1
|
Zauatbayeva G, Kulatay T, Ingirbay B, Shakhmanova Z, Keyer V, Zaripov M, Zhumabekova M, Shustov AV. Application of Pseudoinfectious Viruses in Transient Gene Expression in Mammalian Cells: Combining Efficient Expression with Regulatory Compliance. Biomolecules 2025; 15:274. [PMID: 40001577 PMCID: PMC11852456 DOI: 10.3390/biom15020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Transient gene expression (TGE) is commonly employed for protein production, but its reliance on plasmid transfection makes it challenging to scale up. In this paper, an alternative TGE method is presented, utilizing pseudoinfectious alphavirus as an expression vector. Pseudoinfectious viruses (PIV) and a replicable helper construct were derived from the genome of the Venezuelan equine encephalitis virus. The PIV carries a mutant capsid protein that prevents packaging into infectious particles, while the replicable helper encodes a wild-type capsid protein but lacks other viral structural proteins. Although PIV and the helper cannot independently spread infection, their combination results in increased titers in cell cultures, enabling easier scale-up of producing cultures. The PIV-driven production of a model protein outperforms that of alphavirus replicon vectors or simple plasmid vectors. Another described feature of the expression system is the modification to immobilized metal affinity chromatography (IMAC), allowing purification of His-tagged recombinant proteins from a conditioned medium in the presence of substances that can strip metal from the IMAC columns. The PIV-based expression system allows for the production of milligram quantities of recombinant proteins in static cultures, without the need for complex equipment such as bioreactors, and complies with regulatory requirements due to its distinction from common recombinant viruses.
Collapse
Affiliation(s)
- Gulzat Zauatbayeva
- National Center for Biotechnology, 010000 Astana, Kazakhstan; (G.Z.); (T.K.); (B.I.); (Z.S.); (V.K.); (M.Z.)
| | - Tolganay Kulatay
- National Center for Biotechnology, 010000 Astana, Kazakhstan; (G.Z.); (T.K.); (B.I.); (Z.S.); (V.K.); (M.Z.)
| | - Bakytkali Ingirbay
- National Center for Biotechnology, 010000 Astana, Kazakhstan; (G.Z.); (T.K.); (B.I.); (Z.S.); (V.K.); (M.Z.)
| | - Zhanar Shakhmanova
- National Center for Biotechnology, 010000 Astana, Kazakhstan; (G.Z.); (T.K.); (B.I.); (Z.S.); (V.K.); (M.Z.)
| | - Viktoriya Keyer
- National Center for Biotechnology, 010000 Astana, Kazakhstan; (G.Z.); (T.K.); (B.I.); (Z.S.); (V.K.); (M.Z.)
| | - Mikhail Zaripov
- Institute of Theoretical and Experimental Biophysics, 142290 Pushchino, Russia;
| | - Maral Zhumabekova
- National Center for Biotechnology, 010000 Astana, Kazakhstan; (G.Z.); (T.K.); (B.I.); (Z.S.); (V.K.); (M.Z.)
| | - Alexandr V. Shustov
- National Center for Biotechnology, 010000 Astana, Kazakhstan; (G.Z.); (T.K.); (B.I.); (Z.S.); (V.K.); (M.Z.)
| |
Collapse
|
2
|
Classe HM, Dant JC, Mogler M, Stachura KA, LaFleur RL, Xu Z, Tarpey I. Efficacy and Safety in Dogs Following Administration of an Alphavirus RNA Particle Canine Influenza H3N2 Vaccine. Vaccines (Basel) 2024; 12:1138. [PMID: 39460305 PMCID: PMC11511248 DOI: 10.3390/vaccines12101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Canine influenza virus (CIV) H3N2 causes a highly contagious respiratory disease in dogs and has been the source of outbreaks across North America since 2015. An injectable RNA Particle (RP)-CIV H3N2 vaccine has been developed to protect dogs against this disease. To demonstrate efficacy, dogs were randomized into two treatment groups, then vaccinated subcutaneously twice, 21 days apart, with a placebo vaccine (n = 20) or an RP-CIV H3N2 vaccine (n = 20). Three weeks later, dogs were challenged intranasally with virulent CIV H3N2 and observed daily for 10 days for clinical signs of disease. Nasal swabs were also collected daily to evaluate the shedding of the challenge virus. Ten days post-challenge, the dogs were euthanized, and the lungs were examined for consolidation. RP-CIV H3N2 vaccination demonstrated a significant reduction in the duration of clinical signs, duration and amount of virus shed, lung consolidation, and the incidence of suppurative pneumonia. To evaluate safety, dogs from multiple geographic regions were vaccinated subcutaneously, 3-4 weeks apart, with an RP-CIV H3N2 vaccine and observed for adverse events for 14 days after each administration. The RP-CIV H3N2 vaccine was deemed safe, with lethargy being the most reported adverse event at a rate of 1.6%.
Collapse
Affiliation(s)
- Haley M. Classe
- Research and Development Department, Merck Animal Health, Elkhorn, NE 68022, USA
| | - Jennifer C. Dant
- Research and Development Department, Merck Animal Health, Elkhorn, NE 68022, USA
| | - Mark Mogler
- Research and Development Department, Merck Animal Health, Ames, IA 50010, USA
| | - Kenneth A. Stachura
- Research and Development Department, Merck Animal Health, Elkhorn, NE 68022, USA
| | - Rhonda L. LaFleur
- Research and Development Department, Merck Animal Health, Elkhorn, NE 68022, USA
| | - Zach Xu
- Research and Development Department, Merck Animal Health, Elkhorn, NE 68022, USA
| | - Ian Tarpey
- Research and Development Department, MSD Animal Health, 5831 AN Boxmeer, The Netherlands
| |
Collapse
|
3
|
Abonyi F, Eszterbauer E, Baska F, Hardy T, Doszpoly A. First Experimental Application of DNA-Layered Salmonid Alphavirus-Based Replicon Vaccine in Non-Salmonid Fish: Induced Early Semi-Specific Protection against Spring Viraemia of Carp Virus (SVCV) in Common Carp ( Cyprinus carpio). Animals (Basel) 2024; 14:2698. [PMID: 39335287 PMCID: PMC11428734 DOI: 10.3390/ani14182698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Our study demonstrates the first application of the salmonid alphavirus-based replicon vector system (pSAV) as a DNA vaccine in a non-salmonid fish species, in common carp (Cyprinus carpio) against spring viraemia of carp virus (SVCV). SAV replicon encoding the glycoprotein of the SVCV was used as a DNA-layered plasmid, and its efficacy was compared with a previously described conventional DNA vaccine construct (pcDNA3.1 based vector) and with a control group (pcDNA3.1-empty-plasmid) in an SVCV challenge at a water temperature of 14 ± 1 °C. Vaccine prototypes were administered intramuscularly at a dose of 0.1 µg/g of fish (n = 25 per group). The DNA-layered SAV replicon resulted in 88% survival, compared to around 50% in all other groups. The DNA-layered pSAV vaccination induced the innate immune genes at the injection site, and increased IgM upregulation was also observed. Our preliminary results show that the SAV-based replicon construct may serve as a potential vaccine candidate for the protection of non-salmonid fish in the future provided that further clinical and field trials confirm its efficiency.
Collapse
Affiliation(s)
- Flóra Abonyi
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Edit Eszterbauer
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Ferenc Baska
- Department of Exotic Animal and Wildlife Medicine, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Tímea Hardy
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Andor Doszpoly
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| |
Collapse
|
4
|
Dias AS, Baker ALV, Baker RB, Zhang J, Zeller MA, Kitikoon P, Gauger PC. Detection and Characterization of Influenza A Virus Endemic Circulation in Suckling and Nursery Pigs Originating from Vaccinated Farms in the Same Production System. Viruses 2024; 16:626. [PMID: 38675967 PMCID: PMC11054297 DOI: 10.3390/v16040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows.
Collapse
MESH Headings
- Animals
- Swine
- Swine Diseases/virology
- Swine Diseases/epidemiology
- Swine Diseases/prevention & control
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/epidemiology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/isolation & purification
- Influenza A virus/classification
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Phylogeny
- Farms
- Animals, Suckling
- Vaccination/veterinary
- Endemic Diseases/veterinary
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- RNA, Viral/genetics
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/immunology
- Genome, Viral
Collapse
Affiliation(s)
- Alessandra Silva Dias
- Department of Preventive Veterinary Medicine, Minas Gerais State University, 6627 Antonio Carlos Avenue, Belo Horizonte 31620-295, MG, Brazil;
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Rodney B. Baker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Michael A. Zeller
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Pravina Kitikoon
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
- Phillip Gauger of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| |
Collapse
|
5
|
Petro-Turnquist E, Pekarek MJ, Weaver EA. Swine influenza A virus: challenges and novel vaccine strategies. Front Cell Infect Microbiol 2024; 14:1336013. [PMID: 38633745 PMCID: PMC11021629 DOI: 10.3389/fcimb.2024.1336013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Swine Influenza A Virus (IAV-S) imposes a significant impact on the pork industry and has been deemed a significant threat to global public health due to its zoonotic potential. The most effective method of preventing IAV-S is vaccination. While there are tremendous efforts to control and prevent IAV-S in vulnerable swine populations, there are considerable challenges in developing a broadly protective vaccine against IAV-S. These challenges include the consistent diversification of IAV-S, increasing the strength and breadth of adaptive immune responses elicited by vaccination, interfering maternal antibody responses, and the induction of vaccine-associated enhanced respiratory disease after vaccination. Current vaccination strategies are often not updated frequently enough to address the continuously evolving nature of IAV-S, fail to induce broadly cross-reactive responses, are susceptible to interference, may enhance respiratory disease, and can be expensive to produce. Here, we review the challenges and current status of universal IAV-S vaccine research. We also detail the current standard of licensed vaccines and their limitations in the field. Finally, we review recently described novel vaccines and vaccine platforms that may improve upon current methods of IAV-S control.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew J. Pekarek
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric A. Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
Anderson TK, Medina RA, Nelson MI. The Evolution of SARS-CoV-2 and Influenza A Virus at the Human–Animal Interface. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:549-572. [DOI: 10.1016/b978-0-443-28818-0.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
8
|
Colunga-Saucedo M, Rubio-Hernandez EI, Coronado-Ipiña MA, Rosales-Mendoza S, Castillo CG, Comas-Garcia M. Construction of a Chikungunya Virus, Replicon, and Helper Plasmids for Transfection of Mammalian Cells. Viruses 2022; 15:132. [PMID: 36680173 PMCID: PMC9864538 DOI: 10.3390/v15010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The genome of Alphaviruses can be modified to produce self-replicating RNAs and virus-like particles, which are useful virological tools. In this work, we generated three plasmids for the transfection of mammalian cells: an infectious clone of Chikungunya virus (CHIKV), one that codes for the structural proteins (helper plasmid), and another one that codes nonstructural proteins (replicon plasmid). All of these plasmids contain a reporter gene (mKate2). The reporter gene in the replicon RNA and the infectious clone are synthesized from subgenomic RNA. Co-transfection with the helper and replicon plasmids has biotechnological/biomedical applications because they allow for the delivery of self-replicating RNA for the transient expression of one or more genes to the target cells.
Collapse
Affiliation(s)
- Mayra Colunga-Saucedo
- Sección de Genómica Médica, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Edson I. Rubio-Hernandez
- Laboratorio de Células Troncales Humanas, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Miguel A. Coronado-Ipiña
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Sergio Rosales-Mendoza
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Claudia G. Castillo
- Laboratorio de Células Troncales Humanas, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Mauricio Comas-Garcia
- Sección de Genómica Médica, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, Mexico
| |
Collapse
|
9
|
Abstract
Lassa Fever (LF) is a viral hemorrhagic fever endemic in West Africa. LF begins with flu-like symptoms that are difficult to distinguish from other common endemic diseases such as malaria, dengue, and yellow fever making it hard to diagnose clinically. Availability of a rapid diagnostic test and other serological and molecular assays facilitates accurate diagnosis of LF. Lassa virus therapeutics are currently in different stages of preclinical development. Arevirumab, a cocktail of monoclonal antibodies, demonstrates a great safety and efficacy profile in non-human primates. Major efforts have been made in the development of a Lassa virus vaccine. Two vaccine candidates, MeV-NP and pLASV-GPC are undergoing evaluation in phase I clinical trials.
Collapse
Affiliation(s)
- Lilia I Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70118, USA.
| |
Collapse
|
10
|
Bivalent hemagglutinin and neuraminidase influenza replicon particle vaccines protect pigs against influenza a virus without causing vaccine associated enhanced respiratory disease. Vaccine 2022; 40:5569-5578. [PMID: 35987871 DOI: 10.1016/j.vaccine.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022]
Abstract
Alphavirus-derived RNA replicon particle (RP) vaccines represent the next generation of swine influenza A virus (IAV) vaccines, as they were shown to be safe, effective, and offer advantages over traditional vaccine platforms. IAV is a significant respiratory pathogen of swine and there is a critical need to improve current commercial swine IAV vaccine platforms. Adjuvanted whole inactivated virus (WIV) IAV swine vaccines provide limited heterologous protection and may lead to vaccine-associated enhanced respiratory disease (VAERD). This study investigated the ability of RP IAV hemagglutinin (HA) vaccines to avoid VAERD and evaluated experimental multivalent HA and neuraminidase (NA) RP vaccines. RP vaccines were formulated with HA or NA heterologous or homologous to the challenge virus in monovalent HA or HA and NA bivalent combinations (HA/NA bivalent). Pigs were vaccinated with an HA RP, HA/NA bivalent RP, or heterologous HA WIV, followed by IAV challenge and necropsy 5 days post infection. RP vaccines provided homologous protection from challenge and induced robust peripheral and local antibody responses. The RP vaccine did not induce VAERD after challenge with a virus containing the heterologous HA, in contrast to the traditional WIV vaccine. The HA monovalent and HA/NA bivalent RP vaccines showed superior protection compared to traditional WIV. Additionally, the RP platform allows greater flexibility to adjust HA and NA content to reflect circulating IAV in swine antigenic diversity.
Collapse
|
11
|
Fang N, Yang B, Xu T, Li Y, Li H, Zheng H, Zhang A, Chen R. Expression and Immunogenicity of Recombinant African Swine Fever Virus Proteins Using the Semliki Forest Virus. Front Vet Sci 2022; 9:870009. [PMID: 35615248 PMCID: PMC9125186 DOI: 10.3389/fvets.2022.870009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
African swine fever virus (ASFV) is a large DNA virus belonging to the Asfarviridae family that damages the immune system of pigs, resulting in the death or slaughter of millions of animals worldwide. Recent modern techniques in ASFV vaccination have highlighted the potential of viral replicon particles (RPs), which can efficiently express foreign proteins and induce robust cellular and humoral immune responses compared with the existing vaccines. In this study, we established a Semliki Forest virus (SFV) vector by producing replication-defective viral particles. This vector was used to deliver RPs expressing ASFV antigens. SFV-RPs expressing ASFV p32 (SFV-p32) and p54 (SFV-p54) were tested in baby hamster kidney (BHK-21) cells. Proteins expression was evaluated via western blotting and indirect immunofluorescence, while immunogenicity was evaluated in BALB/c mice. The resulting RPs exhibited high levels of protein expression and elicited robust humoral and cellular immune responses.
Collapse
Affiliation(s)
- Niran Fang
- Zhaoqing Institute of Biotechnology Co. Ltd., Zhaoqing, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bin Yang
- Zhaoqing Institute of Biotechnology Co. Ltd., Zhaoqing, China
| | - Ting Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanpeng Li
- Zhaoqing DaHuaNong Biology Medicine Co. Ltd., Zhaoqing, China
| | - Huimin Li
- Jinggangshan University, Jinggangshan, China
| | - Hanghui Zheng
- Zhaoqing Institute of Biotechnology Co. Ltd., Zhaoqing, China
| | - Aiguo Zhang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Ruiai Chen
- Zhaoqing Institute of Biotechnology Co. Ltd., Zhaoqing, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing DaHuaNong Biology Medicine Co. Ltd., Zhaoqing, China
- *Correspondence: Ruiai Chen
| |
Collapse
|
12
|
Anderson TK, Inderski B, Diel DG, Hause BM, Porter EG, Clement T, Nelson EA, Bai J, Christopher-Hennings J, Gauger PC, Zhang J, Harmon KM, Main R, Lager KM, Faaberg KS. The United States Swine Pathogen Database: integrating veterinary diagnostic laboratory sequence data to monitor emerging pathogens of swine. Database (Oxford) 2021; 2021:6462938. [PMID: 35165687 PMCID: PMC8903347 DOI: 10.1093/database/baab078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
Veterinary diagnostic laboratories derive thousands of nucleotide sequences from clinical samples of swine pathogens such as porcine reproductive and respiratory syndrome virus (PRRSV), Senecavirus A and swine enteric coronaviruses. In addition, next generation sequencing has resulted in the rapid production of full-length genomes. Presently, sequence data are released to diagnostic clients but are not publicly available as data may be associated with sensitive information. However, these data can be used for field-relevant vaccines; determining where and when pathogens are spreading; have relevance to research in molecular and comparative virology; and are a component in pandemic preparedness efforts. We have developed a centralized sequence database that integrates private clinical data using PRRSV data as an exemplar, alongside publicly available genomic information. We implemented the Tripal toolkit, a collection of Drupal modules that are used to manage, visualize and disseminate biological data stored within the Chado database schema. New sequences sourced from diagnostic laboratories contain: genomic information; date of collection; collection location; and a unique identifier. Users can download annotated genomic sequences using a customized search interface that incorporates data mined from published literature; search for similar sequences using BLAST-based tools; and explore annotated reference genomes. Additionally, custom annotation pipelines have determined species, the location of open reading frames and nonstructural proteins and the occurrence of putative frame shifts. Eighteen swine pathogens have been curated. The database provides researchers access to sequences discovered by veterinary diagnosticians, allowing for epidemiological and comparative virology studies. The result will be a better understanding on the emergence of novel swine viruses and how these novel strains are disseminated in the USA and abroad. Database URLhttps://swinepathogendb.org.
Collapse
Affiliation(s)
- Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Blake Inderski
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Diego G Diel
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,Diego G. Diel, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Benjamin M Hause
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Elizabeth G Porter
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Travis Clement
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Eric A Nelson
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Jane Christopher-Hennings
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Rodger Main
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|
13
|
Aida V, Pliasas VC, Neasham PJ, North JF, McWhorter KL, Glover SR, Kyriakis CS. Novel Vaccine Technologies in Veterinary Medicine: A Herald to Human Medicine Vaccines. Front Vet Sci 2021; 8:654289. [PMID: 33937377 PMCID: PMC8083957 DOI: 10.3389/fvets.2021.654289] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
The success of inactivated and live-attenuated vaccines has enhanced livestock productivity, promoted food security, and attenuated the morbidity and mortality of several human, animal, and zoonotic diseases. However, these traditional vaccine technologies are not without fault. The efficacy of inactivated vaccines can be suboptimal with particular pathogens and safety concerns arise with live-attenuated vaccines. Additionally, the rate of emerging infectious diseases continues to increase and with that the need to quickly deploy new vaccines. Unfortunately, first generation vaccines are not conducive to such urgencies. Within the last three decades, veterinary medicine has spearheaded the advancement in novel vaccine development to circumvent several of the flaws associated with classical vaccines. These third generation vaccines, including DNA, RNA and recombinant viral-vector vaccines, induce both humoral and cellular immune response, are economically manufactured, safe to use, and can be utilized to differentiate infected from vaccinated animals. The present article offers a review of commercially available novel vaccine technologies currently utilized in companion animal, food animal, and wildlife disease control.
Collapse
Affiliation(s)
- Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Kirklin L. McWhorter
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Sheniqua R. Glover
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
15
|
Pantin-Jackwood MJ, DeJesus E, Costa-Hurtado M, Smith D, Chrzastek K, Kapczynski DR, Suarez DL. Efficacy of Two Licensed Avian Influenza H5 Vaccines Against Challenge with a 2015 U.S. H5N2 clade 2.3.4.4 Highly Pathogenic Avian Influenza Virus in Domestic Ducks. Avian Dis 2020; 63:90-96. [PMID: 31251524 DOI: 10.1637/11895-050918-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/03/2018] [Indexed: 11/05/2022]
Abstract
Highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses from the H5 goose/Guangdong lineage caused a major outbreak in poultry in the United States in 2015. Although the outbreak was controlled, vaccines were considered as an alternative control method, and new vaccines were approved and purchased by the U.S. Department of Agriculture National Veterinary Stockpile for emergency use. In this study, we evaluated the efficacy of two of these vaccines in protecting Pekin ducks (Anas platyrhynchos var. domestica) against challenge with a H5N2 HPAI poultry isolate. A recombinant alphavirus-based vaccine and an inactivated adjuvanted reverse genetics vaccine, both expressing the hemagglutinin gene of a U.S. H5 clade 2.3.4.4 isolate (A/Gyrfalcon/Washington/41088-6/2014 H5N8), were used to immunize the ducks. The vaccines were given either as single vaccination at 2 days of age or in a prime-boost strategy at 2 and 15 days of age. At 32 days of age, all ducks were challenged with A/turkey/Minnesota/12582/15 H5N2 HPAI virus clade 2.3.4.4. All ducks from the nonvaccinated challenge control group became infected and shed virus; one duck in this group presented mild ataxia, and a second duck died. No mortality or clinical signs were observed in vaccinated and challenged ducks, with the exception of one duck presenting with mild ataxia. Both vaccines, regardless of the vaccination strategy used, were immunogenic in ducks and reduced or prevented virus shedding after challenge. In conclusion, good protection against H5Nx infection was achieved in ducks vaccinated with the vaccines examined, which were homologous to the challenge virus, with prime-boost strategies conferring the best protection against infection.
Collapse
Affiliation(s)
- Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605,
| | - Eric DeJesus
- Eastern Laboratory, United States Department of Agriculture, Food Safety and Inspection Service, Athens, GA 30605
| | - Mar Costa-Hurtado
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA) and the Universitat Autònoma de Barcelona (UAB), Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Barcelona, Bellaterra 08193, Spain
| | - Diane Smith
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605
| | - Klaudia Chrzastek
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605
| |
Collapse
|
16
|
He W, Evans AC, Rasley A, Bourguet F, Peters S, Kamrud KI, Wang N, Hubby B, Felderman M, Gouvis H, Coleman MA, Fischer NO. Cationic HDL mimetics enhance in vivo delivery of self-replicating mRNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102154. [PMID: 31982617 DOI: 10.1016/j.nano.2020.102154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 11/27/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022]
Abstract
In vivo delivery of large RNA molecules has significant implications for novel gene therapy, biologics delivery, and vaccine applications. We have developed cationic nanolipoprotein particles (NLPs) to enhance the complexation and delivery of large self-amplifying mRNAs (replicons) in vivo. NLPs are high-density lipoprotein (HDL) mimetics, comprised of a discoidal lipid bilayer stabilized by apolipoproteins that are readily functionalized to provide a versatile delivery platform. Herein, we systematically screened NLP assembly with a wide range of lipidic and apolipoprotein constituents, using biophysical metrics to identify lead candidates for in vivo RNA delivery. NLPs formulated with cationic lipids successfully complexed with RNA replicons encoding luciferase, provided measurable protection from RNase degradation, and promoted replicon in vivo expression. The NLP complexation of the replicon and in vivo transfection efficiency were further enhanced by modulating the type and percentage of cationic lipid, the ratio of cationic NLP to replicon, and by incorporating additive molecules.
Collapse
Affiliation(s)
- Wei He
- Lawrence Livermore National Laboratory, Livermore, California
| | - Angela C Evans
- Lawrence Livermore National Laboratory, Livermore, California
| | - Amy Rasley
- Lawrence Livermore National Laboratory, Livermore, California
| | - Feliza Bourguet
- Lawrence Livermore National Laboratory, Livermore, California
| | - Sandra Peters
- Lawrence Livermore National Laboratory, Livermore, California
| | | | | | - Bolyn Hubby
- Synthetic Genomics Vaccine Inc., La Jolla, CA
| | | | | | | | | |
Collapse
|
17
|
Ma J, Bruce TJ, Jones EM, Cain KD. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019; 7:E569. [PMID: 31744151 PMCID: PMC6920890 DOI: 10.3390/microorganisms7110569] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
Fish immunization has been carried out for over 50 years and is generally accepted as an effective method for preventing a wide range of bacterial and viral diseases. Vaccination efforts contribute to environmental, social, and economic sustainability in global aquaculture. Most licensed fish vaccines have traditionally been inactivated microorganisms that were formulated with adjuvants and delivered through immersion or injection routes. Live vaccines are more efficacious, as they mimic natural pathogen infection and generate a strong antibody response, thus having a greater potential to be administered via oral or immersion routes. Modern vaccine technology has targeted specific pathogen components, and vaccines developed using such approaches may include subunit, or recombinant, DNA/RNA particle vaccines. These advanced technologies have been developed globally and appear to induce greater levels of immunity than traditional fish vaccines. Advanced technologies have shown great promise for the future of aquaculture vaccines and will provide health benefits and enhanced economic potential for producers. This review describes the use of conventional aquaculture vaccines and provides an overview of current molecular approaches and strategies that are promising for new aquaculture vaccine development.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Timothy J. Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Evan M. Jones
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Kenneth D. Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
18
|
Semliki Forest Virus replicon particles production in serum-free medium BHK-21 cell cultures and their use to express different proteins. Cytotechnology 2019; 71:949-962. [PMID: 31422494 DOI: 10.1007/s10616-019-00337-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
The production of biopharmaceuticals as vaccines in serum-free media results in reduced risk of contamination and simpler downstream processing. The production of enveloped viruses and viral vectors such as Semliki Forest Virus (SFV) typically requires lipids that are provided by supplementation with animal serum, so production under serum-free conditions is challenging. In this work, the capacity to deliver genetic material of SFV-viral replicon particles (SFV-VRPs) produced in BHK-21 cells adapted to serum-free medium (BHK/SFM) was evaluated. Three transgenes were evaluated: GFP used as a model protein, while hepatitis C virus nonstructural protein 3 protease domain (HCV-NS3p) and rabies virus glycoprotein (RVGP) were selected based on their distinct nature (enzyme and glycoprotein, respectively). BHK/SFM cells produced a sevenfold higher number of SFV-VRPs, as determined by qRT-PCR. These particles showed similar capacities of infecting BHK/FBS or BHK/SFM cells. GFP expression was evaluated by flow cytometry, HCV-NS3p activity by enzymatic assay, and RVGP expression by ELISA and Western Blot. Expression analysis revealed higher levels of GFP and HCV-NS3p in BHK/SFM, while the levels of RVGP were similar for BHK/SFM and BHK/FBS. In conclusion, the BHK/SFM cells showed increased SFV-VRP production yields, without affecting vector infectivity or heterologous gene expression, hence validating the use of BHK/SFM for industrial applications.
Collapse
|
19
|
Holzer B, Martini V, Edmans M, Tchilian E. T and B Cell Immune Responses to Influenza Viruses in Pigs. Front Immunol 2019; 10:98. [PMID: 30804933 PMCID: PMC6371849 DOI: 10.3389/fimmu.2019.00098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/14/2019] [Indexed: 01/31/2023] Open
Abstract
Influenza viruses are an ongoing threat to humans and are endemic in pigs, causing considerable economic losses to farmers. Pigs are also a source of new viruses potentially capable of initiating human pandemics. Many tools including monoclonal antibodies, recombinant cytokines and chemokines, gene probes, tetramers, and inbred pigs allow refined analysis of immune responses against influenza. Recent advances in understanding of the pig innate system indicate that it shares many features with that of humans, although there is a larger gamma delta component. The fine specificity and mechanisms of cross-protective T cell immunity have yet to be fully defined, although it is clear that the local immune response is important. The repertoire of pig antibody response to influenza has not been thoroughly explored. Here we review current understanding of adaptive immune responses against influenza in pigs and the use of the pig as a model to study human disease.
Collapse
Affiliation(s)
- Barbara Holzer
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Veronica Martini
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Matthew Edmans
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Elma Tchilian
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| |
Collapse
|
20
|
Comparison of Adjuvanted-Whole Inactivated Virus and Live-Attenuated Virus Vaccines against Challenge with Contemporary, Antigenically Distinct H3N2 Influenza A Viruses. J Virol 2018; 92:JVI.01323-18. [PMID: 30185589 DOI: 10.1128/jvi.01323-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses in swine (IAV-S) circulating in the United States of America are phylogenetically and antigenically distinct. A human H3 hemagglutinin (HA) was introduced into the IAV-S gene pool in the late 1990s, sustained continued circulation, and evolved into five monophyletic genetic clades, H3 clades IV-A to -E, after 2009. Across these phylogenetic clades, distinct antigenic clusters were identified, with three clusters (cyan, red, and green antigenic cluster) among the most frequently detected antigenic phenotypes (Abente EJ, Santos J, Lewis NS, Gauger PC, Stratton J, et al. J Virol 90:8266-8280, 2016, https://doi.org/10.1128/JVI.01002-16). Although it was demonstrated that antigenic diversity of H3N2 IAV-S was associated with changes at a few amino acid positions in the head of the HA, the implications of this diversity for vaccine efficacy were not tested. Using antigenically representative H3N2 viruses, we compared whole inactivated virus (WIV) and live-attenuated influenza virus (LAIV) vaccines for protection against challenge with antigenically distinct H3N2 viruses in pigs. WIV provided partial protection against antigenically distinct viruses but did not prevent virus replication in the upper respiratory tract. In contrast, LAIV provided complete protection from disease and virus was not detected after challenge with antigenically distinct viruses.IMPORTANCE Due to the rapid evolution of the influenza A virus, vaccines require continuous strain updates. Additionally, the platform used to deliver the vaccine can have an impact on the breadth of protection. Currently, there are various vaccine platforms available to prevent influenza A virus infection in swine, and we experimentally tested two: adjuvanted-whole inactivated virus and live-attenuated virus. When challenged with an antigenically distinct virus, adjuvanted-whole inactivated virus provided partial protection, while live-attenuated virus provided effective protection. Additional strategies are required to broaden the protective properties of inactivated virus vaccines, given the dynamic antigenic landscape of cocirculating strains in North America, whereas live-attenuated vaccines may require less frequent strain updates, based on demonstrated cross-protection. Enhancing vaccine efficacy to control influenza infections in swine will help reduce the impact they have on swine production and reduce the risk of swine-to-human transmission.
Collapse
|
21
|
Tang J, Bi Z, Ding M, Yin D, Zhu J, Zhang L, Miao Q, Zhu Y, Wang G, Liu G. Immunization with a suicidal DNA vaccine expressing the E glycoprotein protects ducklings against duck Tembusu virus. Virol J 2018; 15:140. [PMID: 30217161 PMCID: PMC6137926 DOI: 10.1186/s12985-018-1053-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUD Duck Tembusu virus (DTMUV), a pathogenic flavivirus, emerged in China since 2010 and causing huge economic loss in the Chinese poultry industry. Although several vaccines have been reported to control DTMUV disease, few effective vaccines are available and new outbreaks were continuously reported. Thus, it is urgently to develop a new effective vaccine for prevention of this disease. METHODS In this study, a suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon and DTMUV E glycoprotein gene was constructed and the efficacy of this new vaccine was assessed according to humoral and cell-mediated immune responses as well as protection against the DTMUV challenge in ducklings. RESULTS Our results showed that the recombinant SFV replicon highly expressed E glycoprotein in DEF cells. After intramuscular injection of this new DNA vaccine in ducklings, robust humoral and cellular immune responses were observed in all immunized ducklings. Moreover, all ducklings were protected against challenge with the virulent DTMUV AH-F10 strain. CONCLUSIONS In conclusion, we demonstrate that this suicidal DNA vaccine is a promising candidate facilitating the prevention of DTMUV infection.
Collapse
Affiliation(s)
- Jingyu Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Zhuangli Bi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Mingyang Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Dongdong Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, 230036, China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Li Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Qiuhong Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Yingqi Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China. .,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, 230036, China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Rd, Shanghai, 200241, China.
| |
Collapse
|
22
|
Lemos MAN, Patiño SFS, Bernardino TC, Coroadinha AS, Soares H, Astray RM, Pereira CA, Jorge SAC. Intracellular Delivery of HCV NS3p gene using vectored particles. J Biotechnol 2018; 274:33-39. [PMID: 29577966 DOI: 10.1016/j.jbiotec.2018.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/18/2018] [Indexed: 02/07/2023]
Abstract
Viral hepatitis caused by the hepatitis C virus (HCV) affects millions of people worldwide. The non-structural protein 3 (NS3), one of the most conserved proteins in HCV, is the target of many therapeutic studies. The NS3 protease domain (NS3p) has a range of cytotoxic T lymphocyte (CTL) epitopes, and synthesizing the protein inside the cells is the most appropriate way to present it to the immune system. We developed a tool to study this kind of presentation, using two vectored particle (VP) systems, one based on the Semliki Forest virus (SFV) and the other on HCV pseudoparticles (HCVpp), both carrying the protease domain of the NS3 gene. In addition to producing the particles, we developed a method to quantify these VPs using qRT-PCR. We produced batches of approximately 2.4 × 104 SFV-NS3p/μL and 4.0 × 102 HCVpp-NS3p/μL. BHK-21 and HuH-7 cells treated with the VPs expressed the NS3 protein, thus showing the functionality of this system.
Collapse
Affiliation(s)
| | | | | | - Ana Sofia Coroadinha
- Cell Line Development and Molecular Biotechnology Laboratory, iBET - Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, Oeiras Portugal
| | - Hugo Soares
- Cell Line Development and Molecular Biotechnology Laboratory, iBET - Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, Oeiras Portugal
| | - Renato Mancini Astray
- Laboratório de Imunologia Viral, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo Brazil
| | - Carlos Augusto Pereira
- Laboratório de Imunologia Viral, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo Brazil
| | - Soraia Attie Calil Jorge
- Laboratório de Imunologia Viral, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo Brazil.
| |
Collapse
|
23
|
Kurena B, Vežāne A, Skrastiņa D, Trofimova O, Zajakina A. Magnetic nanoparticles for efficient cell transduction with Semliki Forest virus. J Virol Methods 2017; 245:28-34. [DOI: 10.1016/j.jviromet.2017.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/26/2022]
|
24
|
Teeravechyan S, Frantz PN, Wongthida P, Chailangkarn T, Jaru-Ampornpan P, Koonpaew S, Jongkaewwattana A. Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics. Virus Res 2016; 226:152-171. [PMID: 27212685 PMCID: PMC7114553 DOI: 10.1016/j.virusres.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023]
Abstract
Emergence of the porcine epidemic diarrhea virus (PEDV) as a global threat to the swine industry underlies the urgent need for deeper understanding of this virus. To date, we have yet to identify functions for all the major gene products, much less grasp their implications for the viral life cycle and pathogenic mechanisms. A major reason is the lack of genetic tools for studying PEDV. In this review, we discuss the reverse genetics approaches that have been successfully used to engineer infectious clones of PEDV as well as other potential and complementary methods that have yet to be applied to PEDV. The importance of proper cell culture for successful PEDV propagation and maintenance of disease phenotype are addressed in our survey of permissive cell lines. We also highlight areas of particular relevance to PEDV pathogenesis and disease that have benefited from reverse genetics studies and pressing questions that await resolution by such studies. In particular, we examine the spike protein as a determinant of viral tropism, entry and virulence, ORF3 and its association with cell culture adaptation, and the nucleocapsid protein and its potential role in modulating PEDV pathogenicity. Finally, we conclude with an exploration of how reverse genetics can help mitigate the global impact of PEDV by addressing the challenges of vaccine development.
Collapse
Affiliation(s)
- Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Phonphimon Wongthida
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand.
| |
Collapse
|
25
|
Langel SN, Paim FC, Lager KM, Vlasova AN, Saif LJ. Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Res 2016; 226:93-107. [PMID: 27212686 PMCID: PMC7111331 DOI: 10.1016/j.virusres.2016.05.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Morbidity, mortality, and loss of productivity from enteric diseases in neonatal piglets cost swine producers millions of dollars annually. In 2013-2014, the porcine epidemic diarrhea virus (PEDV) outbreak led to $900 million to $1.8 billion in annual losses to US swine producers. Passive lactogenic immunity remains the most promising and effective way to protect neonatal suckling piglets from enteric diseases like PEDV. Protecting suckling piglets through lactogenic immunity is dependent on trafficking of pathogen-specific IgA plasmablasts to the mammary gland and accumulation of secretory IgA (sIgA) antibodies in milk, defined as the gut-mammary-sIgA axis. Due to an impermeable placenta, piglets are born agammaglobulinic, and are highly susceptible to a plethora of infectious agents. They rely solely on colostrum and milk antibodies for maternal lactogenic immunity. Previous advances in the development of live and attenuated vaccines for another devastating diarrheal virus of pigs, transmissible gastroenteritis virus (TGEV), provide insights into the mechanisms of maternal immunity and piglet protection. In this chapter, we will review previous research on TGEV-induced lactogenic immunity to provide a historical perspective on current efforts for PEDV control and vaccines in the swine industry. Identifying factors that influence lactogenic immunity and the gut-mammary-sIgA axis may lead to improved vaccine regimens for PEDV and other enteric pathogens in gestating swine and improved overall herd immunity, swine health and industry productivity.
Collapse
Affiliation(s)
- Stephanie N Langel
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Francine Chimelo Paim
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
26
|
Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada. Virus Res 2016; 226:108-116. [DOI: 10.1016/j.virusres.2016.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
|
27
|
Suarez DL, Pantin-Jackwood MJ. Recombinant viral-vectored vaccines for the control of avian influenza in poultry. Vet Microbiol 2016; 206:144-151. [PMID: 27916319 DOI: 10.1016/j.vetmic.2016.11.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022]
Abstract
Vaccination is a commonly used tool for the control of both low pathogenic and highly pathogenic avian influenza (AI) viruses. Traditionally, inactivated adjuvanted vaccines made from a low pathogenic field strain have been used for vaccination, but advances in molecular biology have allowed a number of different viral vectored vaccines, expressing the AI virus hemagglutinin (HA) gene, to be developed and licensed for use for control of AI. This review summarizes the licensed vector vaccines available for use in poultry. As a group, these vaccines can stimulate both a cellular and humoral immune response and, when antigenically well matched to the target AI strain, are effective at preventing clinical disease and reducing virus shedding if vaccinated birds do become infected. The vaccines can often be given to one-day old chicks in the hatchery, which can provide early protection and is a cost effective route of administration of the vaccine. All the licensed vectored vaccines, because they only express the HA gene, can potentially be used to differentiate vaccinated from vaccinated and infected birds, which is often referred to as a DIVA strategy. Although a potentially valuable tool for the surveillance of the virus in countries that vaccinate, the DIVA principle has currently not been applied. Concern remains that maternal antibody or pre-existing immunity to the vector or to the AI HA insert can suppress the immune response to the vaccine. The viral vectored vaccines appear to work well with a prime boost strategy where the vectored vaccine is given first and a different type of vaccine, often a killed adjuvanted vaccine is given two or three weeks later.
Collapse
Affiliation(s)
- David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA.
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| |
Collapse
|
28
|
Abstract
Vaccination is essential in livestock farming and in companion animal ownership. Nucleic acid vaccines based on DNA or RNA provide an elegant alternative to those classical veterinary vaccines that have performed suboptimally. Recent advances in terms of rational design, safety, and efficacy have strengthened the position of nucleic acid vaccines in veterinary vaccinology. The present review focuses on replicon vaccines designed for veterinary use. Replicon vaccines are self-amplifying viral RNA sequences that, in addition to the sequence encoding the antigen of interest, contain all elements necessary for RNA replication. Vaccination results in high levels of in situ antigen expression and induction of potent immune responses. Both positive- and negative-stranded viruses have been used to construct replicons, and they can be delivered as RNA, DNA, or viral replicon particles. An introduction to the biology and the construction of different viral replicon vectors is given, and examples of veterinary replicon vaccine applications are discussed.
Collapse
Affiliation(s)
- Mia C Hikke
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands;
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands;
| |
Collapse
|
29
|
Embregts CWE, Forlenza M. Oral vaccination of fish: Lessons from humans and veterinary species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:118-37. [PMID: 27018298 DOI: 10.1016/j.dci.2016.03.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/17/2016] [Indexed: 05/08/2023]
Abstract
The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species.
Collapse
Affiliation(s)
- Carmen W E Embregts
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
30
|
Mosley YYC, Wu CC, Lin TL. Infectious bursal disease virus as a replication-incompetent viral vector expressing green fluorescent protein. Arch Virol 2016; 162:23-32. [PMID: 27659678 DOI: 10.1007/s00705-016-3066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022]
Abstract
Infectious bursal disease virus (IBDV) has been established as a replication-competent viral vector capable of carrying an epitope at multiple loci in the genome. To enhance the safety and increase the insertion capacity of IBDV as a vector, a replication-incompetent IBDV vector was developed in the present study. The feasibility of replacing one of the viral gene loci, including pvp2, vp3, vp1, or the polyprotein vp243, with the sequence of green fluorescent protein (GFP) was explored. A method combining TCID50 and immunoperoxidase monolayer assay (IPMA) determined the most feasible locus for gene replacement to be pvp2. The genomic segment containing gfp at the pvp2 locus was able to be encapsidated into IBDV particles. Furthermore, the expression of GFP in GFP-IBDV infected cells was confirmed by Western blotting and GFP-IBDV particles showed similar morphology and size to that of wildtype IBDV by electron microscopy. By providing the deleted protein in trans in a packaging cell line (pVP2-DF1), replication-incompetent GFP-IBDV particles were successfully plaque-quantified. The gfp sequence from the plaque-forming GFP-IBDV in pVP2-DF1 was confirmed by RT-PCR and sequencing. To our knowledge, GFP-IBDV developed in the present study is the first replication-incompetent IBDV vector which expresses a foreign protein in infected cells without the capability to produce viral progeny. Additionally, such replication-incompetent IBDV vectors could serve as bivalent vaccine vectors for conferring protection against infections with IBDV and other economically important, or zoonotic, avian pathogens.
Collapse
Affiliation(s)
- Yung-Yi C Mosley
- ADDL, Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 406 South University Street, West Lafayette, IN, 47907-2065, USA
| | - Ching Ching Wu
- ADDL, Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 406 South University Street, West Lafayette, IN, 47907-2065, USA
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Tsang Long Lin
- ADDL, Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 406 South University Street, West Lafayette, IN, 47907-2065, USA.
| |
Collapse
|
31
|
Xu C, Evensen Ø, Munang'andu H. De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells. Viruses 2016; 8:114. [PMID: 27110808 PMCID: PMC4848607 DOI: 10.3390/v8040114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
A fundamental step in cellular defense mechanisms is the recognition of “danger signals” made of conserved pathogen associated molecular patterns (PAMPs) expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs). In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG) to identify PRRs together with the network pathway of differentially expressed genes (DEGs) that recognize salmonid alphavirus subtype 3 (SAV-3) infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs) 3 and 8 together with RIG-I-like receptors (RLRs) and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs) genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I), melanoma differentiation association 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). The study points to possible involvement of the tripartite motif containing 25 (TRIM25) and mitochondrial antiviral signaling protein (MAVS) in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN) regulatory factors (IRFs) 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon.
Collapse
Affiliation(s)
- Cheng Xu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146 Dep NO-0033 Oslo, Norway.
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146 Dep NO-0033 Oslo, Norway.
| | - Hetron Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146 Dep NO-0033 Oslo, Norway.
| |
Collapse
|
32
|
Adouchief S, Smura T, Sane J, Vapalahti O, Kurkela S. Sindbis virus as a human pathogen-epidemiology, clinical picture and pathogenesis. Rev Med Virol 2016; 26:221-41. [DOI: 10.1002/rmv.1876] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Samuel Adouchief
- Department of Virology, Faculty of Medicine; University of Helsinki; Helsinki Finland
| | - Teemu Smura
- Department of Virology, Faculty of Medicine; University of Helsinki; Helsinki Finland
| | - Jussi Sane
- National institute for Health and Welfare (THL); Helsinki Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine; University of Helsinki; Helsinki Finland
- Department of Virology and Immunology, HUSLAB; Helsinki University Central Hospital; Helsinki Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine; University of Helsinki; Helsinki Finland
| | - Satu Kurkela
- Department of Virology, Faculty of Medicine; University of Helsinki; Helsinki Finland
- Department of Virology and Immunology, HUSLAB; Helsinki University Central Hospital; Helsinki Finland
| |
Collapse
|
33
|
Oreshkova N, Wichgers Schreur PJ, Spel L, Vloet RPM, Moormann RJM, Boes M, Kortekaas J. Nonspreading Rift Valley Fever Virus Infection of Human Dendritic Cells Results in Downregulation of CD83 and Full Maturation of Bystander Cells. PLoS One 2015; 10:e0142670. [PMID: 26575844 PMCID: PMC4648518 DOI: 10.1371/journal.pone.0142670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023] Open
Abstract
Vaccines based on nonspreading Rift Valley fever virus (NSR) induce strong humoral and robust cellular immune responses with pronounced Th1 polarisation. The present work was aimed to gain insight into the molecular basis of NSR-mediated immunity. Recent studies have demonstrated that wild-type Rift Valley fever virus efficiently targets and replicates in dendritic cells (DCs). We found that NSR infection of cultured human DCs results in maturation of DCs, characterized by surface upregulation of CD40, CD80, CD86, MHC-I and MHC-II and secretion of the proinflammatory cytokines IFN-β, IL-6 and TNF. Interestingly, expression of the most prominent marker of DC maturation, CD83, was consistently downregulated at 24 hours post infection. Remarkably, NSR infection also completely abrogated CD83 upregulation by LPS. Downregulation of CD83 was not associated with reduced mRNA levels or impaired CD83 mRNA transport from the nucleus and could not be prevented by inhibition of the proteasome or endocytic degradation pathways, suggesting that suppression occurs at the translational level. In contrast to infected cells, bystander DCs displayed full maturation as evidenced by upregulation of CD83. Our results indicate that bystander DCs play an important role in NSR-mediated immunity.
Collapse
Affiliation(s)
- Nadia Oreshkova
- Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands
- Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Paul J. Wichgers Schreur
- Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Lotte Spel
- Department of Pediatric Immunology and Laboratory of Translational Immunology, University Medical Centre Utrecht/Wilhelmina Children’s Hospital, Utrecht, The Netherlands
| | - Rianka P. M. Vloet
- Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Rob J. M. Moormann
- Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands
- Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Pediatric Immunology and Laboratory of Translational Immunology, University Medical Centre Utrecht/Wilhelmina Children’s Hospital, Utrecht, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands
| |
Collapse
|
34
|
Zappasodi R, Merghoub T. Alphavirus-based vaccines in melanoma: rationale and potential improvements in immunotherapeutic combinations. Immunotherapy 2015; 7:981-97. [DOI: 10.2217/imt.15.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade has formally demonstrated the clinical benefit of immunotherapy against melanoma. New immunotherapeutic modalities are currently explored to improve the management of relapsing/refractory patients. Potent antitumor vaccines would have the advantage to promote long-lasting tumor control while limiting autoimmunity. Alphavirus vectors and nonreplicating particles offer versatile platforms to deliver antigen expression and immunize against cancer. They have shown promising preclinical results and initial proof of clinical activity in melanoma. The growing number of clinically available immunomodulatory agents provides a tremendous opportunity to exploit and revisit anticancer vaccines in the setting of powerful immunotherapeutic combinations. Accelerating the evaluation of alphavirus-based vaccines in patients with immune sensitive, but still very deadly malignancies, such as melanoma, is thus extremely important.
Collapse
Affiliation(s)
- Roberta Zappasodi
- Ludwig Collaborative & Swim Across America Laboratory, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative & Swim Across America Laboratory, New York, NY, USA
- Melanoma & Immunotherapeutics Service MSKCC, New York, NY, USA
| |
Collapse
|
35
|
Abstract
Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats.
Collapse
Affiliation(s)
- C S Kyriakis
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
36
|
Alexander-Miller MA. Vaccines against respiratory viral pathogens for use in neonates: opportunities and challenges. THE JOURNAL OF IMMUNOLOGY 2015; 193:5363-9. [PMID: 25411431 DOI: 10.4049/jimmunol.1401410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first six months of life reflect a time of high susceptibility to severe disease following respiratory virus infection. Although this could be improved significantly by immunization, current vaccines are not approved for use in these very young individuals. This is the result of the combined effects of poor immune responsiveness and safety concerns regarding the use of live attenuated vaccines or potent adjuvants in this population. Vaccines to effectively combat respiratory viral infection ideally would result in robust CD4(+) and CD8(+) T cell responses, as well as high-affinity Ab. Inclusion of TLR agonists or single-cycle viruses is an attractive approach for provision of signals that can act as potent stimulators of dendritic cell maturation, as well as direct activators of T and/or B cells. In this article, I discuss the challenges associated with generation of a robust immune response in neonates and the potential for adjuvants to overcome these obstacles.
Collapse
|
37
|
Rahn J, Hoffmann D, Harder TC, Beer M. Vaccines against influenza A viruses in poultry and swine: Status and future developments. Vaccine 2015; 33:2414-24. [PMID: 25835575 DOI: 10.1016/j.vaccine.2015.03.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/01/2015] [Accepted: 03/18/2015] [Indexed: 12/29/2022]
Abstract
Influenza A viruses are important pathogens with a very broad host spectrum including domestic poultry and swine. For preventing clinical disease and controlling the spread, vaccination is one of the most efficient tools. Classical influenza vaccines for domestic poultry and swine are conventional inactivated preparations. However, a very broad range of novel vaccine types ranging from (i) nucleic acid-based vaccines, (ii) replicon particles, (iii) subunits and virus-like particles, (iv) vectored vaccines, or (v) live-attenuated vaccines has been described, and some of them are now also used in the field. The different novel approaches for vaccines against avian and swine influenza virus infections are reviewed, and additional features like universal vaccines, novel application approaches and the "differentiating infected from vaccinated animals" (DIVA)-strategy are summarized.
Collapse
Affiliation(s)
- J Rahn
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - D Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - T C Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
38
|
Wang HC, An HJ, Yu YZ, Xu Q. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors. Immunol Lett 2015; 163:206-13. [DOI: 10.1016/j.imlet.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/18/2014] [Accepted: 07/27/2014] [Indexed: 11/17/2022]
|
39
|
Sandbulte MR, Spickler AR, Zaabel PK, Roth JA. Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines (Basel) 2015; 3:22-73. [PMID: 26344946 PMCID: PMC4494241 DOI: 10.3390/vaccines3010022] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 12/29/2022] Open
Abstract
Influenza A virus in swine (IAV-S) is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.
Collapse
Affiliation(s)
- Matthew R Sandbulte
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Anna R Spickler
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Pamela K Zaabel
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - James A Roth
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
40
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|
41
|
Abstract
Mosquito-borne diseases affect horses worldwide. Mosquito-borne diseases generally cause encephalomyelitis in the horse and can be difficult to diagnose antemortem. In addition to general disease, and diagnostic and treatment aspects, this review article summarizes the latest information on these diseases, covering approximately the past 5 years, with a focus on new equine disease encroachments, diagnostic and vaccination aspects, and possible therapeutics on the horizon.
Collapse
|
42
|
Yu YZ, Ma Y, Xu WH, Wang S, Sun ZW. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines. Med Microbiol Immunol 2014; 204:481-91. [PMID: 25265876 DOI: 10.1007/s00430-014-0359-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.
Collapse
Affiliation(s)
- Yun-Zhou Yu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China,
| | | | | | | | | |
Collapse
|
43
|
Kochetov AV. The alien replicon: Artificial genetic constructs to direct the synthesis of transmissible self-replicating RNAs. Bioessays 2014; 36:1204-12. [DOI: 10.1002/bies.201400111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alex V. Kochetov
- Institute of Cytology & Genetics, SB RAS; Novosibirsk Russia
- Novosibirsk State University; Novosibirsk Russia
| |
Collapse
|
44
|
Oreshkova N, Cornelissen LAHM, de Haan CAM, Moormann RJM, Kortekaas J. Evaluation of nonspreading Rift Valley fever virus as a vaccine vector using influenza virus hemagglutinin as a model antigen. Vaccine 2014; 32:5323-9. [PMID: 25066737 DOI: 10.1016/j.vaccine.2014.07.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/02/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Abstract
Virus replicon particles are capable of infection, genome replication and gene expression, but are unable to produce progeny virions, rendering their use inherently safe. By virtue of this unique combination of features, replicon particles hold great promise for vaccine applications. We previously developed replicon particles of Rift Valley fever virus (RVFV) and demonstrated their high efficacy as a RVFV vaccine in the natural target species. We have now investigated the feasibility of using this nonspreading RVFV (NSR) as a vaccine vector using influenza virus hemagglutinin as a model antigen. NSR particles were designed to express either the full-length hemagglutinin of influenza A virus H1N1 (NSR-HA) or the respective soluble ectodomain (NSR-sHA). The efficacies of the two NSR vector vaccines, applied via either the intramuscular or the intranasal route, were evaluated. A single vaccination with NSR-HA protected all mice from a lethal challenge dose, while vaccination with NSR-sHA was not protective. Interestingly, whereas intramuscular vaccination elicited superior systemic immune responses, intranasal vaccination provided optimal clinical protection.
Collapse
Affiliation(s)
- N Oreshkova
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - L A H M Cornelissen
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands.
| | - C A M de Haan
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - R J M Moormann
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - J Kortekaas
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands.
| |
Collapse
|
45
|
Abstract
Bovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases. Although similar in many respects to the human immune response to human herpesvirus 1, the differences in the bovine virus proteins, immune system components and strategies, physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate immune system initially responds to infection, and primes a balanced adaptive immune response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells, is critical to recovery from infection. Humoral immunity, including neutralizing antibody and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of (re-)infection. BHV-1 immune evasion strategies include suppression of major histocompatibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune suppression caused by the virus potentiates secondary infections and contributes to the costly bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many vaccines reported include replicating and non-replicating, conventional and genetically engineered, as well as marker and non-marker preparations. Current development focuses on delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while excluding serologic markers and virulence or other undesirable factors. In North America, vaccines are used to prevent or reduce clinical signs, whereas in some European Union countries marker vaccines have been employed in the eradication of BHV-1 disease.
Collapse
|
46
|
Vander Veen RL, Mogler MA, Russell BJ, Loynachan AT, Harris DLH, Kamrud KI. Haemagglutinin and nucleoprotein replicon particle vaccination of swine protects against the pandemic H1N1 2009 virus. Vet Rec 2013; 173:344. [DOI: 10.1136/vr.101741] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- R. L. Vander Veen
- Harrisvaccines; Inc; 1102 Southern Hills Drive Ames IA 50010 USA
- Zoetis Lincoln NE 50010 USA
| | - M. A. Mogler
- Harrisvaccines; Inc; 1102 Southern Hills Drive Ames IA 50010 USA
| | - B. J. Russell
- Immunobiology Program; Iowa State University; Ames IA 50011 USA
| | - A. T. Loynachan
- University of Kentucky Veterinary Diagnostic Laboratory; Lexington KY 40511 USA
| | - D. L. H. Harris
- Harrisvaccines; Inc; 1102 Southern Hills Drive Ames IA 50010 USA
- Department of Animal Science; College of Agriculture; Iowa State University; Ames IA 50011 USA
| | - K. I. Kamrud
- Harrisvaccines; Inc; 1102 Southern Hills Drive Ames IA 50010 USA
- Synthetic Genomics Vaccines, Inc; La Jolla CA USA
| |
Collapse
|
47
|
Lukashevich IS. The search for animal models for Lassa fever vaccine development. Expert Rev Vaccines 2013; 12:71-86. [PMID: 23256740 DOI: 10.1586/erv.12.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
48
|
Center RJ, Miller A, Wheatley AK, Campbell SM, Siebentritt C, Purcell DFJ. Utility of the Sindbis replicon system as an Env-targeted HIV vaccine. Vaccine 2013; 31:2260-6. [PMID: 23499600 DOI: 10.1016/j.vaccine.2013.02.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/20/2013] [Accepted: 02/28/2013] [Indexed: 02/06/2023]
Abstract
Sindbis replicon-based vaccine vectors are designed to combine the immunostimulatory properties of replicating viruses with the superior safety profile of non-replicating systems. In this study we performed a detailed assessment of Sindbis (SIN) replicon vectors expressing HIV-1 envelope protein (Env) for the induction of cell-mediated and humoral immune responses in a small animal model. SIN-derived virus-like particles (VLP) elicited Env-specific antibody responses that were detectable after boosting with recombinant Env protein. This priming effect could be mediated by replicon activity alone but may be enhanced by Env attached to the surface of VLP, offering a potential advantage for this mode of replicon delivery for Env based vaccination strategies. In contrast, the Env-specific CTL responses that were elicited by SIN-VLP were entirely dependent on replicon activity. SIN-VLP priming induced more durable humoral responses than immunization with protein only. This is important from a vaccine perspective, given the intrinsic tendency of Env to induce short-lived antibody responses in the context of vaccination or infection. These results indicate that further efforts to enhance the magnitude and durability of the HIV-1 Env-specific immune responses generated by Sindbis vectors, either alone or as part of prime-boost regimens, are justified.
Collapse
Affiliation(s)
- Rob J Center
- Department of Microbiology and Immunology, University of Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Influenza virus infects a wide variety of species including humans, pigs, horses, sea mammals and birds. Weight loss caused by influenza infection and/or co-infection with other infectious agents results in significant financial loss in swine herds. The emergence of pandemic H1N1 (A/CA/04/2009/H1N1) and H3N2 variant (H3N2v) viruses, which cause disease in both humans and livestock constitutes a concerning public health threat. Influenza virus contains eight single-stranded, negative-sense RNA genome segments. This genetic structure allows the virus to evolve rapidly by antigenic drift and shift. Antigen-specific antibodies induced by current vaccines provide limited cross protection to heterologous challenge. In pigs, this presents a major obstacle for vaccine development. Different strategies are under development to produce vaccines that provide better cross-protection for swine. Moreover, overriding interfering maternal antibodies is another goal for influenza vaccines in order to permit effective immunization of piglets at an early age. Herein, we present a review of influenza virus infection in swine, including a discussion of current vaccine approaches and techniques used for novel vaccine development.
Collapse
|
50
|
García-Sastre A, Mena I. Novel vaccine strategies against emerging viruses. Curr Opin Virol 2013; 3:210-6. [PMID: 23477832 PMCID: PMC3644304 DOI: 10.1016/j.coviro.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/04/2013] [Indexed: 11/04/2022]
Abstract
One of the main public health concerns of emerging viruses is their potential introduction into and sustained circulation among populations of immunologically naïve, susceptible hosts. The induction of protective immunity through vaccination can be a powerful tool to prevent this concern by conferring protection to the population at risk. Conventional approaches to develop vaccines against emerging pathogens have significant limitations: lack of experimental tools for several emerging viruses of concern, poor immunogenicity, safety issues, or lack of cross-protection against antigenic variants. The unpredictability of the emergence of future virus threats demands the capability to rapidly develop safe, effective vaccines. We describe some recent advances in new vaccine strategies that are being explored as alternatives to classical attenuated and inactivated vaccines, and provide examples of potential novel vaccines for emerging viruses. These approaches might be applied to the control of many other emerging pathogens.
Collapse
Affiliation(s)
- Adolfo García-Sastre
- Department of Microbiology, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, United States.
| | | |
Collapse
|