefina Huerta García
- Department of Molecular Biochemistry, Centro de Biología Experimental, Universidad Autónoma de Zacatecas, Guadalupe, Mexico
| | - Monica Delgado Osuna
- Department of Molecular Biochemistry, Centro de Biología Experimental, Universidad Autónoma de Zacatecas, Guadalupe, Mexico
| | - Filiberto Martinez Castrejon
- Department of Molecular Biochemistry, Centro de Biología Experimental, Universidad Autónoma de Zacatecas, Guadalupe, Mexico
| | - Laura Guzman Enriquez
- Department of Molecular Biochemistry, Centro de Biología Experimental, Universidad Autónoma de Zacatecas, Guadalupe, Mexico
| | - Pedro A. Reyes
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, D.F
| | - J. Jesus Cortes Hermosillo
- Department of Molecular Biochemistry, Centro de Biología Experimental, Universidad Autónoma de Zacatecas, Guadalupe, Mexico
| |
Collapse
|
16
|
Deng L, Starostina NG, Liu ZJ, Rose JP, Terns RM, Terns MP, Wang BC. Structure determination of fibrillarin from the hyperthermophilic archaeon Pyrococcus furiosus. Biochem Biophys Res Commun 2004; 315:726-32. [PMID: 14975761 DOI: 10.1016/j.bbrc.2004.01.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Indexed: 11/30/2022]
Abstract
The methyltransferase fibrillarin is the catalytic component of ribonucleoprotein complexes that direct site-specific methylation of precursor ribosomal RNA and are critical for ribosome biogenesis in eukaryotes and archaea. Here we report the crystal structure of a fibrillarin ortholog from the hyperthermophilic archaeon Pyrococcus furiosus at 1.97A resolution. Comparisons of the X-ray structures of fibrillarin orthologs from Methanococcus jannashii and Archaeoglobus fulgidus reveal nearly identical backbone configurations for the catalytic C-terminal domain with the exception of a unique loop conformation at the S-adenosyl-l-methionine (AdoMet) binding pocket in P. furiosus. In contrast, the N-terminal domains are divergent which may explain why some forms of fibrillarin apparently homodimerize (M. jannashii) while others are monomeric (P. furiosus and A. fulgidus). Three positively charged amino acids surround the AdoMet-binding site and sequence analysis indicates that this is a conserved feature of both eukaryotic and archaeal fibrillarins. We discuss the possibility that these basic residues of fibrillarin are important for RNA-guided rRNA methylation.
Collapse
Affiliation(s)
- Lu Deng
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Szewczak LBW, DeGregorio SJ, Strobel SA, Steitz JA. Exclusive interaction of the 15.5 kD protein with the terminal box C/D motif of a methylation guide snoRNP. CHEMISTRY & BIOLOGY 2002; 9:1095-107. [PMID: 12401494 DOI: 10.1016/s1074-5521(02)00239-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Box C/D small nucleolar RNAs (snoRNAs) direct site-specific methylation of ribose 2'-hydroxyls in ribosomal and spliceosomal RNAs. To identify snoRNA functional groups contributing to assembly of an active box C/D snoRNP in Xenopus oocytes, we developed an in vivo nucleotide analog interference mapping procedure. Deleterious substitutions consistent with requirements for binding the 15.5 kD protein clustered within the terminal box C/D motif only. In vitro analyses confirmed a single interaction site for recombinant 15.5 kD protein and identified the exocyclic amine of A89 in box D as essential for binding. Our results argue that the 15.5 kD protein interacts asymmetrically with the two sets of conserved box C/D elements and that its binding is primarily responsible for the stability of box C/D snoRNAs in vivo.
Collapse
|
18
|
Jang YK, Kim M, Dai Park S. Fibrillarin binds to a 3' cis-regulatory element in pre-mRNA of uvi15+ in fission yeast. Biochem Biophys Res Commun 2002; 294:1184-90. [PMID: 12074602 DOI: 10.1016/s0006-291x(02)00611-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
uvi15+ is induced by various stresses including exposure to UV-light. Previously, we demonstrated that the UV-induction is mainly regulated at the post-transcriptional level through a cis-acting element in the pre-mRNA. Here we show that deletion analyses define an 18-nt element responsible for the UV-induction. RNA gel mobility shift assay showed that a specific protein(s) could form a complex with the 54-nt element but its binding ability is moderately decreased in response to UV-light. Using yeast three-hybrid screen, we isolated a homolog of fibrillarin as a protein interacting with the 54-nt element, which is a key nucleolar protein for pre-rRNA processing. We further showed that the recombinant fibrillarin specifically binds to the element in a sequence-specific manner. Thus, the data suggest that fission yeast fibrillarin might regulate uvi15+ mRNA stability via binding with the 54-nt element in the pre-mRNA, implying that fibrillarin is involved in both pre-mRNA and pre-rRNA processing.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chromosomal Proteins, Non-Histone/metabolism
- Gene Expression Regulation, Fungal
- Molecular Sequence Data
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/analysis
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Ribosomal/metabolism
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
- Yeun Kyu Jang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
19
|
Abstract
Eukaryotic cells contain a very complex population of small nucleolar RNAs. They function, as small nucleolar ribonucleoproteins, in pre-ribosomal RNA processing reactions, and also guide methylation and pseudouridylation of ribosomal RNA, spliceosomal small nuclear RNAs, and possibly other cellular RNAs. Synthesis of small nucleolar RNAs frequently follows unusual strategies. Some newly discovered brain-specific small nucleolar RNAs of unknown function are encoded in introns of tandemly repeated units, expression of which is paternally imprinted. Recent studies of the protein components and factors participating in small nucleolar ribonucleoprotein assembly have revealed interesting connections with other classes of cellular ribonucleoproteins such as spliceosomal small nuclear ribonucleoproteins and telomerase. Cajal bodies emerge as nuclear structures important for the biogenesis and function of small nucleolar ribonucleoproteins.
Collapse
Affiliation(s)
- Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
20
|
Kuhn JF, Tran EJ, Maxwell ES. Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. Nucleic Acids Res 2002; 30:931-41. [PMID: 11842104 PMCID: PMC100351 DOI: 10.1093/nar/30.4.931] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent investigations have identified homologs of eukaryotic box C/D small nucleolar RNAs (snoRNAs) in Archaea termed sRNAs. Archaeal homologs of the box C/D snoRNP core proteins fibrillarin and Nop56/58 have also been identified but a homolog for the eukaryotic 15.5kD snoRNP protein has not been described. Our sequence analysis of archaeal genomes reveals that the highly conserved ribosomal protein L7 exhibits extensive homology with the eukaryotic 15.5kD protein. Protein binding studies demonstrate that recombinant Methanoccocus jannaschii L7 protein binds the box C/D snoRNA core motif with the same specificity and affinity as the eukaryotic 15.5kD protein. Identical to the eukaryotic 15.5kD core protein, archaeal L7 requires a correctly folded box C/D core motif and intact boxes C and D. Mutational analysis demonstrates that critical features of the box C/D core motif essential for 15.5kD binding are also required for L7 interaction. These include stem I which juxtaposes boxes C and D, as well as the sheared G:A pairs and protruded pyrimidine nucleotide of the asymmetric bulge region. The demonstrated presence of L7Ae in the Haloarcula marismortui 50S ribosomal subunit, taken with our demonstration of the ability of L7 to bind to the box C/D snoRNA core motif, indicates that this protein serves a dual role in Archaea. L7 functioning as both an sRNP core protein and a ribosomal protein could potentially regulate and coordinate sRNP assembly with ribosome biogenesis.
Collapse
Affiliation(s)
- Jeffrey F Kuhn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Box 7622, Raleigh, NC 27695-7622, USA
| | | | | |
Collapse
|
21
|
Wehner KA, Baserga SJ. The sigma(70)-like motif: a eukaryotic RNA binding domain unique to a superfamily of proteins required for ribosome biogenesis. Mol Cell 2002; 9:329-39. [PMID: 11864606 DOI: 10.1016/s1097-2765(02)00438-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Little is understood about the role of nucleolar RNA binding proteins in ribosome biogenesis, although there is a clear need for them based on the strict folding requirements of the pre-rRNA. We have identified a superfamily of RNA binding proteins whose members are required for different stages of ribosome biogenesis. The Imp4 superfamily is composed of five individual families (Imp4, Rpf1, Rpf2, Brx1, and Ssf) that all possess the sigma(70)-like motif, a eukaryotic RNA binding domain with prokaryotic origins. The Imp4 superfamily members associate with RNAs that are consistent with their distinct roles in ribosome biogenesis and suggest the mechanisms by which they function.
Collapse
Affiliation(s)
- Karen A Wehner
- Yale University School of Medicine, Department of Genetics, New Haven, CT 06520, USA
| | | |
Collapse
|
22
|
Olson MOJ, Hingorani K, Szebeni A. Conventional and nonconventional roles of the nucleolus. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 219:199-266. [PMID: 12211630 PMCID: PMC7133188 DOI: 10.1016/s0074-7696(02)19014-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the most prominent of subnuclear structures, the nucleolus has a well-established role in ribosomal subunit assembly. Additional nucleolar functions, not related to ribosome biogenesis, have been discovered within the last decade. Built around multiple copies of the genes for preribosomal RNA (rDNA), nucleolar structure is largely dependent on the process of ribosome assembly. The nucleolus is disassembled during mitosis at which time preribosomal RNA transcription and processing are suppressed; it is reassembled at the end of mitosis in part from components preserved from the previous cell cycle. Expression of preribosomal RNA (pre-rRNA) is regulated by the silencing of individual rDNA genes via alterations in chromatin structure or by controlling RNA polymerase I initiation complex formation. Preribosomal RNA processing and posttranscriptional modifications are guided by a multitude of small nucleolar RNAs. Nearly completed ribosomal subunits are exported to the cytoplasm by an established nuclear export system with the aid of specialized adapter molecules. Some preribosomal and nucleolar components are transiently localized in Cajal bodies, presumably for modification or assembly. The nonconventional functions of nucleolus include roles in viral infections, nuclear export, sequestration of regulatory molecules, modification of small RNAs, RNP assembly, and control of aging, although some of these functions are not well established. Additional progress in defining the mechanisms of each step in ribosome biogenesis as well as clarification of the precise role of the nucleolus in nonconventional activities is expected in the next decade.
Collapse
Affiliation(s)
- Mark O J Olson
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
23
|
Giorgi C, Fatica A, Nagel R, Bozzoni I. Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO J 2001; 20:6856-65. [PMID: 11726521 PMCID: PMC125767 DOI: 10.1093/emboj/20.23.6856] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An external stem, essential for the release of small nucleolar RNAs (snoRNAs) from their pre-mRNAs, flanks the majority of yeast intron-encoded snoRNAs. Even if this stem is not a canonical Rnt1p substrate, several experiments have indicated that the Rnt1p endonuclease is required for snoRNA processing. To identify the factors necessary for processing of intron-encoded snoRNAs, we have raised in vitro extracts able to reproduce such activity. We found that snoRNP factors are associated with the snoRNA- coding region throughout all the processing steps, and that mutants unable to assemble snoRNPs have a processing-deficient phenotype. Specific depletion of Nop1p completely prevents U18 snoRNA synthesis, but does not affect processing of a dicistronic snoRNA-coding unit that has a canonical Rnt1p site. Correct cleavage of intron-encoded U18 and snR38 snoRNAs can be reproduced in vitro by incubating together purified Nop1p and Rnt1p. Pull-down experiments showed that the two proteins interact physically. These data indicate that cleavage of U18, snR38 and possibly other intron-encoded snoRNAs is a regulated process, since the stem is cleaved by the Rnt1p endonuclease only when snoRNP assembly has occurred.
Collapse
Affiliation(s)
| | - Alessandro Fatica
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy and
Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA Present address: Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK Corresponding author e-mail:
| | - Roland Nagel
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy and
Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA Present address: Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK Corresponding author e-mail:
| | - Irene Bozzoni
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy and
Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA Present address: Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, UK Corresponding author e-mail:
| |
Collapse
|
24
|
Barneche F, Gaspin C, Guyot R, Echeverría M. Identification of 66 box C/D snoRNAs in Arabidopsis thaliana: extensive gene duplications generated multiple isoforms predicting new ribosomal RNA 2'-O-methylation sites. J Mol Biol 2001; 311:57-73. [PMID: 11469857 DOI: 10.1006/jmbi.2001.4851] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dozens of box C/D small nucleolar RNAs (snoRNAs) have recently been found in eukaryotes (vertebrates, yeast), ancient eukaryotes (trypanosomes) and archae, that specifically target ribosomal RNA sites for 2'-O-ribose methylation. Although early biochemical data revealed that plant rRNAs are among the most highly ribomethylated in eukaryotes, only a handful of methylation guide snoRNAs have been characterized in this kingdom. We report 66 novel box C/D snoRNAs identified by computational screening of Arabidopsis genomic sequences that are expressed in vivo from either single genes, 17 different clusters or three introns. At the structural level, many box C/D snoRNAs have dual antisense elements often matching rRNA regions close to each other on the rRNA secondary structure, which is reminiscent of their archaeal counterparts. Remarkable specimens are found that display two antisense elements having the potential to form an extended snoRNA-rRNA duplex of 23 to 30 nt, in line with the hypothetical function of box C/D snoRNAs in pre-rRNA folding or chaperoning. In contrast to other species, many Arabidopsis snoRNAs are found in multiple isoforms mainly resulting from two different mechanisms: large chromosomal duplications and small tandem duplications producing polycistronic genes. The discovery of numerous different snoRNAs, some of them arising from common ancestors, provide new insights to understand snoRNAs evolution and the birth of new rRNA methylation sites in plants and other organisms.
Collapse
MESH Headings
- Arabidopsis/genetics
- Base Sequence
- Chromosomes/genetics
- Computational Biology
- Evolution, Molecular
- Gene Duplication
- Genes, Duplicate/genetics
- Genes, Plant/genetics
- Genetic Variation/genetics
- Methylation
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribose/chemistry
- Ribose/metabolism
- Ribosomal Proteins/metabolism
- Tandem Repeat Sequences/genetics
Collapse
Affiliation(s)
- F Barneche
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, UMR CNRS 5096, 52 Avenue de Villeneuve, Perpignan Cedex, 66860, France
| | | | | | | |
Collapse
|
25
|
Pellizzoni L, Baccon J, Charroux B, Dreyfuss G. The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr Biol 2001; 11:1079-88. [PMID: 11509230 DOI: 10.1016/s0960-9822(01)00316-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The survival of motor neurons (SMN) protein is the protein product of the spinal muscular atrophy (SMA) disease gene. SMN and its associated proteins Gemin2, Gemin3, and Gemin4 form a large complex that plays a role in snRNP assembly, pre-mRNA splicing, and transcription. The functions of SMN in these processes are mediated by a direct interaction of SMN with components of these machineries, such as Sm proteins and RNA helicase A. RESULTS We show that SMN binds directly to fibrillarin and GAR1. Fibrillarin and GAR1 are specific markers of the two classes of small nucleolar ribonucleoprotein particles (snoRNPs) that are involved in posttranscriptional processing and modification of ribosomal RNA. SMN interaction requires the arginine- and glycine-rich domains of both fibrillarin and GAR1 and is defective in SMN mutants found in some SMA patients. Coimmunoprecipitations demonstrate that the SMN complex associates with fibrillarin and with GAR1 in vivo. The inhibition of RNA polymerase I transcription causes a transient redistribution of SMN to the nucleolar periphery and loss of fibrillarin and GAR1 colocalization with SMN in gems. Furthermore, the expression of a dominant-negative mutant of SMN (SMNDeltaN27) causes snoRNPs to accumulate outside of the nucleolus in structures that also contain components of gems and coiled (Cajal) bodies. CONCLUSIONS These findings identify fibrillarin and GAR1 as novel interactors of SMN and suggest a function for the SMN complex in the assembly and metabolism of snoRNPs. We propose that the SMN complex performs functions necessary for the biogenesis and function of diverse ribonucleoprotein complexes.
Collapse
Affiliation(s)
- L Pellizzoni
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
26
|
Henras A, Dez C, Noaillac-Depeyre J, Henry Y, Caizergues-Ferrer M. Accumulation of H/ACA snoRNPs depends on the integrity of the conserved central domain of the RNA-binding protein Nhp2p. Nucleic Acids Res 2001; 29:2733-46. [PMID: 11433018 PMCID: PMC55775 DOI: 10.1093/nar/29.13.2733] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Box H/ACA small nucleolar ribonucleoprotein particles (H/ACA snoRNPs) play key roles in the synthesis of eukaryotic ribosomes. How box H/ACA snoRNPs are assembled remains unknown. Here we show that yeast Nhp2p, a core component of these particles, directly binds RNA. In vitro, Nhp2p interacts with high affinity with RNAs containing irregular stem-loop structures but shows weak affinity for poly(A), poly(C) or for double-stranded RNAs. The central region of Nhp2p is believed to function as an RNA-binding domain, since it is related to motifs found in various RNA-binding proteins. Removal of two amino acids that shortens a putative beta-strand element within Nhp2p central domain impairs the ability of the protein to interact with H/ACA snoRNAs in cell extracts. In vivo, this deletion prevents cell viability and leads to a strong defect in the accumulation of H/ACA snoRNAs and Gar1p. These data suggest that proper direct binding of Nhp2p to H/ACA snoRNAs is required for the assembly of H/ACA snoRNPs and hence for the stability of some of their components. In addition, we show that converting a highly conserved glycine residue (G(59)) within Nhp2p central domain to glutamate significantly reduces cell growth at 30 and 37 degrees C. Remarkably, this modification affects the steady-state levels of H/ACA snoRNAs and the strength of Nhp2p association with these RNAs to varying degrees, depending on the nature of the H/ACA snoRNA. Finally, we show that the modified Nhp2p protein whose interaction with H/ACA snoRNAs is impaired cannot accumulate in the nucleolus, suggesting that only the assembled H/ACA snoRNP particles can be efficiently retained in the nucleolus.
Collapse
Affiliation(s)
- A Henras
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, 118 Route de Narbonne, 31062 Toulouse Cedex 04, France.
| | | | | | | | | |
Collapse
|
27
|
Wormsley S, Samarsky DA, Fournier MJ, Baserga SJ. An unexpected, conserved element of the U3 snoRNA is required for Mpp10p association. RNA (NEW YORK, N.Y.) 2001; 7:904-919. [PMID: 11421365 PMCID: PMC1370138 DOI: 10.1017/s1355838201010238] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The U3 small nucleolar ribonucleoprotein (snoRNP) is composed of a small nucleolar RNA (snoRNA) and at least 10 proteins. The U3 snoRNA base pairs with the pre-rRNA to carry out the A0, A1, and A2 processing reactions that lead to the release of the 18S rRNA from the nascent pre-rRNA transcript. The yeast U3 snoRNA can be divided into a short 5' domain (nt 1-39) and a larger 3' domain (73 to the 3' end) separated by a stretch of nucleotides called the hinge region (nt 40-72). The sequences required for pre-rRNA base pairing are found in the 5' domain and hinge region whereas the 3' domain is largely covered with proteins. Mpp10p, one of the protein components unique to the U3 snoRNP, plays a role in processing at the A1 and A2 sites. Because of its critical role in U3 snoRNP function, we determined which sequences in the U3 snoRNA are required for Mpp10p association. Unlike fibrillarin and all the previous U3 snoRNP components studied in this manner, sequences in the 3' domain are not sufficient for Mpp10p association. Instead, a conserved sequence element in the U3 snoRNA hinge region is required, placing Mpp10p near the 5' domain that carries out the pre-rRNA base-pairing interactions in the functional center of the U3 snoRNP.
Collapse
Affiliation(s)
- S Wormsley
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | |
Collapse
|
28
|
Ghosh S, Ghosh R, Das P, Chattopadhyay D. Expression and purification of recombinant Giardia fibrillarin and its interaction with small nuclear RNAs. Protein Expr Purif 2001; 21:40-8. [PMID: 11162385 DOI: 10.1006/prep.2000.1319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Giardia lamblia, the ancient eukaryote does not have nucleolus but produces the fibrillarin protein that may be used for pre-rRNA processing. The nucleoli of eukaryotes contain complex population of small nucleolar RNAs, known as snoRNAs, several of which are required for rRNA processing. This report describes the full-length cloning of fibrillarin gene from Giardia lamblia, using RTPCR and the production of recombinant fibrillarin protein in Escherichia coli strain BL21 (DE3) as N-terminal His-tag protein. The condition for production of soluble protein was standardized. The expressed protein was purified by using Ni-chelation chromatography and used for functional studies. The small nuclear RNAs (snRNAs), RNA D, RNA J, and RNA H, containing box C, box D, and box C/D, respectively, of Giardia were also cloned by RTPCR. Antibody raised against the recombinant protein was used to identify the fibrillarin in giardial nuclear extract. The interaction of snRNAs with recombinant fibrillarin was followed using North-Western hybridization. Gel electrophoresis mobility shift assay demonstrated that bacterially expressed protein may participate in the in vitro interaction with RNA J, RNA H, and RNA D. Our results indicate that the recombinant fibrillarin by itself is able to bind and does not require the involvement of any other protein for this binding to the three snRNAs.
Collapse
MESH Headings
- Animals
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cloning, Molecular/methods
- DNA Primers
- DNA, Complementary
- Escherichia coli
- Giardia lamblia/genetics
- Giardia lamblia/physiology
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/metabolism
Collapse
Affiliation(s)
- S Ghosh
- Department of Biochemistry, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, India
| | | | | | | |
Collapse
|
29
|
Vidovic I, Nottrott S, Hartmuth K, Lührmann R, Ficner R. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell 2000; 6:1331-42. [PMID: 11163207 DOI: 10.1016/s1097-2765(00)00131-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have determined the crystal structure of a spliceosomal RNP complex comprising the 15.5kD protein of the human U4/U6.U5 tri-snRNP and the 5' stem-loop of U4 snRNA. The protein interacts almost exclusively with a purine-rich (5+2) internal loop within the 5' stem-loop, giving an unusual RNA fold characterized by two tandem sheared G-A base pairs, a high degree of purine stacking, and the accommodation of a single RNA base, rotated out of the RNA chain, in a pocket of the protein. Apart from yielding the structure of an important entity in the pre-mRNA splicing apparatus, this work also implies a model for the complex of the 15.5kD protein with box C/D snoRNAs. It additionally suggests a general recognition principle in a novel family of RNA binding proteins.
Collapse
Affiliation(s)
- I Vidovic
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Snaar S, Wiesmeijer K, Jochemsen AG, Tanke HJ, Dirks RW. Mutational analysis of fibrillarin and its mobility in living human cells. J Cell Biol 2000; 151:653-62. [PMID: 11062265 PMCID: PMC2185578 DOI: 10.1083/jcb.151.3.653] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cajal bodies (CBs) are subnuclear organelles that contain components of a number of distinct pathways in RNA transcription and RNA processing. CBs have been linked to other subnuclear organelles such as nucleoli, but the reason for the presence of nucleolar proteins such as fibrillarin in CBs remains uncertain. Here, we use full-length fibrillarin and truncated fibrillarin mutants fused to green fluorescent protein (GFP) to demonstrate that specific structural domains of fibrillarin are required for correct intranuclear localization of fibrillarin to nucleoli and CBs. The second spacer domain and carboxy terminal alpha-helix domain in particular appear to target fibrillarin, respectively, to the nucleolar transcription centers and CBs. The presence of the RNP domain seems to be a prerequisite for correct targeting of fibrillarin. Time-lapse confocal microscopy of human cells that stably express fibrillarin-GFP shows that CBs fuse and split, albeit at low frequencies. Recovered fluorescence of fibrillarin-GFP in nucleoli and CBs after photobleaching indicates that it is highly mobile in both organelles (estimated diffusion constant approximately 0.02 microm(2) s(-1)), and has a significantly larger mobile fraction in CBs than in nucleoli.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Cell Nucleolus/chemistry
- Cell Nucleolus/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Coiled Bodies/chemistry
- Coiled Bodies/metabolism
- Diffusion
- Fluorescent Antibody Technique
- Humans
- Kinetics
- Motion
- Mutation/genetics
- Protein Sorting Signals/genetics
- Protein Sorting Signals/physiology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Sequence Deletion/genetics
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S Snaar
- Department of Molecular Cell Biology, Sylvius Laboratories, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Watkins NJ, Ségault V, Charpentier B, Nottrott S, Fabrizio P, Bachi A, Wilm M, Rosbash M, Branlant C, Lührmann R. A common core RNP structure shared between the small nucleoar box C/D RNPs and the spliceosomal U4 snRNP. Cell 2000; 103:457-66. [PMID: 11081632 DOI: 10.1016/s0092-8674(00)00137-9] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The box C/D snoRNAs function in directing 2'-O-methylation and/or as chaperones in the processing of ribosomal RNA. We show here that Snu13p (15.5 kD in human), a component of the U4/U6.U5 tri-snRNP, is also associated with the box C/D snoRNAs. Indeed, genetic depletion of Snu13p in yeast leads to a major defect in RNA metabolism. The box C/D motif can be folded into a stem-internal loop-stem structure, almost identical to the 15.5 kD binding site in the U4 snRNA. Consistent with this, the box C/D motif binds Snu13p/ 15.5 kD in vitro. The similarities in structure and function observed between the U4 snRNP (chaperone for U6) and the box C/D snoRNPs raises the interesting possibility that these particles may have evolved from a common ancestral RNP.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Evolution, Molecular
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Deletion
- HeLa Cells
- Humans
- Molecular Weight
- Nucleic Acid Conformation
- Precipitin Tests
- Protein Binding
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/chemistry
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/isolation & purification
- Ribonucleoproteins, Small Nucleolar/metabolism
- Spliceosomes/chemistry
- Spliceosomes/genetics
- Substrate Specificity
- Yeasts/genetics
- Yeasts/metabolism
Collapse
Affiliation(s)
- N J Watkins
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Zelluläre Biochemie, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lukowiak AA, Granneman S, Mattox SA, Speckmann WA, Jones K, Pluk H, Venrooij WJ, Terns RM, Terns MP. Interaction of the U3-55k protein with U3 snoRNA is mediated by the box B/C motif of U3 and the WD repeats of U3-55k. Nucleic Acids Res 2000; 28:3462-71. [PMID: 10982864 PMCID: PMC110750 DOI: 10.1093/nar/28.18.3462] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
U3 small nucleolar RNA (snoRNA) is a member of the Box C/D family of snoRNAs which functions in ribosomal RNA processing. U3-55k is a protein that has been found to interact with U3 but not other members of the Box C/D snoRNA family. We have found that interaction of the U3-55k protein with U3 RNA in vivo is mediated by the conserved Box B/C motif which is unique to U3 snoRNA. Mutation of Box B and Box C, but not of other conserved sequence elements, disrupted interaction of U3-55k with U3 RNA. Furthermore, a fragment of U3 containing only these two conserved elements was bound by U3-55k in vivo. RNA binding assays performed in vitro indicate that Box C may be the primary determinant of the interaction. We have cloned the cDNA encoding the Xenopus laevis U3-55k protein and find strong homology to the human sequence, including six WD repeats. Deletion of WD repeats or sequences near the C-terminus of U3-55k resulted in loss of association with U3 RNA and also loss of localization of U3-55k to the nucleolus, suggesting that protein-protein interactions contribute to the localization and RNA binding of U3-55k in vivo.
Collapse
Affiliation(s)
- A A Lukowiak
- Department of Biochemistry and Molecular Biology and Department of Genetics, University of Georgia, Life Science Building, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Darzacq X, Kiss T. Processing of intron-encoded box C/D small nucleolar RNAs lacking a 5',3'-terminal stem structure. Mol Cell Biol 2000; 20:4522-31. [PMID: 10848579 PMCID: PMC85834 DOI: 10.1128/mcb.20.13.4522-4531.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C and D box-containing (box C/D) small nucleolar RNAs (snoRNAs) function in the nucleolytic processing and 2'-O-methylation of precursor rRNA. In vertebrates, most box C/D snoRNAs are processed from debranched pre-mRNA introns by exonucleolytic activities. Elements directing accurate snoRNA excision are located within the snoRNA itself; they comprise the conserved C and D boxes and an adjoining 5',3'-terminal stem. Although the terminal stem has been demonstrated to be essential for snoRNA accumulation, many snoRNAs lack a terminal helix. To identify the cis-acting elements supporting the accumulation of intron-encoded box C/D snoRNAs devoid of a terminal stem, we have investigated the in vivo processing of the human U46 snoRNA and an artificial snoRNA from the human beta-globin pre-mRNA. We demonstrate that internal and/or external stem structures located within the snoRNA or in the intronic flanking sequences support the accumulation of mammalian box C/D snoRNAs lacking a canonical terminal stem. In the intronic precursor RNA, transiently formed external and/or stable internal base-pairing interactions fold the C and D boxes together and therefore facilitate the binding of snoRNP proteins. Since the external intronic stems are degraded during snoRNA processing, we propose that the C and D boxes alone can provide metabolic stability for the mature snoRNA.
Collapse
Affiliation(s)
- X Darzacq
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, 31062 Toulouse, France
| | | |
Collapse
|
34
|
Abstract
Two core small nucleolar RNP (snoRNP) proteins, Nop1p (fibrillarin in vertebrates) and Nop58p (also known as Nop5p) have previously been reported to be specifically associated with the box C+D class of small nucleolar RNAs (snoRNAs). Here we report that Nop56p, a protein related in sequence to Nop58p, is a bona fide box C+D snoRNP component; all tested box C+D snoRNAs were coprecipitated with protein A-tagged Nop56p. Analysis of in vivo snoRNP assembly indicated that Nop56p was stably associated with the snoRNAs only in the presence of Nop1p. In contrast, Nop58p and Nop1p associate independently with the snoRNAs. Genetic depletion of Nop56p resulted in inhibition of early pre-rRNA processing events at sites A(0), A(1), and A(2) and mild depletion of 18S rRNA. However, Nop56p depletion did not lead to codepletion of the box C+D snoRNAs. This is in contrast to Nop58p, which was required for the accumulation of all tested box C+D snoRNAs. Unexpectedly, we found that Nop1p was specifically required for the synthesis and accumulation of box C+D snoRNAs processed from pre-mRNA introns and polycistronic transcripts.
Collapse
Affiliation(s)
- D L Lafontaine
- ICMB, The University of Edinburgh, Edinburgh EH9 3JR, Scotland.
| | | |
Collapse
|