1
|
Roets E, Vingerhoets R, De Backer J, Vlaeminck SE, Buyle M, Meers E, Van Winckel T, Spiller M. Food-feed nexus in the agrifood chain - Quantification and alternatives assessed using a novel protein flow analysis on a systemic level. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125009. [PMID: 40106986 DOI: 10.1016/j.jenvman.2025.125009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/24/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Sustainable food systems are one of the primary goals within the EU's Green Deal. To achieve and benchmark this, proteins should be traceable throughout the system. This study achieves this with a novel layered analysis approach, treating crude protein as a traceable property within the Flemish agri-food system, revealing a complex protein network. Protein efficiency indicators highlight the competition between food and feed. This study found that only 24 % of processed food protein reaches consumers, with the remainder sent to residual streams. In Flanders, pork is the most dominant animal protein produced, followed by dairy, which produced 75 % of cattle output, and poultry, where eggs made up 7.5 % of the animal protein supplied to retail. To maintain the current means of livestock production, 21-34 % of the protein input in the form of feed consists of protein that could be food instead. Feed production depends on protein-containing residual streams, revealing a tightly interdependent protein network. The study highlights the ratios of non-humanly digestible to digestible protein in pork (66:34), poultry (75:25), and cattle (79:21). The results propose a scenario where a decrease in pork production could reduce imported feed demand (12 %) while having a 7 % increase in by-product generation. A further 11 % decrease in animal protein to retail is seen, while a 29 % increase in plant protein availability to retail is observed, with notable differences in protein quality between plant and animal sources. In conclusion, this study unveils the protein dynamics in Flanders' agri-food system, emphasizing the importance of optimizing protein allocation, mainly through strategic adjustments in pork production, while grappling with balancing nutritional efficiency and quality in animal products.
Collapse
Affiliation(s)
- Enrico Roets
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium; Ghent University, Department of Green Chemistry and Technology, RESOURCE - Laboratory for Biobased Resource Recovery, 9000, Gent, Belgium
| | - Ruben Vingerhoets
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium; Ghent University, Department of Green Chemistry and Technology, RESOURCE - Laboratory for Biobased Resource Recovery, 9000, Gent, Belgium
| | - Joris De Backer
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Siegfried E Vlaeminck
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Matthias Buyle
- University of Antwerp, Department of Energy and Materials in Infrastructure and Buildings EMIB, 2020, Antwerp, Belgium; Materials & Chemistry (MatCH), Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Erik Meers
- Ghent University, Department of Green Chemistry and Technology, RESOURCE - Laboratory for Biobased Resource Recovery, 9000, Gent, Belgium
| | - Tim Van Winckel
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Marc Spiller
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium; VITO Water, Wetenschapspark 1, 8400, Oostende, Belgium.
| |
Collapse
|
2
|
Givens DI. Animal board invited review: Dietary transition from animal to plant-derived foods: Are there risks to health? Animal 2024; 18:101263. [PMID: 39121724 DOI: 10.1016/j.animal.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024] Open
Abstract
Animal-derived foods (ADFs) are a very varied group of foods, but many are nutrient rich and contain higher quality protein than provided by plant-derived foods such that a simple replacement of ADF protein is likely to lead to a reduction in overall protein quality. In addition, many ADFs are richer in some nutrients than plant-based foods (e.g. Fe, Ca) and these often have a higher bioavailability. ADFs also provide nutrients that plants cannot supply (e.g. vitamin B12) and some provide beneficial health functionality (e.g. hypotensive) which is not explained by traditional nutrition. However, there remains a good health reason to increase the proportion of plant-derived food in many diets to increase the intake of dietary fibre which is often consumed at very sub-optimal levels. It seems logical that the increased plant-derived foods should replace the ADFs that have the least benefit, the greatest risk to health and the highest environmental impact. Processed meat fits these characteristics and should be an initial target for replacement with plant-based based protein-rich foods that additionally provide the necessary nutrients and have high-quality dietary fibre. Processed meat covers a wide range of products including several traditional foods (e.g. sausages) which will make decisions on food replacement challenging. There is therefore an urgent need for research to better define the relative health risks associated with the range of processed meat-based foods. The aim of this review is to examine the evidence on the benefits and risks of this dietary transition including the absolute necessity to consider initial nutrient status before the replacement of ADFs is considered.
Collapse
Affiliation(s)
- D I Givens
- Institute for Food, Nutrition and Health, University of Reading, Earley Gate, Reading RG6 6EU, United Kingdom.
| |
Collapse
|
3
|
Moughan PJ, Lim WXJ. Digestible indispensable amino acid score (DIAAS): 10 years on. Front Nutr 2024; 11:1389719. [PMID: 39021594 PMCID: PMC11252030 DOI: 10.3389/fnut.2024.1389719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
The objective of the review is to revisit the findings of the 2011 Food and Agriculture Organization of the United Nations (FAO) Expert Consultation on Dietary Protein Quality Evaluation in Human Nutrition, and to report on progress on uptake of the findings. It is evident that since 2011 there has been a concerted research effort to enhance an understanding of the protein quality of foods. The validity of the growing pig ileal protein digestibility assay has been confirmed and numerous studies reported using the growing pig as a model to give true ileal amino acid digestibility values for foods as consumed by humans. This has allowed for the determination of digestible indispensable amino acid scores (DIAAS) for a range of foods. A new non-invasive true ileal amino acid digestibility assay in humans which can be applied in different physiological states, called the dual-isotope assay, has been developed and applied to determine the DIAAS values of foods. It is concluded that DIAAS is currently the most accurate score for routinely assessing the protein quality rating of single source proteins. In the future, the accuracy of DIAAS can be enhanced by improved information on: the ideal dietary amino acid balance including the ideal dispensable to indispensable amino acid ratio; dietary indispensable amino acid requirements; effects of processing on ileal amino acid digestibility and lysine bioavailability. There is a need to develop rapid, inexpensive in vitro digestibility assays. Conceptual issues relating DIAAS to food regulatory claims, and to holistic indices of food nutritional and health status are discussed. The first recommendation of the 2011 Consultation regarding treating each indispensable amino acid as an individual nutrient has received little attention. Consideration should be given to providing food label information on the digestible contents of specific indispensable amino acids.
Collapse
Affiliation(s)
- Paul J. Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
4
|
Axentii M, Codină GG. Exploring the Nutritional Potential and Functionality of Hemp and Rapeseed Proteins: A Review on Unveiling Anti-Nutritional Factors, Bioactive Compounds, and Functional Attributes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1195. [PMID: 38732410 PMCID: PMC11085551 DOI: 10.3390/plants13091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.
Collapse
|
5
|
Toutirais L, Walrand S, Vaysse C. Are oilseeds a new alternative protein source for human nutrition? Food Funct 2024; 15:2366-2380. [PMID: 38372388 DOI: 10.1039/d3fo05370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This review focuses on the potential use, nutritional value and beneficial health effects of oilseeds as a source of food protein. The process of extracting oil from oilseeds produces a by-product that is rich in proteins and other valuable nutritional and bioactive components. This product is primarily used for animal feed. However, as the demand for proteins continues to rise, plant-based proteins have a real success in food applications. Among the different plant protein sources, oilseeds could be used as an alternative protein source for human diet. The data we have so far show that oilseeds present a protein content of up to 40% and a relatively well-balanced profile of amino acids with sulphur-containing amino acids. Nevertheless, they tend to be deficient in lysine and rich in anti-nutritional factors (ANFs), which therefore means they have lower anabolic potential than animal proteins. To enhance their nutritional value, oilseed proteins can be combined with other protein sources and subjected to processes such as dehulling, heating, soaking, germination or fermentation to reduce their ANFs and improve protein digestibility. Furthermore, due to their bioactive peptides, oilseeds can also bring health benefits, particularly in the prevention and treatment of diabetes, obesity and cardiovascular diseases. However, additional nutritional data are needed before oilseeds can be endorsed as a protein source for humans.
Collapse
Affiliation(s)
- Lina Toutirais
- ITERG, Department of Nutritional Health and Lipid Biochemistry, Bordeaux, France
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Stephane Walrand
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| | - Carole Vaysse
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| |
Collapse
|
6
|
Ineichen SM, Zumwald J, Reidy B, Nemecek T. Feed-food and land use competition of lowland and mountain dairy cow farms. Animal 2023; 17:101028. [PMID: 38039663 DOI: 10.1016/j.animal.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023] Open
Abstract
Dairy cows and other ruminants contribute to human nutrition as they are able to convert feed components containing human inedible fibre concentrations (e.g. roughage and by-products from the food processing industry) into valuable animal-sourced food. A number of crops often fed to dairy cows (e.g. soy or cereals) are however potentially edible by humans too. Additionally, land used to grow dairy cattle feed may compete with crop production for human consumption. Two different methods to assess the competition between feed consumption of dairy cows and human food supply were thus refined and tested on 25 Swiss dairy farms. With respect to the potential human edibility of the feeds used in dairy production, the human-edible feed conversion ratio (eFCR) was applied. The land use ratio (LUR) was used to relate the food production potential, per area of land utilised, with the dairy production output. Low to medium eFCR, with values ranging from 0.02 to 0.68 were found, as an average proportion of 0.74 of total DM intake consisted of roughage. In contrast, we found relatively high LUR (0.69-5.93) for most farms. If the land area used to produce feed for cows was used for crop production (applying a crop rotation), 23 of the 25 farms could have produced more edible protein and all farms more human-edible energy. Indicator values strongly depend on the underlying scenarios, such as the human-edible proportion of feeds or the suitability of land and climate for crop production. Reducing the amount of human-edible feeds in dairy farming by feeding by-products from the food processing industry and improving forage quality may be suitable strategies to reduce eFCR, but relying on low-opportunity cost feeds may restrict milk performance level per cow. On farm level, improving overall efficiency and therefore using less land (especially area suitable for crop production) per kg product decreases LUR. However, the most promising strategy to mitigate land use competition may be to localise dairy production to land areas not suitable for crop production. Both methods (eFCR and LUR) should be used in parallel. They offer an opportunity to holistically evaluate the net contribution of dairy production to the human food supply under different environmental conditions and stress the importance of production systems well suited to specific farm site characteristics.
Collapse
Affiliation(s)
- S M Ineichen
- Bern University of Applied Sciences BFH, School of Agricultural, Forest and Food Sciences HAFL, Laenggasse 85, CH-3052 Zollikofen, Bern, Switzerland
| | - J Zumwald
- Agroscope, LCA Research Group, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - B Reidy
- Bern University of Applied Sciences BFH, School of Agricultural, Forest and Food Sciences HAFL, Laenggasse 85, CH-3052 Zollikofen, Bern, Switzerland.
| | - T Nemecek
- Agroscope, LCA Research Group, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| |
Collapse
|
7
|
Delsoglio M, Griffen C, Syed R, Cookson T, Saliba H, Vowles A, Davies S, Willey N, Thomas J, Millen N, Odeh N, Longstaff J, Westran N, Allan L, Offer H, Howell C, Sanders M, Gaffigan K, Garrett K, Foster S, Salt A, Carter E, Moore S, Bergin N, Roper J, Alvarez J, Voss C, Connolly T, MacDonald C, Thrower T, Sills D, Baxter J, Manning R, Gray L, Voas K, Richardson S, Hurren AM, Murphy D, Blake S, McArdle P, Walsh S, Booth L, Albrich L, Ashley-Maguire S, Allison J, Brook S, Capener R, Hubbard GP, Stratton RJ. A multi-center prospective study of plant-based nutritional support in adult community-based patients at risk of disease-related malnutrition. Front Nutr 2023; 10:1297624. [PMID: 38024371 PMCID: PMC10667471 DOI: 10.3389/fnut.2023.1297624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction There is an emerging need for plant-based, vegan options for patients requiring nutritional support. Methods Twenty-four adults at risk of malnutrition (age: 59 years (SD 18); Sex: 18 female, 6 male; BMI: 19.0 kg/m2 (SD 3.3); multiple diagnoses) requiring plant-based nutritional support participated in a multi-center, prospective study of a (vegan suitable) multi-nutrient, ready-to-drink, oral nutritional supplement (ONS) [1.5 kcal/mL; 300 kcal, 12 g protein/200 mL bottle, mean prescription 275 mL/day (SD 115)] alongside dietary advice for 28 days. Compliance, anthropometry, malnutrition risk, dietary intake, appetite, acceptability, gastrointestinal (GI) tolerance, nutritional goal(s), and safety were assessed. Results Patients required a plant-based ONS due to personal preference/variety (33%), religious/cultural reasons (28%), veganism/reduce animal-derived consumption (17%), environmental/sustainability reasons (17%), and health reasons (5%). Compliance was 94% (SD 16). High risk of malnutrition ('MUST' score ≥ 2) reduced from 20 to 16 patients (p = 0.046). Body weight (+0.6 kg (SD 1.2), p = 0.02), BMI (+0.2 kg/m2 (SD 0.5), p = 0.03), total mean energy (+387 kcal/day (SD 416), p < 0.0001) and protein intake (+14 g/day (SD 39), p = 0.03), and the number of micronutrients meeting the UK reference nutrient intake (RNI) (7 vs. 14, p = 0.008) significantly increased. Appetite (Simplified Nutritional Appetite Questionnaire (SNAQ) score; p = 0.13) was maintained. Most GI symptoms were stable throughout the study (p > 0.06) with no serious adverse events related. Discussion This study highlights that plant-based nutrition support using a vegan-suitable plant-based ONS is highly complied with, improving the nutritional outcomes of patients at risk of malnutrition.
Collapse
Affiliation(s)
- Marta Delsoglio
- Research & Innovation, Nutricia Ltd., Trowbridge, United Kingdom
| | - Corbin Griffen
- Research & Innovation, Nutricia Ltd., Trowbridge, United Kingdom
| | | | | | | | - Amanda Vowles
- Trowbridge Health Centre, Trowbridge, United Kingdom
| | | | | | | | - Nicola Millen
- Cowplain Family Practice, Waterlooville, United Kingdom
| | - Nour Odeh
- Cowplain Family Practice, Waterlooville, United Kingdom
| | | | - Naomi Westran
- Department of Nutrition and Dietetics, Royal Surrey NHS Foundation Trust, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Lindsey Allan
- Department of Nutrition and Dietetics, Royal Surrey NHS Foundation Trust, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Hannah Offer
- Dietetic Department, Thorpe Health Centre, Norfolk Community Health and Care NHS Trust, Norwich, United Kingdom
| | - Chloe Howell
- Dietetic Department, Thorpe Health Centre, Norfolk Community Health and Care NHS Trust, Norwich, United Kingdom
| | - Meg Sanders
- Dietetic Department, Thorpe Health Centre, Norfolk Community Health and Care NHS Trust, Norwich, United Kingdom
| | - Kirsty Gaffigan
- Dietetic Department, Thorpe Health Centre, Norfolk Community Health and Care NHS Trust, Norwich, United Kingdom
| | - Kirby Garrett
- Dietetic Department, Thorpe Health Centre, Norfolk Community Health and Care NHS Trust, Norwich, United Kingdom
| | - Sally Foster
- Nutrition and Dietetic Department, North Tyneside District General Hospital, Tyne and Wear, United Kingdom
| | - Agnes Salt
- Nutrition and Dietetic Department, North Tyneside District General Hospital, Tyne and Wear, United Kingdom
| | - Emily Carter
- Nutrition and Dietetic Department, North Tyneside District General Hospital, Tyne and Wear, United Kingdom
| | - Sarah Moore
- Nutrition and Dietetic Department, North Tyneside District General Hospital, Tyne and Wear, United Kingdom
| | - Nick Bergin
- Department of Nutrition and Dietetics, Airedale General Hospital, Keighley, West Yorkshire, United Kingdom
| | - Jane Roper
- Warden Lodge Medical Practice, Cheshunt, United Kingdom
| | - Joe Alvarez
- Warden Lodge Medical Practice, Cheshunt, United Kingdom
| | | | | | | | | | - Darren Sills
- Nutrition and Dietetics, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Janet Baxter
- Department Nutrition and Dietetics, Kings Cross Hospital, Dundee, United Kingdom
| | - Rhonda Manning
- Department Nutrition and Dietetics, Kings Cross Hospital, Dundee, United Kingdom
| | - Lynsey Gray
- Dietetics, Victoria Integrated Care Centre, Helensburgh, United Kingdom
| | - Karen Voas
- Dietetic Department, Betsi Cadwaladr University Health Board, Denbighshire, United Kingdom
| | - Scot Richardson
- James Alexander Family Practice, Bransholme South Health Centre, Hull, United Kingdom
| | - Anne-Marie Hurren
- James Alexander Family Practice, Bransholme South Health Centre, Hull, United Kingdom
| | | | | | - Paul McArdle
- Birmingham Community Nutrition, Birmingham, United Kingdom
| | - Sinead Walsh
- Birmingham Community Nutrition, Birmingham, United Kingdom
| | - Lucy Booth
- Birmingham Community Nutrition, Birmingham, United Kingdom
| | | | | | | | - Sarah Brook
- Dietetics, Princess Royal Health Centre, Huddersfield, United Kingdom
| | - Rebecca Capener
- Research & Innovation, Nutricia Ltd., Trowbridge, United Kingdom
| | - Gary P. Hubbard
- Research & Innovation, Nutricia Ltd., Trowbridge, United Kingdom
| | - Rebecca J. Stratton
- Research & Innovation, Nutricia Ltd., Trowbridge, United Kingdom
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
8
|
Yu Y, Li X, Zhang J, Li X, Wang J, Sun B. Oat milk analogue versus traditional milk: Comprehensive evaluation of scientific evidence for processing techniques and health effects. Food Chem X 2023; 19:100859. [PMID: 37780279 PMCID: PMC10534225 DOI: 10.1016/j.fochx.2023.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Milk, enriched with high-quality protein, is a healthy and nutritious food that meets people's needs. However, consumers are turning their attention to plant-based milk due to several concerns, such as lactose intolerance, allergies and some diseases caused by milk; carbon emission from cattle farming; economical aspects; and low access to vitamins and minerals. Oat milk, which is produced from whole grain oats, is lactose free and rich in a variety of nutrients and phytochemicals. With the significant development of food processing methods and advancement in milk simulation products, the production of plant-based milk, such as cereal milk, has greatly progressed. This review described some features of oat milk analogue versus traditional milk and compared the properties, processing technologies, health effects, environmental friendliness, and consumer acceptance of these products. It is expected to provide a reference for evaluating development trends and helping consumers choose between oat milk and traditional milk.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Xiao Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
9
|
Benoit M, Vazeille K, Jury C, Troquier C, Veysset P, Prache S. Combining beef cattle and sheep in an organic system. II. Benefits for economic and environmental performance. Animal 2023; 17:100759. [PMID: 36966689 DOI: 10.1016/j.animal.2023.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Combining several animal species to optimise the performance of the whole farming system is one of the core tenets of agroecology. Here, we associated sheep with beef cattle (40-60% livestock units (LU)) in a mixed system (MIXsys) and compared its performances to those of a specialised beef cattle-only system (CATsys) and a specialised sheep-only system (SHsys). All three systems were designed to have identical annual stocking rates and similar farm areas, pastures and animals. The experiment was conducted for four campaigns (2017-2020) in an upland setting exclusively on permanent grassland under certified-organic farming standards. The young animals were fattened almost exclusively with forages: at pasture for lambs and indoors with haylage in winter for young cattle. Abnormally dry weather conditions led to hay purchases. We compared between-system and between-enterprise performances based on technical, economic (gross product, expenses, margins, income), environmental (greenhouse gas emissions (GHG), energy consumption) and feed-food competition balance indicators. The mixed-species association only benefited the sheep enterprise, with +17.1% meat production per LU (P < 0.03), -17.8% concentrate used per LU (P < 0.02), +10.0% gross margin (P < 0.07) and +47.5% income per LU (P < 0.03) in MIXsys vs SHsys, as well as environmental performance benefits via a reduction of 10.9% in GHG emissions (P < 0.09) and 15.7% in energy consumption (P < 0.03), and a 47.2% improvement in feed-food competition (P < 0.01) in MIXsys vs SHsys. These results are due to both better animal performance and lower concentrate consumption in MIXsys, as presented in a companion paper. These benefits outweighed the additional costs of the mixed system, especially for fencing, in terms of net income per sheep LU. There were no between-system differences in productive and economic performance (kilos live-weight produced, kilos concentrate used and income per LU) for the beef cattle enterprise. Despite good animal performances, the beef cattle enterprises in both CATsys and MIXsys had poor economic performance due to large purchases of conserved forages and difficulty selling the animals, which were ill-adapted to the traditional downstream sector. This multiyear study at the farming-system level, which has thus far been underresearched for mixed livestock farming systems, highlighted and quantified the benefits for sheep when combined with beef cattle on economic, environmental, and feed-food competition performance.
Collapse
|
10
|
Beal T, Gardner CD, Herrero M, Iannotti LL, Merbold L, Nordhagen S, Mottet A. Friend or Foe? The Role of Animal-Source Foods in Healthy and Environmentally Sustainable Diets. J Nutr 2023; 153:409-425. [PMID: 36894234 DOI: 10.1016/j.tjnut.2022.10.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 01/21/2023] Open
Abstract
Scientific and political discussions around the role of animal-source foods (ASFs) in healthy and environmentally sustainable diets are often polarizing. To bring clarity to this important topic, we critically reviewed the evidence on the health and environmental benefits and risks of ASFs, focusing on primary trade-offs and tensions, and summarized the evidence on alternative proteins and protein-rich foods. ASFs are rich in bioavailable nutrients commonly lacking globally and can make important contributions to food and nutrition security. Many populations in Sub-Saharan Africa and South Asia could benefit from increased consumption of ASFs through improved nutrient intakes and reduced undernutrition. Where consumption is high, processed meat should be limited, and red meat and saturated fat should be moderated to lower noncommunicable disease risk-this could also have cobenefits for environmental sustainability. ASF production generally has a large environmental impact; yet, when produced at the appropriate scale and in accordance with local ecosystems and contexts, ASFs can play an important role in circular and diverse agroecosystems that, in certain circumstances, can help restore biodiversity and degraded land and mitigate greenhouse gas emissions from food production. The amount and type of ASF that is healthy and environmentally sustainable will depend on the local context and health priorities and will change over time as populations develop, nutritional concerns evolve, and alternative foods from new technologies become more available and acceptable. Efforts by governments and civil society organizations to increase or decrease ASF consumption should be considered in light of the nutritional and environmental needs and risks in the local context and, importantly, integrally involve the local stakeholders impacted by any changes. Policies, programs, and incentives are needed to ensure best practices in production, curb excess consumption where high, and sustainably increase consumption where low.
Collapse
Affiliation(s)
- Ty Beal
- Global Alliance for Improved Nutrition, Washington, DC, USA; Institute for Social, Behavioral and Economic Research, University of California, Santa Barbara, CA, USA.
| | - Christopher D Gardner
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Mario Herrero
- Department of Global Development and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, USA
| | | | - Lutz Merbold
- Integrative Agroecology Group, Agroscope, Zurich, Switzerland
| | | | - Anne Mottet
- Food and Agriculture Organization of the United Nations, Rome, Italy
| |
Collapse
|
11
|
Zhong C, Feng Y, Xu Y. Production of Fish Analogues from Plant Proteins: Potential Strategies, Challenges, and Outlook. Foods 2023; 12:foods12030614. [PMID: 36766143 PMCID: PMC9914854 DOI: 10.3390/foods12030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Fish products are consumed by human beings as a high-quality protein source. However, overfishing, and pollution puts out an urgent call to seek a new strategy to substitute fish protein for secure eco-sustainability. Plant-based fish analogs, which mimic the structure, texture, and flavor of fish meat products, are a rapid-growing segment of the food products. The purpose of this review is to discuss the feasibility and potential strategies for developing plant-based fish analog. The nutritional properties, especially the protein quality of plant-based fish analogs, were discussed. Furthermore, a thorough comparison was made between fish and terrestrial animal muscle structures, including both macroscopical and microscopical structures. Potential processing technologies for producing plant-based fish analogs from plant proteins and approaches for the characterization of the fish analog structures were elaborated. Comparing all the current processing techniques, extrusion is the predominately used technique in the current industry. At the same time, 3D-printing and electrospinning have shown the prominent potential of mimicking fish muscle structure as bottom-up approaches. Finally, key challenges and future research were discussed for the potential commercialization of plant-based fish analogues. The primary focus of this review covers the innovative works that were indexed in the Web of Science Core Collection in the past five years.
Collapse
Affiliation(s)
- Chengxuan Zhong
- Department of Agrotechnology and Food Science, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Yiming Feng
- Department of Food Science & Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA
- Correspondence: (Y.F.); (Y.X.)
| | - Yixiang Xu
- Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS 800 Buchanan Street, Albany, CA 94710, USA
- Correspondence: (Y.F.); (Y.X.)
| |
Collapse
|
12
|
van der Heijden I, Monteyne AJ, Stephens FB, Wall BT. Alternative dietary protein sources to support healthy and active skeletal muscle aging. Nutr Rev 2023; 81:206-230. [PMID: 35960188 DOI: 10.1093/nutrit/nuac049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To mitigate the age-related decline in skeletal muscle quantity and quality, and the associated negative health outcomes, it has been proposed that dietary protein recommendations for older adults should be increased alongside an active lifestyle and/or structured exercise training. Concomitantly, there are growing environmental concerns associated with the production of animal-based dietary protein sources. The question therefore arises as to where this dietary protein required for meeting the protein demands of the rapidly aging global population should (or could) be obtained. Various non-animal-derived protein sources possess favorable sustainability credentials, though much less is known (compared with animal-derived proteins) about their ability to influence muscle anabolism. It is also likely that the anabolic potential of various alternative protein sources varies markedly, with the majority of options remaining to be investigated. The purpose of this review was to thoroughly assess the current evidence base for the utility of alternative protein sources (plants, fungi, insects, algae, and lab-grown "meat") to support muscle anabolism in (active) older adults. The solid existing data portfolio requires considerable expansion to encompass the strategic evaluation of the various types of dietary protein sources. Such data will ultimately be necessary to support desirable alterations and refinements in nutritional guidelines to support healthy and active aging, while concomitantly securing a sustainable food future.
Collapse
Affiliation(s)
- Ino van der Heijden
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Giteru SG, Ramsey DH, Hou Y, Cong L, Mohan A, Bekhit AEDA. Wool keratin as a novel alternative protein: A comprehensive review of extraction, purification, nutrition, safety, and food applications. Compr Rev Food Sci Food Saf 2023; 22:643-687. [PMID: 36527315 DOI: 10.1111/1541-4337.13087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
The growing global population and lifestyle changes have increased the demand for specialized diets that require protein and other essential nutrients for humans. Recent technological advances have enabled the use of food bioresources treated as waste as additional sources of alternative proteins. Sheep wool is an inexpensive and readily available bioresource containing 95%-98% protein, making it an outstanding potential source of protein for food and biotechnological applications. The strong structure of wool and its indigestibility are the main hurdles to achieving its potential as an edible protein. Although various methods have been investigated for the hydrolysis of wool into keratin, only a few of these, such as sulfitolysis, oxidation, and enzymatic processes, have the potential to generate edible keratin. In vitro and in vivo cytotoxicity studies reported no cytotoxicity effects of extracted keratin, suggesting its potential for use as a high-value protein ingredient that supports normal body functions. Keratin has a high cysteine content that can support healthy epithelia, glutathione synthesis, antioxidant functions, and skeletal muscle functions. With the recent spike in new keratin extraction methods, extensive long-term investigations that examine prolonged exposure of keratin generated from these techniques in animal and human subjects are required to ascertain its safety. Food applications of wool could improve the ecological footprint of sheep farming and unlock the potential of a sustainable protein source that meets demands for ethical production of animal protein.
Collapse
Affiliation(s)
| | | | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lei Cong
- Department of Agribusiness and Markets, Lincoln University, Lincoln, New Zealand
| | - Anand Mohan
- Alliance Group Limited, Invercargill, New Zealand
| | | |
Collapse
|
14
|
Net Conversion of Human-Edible Vitamins and Minerals in the U.S. Southern Great Plains Beef Production System. Animals (Basel) 2022; 12:ani12172170. [PMID: 36077891 PMCID: PMC9454978 DOI: 10.3390/ani12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Beef is a good source of several vitamins and minerals but data on the net contribution to the human diet is lacking. The objective was to quantify the net nutrient contribution of the beef supply chain to provide vitamins and minerals to the human diet. Beef cattle production parameters for the beef supply chain were as described by Baber et al., 2018 with the red and organ meat yield from each production segment estimated using literature values of serially-harvested beef cattle. Nutrient concentration of feeds was acquired from feed composition tables in nutrient requirement texts, and the nutrient concentration of beef and organ meats was based on 2018 USDA Food and Nutrient Database for Dietary Studies. The nutrient absorption coefficients of feeds, red meat, and organs were acquired from the literature. The human-edible conversion ratio was >1.0 for phosphorus when only red meat yield was considered indicating that the beef supply chain produced more human-edible phosphorus than it consumed. When organ meats were included, riboflavin, niacin, choline, and phosphorus had conversion ratios >1.0. After adjusting for the absorption of nutrients, the beef supply chain was a net contributor of niacin and phosphorus in the human diet when accounting for red meat yield only, but when including organ meats, iron, riboflavin, and choline also had conversion ratios >1.0. The maximum proportion of corn in the corn grain plus distillers’ grains component of the feedlot diets for the absorbable conversion ratio to be ≥1 ranged from 8.34 to 100.00% when only red meat yield was considered and from 32.02 to 100.00% when red and organ meats were considered. In conclusion, the current beef production system in the Southern Great Plains produces more human-absorbable iron, phosphorus, riboflavin, niacin, and choline to the human diet than is consumed in the beef supply chain.
Collapse
|
15
|
Fernandes M, Cardoso A, Lima L, Berça A, Reis R. Human-edible protein contribution of tropical beef cattle production systems at different levels of intensification. Animal 2022; 16 Suppl 3:100538. [DOI: 10.1016/j.animal.2022.100538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
|
16
|
Liebl M, Gierus M, Rocchi E, Potthast C, Schedle K. Effects of energy reduced diets including alternative protein sources and a phytogenic supplement on performance, carcass traits and digestibility in broiler chickens. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Nutrition policy: developing scientific recommendations for food-based dietary guidelines for older adults living independently in Ireland. Proc Nutr Soc 2022; 81:49-61. [DOI: 10.1017/s0029665122001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Older adults (≥65 years) are the fastest growing population group. Thus, ensuring nutritional well-being of the ‘over-65s’ to optimise health is critically important. Older adults represent a diverse population – some are fit and healthy, others are frail and many live with chronic conditions. Up to 78% of older Irish adults living independently are overweight or obese. The present paper describes how these issues were accommodated into the development of food-based dietary guidelines for older adults living independently in Ireland. Food-based dietary guidelines previously established for the general adult population served as the basis for developing more specific recommendations appropriate for older adults. Published international reports were used to update nutrient intake goals for older adults, and available Irish data on dietary intakes and nutritional status biomarkers were explored from a population-based study (the National Adult Nutrition Survey; NANS) and two longitudinal cohorts: the Trinity-Ulster and Department of Agriculture (TUDA) and the Irish Longitudinal Study on Ageing (TILDA) studies. Nutrients of public health concern were identified for further examination. While most nutrient intake goals were similar to those for the general adult population, other aspects were identified where nutritional concerns of ageing require more specific food-based dietary guidelines. These include, a more protein-dense diet using high-quality protein foods to preserve muscle mass; weight maintenance in overweight or obese older adults with no health issues and, where weight-loss is required, that lean tissue is preserved; the promotion of fortified foods, particularly as a bioavailable source of B vitamins and the need for vitamin D supplementation.
Collapse
|
18
|
Adhikari S, Schop M, de Boer IJM, Huppertz T. Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Applications. Nutrients 2022; 14:947. [PMID: 35267922 PMCID: PMC8912699 DOI: 10.3390/nu14050947] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
For design of healthy and sustainable diets and food systems, it is important to consider not only the quantity but also the quality of nutrients. This is particularly important for proteins, given the large variability in amino acid composition and digestibility between dietary proteins. This article reviews measurements and metrics in relation to protein quality, but also their application. Protein quality methods based on concentrations and digestibility of individual amino acids are preferred, because they do not only allow ranking of proteins, but also assessment of complementarity of protein sources, although this should be considered only at a meal level and not a diet level. Measurements based on ileal digestibility are preferred over those on faecal digestibility to overcome the risk of overestimation of protein quality. Integration of protein quality on a dietary level should also be done based on measurements on an individual amino acid basis. Effects of processing, which is applied to all foods, should be considered as it can also affect protein quality through effects on digestibility and amino acid modification. Overall, protein quality data are crucial for integration into healthy and sustainable diets, but care is needed in data selection, interpretation and integration.
Collapse
Affiliation(s)
- Shiksha Adhikari
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
| | - Marijke Schop
- Animal Production Systems Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (M.S.); (I.J.M.d.B.)
| | - Imke J. M. de Boer
- Animal Production Systems Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (M.S.); (I.J.M.d.B.)
| | - Thom Huppertz
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
- Friesland Campina, Research and Development, 3818 LE Amersfoort, The Netherlands
| |
Collapse
|
19
|
How Healthy Are Non-Traditional Dietary Proteins? The Effect of Diverse Protein Foods on Biomarkers of Human Health. Foods 2022; 11:foods11040528. [PMID: 35206005 PMCID: PMC8871094 DOI: 10.3390/foods11040528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Future food security for healthy populations requires the development of safe, sustainably-produced protein foods to complement traditional dietary protein sources. To meet this need, a broad range of non-traditional protein foods are under active investigation. The aim of this review was to evaluate their potential effects on human health and to identify knowledge gaps, potential risks, and research opportunities. Non-traditional protein sources included are algae, cereals/grains, fresh fruit and vegetables, insects, mycoprotein, nuts, oil seeds, and legumes. Human, animal, and in vitro data suggest that non-traditional protein foods have compelling beneficial effects on human health, complementing traditional proteins (meat/poultry, soy, eggs, dairy). Improvements in cardiovascular health, lipid metabolism, muscle synthesis, and glycaemic control were the most frequently reported improvements in health-related endpoints. The mechanisms of benefit may arise from their diverse range of minerals, macro- and micronutrients, dietary fibre, and bioactive factors. Many were also reported to have anti-inflammatory, antihypertensive, and antioxidant activity. Across all protein sources examined, there is a strong need for quality human data from randomized controlled intervention studies. Opportunity lies in further understanding the potential effects of non-traditional proteins on the gut microbiome, immunity, inflammatory conditions, DNA damage, cognition, and cellular ageing. Safety, sustainability, and evidence-based health research will be vital to the development of high-quality complementary protein foods that enhance human health at all life stages.
Collapse
|
20
|
Towards a More Sustainable Urban Food System—Carbon Emissions Assessment of a Diet Transition with the FEWprint Platform. SUSTAINABILITY 2022. [DOI: 10.3390/su14031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The production, processing, and transportation of food, in particular animal-based products, imposes great environmental burden on the planet. The current food supply system often constitutes a considerable part of the total carbon emissions of urban communities in industrialised cities. Urban food production (UFP) is a method that can potentially diminish food emissions. In parallel, a shift towards a predominantly plant-based diet that meets the nutritional protein intake is an effective method to curtail carbon emissions from food. Considering the high land use associated with the production of animal-based products, such a shift will prompt a community food demand that is more inclined to be satisfied with local production. Therefore, during the design process of a future low-carbon city, the combined application of both methods is worth exploring. This work introduces, describes, and demonstrates the diet shift component of the FEWprint platform, a user friendly UFP assessment platform for designers that is constructed around the broader three-pronged strategy of evaluation, shift, and design. For three neighborhoods, in Amsterdam, Belfast, and Detroit, the contextual consumption and country-specific environmental footprint data are applied to simulate a theoretical community-wide diet shift from a conventional to a vegan diet, whilst maintaining protein intake equilibrium. The results show that in total terms, the largest carbon mitigation potential awaits in Detroit (−916 kg CO2eq/cap/year), followed by Belfast (−866 kg) and Amsterdam (−509 kg). In relative terms, the carbon reduction potential is largest in Belfast (−25%), followed by Amsterdam (−15%) and Detroit (−7%). The FEWprint can be used to generate preliminary figures on the carbon implications of dietary adaptations and can be employed to give a first indication of the potential of UFP in urban communities.
Collapse
|
21
|
Coluccia B, Agnusdei GP, De Leo F, Vecchio Y, La Fata CM, Miglietta PP. Assessing the carbon footprint across the supply chain: Cow milk vs soy drink. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151200. [PMID: 34699813 DOI: 10.1016/j.scitotenv.2021.151200] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Since livestock product consumption could have a significant effect on tackling climate change, in the few last years, there has been an increasing consumer demand for non-dairy alternatives. Despite plant-based beverages being considered crucial to foster the transition towards sustainable diet models, no studies have yet compared the level of emissions of plant-based beverages with animal-based ones. The present study aims at computing the carbon footprint of cow milk and that of soy drink and evaluating the carbon footprint results in the light of the substitutability of cow's milk with soy drink, analyzing the potential environmental, economic and nutritional trade-offs between the two products. Results highlight that, considering the environmental perspective, soy drink could be a valid substitute of cow milk: its production has a lower carbon footprint, allowing for the achievement of food security objectives. However, focusing on the economic and nutritional perspectives, the high average consumer price of soy drink is associated with an overall lower nutritional level. In order to reach the same nutritional value as 1 L of cow milk in terms of protein intake, the consumption of soy drink should be increased by 13%. Furthermore, soy drink consumption implies paying 66% more than for cow milk, when considering the same protein content.
Collapse
Affiliation(s)
- B Coluccia
- Department of Economic Sciences, University of Salento, S.P. 6 Lecce - Monteroni, 73100 Lecce, Italy
| | - G P Agnusdei
- Department of Innovation Engineering, University of Salento, 73100 Lecce, LE, Italy.
| | - F De Leo
- Department of Economic Sciences, University of Salento, S.P. 6 Lecce - Monteroni, 73100 Lecce, Italy
| | - Y Vecchio
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - C M La Fata
- Department of Engineering, University of Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo, PA, Italy
| | - P P Miglietta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6 Lecce - Monteroni, 73100 Lecce, Italy
| |
Collapse
|
22
|
Leroy F, Beal T, Gregorini P, McAuliffe GA, van Vliet S. Nutritionism in a food policy context: the case of ‘animal protein’. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ominski K, Gunte K, Wittenberg K, Legesse G, Mengistu G, McAllister T. The role of livestock in sustainable food production systems in Canada. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Global drivers such as the growing human population, evolving consumer preferences, globalization, and climate change have put pressure on the agri-food sector to produce more livestock products with less land, feed, and water. Taste, nutritional value, cost, convenience, source, animal welfare, and environmental sustainability of food are criteria upon which purchasing decisions are made. In response, an environmental footprint analysis composed of greenhouse gas emissions, nutrient and water use efficiency, water quality, carbon storage, and biodiversity has been completed for many commodities. However, as livestock production systems occur within complex agro-ecosystems, it is extremely challenging to formulate a single overall sustainability metric. There is no “silver bullet” to solve the environmental concerns of all livestock production systems as they operate under different constraints on different landscapes, with different water and nutrient cycles, and soil types. Furthermore, the lack of scientific evidence regarding the interactions between livestock production, human nutritional adequacy, and the health of our environment makes it difficult for consumers to interpret this information and make informed food choices. This review examines these complex interactions and trade-offs, as well as the potential impacts of changes in consumer dietary choice on environmental sustainability, nutritional adequacy, and land use.
Collapse
Affiliation(s)
- Kim Ominski
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Centre for Livestock and the Environment, Winnipeg, MB R3T 2N2, Canada
| | - Kebebe Gunte
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Centre for Livestock and the Environment, Winnipeg, MB R3T 2N2, Canada
| | - Karin Wittenberg
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Centre for Livestock and the Environment, Winnipeg, MB R3T 2N2, Canada
| | - Getahun Legesse
- Manitoba Agriculture and Resource Development, Winnipeg, MB R3T 2N2, Canada
- National Centre for Livestock and the Environment, Winnipeg, MB R3T 2N2, Canada
| | - Genet Mengistu
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Centre for Livestock and the Environment, Winnipeg, MB R3T 2N2, Canada
| | - Tim McAllister
- Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
24
|
Thomas DT, Beletse YG, Dominik S, Lehnert SA. Net protein contribution and enteric methane production of pasture and grain-finished beef cattle supply chains. Animal 2021; 15:100392. [PMID: 34844185 DOI: 10.1016/j.animal.2021.100392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Ruminant red meat production systems around the world often include a grain feeding phase. The role of red meat in the food system is therefore often discussed in terms of the food vs feed debate, as well as invoking the comparatively poor feed conversion efficiency of ruminants and climate impacts from enteric methane. The concept of net protein contribution (NPC) incorporates the quality attributes of protein produced by livestock systems into estimates of the efficiency of production systems. We applied the NPC method to two Australian beef supply chains, i) Grass-fed and ii) Grain-finished beef, using an established model of ruminant grazing systems (GrassGro®) and these are reflective of beef production systems in other countries. The beef supply chains evaluated did not compete with humans for protein. The Grain-finished beef supply chain, while positively contributing to human protein requirements (NPC value 1.96), had markedly lower NPC values than the Grass-fed system (NPC value 1 597). However, Grass-fed beef production systems have a higher methane intensity than the Grain-finished supply chain. The two examples of pasture-based beef production systems examined provide a positive net protein contribution to human food supply, even with extended periods of finishing on grain-based diets. This is achieved by ruminant grazing on pastures converting low-quality forage into high value human edible protein. The efficiency of protein production varies according to the system design, and other considerations such as land use and enteric methane production are elements that need consideration in the overall assessment of the production footprint.
Collapse
Affiliation(s)
- D T Thomas
- CSIRO Agriculture & Food, Perth, Western Australia 6014, Australia.
| | - Y G Beletse
- CSIRO Agriculture & Food, Canberra, Australian Capital Territory 2601, Australia
| | - S Dominik
- CSIRO Agriculture & Food, Armidale, New South Wales 2350, Australia
| | - S A Lehnert
- CSIRO Agriculture & Food, Brisbane, Queensland 4067, Australia
| |
Collapse
|
25
|
Pomar C, Andretta I, Remus A. Feeding Strategies to Reduce Nutrient Losses and Improve the Sustainability of Growing Pigs. Front Vet Sci 2021; 8:742220. [PMID: 34778430 PMCID: PMC8581561 DOI: 10.3389/fvets.2021.742220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
The efficiency of pig production using nutrients has increased over the years. Still, better efficiency of nutrient utilization can be achieved by feeding pigs with diets adjusted to their estimated requirements. An increase in nutrient efficiency of utilization represents economic gains while maximizing environmental performance. The objective of this paper is to review the impact of different methods of diet formulation that provide farm animals with the amount of nutrients to satisfy their needs while minimizing nutrient excretion and greenhouse gas emissions. Diet formulation is one tool that can help to maximize nitrogen and energy utilization by decreasing crude protein content in diets. The use of local feedstuff and non-human-edible products (e.g., canola meal) associated with synthetic amino acid inclusion in the diet are valuable techniques to reduce carbon footprint. Precision feeding and nutrition is another powerful tool that allows not only daily tailoring of diets for maximal nutrient efficiency of utilization but also to reduce costs and improve nitrogen efficiency of utilization. In this review, we simulated through mathematical models the nitrogen and energy efficiency of utilization resulting from crude protein reduction in the diet. An 8% crude protein reduction in the diet can increase nitrogen efficiency of utilization by 54% while costing 11% less than a control diet without synthetic amino acids. The same reduction in crude protein represented a major improvement in available energy due to the decrease of energetic losses linked to protein deamination. Urinary and hindgut fermentation energy losses were 24% lower for pigs fed with low-protein diets when compared to control diets. In terms of modern feeding techniques and strategies, precision feeding and nutrition can decrease nitrogen excretion by 30% when compared to group phase feeding. The benefits of feeding pigs with low-protein diets and precision feeding techniques are additive and might result in a 61% nitrogen efficiency of utilization. There is room for improvement in the way nutrient requirements are estimated in pigs. Improving the understanding of the variation of nutrient utilization among pigs can contribute to further environmental gains.
Collapse
Affiliation(s)
- Candido Pomar
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Ines Andretta
- Faculdade de Agronomia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Aline Remus
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| |
Collapse
|
26
|
Klevenhusen F, Zebeli Q. A review on the potentials of using feeds rich in water-soluble carbohydrates to enhance rumen health and sustainability of dairy cattle production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5737-5746. [PMID: 34091911 DOI: 10.1002/jsfa.11358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/09/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Cows are adapted to degrade structural plant carbohydrates (SC), such as cellulose and hemicelluloses, prevailing in grasses. Yet, the need for energy-dense diets in many intensive dairy production systems has shifted the dairy cattle's diet from SC-rich to high levels of starch. Feeding of starch-rich diets increases the risk of ruminal acidosis in cows, and feeding starch in the form of grains intensifies the competition over cereal grains and arable land among different livestock species, as well as between livestock and humans. Besides cellulose and hemicelluloses, grasses are also often rich in water-soluble carbohydrates (WSC), which comprise mono-, di-, oligo- and polysaccharides (fructans). Although the ruminal fermentation profile of mono- and disaccharides resembles that of starch, the degradation of oligo- and polysaccharides is slower, and their fermentation elicits a rather protecting effect on ruminal pH. When harvested in an early phase (i.e. ear emergence), grass hay and silages can reach WSC levels up to 150-200 g kg-1 dry matter and energy levels close to starch-rich diets, allowing a significantly reduced inclusion of concentrate supplements. By doing so, this will enhance both rumen health and the sustainability of milk production. However, because the WSC are chemically very heterogeneous, the patterns and extent of their ruminal fermentation are difficult to predict without a clear analytical characterization. This review article aims to summarize both the benefits and potentials, as well as the challenges, with respect to using WSC-rich feedstuffs in the nutrition of dairy cattle and their effects on ruminal fermentation characteristics and milk production. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fenja Klevenhusen
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Qendrim Zebeli
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
27
|
Dallantonia EE, Fernandes MHMDR, Cardoso ADS, Leite RG, Ferrari A, Ongaratto F, Lage JF, Balsalobre MAA, Reis RA. Performance and greenhouse gas emission of Nellore and F1 Angus × Nellore yearling bulls in tropical production systems during backgrounding and finishing. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Nutrient provision capacity of alternative livestock farming systems per area of arable farmland required. Sci Rep 2021; 11:14975. [PMID: 34294736 PMCID: PMC8298395 DOI: 10.1038/s41598-021-93782-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Although climate impacts of ruminant agriculture are a major concern worldwide, using policy instruments to force grazing farms out of the livestock industry may diminish opportunities to produce nutritious food without exacerbating the food-feed competition for fertile and accessible land resources. Here, we present a new set of quantitative evidence to demonstrate that, per unit of overall nutrient value supplied by a given commodity, the demand for land suitable for human-edible crop production is considerably smaller under ruminant systems than monogastric systems, and consistently so at both farm and regional scales. We also demonstrate that imposition of a naïvely designed “red meat tax” has the potential to invite socioeconomic losses far greater than its environmental benefits, due largely to the induced misallocation of resources at the national scale. Our results reiterate the risk inherent in an excessively climate-focused debate on the role of livestock in human society and call for more multidimensional approaches of sustainability assessment to draw better-balanced policy packages.
Collapse
|
29
|
Haghighat N, Ashtary-Larky D, Bagheri R, Wong A, Cheraghloo N, Moradpour G, Nordvall M, Asbaghi O, Moeinvaziri N, Amini M, Sohrabi Z, Dutheil F. Effects of 6 Months of Soy-Enriched High Protein Compared to Eucaloric Low Protein Snack Replacement on Appetite, Dietary Intake, and Body Composition in Normal-Weight Obese Women: A Randomized Controlled Trial. Nutrients 2021; 13:nu13072266. [PMID: 34208986 PMCID: PMC8308358 DOI: 10.3390/nu13072266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: The favorable effects of high protein snacks on body composition and appetite status in lean and athletic populations have been illustrated previously. However, the effects of soy-enriched high protein snacks have not been investigated in women with normal-weight obesity (NWO). Consequently, we aimed at comparing the effects of six months of soy-enriched high protein snack replacement on appetite, body composition, and dietary intake in women with NWO. (2) Methods: One hundred seven (107) women with NWO [(age: 24 ± 3 yrs, BMI: 22.7 ± 2.3 kg/m2, body fat percentage (BFP): 38 ± 3.2%)] who were assigned to one of two groups; high protein snack (HP, n = 52) containing 50 g soybean or isocaloric low-protein snack (protein: 18.2 g, carbohydrate: 15 g, fat: 10 g, energy: 210 kcal) or isocaloric low protein snack (LP, n = 55) containing 3.5 servings of fruit (protein: <2 g, carbohydrate: ≈50 g, fat: <1 g, energy: ≈210 kcal) as part of their daily meals (as a snack at 10 a.m.), successfully completed the study interventions. Body mass (BM), body mass index (BMI), waist circumference (WC), BFP, skeletal muscle mass, dietary intake, and appetite levels were evaluated prior to and after the six-month intervention. (3) Results: Appetite (HP = -12 mm and LP = -0.6 mm), energy intake (HP = -166.2 kcal/day and LP = 91.3 kcal), carbohydrate intake (HP = -58.4 g/day and LP = 6.4 g/day), WC (HP = -4.3 cm and LP = -0.9 cm), and BFP (HP = -3.7% and LP = -0.9%) were significantly (p < 0.05) reduced, while skeletal muscle mass (HP = 1.2 kg and LP = 0.3 kg) significantly increased in the HP compared to the LP group, respectively. (4) Conclusions: Six months of a soy-enriched high protein snack replacement decreased appetite and improved body composition in women with NWO. Our findings suggest that soy-enriched high protein snacks are an efficacious strategy for body composition improvement.
Collapse
Affiliation(s)
- Neda Haghighat
- Laparoscopy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (N.H.); (G.M.); (N.M.)
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA;
- Correspondence: (A.W.); (M.A.)
| | - Neda Cheraghloo
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Gholamreza Moradpour
- Laparoscopy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (N.H.); (G.M.); (N.M.)
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA;
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Nader Moeinvaziri
- Laparoscopy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (N.H.); (G.M.); (N.M.)
| | - Masoud Amini
- Laparoscopy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (N.H.); (G.M.); (N.M.)
- Correspondence: (A.W.); (M.A.)
| | - Zahra Sohrabi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, WittyFit, F-63000 Clermont-Ferrand, France;
| |
Collapse
|
30
|
Moughan PJ. Population protein intakes and food sustainability indices: The metrics matter. GLOBAL FOOD SECURITY 2021. [DOI: 10.1016/j.gfs.2021.100548] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
McClements DJ, Grossmann L. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Compr Rev Food Sci Food Saf 2021; 20:4049-4100. [PMID: 34056859 DOI: 10.1111/1541-4337.12771] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Consumers are increasingly demanding foods that are more ethical, sustainable and nutritious to improve the health of themselves and the planet. The food industry is currently undergoing a revolution, as both small and large companies pivot toward the creation of a new generation of plant-based products to meet this consumer demand. In particular, there is an emphasis on the production of plant-based foods that mimic those that omnivores are familiar with, such as meat, fish, egg, milk, and their products. The main challenge in this area is to simulate the desirable appearance, texture, flavor, mouthfeel, and functionality of these products using ingredients that are isolated entirely from botanical sources, such as proteins, carbohydrates, and lipids. The molecular, chemical, and physical properties of plant-derived ingredients are usually very different from those of animal-derived ones. It is therefore critical to understand the fundamental properties of plant-derived ingredients and how they can be assembled into structures resembling those found in animal products. This review article provides an overview of the current status of the scientific understanding of plant-based foods and highlights areas where further research is required. In particular, it focuses on the chemical, physical, and functional properties of plant-derived ingredients; the processing operations that can be used to convert these ingredients into food products; and, the science behind the formulation of vegan meat, fish, eggs, and milk alternatives.
Collapse
Affiliation(s)
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
32
|
Batistel F, de Souza J, Vaz Pires A, Santos FAP. Feeding Grazing Dairy Cows With Different Energy Sources on Recovery of Human-Edible Nutrients in Milk and Environmental Impact. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.642265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of grazing systems for milk production is widely used globally because it is a lower-cost feeding system. However, under tropical conditions, the energy content of pastures became is a limitation to improve animal performance and efficiency while reducing the environmental impact. The objective of our study was to evaluate the impact of supplying different dietary sources of energy to lactating dairy cows grazing tropical pastures on the recovery of human-edible (HE) nutrients in milk and the environmental impact. Two experiments were conducted simultaneously. In experiment 1, forty early lactating dairy cows were used in a randomized block design. In experiment 2, four late-lactating rumen-cannulated dairy cows were used in a 4 × 4 Latin Square design. All cows had free access to pasture and treatments were applied individually as a concentrate supplement. Treatments were flint corn grain-processing method either as fine ground (FGC) or steam-flaked (SFC) associated with Ca salts of palm fatty acids supplementation either not supplemented (CON) or supplemented (CSPO). We observed that feeding cows with SFC markedly reduced urinary nitrogen excretion by 43%, and improved milk nitrogen efficiency by 17% when compared with FGC. Additionally, we also observed that feeding supplemental fat improved milk nitrogen efficiency by 17% compared with cows receiving CON diets. A tendency for decreased methane (CH4) per unit of milk (−31%), CH4 per unit of milk energy output (−29%), and CH4 per unit of milk protein output (−31%) was observed when CSPO was fed compared with CON. Additionally, SFC diets increased HE recovery of indispensable amino acids by 7–9% when compared with FGC diets, whereas feeding supplemental fat improved HE recovery of indispensable amino acids by 17–19% compared with CON. Altogether, this study increased our understanding of how manipulating energy sources in the dairy cow diet under tropical grazing conditions can benefit HE nutrient recovery and reduce nutrient excretion.
Collapse
|
33
|
Liebe DL, Hall MB, White RR. Contributions of dairy products to environmental impacts and nutritional supplies from United States agriculture. J Dairy Sci 2021; 103:10867-10881. [PMID: 33076178 DOI: 10.3168/jds.2020-18570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
Questions regarding the balance between the contribution to human nutrition and the environmental impact of livestock food products rarely evaluate specific species or how to accomplish the recommended depopulation. The objective of this study was to assess current contributions of the US dairy industry to the supply of nutrients and environmental impact, characterize potential impacts of alternative land use for land previously used for crops for dairy cattle, and evaluate the impacts of these approaches on US dairy herd depopulation. We modeled 3 scenarios to reflect different sets of assumptions for how and why to remove dairy cattle from the US food production system coupled with 4 land-use strategies for the potential newly available land previously cropped for dairy feed. Scenarios also differed in assumptions of how to repurpose land previously used to grow grain for dairy cows. The current system provides sufficient fluid milk to meet the annual energy, protein, and calcium requirements of 71.2, 169, and 254 million people, respectively. Vitamins supplied by dairy products also make up a high proportion of total domestic supplies from foods, with dairy providing 39% of the vitamin A, 54% of the vitamin D, 47% of the riboflavin, 57% of the vitamin B12, and 29% of the choline available for human consumption in the United States. Retiring (maintaining animals without milk harvesting) dairy cattle under their current management resulted in no change in absolute greenhouse gas emissions (GHGE) relative to the current production system. Both depopulation and retirement to pasture resulted in modest reductions (6.8-12.0%) in GHGE relative to the current agricultural system. Most dairy cow removal scenarios reduced availability of essential micronutrients such as α-linolenic acid, Ca, and vitamins A, D, B12, and choline. Those removal scenarios that did not reduce micronutrient availability also did not improve GHGE relative to the current production system. These results suggest that removal of dairy cattle to reduce GHGE without reducing the supply of the most limiting nutrients to the population would be difficult.
Collapse
Affiliation(s)
- D L Liebe
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg, VA 24060
| | - M B Hall
- U.S. Dairy Forage Research Center, USDA-ARS, Madison, WI 53706
| | - R R White
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg, VA 24060.
| |
Collapse
|
34
|
Davies RW, Jakeman PM. Separating the Wheat from the Chaff: Nutritional Value of Plant Proteins and Their Potential Contribution to Human Health. Nutrients 2020; 12:E2410. [PMID: 32806532 PMCID: PMC7468956 DOI: 10.3390/nu12082410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/03/2023] Open
Abstract
The quality and nutritional value of dietary proteins are determined by the quantity, digestibility and bioavailability of essential amino acids (EAA), which play a critical role in human growth, longevity and metabolic health. Plant-source protein is often deficient in one or more EAAs (e.g., branched-chain amino acids, lysine, methionine and/or tryptophan) and, in its natural form, is less digestible than animal-source protein. Nevertheless, dietary intake of plant-source protein has been promoted because of its potential health benefits, lower cost of production and lower environmental impact compared to animal-source protein. Implementation of dietary strategies that improve both human and planetary health are of critical importance and subject to growing interest from researchers and consumers. Therefore, in this review we analyse current plant protein intake patterns and discuss possible countermeasures that can enhance plant protein nutrition, examples include: (1) combining different plant proteins with complementary EAA profiles; (2) identification and commercial cultivation of new and novel high-quality plant proteins; (3) industrial and domestic processing methods; and (4) genome-editing techniques.
Collapse
Affiliation(s)
- Robert W. Davies
- Physical Education and Sport Sciences Department, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Philip M. Jakeman
- Physical Education and Sport Sciences Department, University of Limerick, V94 T9PX Limerick, Ireland;
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
35
|
de Vries-ten Have J, Owolabi A, Steijns J, Kudla U, Melse-Boonstra A. Protein intake adequacy among Nigerian infants, children, adolescents and women and protein quality of commonly consumed foods. Nutr Res Rev 2020; 33:102-120. [PMID: 31997732 PMCID: PMC7282859 DOI: 10.1017/s0954422419000222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
Protein is important for growth, maintenance and protection of the body. Both adequacy of protein quantity and protein quality in the diet are important to guarantee obtaining all the essential amino acids. Protein-energy malnutrition is widely present in developing countries such as Nigeria and might result in stunting and wasting. Needs for protein differ depending on age and physiological status and are higher during growth, pregnancy and lactation. The present review assessed protein quantity and quality in diets of Nigerian infants, children, adolescents, and pregnant and lactating women. Literature reviews and calculations were performed to assess adequacy of Nigerian protein intake and to examine the Nigerian diet. The digestible indispensable amino acid score was used to calculate protein quality of nine Nigerian staple foods and of a mixture of foods. The Nigerian population had mostly adequate protein intake when compared with the most recent protein recommendations by the FAO (2013) and WHO/FAO/UNU (2007). An important exception was the protein intake of adolescent girls and pregnant and lactating women. Most of the assessed Nigerian plant-based staple foods were of low protein quality and predominantly lacked the amino acid lysine. The addition of animal-source foods can bridge the protein quality gap created by predominance of plant-based foods in the Nigerian diet. The methodology of this review can be applied to other low- and middle-income countries where diets are often plant-based and lack variety, which might influence protein intake adequacy.
Collapse
Affiliation(s)
- Judith de Vries-ten Have
- Division of Human Nutrition and Health, Wageningen University and Research, PO Box 9101, 6700 HBWageningen, The Netherlands
| | | | - Jan Steijns
- FrieslandCampina, 3818 LEAmersfoort, The Netherlands
| | - Urszula Kudla
- FrieslandCampina, 3818 LEAmersfoort, The Netherlands
| | - Alida Melse-Boonstra
- Division of Human Nutrition and Health, Wageningen University and Research, PO Box 9101, 6700 HBWageningen, The Netherlands
| |
Collapse
|
36
|
Li J, Zhong H, Ramayo-Caldas Y, Terrapon N, Lombard V, Potocki-Veronese G, Estellé J, Popova M, Yang Z, Zhang H, Li F, Tang S, Yang F, Chen W, Chen B, Li J, Guo J, Martin C, Maguin E, Xu X, Yang H, Wang J, Madsen L, Kristiansen K, Henrissat B, Ehrlich SD, Morgavi DP. A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment. Gigascience 2020; 9:5849033. [PMID: 32473013 PMCID: PMC7260996 DOI: 10.1093/gigascience/giaa057] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/07/2019] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
Background The rumen microbiota provides essential services to its host and, through its role in ruminant production, contributes to human nutrition and food security. A thorough knowledge of the genetic potential of rumen microbes will provide opportunities for improving the sustainability of ruminant production systems. The availability of gene reference catalogs from gut microbiomes has advanced the understanding of the role of the microbiota in health and disease in humans and other mammals. In this work, we established a catalog of reference prokaryote genes from the bovine rumen. Results Using deep metagenome sequencing we identified 13,825,880 non-redundant prokaryote genes from the bovine rumen. Compared to human, pig, and mouse gut metagenome catalogs, the rumen is larger and richer in functions and microbial species associated with the degradation of plant cell wall material and production of methane. Genes encoding enzymes catalyzing the breakdown of plant polysaccharides showed a particularly high richness that is otherwise impossible to infer from available genomes or shallow metagenomics sequencing. The catalog expands the dataset of carbohydrate-degrading enzymes described in the rumen. Using an independent dataset from a group of 77 cattle fed 4 common dietary regimes, we found that only <0.1% of genes were shared by all animals, which contrast with a large overlap for functions, i.e., 63% for KEGG functions. Different diets induced differences in the relative abundance rather than the presence or absence of genes, which explains the great adaptability of cattle to rapidly adjust to dietary changes. Conclusions These data bring new insights into functions, carbohydrate-degrading enzymes, and microbes of the rumen to complement the available information on microbial genomes. The catalog is a significant biological resource enabling deeper understanding of phenotypes and biological processes and will be expanded as new data are made available.
Collapse
Affiliation(s)
- Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huanzi Zhong
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Yuliaxis Ramayo-Caldas
- INRAE, Génétique Animale et Biologie Intégrative, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui 08140, Spain
| | - Nicolas Terrapon
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRAE, USC 1408 AFMB, 13288 Marseille, France
| | - Vincent Lombard
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRAE, USC 1408 AFMB, 13288 Marseille, France
| | | | - Jordi Estellé
- INRAE, Génétique Animale et Biologie Intégrative, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Milka Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| | - Ziyi Yang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Hui Zhang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Fang Li
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanmei Tang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Fangming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | | | - Bing Chen
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiyang Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jing Guo
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Cécile Martin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| | - Emmanuelle Maguin
- INRAE, Micalis Institute, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Lise Madsen
- BGI-Shenzhen, Shenzhen 518083, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark.,Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen 518083, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRAE, USC 1408 AFMB, 13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stanislav D Ehrlich
- BGI-Shenzhen, Shenzhen 518083, China.,MGP MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy en Josas, France.,Centre for Host Microbiome Interactions, Dental Institute, King's College London, London, UK
| | - Diego P Morgavi
- BGI-Shenzhen, Shenzhen 518083, China.,Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| |
Collapse
|
37
|
Fernandez MA, Bertolo RF, Duncan AM, Phillips SM, Elango R, Ma DWL, Desroches S, Grantham A, House JD. Translating "protein foods" from the new Canada's Food Guide to consumers: knowledge gaps and recommendations. Appl Physiol Nutr Metab 2020; 45:1311-1323. [PMID: 32459974 DOI: 10.1139/apnm-2020-0192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The revised version of Canada's Food Guide, released in January 2019, issued new guidance by combining meat and alternatives with milk and alternatives into a single group called "protein foods" and emphasized selecting plant-based foods from this category more often. Though the changes represent a simple depiction of a healthy plate, the new Food Guide has opened knowledge gaps about protein foods and exposed new concerns about the interpretation and implementation of the Food Guide among vulnerable groups, particularly children and the elderly. To address key knowledge and research gaps, nutrition leaders need to reach a consensus on key messages to best inform the development of tools and resources to support practitioners in translating messages to consumers, including foodservice standards. Among consumers, families with young children are a primary target for these resources as they develop their life-long habits to ensure they have the knowledge and skills to select, prepare, and consume nutrient-rich protein foods. The new Food Guide provides an opportunity to address the existing knowledge gaps, develop tools and resources to support health professionals, and design interventions that will help Canadian families choose, prepare, and eat nutrient-rich protein foods. Novelty An updated Canadian regulatory framework is needed for protein labelling and content/health claims. There are knowledge gaps about protein foods consumption and food literacy needed to optimize nutritional health. Mandatory nutrition policies are needed to safeguard the provision of high-quality protein foods across institutions that serve children and older adults.
Collapse
Affiliation(s)
- Melissa A Fernandez
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Alison M Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sophie Desroches
- Institute of Nutrition and Functional Foods, School of Nutrition, Faculty of Agriculture and Food Sciences, Université Laval, QC G1V 0A6, Canada
| | | | - James D House
- Department of Food and Human Nutrition, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
38
|
Takiya CS, Ylioja CM, Bennett A, Davidson MJ, Sudbeck M, Wickersham TA, VandeHaar MJ, Bradford BJ. Feeding Dairy Cows With “Leftovers” and the Variation in Recovery of Human-Edible Nutrients in Milk. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
39
|
Ciuris C, Lynch HM, Wharton C, Johnston CS. A Comparison of Dietary Protein Digestibility, Based on DIAAS Scoring, in Vegetarian and Non-Vegetarian Athletes. Nutrients 2019; 11:E3016. [PMID: 31835510 PMCID: PMC6950041 DOI: 10.3390/nu11123016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Vegetarian diets provide an abundance of nutrients when carefully planned. However, vegetarian diets may have lower protein quality compared to omnivorous diets, a reflection of less favorable amino acid profiles and bioavailability. Hence, the current recommended dietary allowance for protein may not be adequate for some vegetarian populations. The purpose of this study was to determine dietary protein quality using the DIAAS (Digestible Indispensable Amino Acid Score) method in vegetarian and omnivore endurance athletes. DIAAS scores reflect the true ileal digestibility of the indispensable amino acids that are present in food items, and these scores can be used to compute the available protein in diet plans. Thirty-eight omnivores and 22 vegetarians submitted seven-day food records that were analyzed for nutrient content, and DIAAS scores were computed by diet group. Average available protein (g) was compared along with participants' lean body mass and strength (quantified using the peak torque of leg extension). DIAAS scores and available protein were higher for omnivorous versus vegetarian athletes (+11% and +43%, respectively, p < 0.05). Omnivorous participants had significantly higher lean body mass than vegetarian participants (+14%), and significant correlations existed between available protein and strength (r = 0.314) and available protein and lean body mass (r = 0.541). Based upon available protein, as determined through the DIAAS, vegetarian athletes in this study would need to consume, on average, an additional 10 g protein daily to reach the recommended intake for protein (1.2 g/kg/d). An additional 22 g protein daily would be needed to achieve an intake of 1.4 g/kg/d, the upper end of the recommended intake range.
Collapse
Affiliation(s)
- Corinne Ciuris
- College of Health Solutions, Nutrition Program, Arizona State University, 550 N. 3rd St., Phoenix, AZ 85004, USA;
| | - Heidi M. Lynch
- Kinesiology Department, 3900 Lomaland Dr., Point Loma Nazarene University, San Diego, CA 92106, USA;
| | - Christopher Wharton
- College of Health Solutions, Voluntary Radical Simplicity Lab, Arizona State University, 550 N. 3rd St., Phoenix, AZ 85004, USA;
| | - Carol S. Johnston
- College of Health Solutions, Nutrition Program, Arizona State University, 550 N. 3rd St., Phoenix, AZ 85004, USA;
| |
Collapse
|
40
|
Ledgard SF, Falconer SJ, Abercrombie R, Philip G, Hill JP. Temporal, spatial, and management variability in the carbon footprint of New Zealand milk. J Dairy Sci 2019; 103:1031-1046. [PMID: 31759588 DOI: 10.3168/jds.2019-17182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
The carbon footprint of milk from year-round grazed-pasture dairy systems and its variability has had limited research. The objective of this study was to determine temporal, regional, and farm system variability in the carbon footprint of milk from New Zealand (NZ) average dairy production. Farm production and input data were collected from a national database for 2010/11 to 2017/18 across regions of NZ and weighted on relative production supplied to the major dairy cooperative Fonterra to produce an NZ-average. Total greenhouse gas emissions were calculated using a life cycle assessment methodology for the cradle-to-farm gate, covering all on- and off-farm contributing sources. The NZ-average carbon footprint of milk varied from 0.81 kg of CO2 equivalent (CO2eq)/kg of fat- and protein-corrected milk (FPCM) in 2010/11 (with widespread drought) to 0.75 to 0.78 kg of CO2eq/kg of FPCM in 2013/14 to 2017/18, with a trend for a small decrease over time. Regional variation occurred with highest carbon footprint values for the Northland region due to greatest climatic and soil limitations on pasture production. Dairy cattle diet was approximately 85% from grazed pasture with up to 15% from brought-in feeds (mainly forages and by-products). The CO2 emissions from direct fuel and electricity use constituted <2% of total CO2eq emissions, whereas enteric methane was near 70% of the total. An estimate of potential contribution from direct land use change (plantation forest to pasture) was 0.13 kg of CO2eq/kg of FPCM. This was not included because nationally there has been a net increase in forest land and a decrease in pasture land over the last 20 yr. Data used were highly representative, as evident by the same estimated carbon footprint from 368 farms (in 2017/18) from the national database compared with that from a direct survey of 7,146 farms. New Zealand-specific nitrous oxide emission factors were used, based on many validated field trials and as used in the NZ greenhouse gas inventory, resulting in an 18% lower carbon footprint than if default Intergovernmental Panel on Climate Change factors had been used. Evaluation of the upper and lower quartiles of farms based on per-cow milk production (6,044 vs. 3,542 kg of FPCM/cow) showed a 15% lower carbon footprint for the upper quartile of farms, illustrating the potential for further decrease in carbon footprint with improved farm management practices.
Collapse
Affiliation(s)
- S F Ledgard
- AgResearch Ruakura Research Centre, Hamilton, New Zealand, 3214.
| | - S J Falconer
- AgResearch Ruakura Research Centre, Hamilton, New Zealand, 3214
| | - R Abercrombie
- Fonterra Co-operative Group and Fonterra Research and Development Centre, Private Bag 11-029 Palmerston North, New Zealand, 4472
| | - G Philip
- Fonterra Co-operative Group and Fonterra Research and Development Centre, Private Bag 11-029 Palmerston North, New Zealand, 4472
| | - J P Hill
- Fonterra Co-operative Group and Fonterra Research and Development Centre, Private Bag 11-029 Palmerston North, New Zealand, 4472; Riddett Institute, Massey University, Private Bag 11-222 Palmerston North, New Zealand, 4442
| |
Collapse
|
41
|
Bonanno A, Di Grigoli A, Todaro M, Alabiso M, Vitale F, Di Trana A, Giorgio D, Settanni L, Gaglio R, Laddomada B, Di Miceli G. Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows' Diet. Animals (Basel) 2019; 9:ani9090698. [PMID: 31540437 PMCID: PMC6769901 DOI: 10.3390/ani9090698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Durum wheat bran (DWB) is a by-product mostly used in feeding ruminants, contributing to decrease in the utilization of feeds suitable as foods for human consumption, thus improving the sustainability of livestock production. However, the potential benefits of DWB, due to its content in phenolic acids, mainly consisting of ferulic acid with antioxidant properties, have not been well clarified yet. Accordingly, in this experiment, 36 lactating cows divided into three groups received, over a period of 100 days, one of three concentrates including DWB at 0% (DWB0), 10% (DWB10), or 20% (DWB20). The concentrates were formulated to be isoproteic and isoenergetic and, to balance the higher fiber content of the concentrates with DWB, the hay in the diets was slightly reduced. During the trial, the group feed intake and the individual milk production were monitored, and cheese was made with bulk milk from each group. Milk yield and microbiological characteristics of milk and cheese were similar among groups, indicating no DWB effect on cows performance and fermentation process. Milk from DWB20 group resulted slightly higher in casein and curd firmness (a2r). In cows fed DWB, the higher polyphenol intake was responsible for higher blood contents of these bioactive compounds, that seemed to have contributed in reducing the level of reactive oxygen metabolites (ROMs), which were higher in DWB0 cows. DWB20 cheeses showed a higher polyphenol content, lower number of peroxides, and higher antioxidant capacity than DWB0 cheeses. DWB20 and DWB10 diets resulted less expensive. In addition, the DWB20 group showed the best indexes heFCE (human edible feed conversion efficiency = milk/human edible feed) and NFP (net food production = milk - human edible food), expressed as crude protein or gross energy. In conclusion, the DWB fed to dairy cows at 12% of diet dry matter (DM) can lead to benefits, such as the improvement of oxidative status of cows, milk quality, shelf-life, and functional properties of cheese, and might contribute to reduce the feeding cost and limit the human-animal competition for feeding sources.
Collapse
Affiliation(s)
- Adriana Bonanno
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze n. 13, 90128 Palermo, Italy.
| | - Antonino Di Grigoli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze n. 13, 90128 Palermo, Italy.
| | - Massimo Todaro
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze n. 13, 90128 Palermo, Italy.
| | - Marco Alabiso
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze n. 13, 90128 Palermo, Italy.
| | - Francesca Vitale
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze n. 13, 90128 Palermo, Italy.
| | - Adriana Di Trana
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), Viale dell'Ateneo Lucano n. 10, 85100 Potenza, Italy.
| | - Daniela Giorgio
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), Viale dell'Ateneo Lucano n. 10, 85100 Potenza, Italy.
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze n. 13, 90128 Palermo, Italy.
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze n. 13, 90128 Palermo, Italy.
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze n. 13, 90128 Palermo, Italy.
| |
Collapse
|
42
|
Baber JR, Sawyer JE, Wickersham TA. Evaluation of net protein contribution, methane production, and net returns from beef production as duration of confinement increases in the cow-calf sector1. J Anim Sci 2019; 97:2675-2686. [PMID: 31028380 PMCID: PMC6606500 DOI: 10.1093/jas/skz145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/25/2019] [Indexed: 12/28/2022] Open
Abstract
Intensification of cow-calf production may provide a sustainable solution for meeting increasing beef demand in the face of diminishing resources. However, intensification with its greater reliance on cereal grains potentially decreases the upcycling of human-inedible protein into beef. A previously described model was used to evaluate cow-calf intensification on beef's ability to meet human protein requirements. Four scenarios were compared, based on a 1,000 cow herd: 1) Conventional cow-calf production system (0CON), 2) cows limit-fed in confinement for 4 mo after weaning (4CON), 3) cows limit-fed in confinement for 8 mo after breeding (8CON), or 4) cows limit-fed in confinement year-round (12CON). Changes were not made to either the stocker or feedlot segments of the beef value chain. Net protein contribution (NPC) was calculated by multiplying the ratio of human-edible protein (HeP) in beef produced to HeP in feed by the protein quality ratio. A NPC >1 indicates that the production system is positively contributing to meeting human requirements, whereas a NPC <1 indicates the sector or value chain is competing with humans for HeP. Methane was estimated based on proportion of forage in diet and total methane production was reported per kg HeP. In the cow-calf sector, HeP conversion efficiency (HePCE) decreased from 2,640.83 to 0.37 while methane production decreased from 4.53 to 1.82 kg/kg HeP produced as the length of intensification increased from 0CON to 12CON. Decreased HePCE resulted in NPC values for cow-calf sector of 8,036.80, 4.93, 2.19, and 1.28 for 0CON, 4CON, 8CON, and 12CON, respectively. Protein quality ratio of the entire beef value chain increased from 3.15 to 3.33, while HePCE decreased from 0.99 to 0.39 as length of intensification increased from 0CON to 12CON. For the beef value chain, NPC was 3.11, 2.30, 1.73, and 1.31 for 0CON, 4CON, 8CON, and 12CON, respectively. Across the value chain, confinement of cows for 12 mo decreased enteric methane from 3.05 to 1.53 kg/kg HeP (0CON and 12CON, respectfully). Additionally, profitability of the cow-calf operation decreased from $249.34 to $102.16 per cow as intensification increased. Of confinement scenarios, probability of loss to an operation was least (4%) for 4CON. Feed costs increased by $260.79 per cow for 0CON when drought conditions existed (0COND). Total methane production was reduced by intensification and none of the scenarios evaluated competed with humans for HeP.
Collapse
Affiliation(s)
- Jessica R Baber
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Jason E Sawyer
- Department of Animal Science, Texas A&M University, College Station, TX
| | | |
Collapse
|
43
|
Baber JR, Sawyer JE, Holland BP, Karr KJ, Word AB, Wickersham TA. Net protein contribution of beef feedlots from 2006 to 2017. Transl Anim Sci 2019; 3:1575-1584. [PMID: 32704920 PMCID: PMC7200447 DOI: 10.1093/tas/txz142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract:
Feedlot efficiency increases as technologies are adopted and new feed ingredients, especially byproducts, become available and incorporated into diets. Byproduct availability increased in response to the renewable fuels standard of 2005, creating substantial amounts of feedstuffs best used by ruminants. Cereal grains have been partially replaced with human-inedible byproducts, as they provide comparable levels of energy in cattle diets. To evaluate the effects of changes in diet and feedlot production practices on net protein contribution (NPC) and human-edible protein conversion efficiency (HePCE) across time, a deterministic NPC model was used. NPC was assessed for the feedlot industry using lot level production data from 2006 to 2017 for eight commercial feedlots. Ingredient and nutrient composition was collected for a representative starter and finisher diet fed for each year from each feedlot. NPC was calculated by multiplying human-edible protein (HeP) in beef produced per unit of HeP in feed by the protein quality ratio (PQR). Systems with NPC >1 positively contribute to meeting human protein requirements; NPC < 1 indicates competition with humans for HeP. NPC was regressed on year to evaluate temporal change in NPC. Feedlots were categorized as increasing NPC (INC; slope > 0) or constant NPC (CON; slope = 0) according to regression parameter estimates. Four feedlots were categorized as INC and four were CON. The rate of change in PQR was similar for CON and INC (P ≥ 0.79), although rates of change among INC and CON differed for byproduct and cereal grain inclusion (P ≤ 0.01) across years evaluated. Feedlots categorized as INC reduced HeP consumed by 2.39% per year, but CON feedlots did not reduce HeP consumed each year (0.28%). Cattle received and shipped by INC were lighter than those in CON feedlots (P < 0.01). Across years, INC produced more HeP (20.9 vs. 19.2 kg/hd) than CON (P < 0.01), and both feedlot types tended to improve HeP gained over time (0.1 kg per year; P = 0.10). Differences in slope over time for INC and CON were observed for conversion efficiency of HeP (P < 0.01). NPC increased 0.027 units per year for INC (P < 0.01) and was 0.94 in 2017. NPC by the feedlot sector improved from 2006 to 2017, decreasing the amount of human-edible feeds required to produce more high-quality protein from beef.
Collapse
Affiliation(s)
- Jessica R Baber
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Jason E Sawyer
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | | | | | | |
Collapse
|
44
|
Burd NA, Beals JW, Martinez IG, Salvador AF, Skinner SK. Food-First Approach to Enhance the Regulation of Post-exercise Skeletal Muscle Protein Synthesis and Remodeling. Sports Med 2019; 49:59-68. [PMID: 30671904 PMCID: PMC6445816 DOI: 10.1007/s40279-018-1009-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein recommendations are provided on a daily basis as defined by the recommended dietary allowance (RDA) at 0.80 g protein/kg/day. However, meal-based, as opposed to daily, dietary protein recommendations are likely more informative given the role of the daily protein distribution pattern in modulating the post-exercise muscle protein synthetic response. Current protein meal recommendations to plateau post-exercise muscle protein synthesis rates are based on the ingestion of isolated protein sources, and not protein-rich whole foods. It is generally more common to eat whole food sources of dietary protein within a normal eating pattern to meet dietary protein requirements. Yet, there is a need to define how dietary protein action on muscle protein synthesis rates can be modulated by other nutrients within a food matrix to achieve protein requirements for optimal muscle adaptations. Recent developments suggest that the identification of an "optimal" protein source should likely consider the characteristics of the protein and the food matrix in which it is consumed. This review aims to discuss recent concepts related to protein quality, and the potential interactive effects of the food matrix, to achieve optimal protein requirements and elicit a robust postprandial muscle protein synthetic response with an emphasis on the post-exercise recovery window.
Collapse
Affiliation(s)
- Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S. Goodwin Avenue, Urbana, IL, 61801, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Joseph W Beals
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isabel G Martinez
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Amadeo F Salvador
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Sarah K Skinner
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S. Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
45
|
Loveday SM. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu Rev Food Sci Technol 2019; 10:311-339. [PMID: 30649962 DOI: 10.1146/annurev-food-032818-121128] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein is an essential macronutrient and a key structural component of many foods. The nutritional and technological properties of food protein ingredients depend on their source, extraction and purification, modification during food manufacture, and interactions with other food components. In addition to covering these elements, this review seeks to highlight underappreciated aspects of protein environmental sustainability and explores the potential of cultured meat and insect-derived proteins.
Collapse
Affiliation(s)
- Simon M Loveday
- Food and Bio-Based Products Group, AgResearch Limited, Palmerston North 4442, New Zealand;
| |
Collapse
|
46
|
Metzler-Zebeli BU, Haselmann A, Klevenhusen F, Knaus W, Zebeli Q. Lactic acid treatment of by-products and phosphorus level in the diet modulate bacterial microbiome and the predicted metagenome functions using the rumen simulation technique. J Dairy Sci 2018; 101:9800-9814. [PMID: 30146296 DOI: 10.3168/jds.2018-14821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/14/2018] [Indexed: 12/27/2022]
Abstract
This study used a rumen simulation technique to evaluate the effects of soaking of by-product-rich concentrate (BPC) in 5% lactic acid (LAC; vol/vol) on the rumen microbiota, predicted metagenome, fermentation characteristics, and nutrient degradation without or with supplemented P. The diet was supplemented with 1.6 g of P in the form of monocalcium phosphate per kilogram of dry matter in addition to 284 mg of inorganic P/d per fermentor via artificial saliva. Fermentor fluid was collected for analyses of short-chain fatty acids, fermentation gases, redox potential, and microbiota and feed residues for calculation of nutrient degradation. The microbiota composition was assessed using paired-end Illumina (Illumina Inc., San Diego, CA) MiSeq sequencing of the V3 to V5 region of the 16S rRNA gene. Soaking in LAC reduced the contents of crude protein, neutral and acid detergent fibers, and organic matter fractions as well as ash and P content of the BPC. Both the LAC treatment of BPC and the inorganic P modified the relative bacterial abundances mainly within the predominant orders Bacteroidales and Clostridiales. Supervised DIABLO N-integration networking supported that operational taxonomic units related to BS11, Ruminococcaceae, Christensenellaceae, Eubacterium, and Selenomonas were the most discriminant for the LAC-treated BPC, whereas other operational taxonomic units related to BS11, RFN20, Ruminococcus, and Succiniclasticum were best correlated with the inorganic P supplementation. Integration networking also showed that carbohydrate and pyruvate metabolism, biosynthesis of unsaturated fatty acids, and degradation of several xenobiotics were stimulated by the LAC treatment of BPC. Those data supported the enhanced fermentation activity as indicated by increased total short-chain fatty acid concentration, especially propionate and butyrate, and methane, but decreased ruminal crude protein degradation, with the LAC-treated compared with control-treated BPC. In contrast, despite an increased abundance of imputed functions, such as inositol phosphate metabolism, phosphatidylinositol signaling, and fructose and mannose metabolism, the reduced abundance of the imputed Kyoto Encyclopedia of Genes and Genomes pathway "transcription machinery" as well as the decrease in total short-chain fatty acids and nutrient degradation indicated reduced bacterial metabolic activity with the inorganic P supplementation. In conclusion, soaking of BPC in LAC may favor the proliferation of certain fibrolytic bacterial taxa and stimulate their metabolic activity, whereas the supplemented P to a diet already meeting ruminal P needs may impair ruminal nutrient utilization.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Andreas Haselmann
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Fenja Klevenhusen
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Wilhelm Knaus
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
47
|
Baber JR, Sawyer JE, Wickersham TA. Estimation of human-edible protein conversion efficiency, net protein contribution, and enteric methane production from beef production in the United States. Transl Anim Sci 2018; 2:439-450. [PMID: 32704726 PMCID: PMC7200519 DOI: 10.1093/tas/txy086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 11/15/2022] Open
Abstract
A model was developed to estimate beef's contribution toward meeting human protein requirements using a summative model of net protein contribution (NPC) and methane production. NPC was calculated by multiplying the ratio of human-edible protein (HeP) in beef to the HeP in feedstuffs by the protein quality ratio (PQR). PQR describes the change in biological value of HeP that occurs when plant-derived HeP is converted to beef. An NPC > 1 indicates that the production system is positively contributing to meeting human requirements; systems with NPC < 1 reduce the net protein available to meet human requirements. Scenarios were arranged as a 2 × 2 factorial with two sets of dietary inputs and two sets of production parameters. Dietary inputs represented either inputs used in a previous report estimating HeP (previous diet; PD) or inputs more representative of conventional beef production systems (current diet; CD). Production parameters were either drawn from previous reports (previous parameters; PP) or chosen to characterize current industry standards (current parameters; CP). The HeP conversion efficiency (HePCE) for current industry diets and production parameters (CDCP) (kg HeP yield/kg HeP input) was greatest in the cow-calf sector (2,640.83) compared with stocker (5.22) and feedlot (0.34), and other scenarios followed a similar trend. In addition, the entire production system had an HePCE of 0.99 for CDCP; the previous model diets and production parameters (PDPP) scenario estimated HePCE to be 0.46, and other scenarios were in between. For the CDCP scenario, 56%, 10%, and 34% of the HeP were produced in the cow-calf, stocker, and feedlot sectors; PDPP was similar (59%, 13%, and 28%, respectively). PQR averaged 3.04, 3.04, and 2.64 for cow-calf, stocker, and feedlot sectors, respectively, indicating each sector enhances the biological value of the HeP fed. The NPC was greatest for the cow-calf sector (8,794), followed by the stocker and feedlot sectors (8.85 and 0.23, respectively). The entire beef value chain had a PQR of 2.68 and NPC ranged from 1.01 to 3.11, which correspond to PDPP and CDCP, respectively. Overall, 3.05 kg of CH4 were produced per kilogram HeP for CDCP and 2.58 for PDPP, with the cow-calf sector being greater than the feedlot sector (4.53 vs. 0.94 kg CH4/kg HeP, CDCP). Our results suggest that each individual beef sector and the entire value chain produce more high-quality HeP than is consumed in production. Accordingly, beef is a net contributor to meeting human protein requirements.
Collapse
Affiliation(s)
- Jessica R Baber
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Jason E Sawyer
- Department of Animal Science, Texas A&M University, College Station, TX
| | | |
Collapse
|
48
|
Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2017; 12:1744-1754. [PMID: 29198265 DOI: 10.1017/s175173111700324x] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The food-feed competition is one of the complex challenges, and so are the ongoing climate change, land degradation and water shortage for realizing sustainable food production systems. By 2050 the global demand for animal products is projected to increase by 60% to 70%, and developing countries will have a lion's share in this increase. Currently, ~800 million tonnes of cereals (one-third of total cereal production) are used in animal feed and by 2050 it is projected to be over 1.1 billion tonnes. Most of the increase in feed demand will be in developing countries, which already face many food security challenges. Additional feed required for the projected increased demand of animal products, if met through food grains, will further exacerbate the food insecurity in these countries. Furthermore, globally, the production, processing and transport of feed account for 45% of the greenhouse gas emissions from the livestock sector. This paper presents approaches for addressing these challenges in quest for making livestock sector more sustainable. The use of novel human-inedible feed resources such as insect meals, leaf meals, protein isolates, single cell protein produced using waste streams, protein hydrolysates, spineless cactus, algae, co-products of the biofuel industry, food wastes among others, has enormous prospects. Efficient use of grasslands also offers possibilities for increasing carbon sequestration, land reclamation and livestock productivity. Opportunities also exist for decreasing feed wastages by simple and well proven practices such as use of appropriate troughs, increase in efficiency of harvesting crop residues and their conversion to complete feeds especially in the form of densified feed blocks or pellets, feeding as per the nutrient requirements, among others. Available evidence have been presented to substantiate arguments that: (a) for successful and sustained adoption of a feed technology, participation of the private sector and a sound business plan are required, (b) for sustainability of the livestock production systems, it is also important to consider the consumption of animal products and a case has been presented to assess future needs of animal source foods based on their requirements for healthy living,
Collapse
|
49
|
Abstract
Ruminant livestock have the ability to produce high-quality human food from feedstuffs of little or no value for humans. Balanced essential amino acid composition of meat and milk from ruminants makes those protein sources valuable adjuncts to human diets. It is anticipated that there will be increasing demand for ruminant proteins in the future. Increasing productivity per animal dilutes out the nutritional and environmental costs of maintenance and rearing dairy animals up to production. A number of nutritional strategies improve production per animal such as ration balancing in smallholder operations and small grain supplements to ruminants fed high-forage diets. Greenhouse gas emission intensity is reduced by increased productivity per animal; recent research has developed at least one effective inhibitor of methane production in the rumen. There is widespread over-feeding of protein to dairy cattle; milk and component yields can be maintained, and sometimes even increased, at lower protein intake. Group feeding dairy cows according to production and feeding diets higher in rumen-undegraded protein can improve milk and protein yield. Supplementing rumen-protected essential amino acids will also improve N efficiency in some cases. Better N utilization reduces urinary N, which is the most environmentally unstable form of excretory N. Employing nutritional models to more accurately meet animal requirements improves nutrient efficiency. Although smallholder enterprises, which are concentrated in tropical and semi-tropical regions of developing countries, are subject to different economic pressures, nutritional biology is similar at all production levels. Rather than milk volume, nutritional strategies should maximize milk component yield, which is proportional to market value as well as food value when milk nutrients are consumed directly by farmers and their families. Moving away from Holsteins toward smaller breeds such as Jerseys, Holstein-Jersey crosses or locally adapted breeds (e.g. Vechur) would also reduce lactose production and improve metabolic, environmental and economic efficiencies. Forages containing condensed tannins or polyphenol oxidase enzymes have reduced rumen protein degradation; ruminants capture this protein more efficiently for meat and milk. Although these forages generally have lower yields and persistence, genetic modification would allow insertion of these traits into more widely cultivated forages. Ruminants will retain their niches because of their ability to produce valuable human food from low value feedstuffs. Employing these emerging strategies will allow improved productive efficiency of ruminants in both developing and developed countries.
Collapse
|
50
|
Swensson C, Lindmark-Månsson H, Smedman A, Henriksson M, Modin Edman AK. Protein efficiency in intensive dairy production: a Swedish example. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4890-4897. [PMID: 28387024 DOI: 10.1002/jsfa.8362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Animal agriculture has been criticised in terms of its sustainability from several perspectives. Ruminants such as dairy cows can transform inedible, low-quality protein in roughage and by-products from the food industry into the high-quality protein found in milk and meat. Evaluation of the protein conversion efficiency of dairy production from a sustainability and resource perspective must be based on the proportion of the animal feed edible to humans. A relevant metric is thus edible feed protein conversion ratio (eFPCR), i.e. human-edible protein output in cow's milk per unit human-edible protein input in feed. In this study, eFPCR was calculated for five regionally adapted and realistic feed rations fed to Swedish dairy cows producing different annual milk yields typical for high-yielding, intensive dairy production. RESULTS All scenarios except one showed a protein efficiency ratio of >1 for human-edible protein. Thus, depending on the composition of their diet, most Swedish dairy cows can convert human-inedible protein into edible, high-value protein. However, higher milk yield led to a decrease in eFPCR, regardless of diet. CONCLUSION Dairy cows in high-yielding, intensive production systems such as those used in Sweden have the capacity to convert low-value inedible protein into high-value edible protein. However, a minor part of the dairy cow diet is edible for humans and this fraction must be minimised to justify dairy production. These results are in line with previous findings on protein conversion efficiency and add scientific input to the debate on sustainable food systems and sustainable diets. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christian Swensson
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Helena Lindmark-Månsson
- Dairy Sweden, Stockholm, Sweden
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Annika Smedman
- Dairy Sweden, Stockholm, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|