1
|
Bui H, Andersson S, Sola-Carvajal A, De Marchi T, Vähäkangas E, Holopainen M, House AH, Rovenko BM, Englund JI, Kasper M, Kuuluvainen E, Käkelä R, Hietakangas V, Niméus E, Katajisto P. Glucose-6-phosphate-dehydrogenase on old peroxisomes maintains self-renewal of epithelial stem cells after asymmetric cell division. Nat Commun 2025; 16:3932. [PMID: 40287409 PMCID: PMC12033372 DOI: 10.1038/s41467-025-58752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Selective inheritance of sub-cellular components has emerged as a mechanism guiding stem cell fate after asymmetric cell divisions. Peroxisomes play a crucial role in multiple metabolic processes such as fatty acid metabolism and reactive oxygen species detoxification, but the apportioning of peroxisomes during stem cell division remains understudied. Here, we develop a mouse model and labeling technique to follow the dynamics of distinct peroxisome age-classes, and find that old peroxisomes are inherited by the daughter cell retaining full stem cell potency in mammary and epidermal stem cell divisions. Old peroxisomes carry Glucose-6-phosphate-dehydrogenase, whose specific location on the peroxisomal membrane promotes stem cell function by facilitating peroxisomal ether lipid synthesis. Our study demonstrates age-selective apportioning of peroxisomes in vivo, and unveils how functional heterogeneity of peroxisomes is utilized by asymmetrically dividing cells to metabolically divert the fate of the two daughter cells.
Collapse
Grants
- ERC, #677809, and #101045009 EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- #266869, #304591, #312436, #320185 Academy of Finland (Suomen Akatemia)
- 2018-03078, 2018-02963, 2022-01304 Vetenskapsrådet (Swedish Research Council)
- 190634, 180681, and 222499 Cancerfonden (Swedish Cancer Society)
- KAW 2014.0207 and 20220054 Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
- Syöpäjärjestöt (Cancer Society of Finland)
- Chan Zuckerberg Initiative MET-0000000418 Center for Innovative Medicine CIMED Sigrid Juselius Foundation
- Finnish Cultural Foundation | Uudenmaan Rahasto (Uusimaa Regional Fund)
- Maud Kuistilan Muistosäätiö (Maud Kuistila Memorial Foundation)
- Doctoral Programme in Biomedicine at the University of Helsinki
Collapse
Affiliation(s)
- Hien Bui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Simon Andersson
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Agustin Sola-Carvajal
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Tommaso De Marchi
- Division of Oncology and Surgery, Department of Clinical Sciences, Lund University, 22362, Lund, Sweden
| | - Eliisa Vähäkangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
- Stem cells and metabolism research program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Minna Holopainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, 00014, Helsinki, Finland
| | - Andrew H House
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, 00014, Helsinki, Finland
| | - Bohdana M Rovenko
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Johanna I Englund
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Emilia Kuuluvainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, 00014, Helsinki, Finland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland
| | - Emma Niméus
- Division of Oncology and Surgery, Department of Clinical Sciences, Lund University, 22362, Lund, Sweden
- Department of Surgery, Skåne University Hospital, 22242, Lund, Sweden
| | - Pekka Katajisto
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790, Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790, Helsinki, Finland.
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
2
|
Bao Q, Wu Y, Du H, Wang Y, Zhang Y. Phenotypic Physiological and Metabolomic Analyses Reveal Crucial Metabolic Pathways in Quinoa ( Chenopodium quinoa Willd.) in Response to PEG-6000 Induced Drought Stress. Int J Mol Sci 2025; 26:2599. [PMID: 40141239 PMCID: PMC11942229 DOI: 10.3390/ijms26062599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Drought stress seriously threatens human food security, and enhancing crops' drought tolerance is an urgent problem to be solved in breeding. Quinoa is known for its high nutritional value and strong drought tolerance, but its molecular mechanism in response to drought stress is still unclear. In this study, we used drought-tolerant (D2) and drought-sensitive (ZK1) quinoa varieties, and PEG-6000 was used to simulate drought stress in quinoa seedlings. Phenotypic and physiological biochemical indicators were measured during the seedling stage, and LC-MS was used for a metabolite analysis of drought stress to explore the drought tolerance mechanism of quinoa under drought stress. With the intensification of drought stress, chlorophyll content gradually increased, and D2 reached its maximum at W4, an increase of 49.85% compared with W1. The total chlorophyll content, photosynthesis rate, and stomatal conductance of ZK1 were significantly lower than D2 under moderate and severe drought stress. Metabolomic results showed that a total of 1295 positive ion mode (pos) metabolites and 914 negative ion mode (neg) metabolites were identified. Of these, 12(R)-HETE, phosphatidylcholine, monogalactose diester (MGDG), and stachyose up-regulated expression under drought stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that unsaturated fatty acid biosynthesis and glycerophospholipid metabolism pathways were significantly enriched. In summary, our results elucidate that quinoa responds to drought stress by accumulating chlorophyll and sugars, activating unsaturated fatty acid metabolism, and protecting the photosynthetic system. These findings provide new insights for the breeding of drought-tolerant quinoa varieties and the study of drought tolerance mechanisms.
Collapse
Affiliation(s)
- Qinghan Bao
- College of Life Sciences, Jilin Normal University, Siping 136000, China;
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Yang Wu
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Huishi Du
- College of Geographic Sciences and Tourism, Jilin Normal University, Siping 136000, China;
| | - Yang Wang
- College of Life Sciences, Jilin Normal University, Siping 136000, China;
| | - Yongping Zhang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China;
| |
Collapse
|
3
|
Randolph CE, Walker KA, Yu R, Beveridge C, Manchanda P, Chopra G. Glial Biologist's Guide to Mass Spectrometry-Based Lipidomics: A Tutorial From Sample Preparation to Data Analysis. Glia 2025; 73:474-494. [PMID: 39751169 PMCID: PMC11784846 DOI: 10.1002/glia.24665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Neurological diseases are associated with disruptions in the brain lipidome that are becoming central to disease pathogenesis. Traditionally perceived as static structural support in membranes, lipids are now known to be actively involved in cellular signaling, energy metabolism, and other cellular activities involving membrane curvature, fluidity, fusion or fission. Glia are critical in the development, health, and function of the brain, and glial regulation plays a major role in disease. The major pathways of glial dysregulation related to function are associated with downstream products of metabolism including lipids. Taking advantage of significant innovations and technical advancements in instrumentation, lipidomics has emerged as a popular omics discipline, serving as the prevailing approach to comprehensively define metabolic alterations associated with organismal development, damage or disease. A key technological platform for lipidomics studies is mass spectrometry (MS), as it affords large-scale profiling of complex biological samples. However, as MS-based techniques are often refined and advanced, the relative comfort level among biologists with this instrumentation has not followed suit. In this review, we aim to highlight the importance of the study of glial lipids and to provide a concise record of best practices and steps for MS-based lipidomics. Specifically, we outline procedures for glia lipidomics workflows ranging from sample collection and extraction to mass spectrometric analysis to data interpretation. To ensure these approaches are more accessible, this tutorial aims to familiarize glia biologists with sample handling and analysis techniques for MS-based lipidomics, and to guide non-experts toward generating high quality lipidomics data.
Collapse
Affiliation(s)
| | | | - Ruilin Yu
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Connor Beveridge
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Palak Manchanda
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Gaurav Chopra
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer Science (By Courtesy)Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Drug DiscoveryWest LafayetteIndianaUSA
- Purdue Institute for Integrative NeuroscienceWest LafayetteIndianaUSA
- Purdue Institute of InflammationImmunology and Infectious DiseaseWest LafayetteIndianaUSA
- Purdue Institute for Cancer ResearchWest LafayetteIndianaUSA
- Regenstrief Center for Healthcare EngineeringWest LafayetteIndianaUSA
| |
Collapse
|
4
|
Cerveró-Varona A, Prencipe G, Peserico A, Canciello A, House AH, Santos HA, Perugini M, Sulcanese L, Takano C, Miki T, Iannetta A, Russo V, Mattioli M, Barboni B. Amniotic epithelial Cell microvesicles uptake inhibits PBMCs and Jurkat cells activation by inducing mitochondria-dependent apoptosis. iScience 2025; 28:111830. [PMID: 39967871 PMCID: PMC11834128 DOI: 10.1016/j.isci.2025.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Amniotic epithelial cells (AECs) exhibit significant immunomodulatory and pro-regenerative properties, largely due to their intrinsic paracrine functions that are currently harnessed through the collection of their secretomes. While there is increasing evidence of the role of bioactive components freely secreted or carried by exosomes, the bioactive cargo of AEC microvesicles (MVs) and their crosstalk with the immune cells remains to be fully explored. We showed that under intrinsic conditions or in response to LPS, AEC-derived MV carries components such as lipid-mediated signaling molecules, ER, and mitochondria. They foster the intra/interspecific mitochondrial transfer into immune cells (PBMCs and Jurkat cells) in vitro and in vivo on the zebrafish larvae model of injury. The internalization of MV cargoes through macropinocytosis induces hyperpolarization of PBMC mitochondrial membranes and triggers MV-mediated apoptosis. This powerful immune suppressive mechanism triggered by AEC-MV cargo delivery paves the way for controlled and targeted cell-free therapeutic approaches.
Collapse
Affiliation(s)
- Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Andrew H. House
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science (HiLIFE), Biocenter 3, Viikinkaari 1, 00790 Helsinki, Finland
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV Groningen, the Netherlands
| | - Monia Perugini
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Toshio Miki
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Annamaria Iannetta
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Mauro Mattioli
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
5
|
Beli E, Yan Y, Moldovan L, Lydic TA, Krishman P, Tersey SA, Duan Y, Salazar TE, Dominguez JM, Nguyen DV, Cox A, Li Calzi S, Beam C, Mirmira RG, Evans-Molina C, Busik JV, Grant MB. Reshaping lipid metabolism with long-term alternate day feeding in type 2 diabetes mice. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:3. [PMID: 39911696 PMCID: PMC11790504 DOI: 10.1038/s44324-024-00039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/07/2024] [Indexed: 02/07/2025]
Abstract
Strategies to improve metabolic health include calorie restriction, time restricted eating and fasting several days per week or month. These approaches have demonstrated benefits for individuals experiencing obesity, metabolic syndrome, and prediabetes. However, their impact on established diabetes remains incompletely studied. The chronicity of type 2 diabetes (T2D) requires that interventions must be undertaken for extended periods of time, typically the entire lifetime of the individual. In this study, we examined the impact of intermittent fasting (IF), with an every-other-day protocol for a duration of 6 months in a murine model of T2D, the db/db (D) mouse on metabolism and liver steatosis. We compared D-IF mice with diabetic ad-libitum (AL; D-AL), control-IF (C-IF) and control-AL (C-AL) cohorts. We demonstrated using lipidomic, microbiome, metabolomic and liver transcriptomic studies that chronic IF improved carbohydrate utilization and glucose homeostasis without weight loss and reduced white adipose tissue inflammation and significantly impacted lipid metabolism in the liver. Microbiome studies and predicted functional analysis of gut microbiota showed that IF increased beneficial bacteria involved in sphingolipid (SL) metabolism. The metabolomic studies showed that oxidation of lipid species and ceramide levels were reduced in D-IF compared to D-AL. The liver lipidomic analysis and liver microarray confirmed a reduction in overall lipid content in D-IF mice compared to D-AL mice, especially in the feeding state as well as an overall reduction in oxidized lipids and ceramides. These studies support that long-term IF can improve glucose homeostasis and dramatically altered lipid metabolism in the absence of weight loss.
Collapse
Affiliation(s)
- Eleni Beli
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast, UK
| | - Yuanqing Yan
- Department of Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leni Moldovan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, MI USA
| | - Preethi Krishman
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
| | - Sarah A. Tersey
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Medicine, The University of Chicago, Chicago, IL USA
| | - Yaqian Duan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Tatiana E. Salazar
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - James M. Dominguez
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Dung V. Nguyen
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Abigail Cox
- Department of Comparative Pathobiology, College of Veterinary
Medicine, Purdue University, Lafayette, IN USA
| | - Sergio Li Calzi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Ophthalmology and Visual Science, University of Alabama Birmingham, Birmingham, AL USA
| | - Craig Beam
- Department of Biomedical Sciences, Homer Stryker MD School of
Medicine, Western Michigan University, Kalamazoo, MI USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Medicine, The University of Chicago, Chicago, IL USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, MI USA
- Present Address: Department of Biochemistry and Physiology, The university of Oklahoma Health Sciences, Oklahoma City, OK USA
| | - Maria B. Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Ophthalmology and Visual Science, University of Alabama Birmingham, Birmingham, AL USA
| |
Collapse
|
6
|
House AH, Debes PV, Holopainen M, Käkelä R, Donner I, Frapin M, Ahi EP, Kurko J, Ruhanen H, Primmer CR. Seasonal and genetic effects on lipid profiles of juvenile Atlantic salmon. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159565. [PMID: 39332667 DOI: 10.1016/j.bbalip.2024.159565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Seasonality can influence many physiological traits requiring optimal energetic capacity for life-history stage transitions. In Atlantic salmon, high-energy status is essential for the initiation of maturation. Earlier studies have linked a genomic region encoding vgll3 to maturation age, potentially mediated via body condition. Vgll3 has also been shown to act as an inhibitor of adipogenesis in mice. Here we investigate the influence of season and vgll3 genotypes associating with early (EE) and late (LL) maturation on lipid profiles in the muscle and liver of juvenile Atlantic salmon. We reared Atlantic salmon for two years from fertilization and sampled muscle and liver during the spring and autumn of the second year (at which time some males were sexually mature). We found no seasonal or genotype effect in the muscle lipid profiles of immature males or females. However, in the liver we detected a triacylglycerol enrichment and a genotype specific direction of change in membrane lipids, phosphatidylcholine and phosphatidylethanolamine, from spring to autumn. Specifically, from spring to autumn membrane lipid concentrations increased in vgll3*EE individuals but decreased in vgll3*LL individuals. This could be explained by 1) a seasonally more stable capacity of endoplasmic reticulum (ER) functions in vgll3*EE individuals compared to vgll3*LL individuals or 2) vgll3*LL individuals storing larger lipid droplets from spring to autumn in the liver compared to vgll3*EE individuals at the expense of ER capacity. This genotype specific seasonal direction of change in membrane lipid concentrations provides more indirect evidence of a potential mechanism linking vgll3 with lipid metabolism and storage.
Collapse
Affiliation(s)
- Andrew H House
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Viikinkaari 1, 00790 Helsinki, Finland; Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Pääjärventie 320, 16900 Hämeenlinna, Finland.
| | - Paul V Debes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland
| | - Minna Holopainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Viikinkaari 1, 00790 Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Viikinkaari 1, 00790 Helsinki, Finland
| | - Iikki Donner
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland
| | - Morgane Frapin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland
| | - Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland
| | - Johanna Kurko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Viikinkaari 1, 00790 Helsinki, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland
| |
Collapse
|
7
|
Taskinen JH, Holopainen M, Ruhanen H, van der Stoel M, Käkelä R, Ikonen E, Keskitalo S, Varjosalo M, Olkkonen VM. Functional omics of ORP7 in primary endothelial cells. BMC Biol 2024; 22:292. [PMID: 39695567 DOI: 10.1186/s12915-024-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Many members of the oxysterol-binding protein-related protein (ORP) family have been characterized in detail over the past decades, but the lipid transport and other functions of ORP7 still remain elusive. What is known about ORP7 points toward an endoplasmic reticulum and plasma membrane-localized protein, which also interacts with GABA type A receptor-associated protein like 2 (GABARAPL2) and unlipidated Microtubule-associated proteins 1A/1B light chain 3B (LC3B), suggesting a further autophagosomal/lysosomal association. Functional roles of ORP7 have been suggested in cholesterol efflux, hypercholesterolemia, and macroautophagy. We performed a hypothesis-free multi-omics analysis of chemical ORP7 inhibition utilizing transcriptomics and lipidomics as well as proximity biotinylation interactomics to characterize ORP7 functions in a primary cell type, human umbilical vein endothelial cells (HUVECs). Moreover, assays on angiogenesis, cholesterol efflux, and lipid droplet quantification were conducted. RESULTS Pharmacological inhibition of ORP7 leads to an increase in gene expression related to lipid metabolism and inflammation, while genes associated with cell cycle and cell division were downregulated. Lipidomic analysis revealed increases in ceramides and lysophosphatidylcholines as well as saturated and monounsaturated triacylglycerols. Significant decreases were seen in all cholesteryl ester and in some unsaturated triacylglycerol species, compatible with the detected decrease of mean lipid droplet area. Along with the reduced lipid stores, ATP-binding cassette subfamily G member 1 (ABCG1)-mediated cholesterol efflux and angiogenesis decreased. Interactomics revealed an interaction of ORP7 with AKT1, a central metabolic regulator. CONCLUSIONS The transcriptomics results suggest an increase in prostanoid as well as oxysterol synthesis, which could be related to the observed upregulation of proinflammatory genes. We envision that the defective angiogenesis in HUVECs subjected to ORP7 inhibition could be the result of an unfavorable plasma membrane lipid composition and/or reduced potential for cell division. To conclude, the present study suggests multifaceted functions of ORP7 in lipid homeostasis, angiogenic tube formation, and gene expression of lipid metabolism, inflammation, and cell cycle in primary endothelial cells.
Collapse
Affiliation(s)
- Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Minna Holopainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Miesje van der Stoel
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Salla Keskitalo
- Proteomics Unit Viikki, Institute of Biotechnology, HiLIFE and Biocenter Finland, University of Helsinki, Viikinkaari 1, 00790, Helsinki, Finland
| | - Markku Varjosalo
- Proteomics Unit Viikki, Institute of Biotechnology, HiLIFE and Biocenter Finland, University of Helsinki, Viikinkaari 1, 00790, Helsinki, Finland
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
| |
Collapse
|
8
|
Mönki J, Holopainen M, Ruhanen H, Karikoski N, Käkelä R, Mykkänen A. Lipid species profiling of bronchoalveolar lavage fluid cells of horses housed on two different bedding materials. Sci Rep 2023; 13:21778. [PMID: 38066223 PMCID: PMC10709413 DOI: 10.1038/s41598-023-49032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
The lipidome of equine BALF cells has not been described. The objectives of this prospective repeated-measures study were to explore the BALF cells' lipidome in horses and to identify lipids associated with progression or resolution of airway inflammation. BALF cells from 22 horses exposed to two bedding materials (Peat 1-Wood shavings [WS]-Peat 2) were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of bedding on lipid class and species compositions were tested with rmANOVA. Correlations between lipids and cell counts were examined. The BALF cells' lipidome showed bedding-related differences for molar percentage (mol%) of 60 species. Whole phosphatidylcholine (PC) class and its species PC 32:0 (main molecular species 16:0_16:0) had higher mol% after Peat 2 compared with WS. Phosphatidylinositol 38:4 (main molecular species 18:0_20:4) was higher after WS compared with both peat periods. BALF cell count correlated positively with mol% of the lipid classes phosphatidylserine, sphingomyelin, ceramide, hexosylceramide, and triacylglycerol but negatively with PC. BALF cell count correlated positively with phosphatidylinositol 38:4 mol%. In conclusion, equine BALF cells' lipid profiles explored with MS-based lipidomics indicated subclinical inflammatory changes after WS. Inflammatory reactions in the cellular lipid species composition were detected although cytological responses indicating inflammation were weak.
Collapse
Affiliation(s)
- Jenni Mönki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland.
| | - Minna Holopainen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Ninja Karikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| |
Collapse
|
9
|
Taskinen JH, Ruhanen H, Matysik S, Käkelä R, Olkkonen VM. Systemwide effects of ER-intracellular membrane contact site disturbance in primary endothelial cells. J Steroid Biochem Mol Biol 2023; 232:106349. [PMID: 37321512 DOI: 10.1016/j.jsbmb.2023.106349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Membrane contact sites (MCS) make up a crucial route of inter-organelle non-vesicular transport within the cell. Multiple proteins are involved in this process, which includes the ER-resident proteins vesicle associated membrane protein associated protein A and -B (VAPA/B) that form MCS between the ER and other membrane compartments. Currently most functional data on VAP depleted phenotypes have shown alterations in lipid homeostasis, induction of ER stress, dysfunction of UPR and autophagy, as well as neurodegeneration. Literature on concurrent silencing of VAPA/B is still sparse; therefore, we investigated how it affects the macromolecule pools of primary endothelial cells. Our transcriptomics results showed significant upregulation in genes related to inflammation, ER and Golgi dysfunction, ER stress, cell adhesion, as well as Coat Protein Complex-I and -II (COP-I, COP-II) vesicle transport. Genes related to cellular division were downregulated, as well as key genes of lipid and sterol biosynthesis. Lipidomics analyses revealed reductions in cholesteryl esters, very long chain highly unsaturated and saturated lipids, whereas increases in free cholesterol and relatively short chain unsaturated lipids were evident. Furthermore, the knockdown resulted in an inhibition of angiogenesis in vitro. We speculate that ER MCS depletion has led to multifaceted outcomes, which include elevated ER free cholesterol content and ER stress, alterations in lipid metabolism, ER-Golgi function and vesicle transport, which have led to a reduction in angiogenesis. The silencing also induced an inflammatory response, consistent with upregulation of markers of early atherogenesis. To conclude, ER MCS mediated by VAPA/B play a crucial role in maintaining cholesterol traffic and sustain normal endothelial functions.
Collapse
Affiliation(s)
- Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
10
|
Ruiz M, Devkota R, Kaper D, Ruhanen H, Busayavalasa K, Radović U, Henricsson M, Käkelä R, Borén J, Pilon M. AdipoR2 recruits protein interactors to promote fatty acid elongation and membrane fluidity. J Biol Chem 2023:104799. [PMID: 37164154 DOI: 10.1016/j.jbc.2023.104799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
The human AdipoR2 and its C. elegans homolog PAQR-2 are multi-pass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labelled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified co-immunoprecipitated proteins using mass spectroscopy. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation, and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Delaney Kaper
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science, Biocenter Finland, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Uroš Radović
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science, Biocenter Finland, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
11
|
Lerner R, Baker D, Schwitter C, Neuhaus S, Hauptmann T, Post JM, Kramer S, Bindila L. Four-dimensional trapped ion mobility spectrometry lipidomics for high throughput clinical profiling of human blood samples. Nat Commun 2023; 14:937. [PMID: 36806650 PMCID: PMC9941096 DOI: 10.1038/s41467-023-36520-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Lipidomics encompassing automated lipid extraction, a four-dimensional (4D) feature selection strategy for confident lipid annotation as well as reproducible and cross-validated quantification can expedite clinical profiling. Here, we determine 4D descriptors (mass to charge, retention time, collision cross section, and fragmentation spectra) of 200 lipid standards and 493 lipids from reference plasma via trapped ion mobility mass spectrometry to enable the implementation of stringent criteria for lipid annotation. We use 4D lipidomics to confidently annotate 370 lipids in reference plasma samples and 364 lipids in serum samples, and reproducibly quantify 359 lipids using level-3 internal standards. We show the utility of our 4D lipidomics workflow for high-throughput applications by reliable profiling of intra-individual lipidome phenotypes in plasma, serum, whole blood, venous and finger-prick dried blood spots.
Collapse
Affiliation(s)
- Raissa Lerner
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Dhanwin Baker
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Claudia Schwitter
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Sarah Neuhaus
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Tony Hauptmann
- Data Mining, Institute of Computer Science, Johannes Gutenberg University Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Julia M Post
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Stefan Kramer
- Data Mining, Institute of Computer Science, Johannes Gutenberg University Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
12
|
Untargeted Analysis of Lipids Containing Very Long Chain Fatty Acids in Retina and Retinal Tight Junctions. Methods Mol Biol 2023; 2625:269-290. [PMID: 36653650 DOI: 10.1007/978-1-0716-2966-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several recent studies suggest that C24-C38 very long chain fatty acids (VLCFA) play an important role in vision, and decreased levels of retina VLCFA have been associated with vision disorders including the onset and progression of diabetic retinopathy in animal models. Traditional methods for VLCFA analysis lack the sensitivity and specificity needed to enable detailed characterization of VLCFA incorporation into complex lipids in tissues and subcellular components. To assess whether decreased VLCFA in diabetic retina are directly implicated in diabetes-induced breakdown of the blood-retinal barrier, we demonstrated the utility of performing untargeted lipid analysis via Orbitrap high resolution/accurate mass MS and MS/MS-based shotgun lipidomics to identify structural lipids containing VLCFA substituents. This comprehensive and highly sensitive approach to untargeted lipid identification enabled us to characterize low-abundance sphingolipids containing very long chain fatty acids from isolated retinal tight junction complexes, as well as VLCFA-containing phospholipids in retinal tissues. To facilitate future biochemical and physiological studies of the roles of VLCFA in blood-retina barrier integrity and maintenance of vision, this chapter describes steps to isolate tight junction complexes from a cell culture model of the outer blood-retinal barrier and perform untargeted Orbitrap high resolution/accurate mass-based lipid analysis to identify VLCFA in tight junctions and retina tissue.
Collapse
|
13
|
Systematic design of cell membrane coating to improve tumor targeting of nanoparticles. Nat Commun 2022; 13:6181. [PMID: 36261418 PMCID: PMC9580449 DOI: 10.1038/s41467-022-33889-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Cell membrane (CM) coating technology is increasingly being applied in nanomedicine, but the entire coating procedure including adsorption, rupture, and fusion is not completely understood. Previously, we showed that the majority of biomimetic nanoparticles (NPs) were only partially coated, but the mechanism underlying this partial coating remains unclear, which hinders the further improvement of the coating technique. Here, we show that partial coating is an intermediate state due to the adsorption of CM fragments or CM vesicles, the latter of which could eventually be ruptured under external force. Such partial coating is difficult to self-repair to achieve full coating due to the limited membrane fluidity. Building on our understanding of the detailed coating process, we develop a general approach for fixing the partial CM coating: external phospholipid is introduced as a helper to increase CM fluidity, promoting the final fusion of lipid patches. The NPs coated with this approach have a high ratio of full coating (~23%) and exhibit enhanced tumor targeting ability in comparison to the NPs coated traditionally (full coating ratio of ~6%). Our results provide a mechanistic basis for fixing partial CM coating towards enhancing tumor accumulation.
Collapse
|
14
|
Taskinen JH, Ruhanen H, Matysik S, Käkelä R, Olkkonen VM. Global effects of pharmacologic inhibition of OSBP in human umbilical vein endothelial cells. Steroids 2022; 185:109053. [PMID: 35623602 DOI: 10.1016/j.steroids.2022.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/14/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
Oxysterol-binding protein (OSBP) is a cholesterol/PI4P exchanger at contacts of the endoplasmic reticulum (ER) with trans-Golgi network (TGN) and endosomes. Several central endothelial cell (EC) functions depend on adequate cholesterol distribution in cellular membranes. Here we elucidated the effects of pharmacologic OSBP inhibition on the lipidome and transcriptome of human umbilical vein endothelial cells (HUVECs). OSBP was inhibited for 24 h with 25 nM Schweinfurthin G (SWG) or Orsaponin (OSW-1), followed by analyses of cellular cholesterol, 27-hydroxy-cholesterol, and triacylglycerol concentration, phosphatidylserine synthesis rate, the lipidome, as well as lipid droplet staining and western analysis of OSBP protein. Next-generation RNA sequencing of the SWG-treated and control HUVECs and angiogenesis assays were performed. Protein-normalized lipidomes of the inhibitor-treated cells revealed decreases in glycerophospholipids, the most pronounced effect being on phosphatidylserines and the rate of their synthesis, as well as increases in cholesteryl esters, triacylglycerols and lipid droplet number. Transcriptome analysis of SWG-treated cells suggested ER stress responses apparently caused by disturbed cholesterol exit from the ER, as indicated by suppression of cholesterol biosynthetic genes. OSBP was associated with the TGN in the absence of inhibitors and disappeared therefrom in inhibitor-treated cells in a time-dependent manner, coinciding with OSBP reduction on western blots. Prolonged treatment with SWG or OSW-1 inhibited angiogenesis in vitro. To conclude, inhibition of OSBP in primary endothelial cells induced multiple effects on the lipidome, transcriptome changes suggesting ER stress, and disruption of in vitro angiogenic capacity. Thus, OSBP is a crucial regulator of EC lipid homeostasis and angiogenic capacity.
Collapse
Affiliation(s)
- Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland.
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland.
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland.
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
15
|
Hoffmann N, Mayer G, Has C, Kopczynski D, Al Machot F, Schwudke D, Ahrends R, Marcus K, Eisenacher M, Turewicz M. A Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics. Metabolites 2022; 12:584. [PMID: 35888710 PMCID: PMC9319858 DOI: 10.3390/metabo12070584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/13/2022] Open
Abstract
Mass spectrometry is a widely used technology to identify and quantify biomolecules such as lipids, metabolites and proteins necessary for biomedical research. In this study, we catalogued freely available software tools, libraries, databases, repositories and resources that support lipidomics data analysis and determined the scope of currently used analytical technologies. Because of the tremendous importance of data interoperability, we assessed the support of standardized data formats in mass spectrometric (MS)-based lipidomics workflows. We included tools in our comparison that support targeted as well as untargeted analysis using direct infusion/shotgun (DI-MS), liquid chromatography-mass spectrometry, ion mobility or MS imaging approaches on MS1 and potentially higher MS levels. As a result, we determined that the Human Proteome Organization-Proteomics Standards Initiative standard data formats, mzML and mzTab-M, are already supported by a substantial number of recent software tools. We further discuss how mzTab-M can serve as a bridge between data acquisition and lipid bioinformatics tools for interpretation, capturing their output and transmitting rich annotated data for downstream processing. However, we identified several challenges of currently available tools and standards. Potential areas for improvement were: adaptation of common nomenclature and standardized reporting to enable high throughput lipidomics and improve its data handling. Finally, we suggest specific areas where tools and repositories need to improve to become FAIRer.
Collapse
Affiliation(s)
- Nils Hoffmann
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences (IBG-5), 52425 Jülich, Germany
| | - Gerhard Mayer
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany;
| | - Canan Has
- Biological Mass Spectrometry, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany;
- University Hospital Carl Gustav Carus, 01307 Dresden, Germany
- CENTOGENE GmbH, 18055 Rostock, Germany
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (D.K.); (R.A.)
| | - Fadi Al Machot
- Faculty of Science and Technology, Norwegian University for Life Science (NMBU), 1433 Ås, Norway;
| | - Dominik Schwudke
- Bioanalytical Chemistry, Forschungszentrum Borstel, Leibniz Lung Center, 23845 Borstel, Germany;
- Airway Research Center North, German Center for Lung Research (DZL), 23845 Borstel, Germany
- German Center for Infection Research (DZIF), TTU Tuberculosis, 23845 Borstel, Germany
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (D.K.); (R.A.)
| | - Katrin Marcus
- Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr University Bochum, 44801 Bochum, Germany; (K.M.); (M.E.)
| | - Martin Eisenacher
- Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr University Bochum, 44801 Bochum, Germany; (K.M.); (M.E.)
- Faculty of Medicine, Medizinisches Proteom-Center, Ruhr University Bochum, 44801 Bochum, Germany
| | - Michael Turewicz
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764 Neuherberg, Germany
| |
Collapse
|
16
|
Döhla J, Kuuluvainen E, Gebert N, Amaral A, Englund JI, Gopalakrishnan S, Konovalova S, Nieminen AI, Salminen ES, Torregrosa Muñumer R, Ahlqvist K, Yang Y, Bui H, Otonkoski T, Käkelä R, Hietakangas V, Tyynismaa H, Ori A, Katajisto P. Metabolic determination of cell fate through selective inheritance of mitochondria. Nat Cell Biol 2022; 24:148-154. [PMID: 35165416 PMCID: PMC7612378 DOI: 10.1038/s41556-021-00837-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Metabolic characteristics of adult stem cells are distinct from their differentiated progeny, and cellular metabolism is emerging as a potential driver of cell fate conversions1-4. How these metabolic features are established remains unclear. Here we identified inherited metabolism imposed by functionally distinct mitochondrial age-classes as a fate determinant in asymmetric division of epithelial stem-like cells. While chronologically old mitochondria support oxidative respiration, the electron transport chain of new organelles is proteomically immature and they respire less. After cell division, selectively segregated mitochondrial age-classes elicit a metabolic bias in progeny cells, with oxidative energy metabolism promoting differentiation in cells that inherit old mitochondria. Cells that inherit newly synthesized mitochondria with low levels of Rieske iron-sulfur polypeptide 1 have a higher pentose phosphate pathway activity, which promotes de novo purine biosynthesis and redox balance, and is required to maintain stemness during early fate determination after division. Our results demonstrate that fate decisions are susceptible to intrinsic metabolic bias imposed by selectively inherited mitochondria.
Collapse
Affiliation(s)
- Julia Döhla
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emilia Kuuluvainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nadja Gebert
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ana Amaral
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna I Englund
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Svetlana Konovalova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ella S Salminen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rubén Torregrosa Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Ahlqvist
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yang Yang
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hien Bui
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Reijo Käkelä
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
17
|
Kokki K, Lamichane N, Nieminen AI, Ruhanen H, Morikka J, Robciuc M, Rovenko BM, Havula E, Käkelä R, Hietakangas V. Metabolic gene regulation by Drosophila GATA transcription factor Grain. PLoS Genet 2021; 17:e1009855. [PMID: 34634038 PMCID: PMC8530363 DOI: 10.1371/journal.pgen.1009855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/21/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nutrient-dependent gene regulation critically contributes to homeostatic control of animal physiology in changing nutrient landscape. In Drosophila, dietary sugars activate transcription factors (TFs), such as Mondo-Mlx, Sugarbabe and Cabut, which control metabolic gene expression to mediate physiological adaptation to high sugar diet. TFs that correspondingly control sugar responsive metabolic genes under conditions of low dietary sugar remain, however, poorly understood. Here we identify a role for Drosophila GATA TF Grain in metabolic gene regulation under both low and high sugar conditions. De novo motif prediction uncovered a significant over-representation of GATA-like motifs on the promoters of sugar-activated genes in Drosophila larvae, which are regulated by Grain, the fly ortholog of GATA1/2/3 subfamily. grain expression is activated by sugar in Mondo-Mlx-dependent manner and it contributes to sugar-responsive gene expression in the fat body. On the other hand, grain displays strong constitutive expression in the anterior midgut, where it drives lipogenic gene expression also under low sugar conditions. Consistently with these differential tissue-specific roles, Grain deficient larvae display delayed development on high sugar diet, while showing deregulated central carbon and lipid metabolism primarily on low sugar diet. Collectively, our study provides evidence for the role of a metazoan GATA transcription factor in nutrient-responsive metabolic gene regulation in vivo.
Collapse
Affiliation(s)
- Krista Kokki
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicole Lamichane
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Anni I. Nieminen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Jack Morikka
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marius Robciuc
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Bohdana M. Rovenko
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Essi Havula
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Erkkilä AT, Manninen S, Fredrikson L, Bhalke M, Holopainen M, Ruuth M, Lankinen M, Käkelä R, Öörni K, Schwab US. Lipidomic changes of LDL after consumption of Camelina sativa oil, fatty fish and lean fish in subjects with impaired glucose metabolism-A randomized controlled trial. J Clin Lipidol 2021; 15:743-751. [PMID: 34548243 DOI: 10.1016/j.jacl.2021.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is little knowledge on the effects of alpha-linolenic acid (ALA) and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) on the LDL lipidome and aggregation of LDL particles. OBJECTIVE We examined if consumption of Camelina sativa oil (CSO) as a source of ALA, fatty fish (FF) as a source of n-3 LCPUFA and lean fish (LF) as a source of fish protein affect the lipidome of LDL as compared to a control diet. METHODS Participants with impaired glucose tolerance (39 women and 40 men) were randomized to 4 study groups (CSO providing 10 g/d ALA, FF and LF [both 4 fish meals/wk] and control limiting their fish and ALA intake) in a 12-week, parallel trial. Diets were instructed and dietary fats were provided to the participants. The lipidome of LDL particles isolated from samples collected at baseline and after intervention was analyzed with electrospray ionization-tandem mass spectrometry. RESULTS In the CSO group, the relative concentrations of saturated and monounsaturated cholesteryl ester species in LDL decreased and the species with ALA increased. In the FF group, LDL phosphatidylcholine (PC) species containing n-3 LCPUFA increased. There was a significant positive correlation between the change in total sphingomyelin and change in LDL aggregation, while total PC and triunsaturated PC species were inversely associated with LDL aggregation when all the study participants were included in the analysis. CONCLUSION Dietary intake of CSO and FF modifies the LDL lipidome to contain more polyunsaturated and less saturated lipid species. The LDL surface lipids are associated with LDL aggregation.
Collapse
Affiliation(s)
- Arja T Erkkilä
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Suvi Manninen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Linda Fredrikson
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Monika Bhalke
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna Holopainen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland; Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ursula S Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
19
|
Syed S, Nissilä E, Ruhanen H, Fudo S, Gaytán MO, Sihvo SP, Lorey MB, Metso J, Öörni K, King SJ, Oommen OP, Jauhiainen M, Meri S, Käkelä R, Haapasalo K. Streptococcus pneumoniae pneumolysin and neuraminidase A convert high-density lipoproteins into pro-atherogenic particles. iScience 2021; 24:102535. [PMID: 34124613 PMCID: PMC8175417 DOI: 10.1016/j.isci.2021.102535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
High-density lipoproteins (HDLs) are a group of different subpopulations of sialylated particles that have an essential role in the reverse cholesterol transport (RCT) pathway. Importantly, changes in the protein and lipid composition of HDLs may lead to the formation of particles with reduced atheroprotective properties. Here, we show that Streptococcus pneumoniae pneumolysin (PLY) and neuraminidase A (NanA) impair HDL function by causing chemical and structural modifications of HDLs. The proteomic, lipidomic, cellular, and biochemical analysis revealed that PLY and NanA induce significant changes in sialic acid, protein, and lipid compositions of HDL. The modified HDL particles have reduced cholesterol acceptor potential from activated macrophages, elevated levels of malondialdehyde adducts, and show significantly increased complement activating capacity. These results suggest that accumulation of these modified HDL particles in the arterial intima may present a trigger for complement activation, inflammatory response, and thereby promote atherogenic disease progression. S. pneumoniae molecules PLY and NanA target human high-density lipoprotein (HDL). These interactions result in major modifications in the HDL proteome and lipidome. Microbially modified HDL activates humoral and cell-mediated innate immune responses. The activated immune response mediates formation of pro-atherogenic epitopes on HDL.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Nissilä
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki 00014, Finland
| | - Satoshi Fudo
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sanna P. Sihvo
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki 00014, Finland
| | | | - Jari Metso
- Minerva Foundation Institute for Medical Research, Biomedicum, 00290 Helsinki, Finland
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33720 Tampere, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum, 00290 Helsinki, Finland
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki 00014, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
- Corresponding author
| |
Collapse
|
20
|
Leimanis-Laurens M, Wolfrum E, Ferguson K, Grunwell JR, Sanfilippo D, Prokop JW, Lydic TA, Rajasekaran S. Hexosylceramides and Glycerophosphatidylcholine GPC(36:1) Increase in Multi-Organ Dysfunction Syndrome Patients with Pediatric Intensive Care Unit Admission over 8-Day Hospitalization. J Pers Med 2021; 11:339. [PMID: 33923179 PMCID: PMC8145972 DOI: 10.3390/jpm11050339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
Glycero- and sphingo-lipids are important in plasma membrane structure, caloric storage and signaling. An un-targeted lipidomics approach for a cohort of critically ill pediatric intensive care unit (PICU) patients undergoing multi-organ dysfunction syndrome (MODS) was compared to sedation controls. After IRB approval, patients meeting the criteria for MODS were screened, consented (n = 24), and blood samples were collected from the PICU at HDVCH, Michigan; eight patients needed veno-arterial extracorporeal membrane oxygenation (VA ECMO). Sedation controls were presenting for routine sedation (n = 4). Plasma lipid profiles were determined by nano-electrospray (nESI) direct infusion high resolution/accurate mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Biostatistics analysis was performed using R v 3.6.0. Sixty-one patient samples over three time points revealed a ceramide metabolite, hexosylceramide (Hex-Cer) was high across all time points (mean 1.63-3.19%; vs. controls 0.22%). Fourteen species statistically differentiated from sedation controls (p-value ≤ 0.05); sphingomyelin (SM) [SM(d18:1/23:0), SM(d18:1/22:0), SM(d18:1/23:1), SM(d18:1/21:0), SM(d18:1/24:0)]; and glycerophosphotidylcholine (GPC) [GPC(36:01), GPC(18:00), GPC(O:34:02), GPC(18:02), GPC(38:05), GPC(O:34:03), GPC(16:00), GPC(40:05), GPC(O:36:03)]. Hex-Cer has been shown to be involved in viral infection and may be at play during acute illness. GPC(36:01) was elevated in all MODS patients at all time points and is associated with inflammation and brain injury.
Collapse
Affiliation(s)
- Mara Leimanis-Laurens
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (K.F.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg., 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Emily Wolfrum
- Bioinformatics & Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Karen Ferguson
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (K.F.); (D.S.); (S.R.)
| | - Jocelyn R. Grunwell
- Pediatric Critical Care Medicine, Emory University & Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Dominic Sanfilippo
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (K.F.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg., 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Jeremy W. Prokop
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg., 1355 Bogue Street, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Todd A. Lydic
- Collaborative Mass Spectrometry Core, Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Surender Rajasekaran
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (K.F.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg., 1355 Bogue Street, East Lansing, MI 48824, USA;
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
| |
Collapse
|
21
|
Leimanis-Laurens ML, Ferguson K, Wolfrum E, Boville B, Sanfilippo D, Lydic TA, Prokop JW, Rajasekaran S. Pediatric Multi-Organ Dysfunction Syndrome: Analysis by an Untargeted "Shotgun" Lipidomic Approach Reveals Low-Abundance Plasma Phospholipids and Dynamic Recovery over 8-Day Period, a Single-Center Observational Study. Nutrients 2021; 13:774. [PMID: 33673500 PMCID: PMC7997359 DOI: 10.3390/nu13030774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Lipids are molecules involved in metabolism and inflammation. This study investigates the plasma lipidome for markers of severity and nutritional status in critically ill children. Children with multi-organ dysfunction syndrome (MODS) (n = 24) are analyzed at three time-points and cross-referenced to sedation controls (n = 4) for a total of N = 28. Eight of the patients with MODS, needed veno-arterial extracorporeal membrane oxygenation (VA ECMO) support to survive. Blood plasma lipid profiles are quantified by nano-electrospray (nESI), direct infusion high resolution/accurate mass spectrometry (MS), and tandem mass spectrometry (MS/MS), and compared to nutritional profiles and pediatric logistic organ dysfunction (PELOD) scores. Our results show that PELOD scores were not significantly different between MODS and ECMO cases across time-points (p = 0.66). Lipid profiling provides stratification between sedation controls and all MODS patients for total lysophosphatidylserine (lysoPS) (p-value = 0.004), total phosphatidylserine (PS) (p-value = 0.015), and total ether-linked phosphatidylethanolamine (ether-PE) (p-value = 0.03) after adjusting for sex and age. Nutrition intake over time did not correlate with changes in lipid profiles, as measured by caloric and protein intake. Lipid measurement in the intensive care environment shows dynamic changes over an 8-day pediatric intensive care unit (PICU) course, suggesting novel metabolic indicators for defining critically ill children.
Collapse
Affiliation(s)
- Mara L. Leimanis-Laurens
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Karen Ferguson
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
| | - Emily Wolfrum
- Van Andel Institute, Bioinformatics & Biostatistics Core, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA;
| | - Brian Boville
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Dominic Sanfilippo
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Todd A. Lydic
- Department of Physiology, Collaborative Mass Spectrometry Core, 567 Wilson Road, East Lansing, MI 48824, USA;
| | - Jeremy W. Prokop
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Surender Rajasekaran
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| |
Collapse
|
22
|
Höring M, Ejsing CS, Krautbauer S, Ertl VM, Burkhardt R, Liebisch G. Accurate quantification of lipid species affected by isobaric overlap in Fourier-transform mass spectrometry. J Lipid Res 2021; 62:100050. [PMID: 33600775 PMCID: PMC8010702 DOI: 10.1016/j.jlr.2021.100050] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 11/05/2022] Open
Abstract
Lipidomics data require consideration of ions with near-identical masses, which comprises among others the Type-II isotopic overlap. This overlap occurs in series of lipid species differing only by number of double bonds (DBs) mainly because of the natural abundance of 13C-atoms. High-resolution mass spectrometry, such as Fourier-transform mass spectrometry (FTMS), is capable of resolving Type-II overlap depending on mass resolving power. In this work, we evaluated FTMS quantification accuracy of lipid species affected by Type-II overlap. Spike experiments with lipid species pairs of various lipid classes were analyzed by flow injection analysis-FTMS. Accuracy of quantification was evaluated without and with Type-II correction (using relative isotope abundance) as well as utilizing the first isotopic peak (M+1). Isobaric peaks, which were sufficiently resolved, were most accurate without Type-II correction. In cases of partially resolved peaks, we observed peak interference causing distortions in mass and intensity, which is a well-described phenomenon in FTMS. Concentrations of respective species were more accurate when calculated from M+1. Moreover, some minor species, affected by considerable Type-II overlap, could only be quantified by M+1. Unexpectedly, even completely unresolved peaks were substantially overcorrected by Type-II correction because of peak interference. The described method was validated including intraday and interday precisions for human serum and fibroblast samples. Taken together, our results show that accurate quantification of lipid species by FTMS requires resolution-depended data analysis.
Collapse
Affiliation(s)
- Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Verena M Ertl
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
23
|
Hofferek V, Su H, Reid GE. Chemical Derivatization-Aided High Resolution Mass Spectrometry for Shotgun Lipidome Analysis. Methods Mol Biol 2021; 2306:61-75. [PMID: 33954940 DOI: 10.1007/978-1-0716-1410-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemical derivatization coupled with nano-electrospray ionization (nESI) and ultra-high resolution accurate mass spectrometry (UHRAMS) is an established approach to overcome isobaric and isomeric mass interference limitations, and improve the analytical performance, of direct-infusion (i.e., "shotgun") lipidome analysis strategies for "sum composition" level identification and quantification of individual lipid species from within complex mixtures. Here, we describe a protocol for sequential functional group selective derivatization of aminophospholipids and O-alk-1'-enyl (i.e., plasmalogen) lipids, that when integrated into a shotgun lipidomics workflow involving deuterium-labeled internal lipid standard addition, monophasic lipid extraction, and nESI-UHRAMS analysis, enables the routine identification and quantification of >500 individual lipid species at the "sum composition" level, across four lipid categories and from >30 lipid classes and subclasses.
Collapse
Affiliation(s)
- Vinzenz Hofferek
- School of Chemistry, The University of Melbourne, Parkville, VIC, Australia
| | - Huaqi Su
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, VIC, Australia. .,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia. .,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
|
25
|
Bukowski MR, Picklo MJ. Simple, Rapid Lipidomic Analysis of Triacylglycerols in Bovine Milk by Infusion-Electrospray Mass Spectrometry. Lipids 2020; 56:243-255. [PMID: 33169389 DOI: 10.1002/lipd.12292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 11/11/2022]
Abstract
Bovine milk is a complex mixture of lipids, proteins, carbohydrates, and other factors of which lipids comprise 3-5% of the total mass. Rapid analysis and characterization of the triacylglycerols (TAG) that comprise about 95% of the total lipid is daunting given the numerous TAG species. In the attached methods paper, we demonstrate an improved method for identifying and quantifying TAG species by infusion-based "shotgun" lipidomics. Because of the broad range of TAG species in milk, a single internal standard was insufficient for the analysis and required sectioning the spectrum into three portions based upon mass range to provide accurate quantitation of TAG species. Isobaric phospholipid interferences were removed using a simple dispersive solid-phase extraction step. Using this method, > 100 TAG species were quantitated by acyl carbon number and desaturation level in a sample of commercially purchased bovine milk.
Collapse
Affiliation(s)
- Michael R Bukowski
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, 58203, USA
| | - Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, 58203, USA
| |
Collapse
|
26
|
Lehmann P, Westberg M, Tang P, Lindström L, Käkelä R. The Diapause Lipidomes of Three Closely Related Beetle Species Reveal Mechanisms for Tolerating Energetic and Cold Stress in High-Latitude Seasonal Environments. Front Physiol 2020; 11:576617. [PMID: 33101058 PMCID: PMC7546402 DOI: 10.3389/fphys.2020.576617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
During winter insects face energetic stress driven by lack of food, and thermal stress due to sub-optimal and even lethal temperatures. To survive, most insects living in seasonal environments such as high latitudes, enter diapause, a deep resting stage characterized by a cessation of development, metabolic suppression and increased stress tolerance. The current study explores physiological adaptations related to diapause in three beetle species at high latitudes in Europe. From an ecological perspective, the comparison is interesting since one species (Leptinotarsa decemlineata) is an invasive pest that has recently expanded its range into northern Europe, where a retardation in range expansion is seen. By comparing its physiological toolkit to that of two closely related native beetles (Agelastica alni and Chrysolina polita) with similar overwintering ecology and collected from similar latitude, we can study if harsh winters might be constraining further expansion. Our results suggest all species suppress metabolism during diapause and build large lipid stores before diapause, which then are used sparingly. In all species diapause is associated with temporal shifts in storage and membrane lipid profiles, mostly in accordance with the homeoviscous adaptation hypothesis, stating that low temperatures necessitate acclimation responses that increase fluidity of storage lipids, allowing their enzymatic hydrolysis, and ensure integral protein functions. Overall, the two native species had similar lipidomic profiles when compared to the invasive species, but all species showed specific shifts in their lipid profiles after entering diapause. Taken together, all three species show adaptations that improve energy saving and storage and membrane lipid fluidity during overwintering diapause. While the three species differed in the specific strategies used to increase lipid viscosity, the two native beetle species showed a more canalized lipidomic response, than the recent invader. Since close relatives with similar winter ecology can have different winter ecophysiology, extrapolations among species should be done with care. Still, range expansion of the recent invader into high latitude habitats might indeed be retarded by lack of physiological tools to manage especially thermal stress during winter, but conversely species adapted to long cold winters may face these stressors as a consequence of ongoing climate warming.
Collapse
Affiliation(s)
- Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Melissa Westberg
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Patrik Tang
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science and Biocenter Finland, Helsinki, Finland
| |
Collapse
|
27
|
Ruuth M, Äikäs L, Tigistu-Sahle F, Käkelä R, Lindholm H, Simonen P, Kovanen PT, Gylling H, Öörni K. Plant Stanol Esters Reduce LDL (Low-Density Lipoprotein) Aggregation by Altering LDL Surface Lipids. Arterioscler Thromb Vasc Biol 2020; 40:2310-2321. [DOI: 10.1161/atvbaha.120.314329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective:
Plant stanol ester supplementation (2–3 g plant stanols/d) reduces plasma LDL (low-density lipoprotein) cholesterol concentration by 9% to 12% and is, therefore, recommended as part of prevention and treatment of atherosclerotic cardiovascular disease. In addition to plasma LDL-cholesterol concentration, also qualitative properties of LDL particles can influence atherogenesis. However, the effect of plant stanol ester consumption on the proatherogenic properties of LDL has not been studied.
Approach and Results:
Study subjects (n=90) were randomized to consume either a plant stanol ester-enriched spread (3.0 g plant stanols/d) or the same spread without added plant stanol esters for 6 months. Blood samples were taken at baseline and after the intervention. The aggregation susceptibility of LDL particles was analyzed by inducing aggregation of isolated LDL and following aggregate formation. LDL lipidome was determined by mass spectrometry. Binding of serum lipoproteins to proteoglycans was measured using a microtiter well-based assay. LDL aggregation susceptibility was decreased in the plant stanol ester group, and the median aggregate size after incubation for 2 hours decreased from 1490 to 620 nm,
P
=0.001. Plant stanol ester-induced decrease in LDL aggregation was more extensive in participants having body mass index<25 kg/m
2
. Decreased LDL aggregation susceptibility was associated with decreased proportion of LDL-sphingomyelins and increased proportion of LDL-triacylglycerols. LDL binding to proteoglycans was decreased in the plant stanol ester group, the decrease depending on decreased serum LDL-cholesterol concentration.
Conclusions:
Consumption of plant stanol esters decreases the aggregation susceptibility of LDL particles by modifying LDL lipidome. The resulting improvement of LDL quality may be beneficial for cardiovascular health.
Registration:
URL:
https://www.clinicaltrials.gov
. Unique identifier: NCT01315964.
Collapse
Affiliation(s)
- Maija Ruuth
- From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)
- Research Programs Unit, Faculty of Medicine (M.R.), University of Helsinki, Finland
| | - Lauri Äikäs
- From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)
| | - Feven Tigistu-Sahle
- From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences (F.T.-S., R.K., K.Ö.), University of Helsinki, Finland
- Ethiopian Biotechnology Institute, Addis Ababa (F.T.-S.)
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences (F.T.-S., R.K., K.Ö.), University of Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland (R.K.)
| | - Harri Lindholm
- Finnish Institute of Occupational Health, Helsinki, Finland (H.L.)
| | - Piia Simonen
- Helsinki University Central Hospital, Heart and Lung Center, Cardiology (P.S., H.G.), University of Helsinki, Finland
| | - Petri T. Kovanen
- From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)
| | - Helena Gylling
- Helsinki University Central Hospital, Heart and Lung Center, Cardiology (P.S., H.G.), University of Helsinki, Finland
| | - Katariina Öörni
- From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences (F.T.-S., R.K., K.Ö.), University of Helsinki, Finland
| |
Collapse
|
28
|
Croci D, Nevzati E, Muroi C, Schöpf S, Hornemann T, Widmer HR, Danura H, Fandino J, Marbacher S. Changes in the cerebrospinal fluid lipid profile following subarachnoid hemorrhage in a closed cranium model: Correlations to cerebral vasospasm, neuronal cell death and Interleukin-6 synthesis. A pilot study. J Stroke Cerebrovasc Dis 2020; 29:105054. [PMID: 32807460 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Phospholipids and sphingolipids are cell membrane components, that participate in signaling events and regulate a wide variety of vital cellular processes. Sphingolipids are involved in ischemic stroke pathophysiology. Throughout cleavage of membrane sphingomyelin by sphingomyelinase in stroke patients, it results in increased Ceramide (Cer) levels in brain tissue. Different studies showed the evidence that sphingomyelinase with Cer production induces expression of interleukin (IL)-6 and have vasoconstrictive proprieties. With this study, we intend to evaluate cerebrospinal fluid (CSF) lipid profile changes in a rabbit closed cranium subarachnoid hemorrhage (SAH) model. METHODS A total of 14 New Zealand white rabbits were randomly allocated either to SAH or sham group. In the first group SAH was induced by extracranial-intracranial shunting from the subclavian artery into the cisterna magna. Intracranial pressure (ICP) and arterial blood pressure were continuously monitored. Digital subtraction angiography of the basilar artery, CSF and blood samples were performed at day 0 pre SAH and on day 3 post SAH. The amount of IL-6 and various lipids in CSF were quantified using ELISA and Liquid Chromatography-Mass Spectrometry respectively. Cell death was detected in bilateral basal cortex, hippocampus (CA1 and CA3) using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). RESULTS SAH Induction led to acute increase of ICP and increased delayed cerebral vasospasm (DCVS). At follow up CSF IL-6 levels showed a significant increase compared to baseline. Between baseline and follow up there were no significant differences in any of the measured CSF Lipids irrespective of subgroups. No relevant correlation was found between IL-6 and any of the sphingolipids. We found a correlation between baseline and follow up for the phospholipids phosphatidylethanolamine and phosphatidylcholine. CONCLUSIONS Neuronal apoptosis, DCVS and IL-6 seems not to be related to changes in CSF lipid profiles except for PEA and PC in a rabbit closed cranium SAH model.
Collapse
Affiliation(s)
- Davide Croci
- Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, Switzerland; Department of Neurosurgery, Neurocenter of Southern Switzerland, Regional Hospital Lugano, Switzerland.
| | - Edin Nevzati
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland; Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, Switzerland; Department of Neurosurgery, Kantonsspital Luzern, Lucerne, Switzerland.
| | - Carl Muroi
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Salome Schöpf
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland.
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital Zurich, Switzerland.
| | - Hans-Rudolf Widmer
- Department of Neurosurgery, Bern University Hospital, Inselspital Bern, Switzerland.
| | - Hiroki Danura
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland; Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, Switzerland.
| | - Javier Fandino
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland; Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, Switzerland.
| | - Serge Marbacher
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland; Cerebrovascular Research Group, Department of BioMedical Research, University of Bern, Switzerland.
| |
Collapse
|
29
|
Abstract
We present Mass Spectrometry-Data Independent Analysis software version 4 (MS-DIAL 4), a comprehensive lipidome atlas with retention time, collision cross-section and tandem mass spectrometry information. We formulated mass spectral fragmentations of lipids across 117 lipid subclasses and included ion mobility tandem mass spectrometry. Using human, murine, algal and plant biological samples, we annotated and semiquantified 8,051 lipids using MS-DIAL 4 with a 1-2% estimated false discovery rate. MS-DIAL 4 helps standardize lipidomics data and discover lipid pathways.
Collapse
|
30
|
Levitsky Y, Hammer SS, Fisher KP, Huang C, Gentles TL, Pegouske DJ, Xi C, Lydic TA, Busik JV, Proshlyakov DA. Mitochondrial Ceramide Effects on the Retinal Pigment Epithelium in Diabetes. Int J Mol Sci 2020; 21:E3830. [PMID: 32481596 PMCID: PMC7312467 DOI: 10.3390/ijms21113830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial damage in the cells comprising inner (retinal endothelial cells) and outer (retinal pigment epithelium (RPE)) blood-retinal barriers (BRB) is known to precede the initial BRB breakdown and further histopathological abnormalities in diabetic retinopathy (DR). We previously demonstrated that activation of acid sphingomyelinase (ASM) is an important early event in the pathogenesis of DR, and recent studies have demonstrated that there is an intricate connection between ceramide and mitochondrial function. This study aimed to determine the role of ASM-dependent mitochondrial ceramide accumulation in diabetes-induced RPE cell damage. Mitochondria isolated from streptozotocin (STZ)-induced diabetic rat retinas (7 weeks duration) showed a 1.64 ± 0.29-fold increase in the ceramide-to-sphingomyelin ratio compared to controls. Conversely, the ceramide-to-sphingomyelin ratio was decreased in the mitochondria isolated from ASM-knockout mouse retinas compared to wild-type littermates, confirming the role of ASM in mitochondrial ceramide production. Cellular ceramide was elevated 2.67 ± 1.07-fold in RPE cells derived from diabetic donors compared to control donors, and these changes correlated with increased gene expression of IL-1β, IL-6, and ASM. Treatment of RPE cells derived from control donors with high glucose resulted in elevated ASM, vascular endothelial growth factor (VEGF), and intercellular adhesion molecule 1 (ICAM-1) mRNA. RPE from diabetic donors showed fragmented mitochondria and a 2.68 ± 0.66-fold decreased respiratory control ratio (RCR). Treatment of immortalized cell in vision research (ARPE-19) cells with high glucose resulted in a 25% ± 1.6% decrease in citrate synthase activity at 72 h. Inhibition of ASM with desipramine (15 μM, 1 h daily) abolished the decreases in metabolic functional parameters. Our results are consistent with diabetes-induced increase in mitochondrial ceramide through an ASM-dependent pathway leading to impaired mitochondrial function in the RPE cells of the retina.
Collapse
Affiliation(s)
- Yan Levitsky
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (D.J.P.); (C.X.)
| | - Sandra S. Hammer
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - Kiera P. Fisher
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - Chao Huang
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - Travan L. Gentles
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - David J. Pegouske
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (D.J.P.); (C.X.)
| | - Caimin Xi
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (D.J.P.); (C.X.)
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - Denis A. Proshlyakov
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (D.J.P.); (C.X.)
| |
Collapse
|
31
|
Saadat N, Lydic TA, Misra DP, Dailey R, Walker DS, Giurgescu C. Lipidome Profiles Are Related to Depressive Symptoms and Preterm Birth Among African American Women. Biol Res Nurs 2020; 22:354-361. [PMID: 32383404 DOI: 10.1177/1099800420923032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
African American women have the highest rate of preterm birth (PTB; <37 completed weeks' gestation) of any racial and ethnic group in the United States (14.1%). Depressive symptoms (DS) have been linked to PTB risk of African American women. We hypothesized that maternal lipidomic profiles are related to prenatal DS and gestational age at birth among African American women. Women were enrolled at 9-25 weeks' gestation, completed questionnaires, and provided plasma samples. Lipidomic profiles were determined by "shotgun" Orbitrap high-resolution/accurate mass spectrometry. Data were analyzed using SIMCA P+ software. There was a clear separation in the orthogonal projections to latent structures discriminant analysis score plot between women with Center for Epidemiologic Studies Depression Scale (CES-D) scores ≥23 and women with CES-D scores ≤22. Similarly, a clear separation was observed in the model between PTB and full-term birth. Corresponding S-plot, loading plot, and variable importance in projection plot/list were used to identify the lipids responsible for the groupings. Higher levels of specific triglyceride (TG) species and lower levels of specific phosphatidylcholines (PCs) PC(37:1), PC(41:6), and PC(39:3) were associated with PTB. PC PC(37:1) levels were also lower among women with CES-D scores ≥23, pointing toward a possible connection between DS and PTB. Although overweight pregnant women showed higher levels of TGs, the PTB model showed specific TGs unique to PTB. Lipidomic profiles in pregnant African American women are related to DS, and our data suggest a role for specific TGs and PCs in PTB.
Collapse
Affiliation(s)
- Nadia Saadat
- College of Nursing, Wayne State University, Detroit, MI, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Dawn P Misra
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Rhonda Dailey
- Department of Family Medicine and Public Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | | | - Carmen Giurgescu
- College of Nursing, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
32
|
Le Joncour V, Filppu P, Hyvönen M, Holopainen M, Turunen SP, Sihto H, Burghardt I, Joensuu H, Tynninen O, Jääskeläinen J, Weller M, Lehti K, Käkelä R, Laakkonen P. Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization. EMBO Mol Med 2020; 11:emmm.201809034. [PMID: 31068339 PMCID: PMC6554674 DOI: 10.15252/emmm.201809034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The current clinical care of glioblastomas leaves behind invasive, radio‐ and chemo‐resistant cells. We recently identified mammary‐derived growth inhibitor (MDGI/FABP3) as a biomarker for invasive gliomas. Here, we demonstrate a novel function for MDGI in the maintenance of lysosomal membrane integrity, thus rendering invasive glioma cells unexpectedly vulnerable to lysosomal membrane destabilization. MDGI silencing impaired trafficking of polyunsaturated fatty acids into cells resulting in significant alterations in the lipid composition of lysosomal membranes, and subsequent death of the patient‐derived glioma cells via lysosomal membrane permeabilization (LMP). In a preclinical model, treatment of glioma‐bearing mice with an antihistaminergic LMP‐inducing drug efficiently eradicated invasive glioma cells and secondary tumours within the brain. This unexpected fragility of the aggressive infiltrating cells to LMP provides new opportunities for clinical interventions, such as re‐positioning of an established antihistamine drug, to eradicate the inoperable, invasive, and chemo‐resistant glioma cells from sustaining disease progression and recurrence.
Collapse
Affiliation(s)
- Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maija Hyvönen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Holopainen
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - S Pauliina Turunen
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Harri Sihto
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Isabel Burghardt
- Department of Neurology and Brain Tumour Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Heikki Joensuu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oncology, Helsinki University Hospital, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland
| | | | - Michael Weller
- Department of Neurology and Brain Tumour Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland .,Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Ruhanen H, Haridas PAN, Minicocci I, Taskinen JH, Palmas F, di Costanzo A, D'Erasmo L, Metso J, Partanen J, Dalli J, Zhou Y, Arca M, Jauhiainen M, Käkelä R, Olkkonen VM. ANGPTL3 deficiency alters the lipid profile and metabolism of cultured hepatocytes and human lipoproteins. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158679. [PMID: 32151767 DOI: 10.1016/j.bbalip.2020.158679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
Loss-of-function (LOF) mutations in ANGPTL3, an inhibitor of lipoprotein lipase (LPL), cause a drastic reduction of serum lipoproteins and protect against the development of atherosclerotic cardiovascular disease. Therefore, ANGPTL3 is a promising therapy target. We characterized the impacts of ANGPTL3 depletion on the immortalized human hepatocyte (IHH) transcriptome, lipidome and human plasma lipoprotein lipidome. The transcriptome of ANGPTL3 knock-down (KD) cells showed altered expression of several pathways related to lipid metabolism. Accordingly, ANGPTL3 depleted IHH displayed changes in cellular overall fatty acid (FA) composition and in the lipid species composition of several lipid classes, characterized by abundant n-6 and n-3 polyunsaturated FAs (PUFAs). This PUFA increase coincided with an elevation of lipid mediators, among which there were species relevant for resolution of inflammation, protection from lipotoxic and hypoxia-induced ER stress, hepatic steatosis and insulin resistance or for the recovery from cardiovascular events. Cholesterol esters were markedly reduced in ANGPTL3 KD IHH, coinciding with suppression of the SOAT1 mRNA and protein. ANGPTL3 LOF caused alterations in plasma lipoprotein FA and lipid species composition. All lipoprotein fractions of the ANGPTL3 LOF subjects displayed a marked drop of 18:2n-6, while several highly unsaturated triacylglycerol (TAG) species were enriched. The present work reveals distinct impacts of ANGPTL3 depletion on the hepatocellular lipidome, transcriptome and lipid mediators, as well as on the lipidome of lipoproteins isolated from plasma of ANGPTL3-deficient human subjects. It is important to consider these lipidomics and transcriptomics findings when targeting ANGPTL3 for therapy and translating it to the human context.
Collapse
Affiliation(s)
- Hanna Ruhanen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), Helsinki, Finland
| | | | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Francesco Palmas
- Lipid Mediator Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alessia di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, University of Helsinki, Finland.
| |
Collapse
|
34
|
Yu M, Cui Y, Zhang X, Li R, Lin J. Organization and dynamics of functional plant membrane microdomains. Cell Mol Life Sci 2020; 77:275-287. [PMID: 31422442 PMCID: PMC11104912 DOI: 10.1007/s00018-019-03270-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
Plasma membranes are heterogeneous and laterally compartmentalized into distinct microdomains. These membrane microdomains consist of special lipids and proteins and are thought to act as signaling platforms. In plants, membrane microdomains have been detected by super-resolution microscopy, and there is evidence that they play roles in several biological processes. Here, we review current knowledge about the lipid and protein components of membrane microdomains. Furthermore, we summarize the dynamics of membrane microdomains in response to different stimuli. We also explore the biological functions associated with membrane microdomains as signal integration hubs. Finally, we outline challenges and questions for further studies.
Collapse
Affiliation(s)
- Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Cui
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
35
|
Ruiz M, Bodhicharla R, Ståhlman M, Svensk E, Busayavalasa K, Palmgren H, Ruhanen H, Boren J, Pilon M. Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity. eLife 2019; 8:47733. [PMID: 31769755 PMCID: PMC6901333 DOI: 10.7554/elife.47733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022] Open
Abstract
The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh Bodhicharla
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Svensk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Palmgren
- Metabolism BioScience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jan Boren
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Ruuth M, Janssen LG, Äikäs L, Tigistu-Sahle F, Nahon KJ, Ritvos O, Ruhanen H, Käkelä R, Boon MR, Öörni K, Rensen PC. LDL aggregation susceptibility is higher in healthy South Asian compared with white Caucasian men. J Clin Lipidol 2019; 13:910-919.e2. [DOI: 10.1016/j.jacl.2019.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/20/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022]
|
37
|
Holopainen M, Colas RA, Valkonen S, Tigistu-Sahle F, Hyvärinen K, Mazzacuva F, Lehenkari P, Käkelä R, Dalli J, Kerkelä E, Laitinen S. Polyunsaturated fatty acids modify the extracellular vesicle membranes and increase the production of proresolving lipid mediators of human mesenchymal stromal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1350-1362. [DOI: 10.1016/j.bbalip.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
38
|
Kruppa SV, Groß C, Gui X, Bäppler F, Kwasigroch B, Sun Y, Diller R, Klopper W, Niedner-Schatteburg G, Riehn C, Thiel WR. Photoinitiated Charge Transfer in a Triangular Silver(I) Hydride Complex and Its Oxophilicity. Chemistry 2019; 25:11269-11284. [PMID: 31188502 DOI: 10.1002/chem.201901981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/08/2019] [Indexed: 12/28/2022]
Abstract
The photoexcitation of a triangular silver(I) hydride complex, [Ag3 (μ3 -H)(μ2 -dcpm)3 ](PF6 )2 ([P](PF6 )2 , dcpm=bis(dicyclohexylphosphino)methane), designed with "UV-silent" bis-phosphine ligands, provokes hydride-to-Ag3 single and double electron transfer. The nature of the electronic transitions has been authenticated by absorption and photodissociation spectroscopy in parallel with high-level quantum-chemical computations utilizing the GW method and Bethe-Salpeter equation (GW-BSE). Specific photofragments of mass-selected [P]2+ ions testify to charge transfer and competing pathways resulting from the unique [Ag3 (μ3 -H)]2+ scaffold. This structural motif of [P](PF6 )2 has been unequivocally verified by 1 H NMR spectroscopy in concert with DFT and X-ray diffraction structural analysis, which revealed short equilateral Ag-Ag distances (dAgAg =3.08 Å) within the range of argentophilic interactions. The reduced radical cation [P]. + exhibits strong oxophilicity, forming [P+O2 ].+ ,which is a model intermediate for silver oxidation catalysis.
Collapse
Affiliation(s)
- Sebastian V Kruppa
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Cedric Groß
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Xin Gui
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Florian Bäppler
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 46, 67663, Kaiserslautern, Germany
| | - Björn Kwasigroch
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Yu Sun
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Rolf Diller
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 46, 67663, Kaiserslautern, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany.,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663, Kaiserslautern, Germany
| | - Christoph Riehn
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany.,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663, Kaiserslautern, Germany
| | - Werner R Thiel
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| |
Collapse
|
39
|
Lipid mediators in platelet concentrate and extracellular vesicles: Molecular mechanisms from membrane glycerophospholipids to bioactive molecules. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1168-1182. [DOI: 10.1016/j.bbalip.2019.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/15/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
|
40
|
Salo VT, Li S, Vihinen H, Hölttä-Vuori M, Szkalisity A, Horvath P, Belevich I, Peränen J, Thiele C, Somerharju P, Zhao H, Santinho A, Thiam AR, Jokitalo E, Ikonen E. Seipin Facilitates Triglyceride Flow to Lipid Droplet and Counteracts Droplet Ripening via Endoplasmic Reticulum Contact. Dev Cell 2019; 50:478-493.e9. [PMID: 31178403 DOI: 10.1016/j.devcel.2019.05.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/27/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
Abstract
Seipin is an oligomeric integral endoplasmic reticulum (ER) protein involved in lipid droplet (LD) biogenesis. To study the role of seipin in LD formation, we relocalized it to the nuclear envelope and found that LDs formed at these new seipin-defined sites. The sites were characterized by uniform seipin-mediated ER-LD necks. At low seipin content, LDs only grew at seipin sites, and tiny, growth-incompetent LDs appeared in a Rab18-dependent manner. When seipin was removed from ER-LD contacts within 1 h, no lipid metabolic defects were observed, but LDs became heterogeneous in size. Studies in seipin-ablated cells and model membranes revealed that this heterogeneity arises via a biophysical ripening process, with triglycerides partitioning from smaller to larger LDs through droplet-bilayer contacts. These results suggest that seipin supports the formation of structurally uniform ER-LD contacts and facilitates the delivery of triglycerides from ER to LDs. This counteracts ripening-induced shrinkage of small LDs.
Collapse
Affiliation(s)
- Veijo T Salo
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Shiqian Li
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | | - Ilya Belevich
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johan Peränen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Pentti Somerharju
- Department of Biochemistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alexandre Santinho
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Universite de Paris, Paris, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Universite de Paris, Paris, France.
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| |
Collapse
|
41
|
Koelmel JP, Cochran JA, Ulmer CZ, Levy AJ, Patterson RE, Olsen BC, Yost RA, Bowden JA, Garrett TJ. Software tool for internal standard based normalization of lipids, and effect of data-processing strategies on resulting values. BMC Bioinformatics 2019; 20:217. [PMID: 31035918 PMCID: PMC6489209 DOI: 10.1186/s12859-019-2803-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background Lipidomics, the comprehensive measurement of lipids within a biological system or substrate, is an emerging field with significant potential for improving clinical diagnosis and our understanding of health and disease. While lipids diverse biological roles contribute to their clinical utility, the diversity of lipid structure and concentrations prove to make lipidomics analytically challenging. Without internal standards to match each lipid species, researchers often apply individual internal standards to a broad range of related lipids. To aid in standardizing and automating this relative quantitation process, we developed LipidMatch Normalizer (LMN) http://secim.ufl.edu/secim-tools/ which can be used in most open source lipidomics workflows. Results LMN uses a ranking system (1–3) to assign lipid standards to target analytes. A ranking of 1 signifies that both the lipid class and adduct of the internal standard and target analyte match, while a ranking of 3 signifies that neither the adduct or class match. If multiple internal standards are provided for a lipid class, standards with the closest retention time to the target analyte will be chosen. The user can also signify which lipid classes an internal standard represents, for example indicating that ether-linked phosphatidylcholine can be semi-quantified using phosphatidylcholine. LMN is designed to work with any lipid identification software and feature finding software, and in this study is used to quantify lipids in NIST SRM 1950 human plasma annotated using LipidMatch and MZmine. Conclusions LMN can be integrated into an open source workflow which completes all data processing steps including feature finding, annotation, and quantification for LC-MS/MS studies. Using LMN we determined that in certain cases the use of peak height versus peak area, certain adducts, and negative versus positive polarity data can have major effects on the final concentration obtained. Electronic supplementary material The online version of this article (10.1186/s12859-019-2803-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Jason A Cochran
- College of Engineering, University of Florida, 412 Newell Dr., Gainesville, FL, 32611, USA
| | - Candice Z Ulmer
- Hollings Marine Laboratory, National Institute of Standards and Technology, 331 Ft. Johnson Road, Charleston, SC, 29412, USA
| | - Allison J Levy
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Rainey E Patterson
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Berkley C Olsen
- College of Public Health & Health Professions, University of Florida, 1225 Center Dr., Gainesville, FL, 32611, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA.,Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, 1395 Center Dr., P.O. Box 100275, Gainesville, FL, 32610-0275, USA
| | - John A Bowden
- Hollings Marine Laboratory, National Institute of Standards and Technology, 331 Ft. Johnson Road, Charleston, SC, 29412, USA.,Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32601, USA
| | - Timothy J Garrett
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA. .,Clinical and Translational Science Institute, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA. .,Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, 1395 Center Dr., P.O. Box 100275, Gainesville, FL, 32610-0275, USA.
| |
Collapse
|
42
|
Pekkinen M, Terhal PA, Botto LD, Henning P, Mäkitie RE, Roschger P, Jain A, Kol M, Kjellberg MA, Paschalis EP, van Gassen K, Murray M, Bayrak-Toydemir P, Magnusson MK, Jans J, Kausar M, Carey JC, Somerharju P, Lerner UH, Olkkonen VM, Klaushofer K, Holthuis JC, Mäkitie O. Osteoporosis and skeletal dysplasia caused by pathogenic variants in SGMS2. JCI Insight 2019; 4:126180. [PMID: 30779713 PMCID: PMC6483641 DOI: 10.1172/jci.insight.126180] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Mechanisms leading to osteoporosis are incompletely understood. Genetic disorders with skeletal fragility provide insight into metabolic pathways contributing to bone strength. We evaluated 6 families with rare skeletal phenotypes and osteoporosis by next-generation sequencing. In all the families, we identified a heterozygous variant in SGMS2, a gene prominently expressed in cortical bone and encoding the plasma membrane–resident sphingomyelin synthase SMS2. Four unrelated families shared the same nonsense variant, c.148C>T (p.Arg50*), whereas the other families had a missense variant, c.185T>G (p.Ile62Ser) or c.191T>G (p.Met64Arg). Subjects with p.Arg50* presented with childhood-onset osteoporosis with or without cranial sclerosis. Patients with p.Ile62Ser or p.Met64Arg had a more severe presentation, with neonatal fractures, severe short stature, and spondylometaphyseal dysplasia. Several subjects had experienced peripheral facial nerve palsy or other neurological manifestations. Bone biopsies showed markedly altered bone material characteristics, including defective bone mineralization. Osteoclast formation and function in vitro was normal. While the p.Arg50* mutation yielded a catalytically inactive enzyme, p.Ile62Ser and p.Met64Arg each enhanced the rate of de novo sphingomyelin production by blocking export of a functional enzyme from the endoplasmic reticulum. SGMS2 pathogenic variants underlie a spectrum of skeletal conditions, ranging from isolated osteoporosis to complex skeletal dysplasia, suggesting a critical role for plasma membrane–bound sphingomyelin metabolism in skeletal homeostasis. The identification of 6 families with childhood-onset osteoporosis with mutations in SGMS2 suggests a critical role for plasma membrane–bound sphingomyelin metabolism in skeletal homeostasis.
Collapse
Affiliation(s)
- Minna Pekkinen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland, and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Petra Henning
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland, and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Amrita Jain
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Matthijs Kol
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Matti A Kjellberg
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mary Murray
- Division of Pediatric Endocrinology & Diabetes, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Pinar Bayrak-Toydemir
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA, and ARUP Laboratories, Salt Lake City, Utah, USA
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Judith Jans
- Laboratory of Metabolic Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mehran Kausar
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland, and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - John C Carey
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ulf H Lerner
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki,Finland
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Joost Cm Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Biochemistry and Biophysics Division, Bijvoet Center and Institute of Biomembranes, Utrecht University, Utrecht, Netherlands
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland, and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
Agbaga MP, Merriman DK, Brush RS, Lydic TA, Conley SM, Naash MI, Jackson S, Woods AS, Reid GE, Busik JV, Anderson RE. Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. J Lipid Res 2018; 59:1586-1596. [PMID: 29986998 PMCID: PMC6121944 DOI: 10.1194/jlr.m082495] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/28/2018] [Indexed: 11/20/2022] Open
Abstract
Long-chain PUFAs (LC-PUFAs; C20-C22; e.g., DHA and arachidonic acid) are highly enriched in vertebrate retina, where they are elongated to very-long-chain PUFAs (VLC-PUFAs; C 28) by the elongation of very-long-chain fatty acids-4 (ELOVL4) enzyme. These fatty acids play essential roles in modulating neuronal function and health. The relevance of different lipid requirements in rods and cones to disease processes, such as age-related macular degeneration, however, remains unclear. To better understand the role of LC-PUFAs and VLC-PUFAs in the retina, we investigated the lipid compositions of whole retinas or photoreceptor outer segment (OS) membranes in rodents with rod- or cone-dominant retinas. We analyzed fatty acid methyl esters and the molecular species of glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) by GC-MS/GC-flame ionization detection and ESI-MS/MS, respectively. We found that whole retinas and OS membranes in rod-dominant animals compared with cone-dominant animals had higher amounts of LC-PUFAs and VLC-PUFAs. Compared with those of rod-dominant animals, retinas and OS membranes from cone-dominant animals also had about 2-fold lower levels of di-DHA (22:6/22:6) molecular species of glycerophospholipids. Because PUFAs are necessary for optimal G protein-coupled receptor signaling in rods, these findings suggest that cones may not have the same lipid requirements as rods.
Collapse
Affiliation(s)
- Martin-Paul Agbaga
- Departments of Ophthalmology University of Oklahoma Health Sciences Center, Oklahoma City, OK; Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Dean McGee Eye Institute, Oklahoma City, OK.
| | - Dana K Merriman
- McPherson Eye Research Institute, University of Wisconsin Oshkosh, Oshkosh, WI
| | - Richard S Brush
- Departments of Ophthalmology University of Oklahoma Health Sciences Center, Oklahoma City, OK; Dean McGee Eye Institute, Oklahoma City, OK
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Shannon M Conley
- Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX
| | - Shelley Jackson
- National Institute on Drug Abuse Intramural Research Program Structural Biology Unit, Baltimore, MD
| | - Amina S Woods
- National Institute on Drug Abuse Intramural Research Program Structural Biology Unit, Baltimore, MD
| | - Gavin E Reid
- School of Chemistry and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Robert E Anderson
- Departments of Ophthalmology University of Oklahoma Health Sciences Center, Oklahoma City, OK; Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Dean McGee Eye Institute, Oklahoma City, OK
| |
Collapse
|
44
|
Munsch-Alatossava P, Käkelä R, Ibarra D, Youbi-Idrissi M, Alatossava T. Phospholipolysis Caused by Different Types of Bacterial Phospholipases During Cold Storage of Bovine Raw Milk Is Prevented by N 2 Gas Flushing. Front Microbiol 2018; 9:1307. [PMID: 29971053 PMCID: PMC6018212 DOI: 10.3389/fmicb.2018.01307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Cold storage aims to preserve the quality and safety of raw milk from farms to dairies; unfortunately, low temperatures also promote the growth of psychrotrophic bacteria, some of which produce heat-stable enzymes that cause spoilage of milk or dairy products. Previously, N2 gas flushing of raw milk has demonstrated significant potential as a method to hinder bacterial growth at both laboratory and pilot plant scales. Using a mass spectrometry-based lipidomics approach, we examined the impact of cold storage [at 6°C for up to 7 days, the control condition (C)], on the relative amounts of major phospholipids (phosphatidylethanolamine/PE, phosphatidylcholine/PC, phosphatidylserine/PS, phosphatidylinositol/PI, and sphingomyelin/SM) in three bovine raw milk samples, and compared it to the condition that received additional N2 gas flushing (N). As expected, bacterial growth was hindered by the N2-based treatment (over 4 log-units lower at day 7) compared to the non-treated control condition. At the end of the cold storage period, the control condition (C7) revealed higher hydrolysis of PC, SM, PE, and PS (the major species reached 27.2, 26.7, 34.6, and 9.9 μM, respectively), compared to the N2-flushed samples (N7) (the major species reached 55.6, 35.9, 54.0, and 18.8 μM, respectively). C7 samples also exhibited a three-fold higher phosphatidic acid (PA) content (6.8 μM) and a five-fold higher content (17.3 μM) of lysophospholipids (LPE, LPC, LPS, and LPI) whereas both lysophospholipids and PA remained at their initial levels for 7 days in N7 samples. Taking into consideration the significant phospholipid losses in the controls, the lipid profiling results together with the microbiological data suggest a major role of phospholipase (PLase) C (PLC) in phospholipolysis during cold storage. However, the experimental data also indicate that bacterial sphingomyelinase C, together with PLases PLD and PLA contributed to the degradation of phospholipids present in raw milk as well, and potential contributions from PLB activity cannot be excluded. Altogether, this lipidomics study highlights the beneficial effects of N2 flushing treatment on the quality and safety of raw milk through its ability to effectively hinder phospholipolysis during cold storage.
Collapse
Affiliation(s)
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dominique Ibarra
- Air Liquide, Centre de Recherches Paris-Saclay, Jouy-en-Josas, France
| | | | - Tapani Alatossava
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Lydic TA, Goo YH. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin Transl Med 2018; 7:4. [PMID: 29374337 PMCID: PMC5786598 DOI: 10.1186/s40169-018-0182-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of lipid metabolism is responsible for pathologies of human diseases including metabolic diseases. Recent advances in lipidomics analysis allow for the targeted and untargeted identification of lipid species and for their quantification in normal and diseased conditions. Herein, this review provides a brief introduction to lipidomics, highlights its application to characterize the lipidome at the cellular and physiological levels under different biological conditions, and discusses the potential for the use of lipidomics in the discovery of biomarkers.
Collapse
Affiliation(s)
- Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Young-Hwa Goo
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
46
|
Cai T, Yang F. Phospholipid and Phospholipidomics in Health and Diseases. LIPIDOMICS IN HEALTH & DISEASE 2018. [DOI: 10.1007/978-981-13-0620-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Lehti S, Nguyen SD, Belevich I, Vihinen H, Heikkilä HM, Soliymani R, Käkelä R, Saksi J, Jauhiainen M, Grabowski GA, Kummu O, Hörkkö S, Baumann M, Lindsberg PJ, Jokitalo E, Kovanen PT, Öörni K. Extracellular Lipids Accumulate in Human Carotid Arteries as Distinct Three-Dimensional Structures and Have Proinflammatory Properties. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:525-538. [PMID: 29154769 DOI: 10.1016/j.ajpath.2017.09.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/11/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
Lipid accumulation is a key characteristic of advancing atherosclerotic lesions. Herein, we analyzed the ultrastructure of the accumulated lipids in endarterectomized human carotid atherosclerotic plaques using three-dimensional (3D) electron microscopy, a method never used in this context before. 3D electron microscopy revealed intracellular lipid droplets and extracellular lipoprotein particles. Most of the particles were aggregated, and some connected to needle-shaped or sheet-like cholesterol crystals. Proteomic analysis of isolated extracellular lipoprotein particles revealed that apolipoprotein B is their main protein component, indicating their origin from low-density lipoprotein, intermediate-density lipoprotein, very-low-density lipoprotein, lipoprotein (a), or chylomicron remnants. The particles also contained small exchangeable apolipoproteins, complement components, and immunoglobulins. Lipidomic analysis revealed differences between plasma lipoproteins and the particles, thereby indicating involvement of lipolytic enzymes in their generation. Incubation of human monocyte-derived macrophages with the isolated extracellular lipoprotein particles or with plasma lipoproteins that had been lipolytically modified in vitro induced intracellular lipid accumulation and triggered inflammasome activation in them. Taken together, extracellular lipids accumulate in human carotid plaques as distinct 3D structures that include aggregated and fused lipoprotein particles and cholesterol crystals. The particles originate from plasma lipoproteins, show signs of lipolytic modifications, and associate with cholesterol crystals. By inducing intracellular cholesterol accumulation (ie, foam cell formation) and inflammasome activation, the extracellular lipoprotein particles may actively enhance atherogenesis.
Collapse
Affiliation(s)
- Satu Lehti
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Su D Nguyen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna M Heikkilä
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Clinical Proteomics Core Facility, Medicum-Biochemistry and Developmental Biology, School of Medicine, University of Helsinki, Helsinki, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jani Saksi
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Matti Jauhiainen
- National Institute for Health and Welfare, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Gregory A Grabowski
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Kiniksa Pharmaceuticals, Ltd., Wellesley, Massachusetts
| | - Outi Kummu
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
| | - Marc Baumann
- Clinical Proteomics Core Facility, Medicum-Biochemistry and Developmental Biology, School of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu J Lindsberg
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland; Helsinki University Lipidomics Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
48
|
Manickaraj S, Thirumalai D, Manjunath P, Sekarbabu V, Jeganathan S, Sundaresan L, Subramaniyam R, Jeganathan M. Oxidative environment causes molecular remodeling in embryonic heart-a metabolomic and lipidomic fingerprinting analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23825-23833. [PMID: 28866837 DOI: 10.1007/s11356-017-9997-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Environmental factors including pollution affect human health, and the unifying factor in determining toxicity and pathogenesis for a wide array of environmental factors is oxidative stress. Here, we created the oxidative environment with 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH) and consequent cardiac remodeling in chick embryos. The metabolite fingerprint of heart tissue was obtained from Fourier transform infrared (FTIR) spectroscopic analysis. The global lipidomic analysis was done using electrospray ionization coupled with tandem mass spectrometry (ESI-MS/MS) by precursor ion scanning and neutral loss scanning methods. Further, the fatty acid levels were quantified in AAPH-treated H9c2 cardiomyoblasts with gas chromatography-mass spectrometry (GC-MS). Lipidomic fingerprinting study indicated that majority of differentially expressed phospholipids species in heart tissue belonged to ether phosphatidylcholine (ePC) species, and we conclude that excess oxidative environment may alter the phospholipid metabolism at earlier stages of cardiac remodeling.
Collapse
Affiliation(s)
- Shairam Manickaraj
- AU-KBC Research Centre, MIT Campus of Anna University, Chennai, Tamil Nadu, India
| | - Deepak Thirumalai
- AU-KBC Research Centre, MIT Campus of Anna University, Chennai, Tamil Nadu, India
| | - Prashanth Manjunath
- AU-KBC Research Centre, MIT Campus of Anna University, Chennai, Tamil Nadu, India
| | | | | | | | | | - Manivannan Jeganathan
- AU-KBC Research Centre, MIT Campus of Anna University, Chennai, Tamil Nadu, India.
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
49
|
Laurén E, Tigistu-Sahle F, Valkonen S, Westberg M, Valkeajärvi A, Eronen J, Siljander P, Pettilä V, Käkelä R, Laitinen S, Kerkelä E. Phospholipid composition of packed red blood cells and that of extracellular vesicles show a high resemblance and stability during storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:1-8. [PMID: 28965917 DOI: 10.1016/j.bbalip.2017.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 01/25/2023]
Abstract
Red blood cells (RBCs) are stored up to 35-42days at 2-6°C in blood banks. During storage, the RBC membrane is challenged by energy depletion, decreasing pH, altered cation homeostasis, and oxidative stress, leading to several biochemical and morphological changes in RBCs and to shedding of extracellular vesicles (EVs) into the storage medium. These changes are collectively known as RBC storage lesions. EVs accumulate in stored RBC concentrates and are, thus, transfused into patients. The potency of EVs as bioactive effectors is largely acknowledged, and EVs in RBC concentrates are suspected to mediate some adverse effects of transfusion. Several studies have shown accumulation of lipid raft-associated proteins in RBC EVs during storage, whereas a comprehensive phospholipidomic study on RBCs and corresponding EVs during the clinical storage period is lacking. Our mass spectrometric and chromatographic study shows that RBCs maintain their major phospholipid (PL) content well during storage despite abundant vesiculation. The phospholipidomes were largely similar between RBCs and EVs. No accumulation of raft lipids in EVs was seen, suggesting that the primary mechanism of RBC vesiculation during storage might not be raft -based. Nonetheless, a slight tendency of EV PLs for shorter acyl chains was observed.
Collapse
Affiliation(s)
- Eva Laurén
- Finnish Red Cross Blood Service, Kivihaantie 7, 00310 Helsinki, Finland; Department of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Feven Tigistu-Sahle
- University of Helsinki, Department of Biosciences, Division of Physiology and Neuroscience, Helsinki, Finland
| | - Sami Valkonen
- Finnish Red Cross Blood Service, Kivihaantie 7, 00310 Helsinki, Finland; University of Helsinki, Department of Biosciences, Division of Biochemistry and Biotechnology, Helsinki, Finland; University of Helsinki, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Helsinki, Finland
| | - Melissa Westberg
- University of Helsinki, Department of Biosciences, Division of Physiology and Neuroscience, Helsinki, Finland
| | - Anne Valkeajärvi
- Finnish Red Cross Blood Service, Kivihaantie 7, 00310 Helsinki, Finland
| | - Juha Eronen
- Finnish Red Cross Blood Service, Kivihaantie 7, 00310 Helsinki, Finland
| | - Pia Siljander
- University of Helsinki, Department of Biosciences, Division of Biochemistry and Biotechnology, Helsinki, Finland; University of Helsinki, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Helsinki, Finland
| | - Ville Pettilä
- Department of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Reijo Käkelä
- University of Helsinki, Department of Biosciences, Division of Physiology and Neuroscience, Helsinki, Finland
| | - Saara Laitinen
- Finnish Red Cross Blood Service, Kivihaantie 7, 00310 Helsinki, Finland
| | - Erja Kerkelä
- Finnish Red Cross Blood Service, Kivihaantie 7, 00310 Helsinki, Finland.
| |
Collapse
|
50
|
Hellwing C, Tigistu-Sahle F, Fuhrmann H, Käkelä R, Schumann J. Lipid composition of membrane microdomains isolated detergent-free from PUFA supplemented RAW264.7 macrophages. J Cell Physiol 2017; 233:2602-2612. [DOI: 10.1002/jcp.26138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Christine Hellwing
- Clinic for Anesthesiology and Surgical Intensive Care; University Hospital Halle (Saale); Halle (Saale) Germany
| | - Feven Tigistu-Sahle
- Division of Physiology and Neuroscience, Department of Biosciences; Helsinki University Lipidomics Unit, University of Helsinki; Helsinki Finland
| | - Herbert Fuhrmann
- Institute of Biochemistry; Faculty of Veterinary Medicine, University of Leipzig; Leipzig Germany
| | - Reijo Käkelä
- Division of Physiology and Neuroscience, Department of Biosciences; Helsinki University Lipidomics Unit, University of Helsinki; Helsinki Finland
| | - Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care; University Hospital Halle (Saale); Halle (Saale) Germany
| |
Collapse
|