1
|
Dykstra AB, Lubinsky TG, Vitrac H, Campuzano IDG, Bondarenko PV, Simone AR. Utilization of Liquid Chromatography-Mass Spectrometry and High-Resolution Ion Mobility-Mass Spectrometry to Characterize Therapeutically Relevant Peptides with Asparagine Deamidation and Isoaspartate. Anal Chem 2025; 97:749-757. [PMID: 39714115 DOI: 10.1021/acs.analchem.4c05246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Rapid identification of asparagine (Asn) deamidation and isoaspartate (isoAsp) in proteins remains a challenging analytical task during the development of biological therapeutics. For this study, 46 therapeutically relevant peptides corresponding to 13 peptide families (13 unmodified peptides and 33 modified peptides) were obtained; modified peptides included Asn deamidation and isoAsp. The peptide families were characterized by three methods: reversed-phase ultrahigh performance liquid chromatography-mass spectrometry (RP-UHPLC-MS); flow injection analysis high-resolution ion mobility-mass spectrometry (FIA-HRIM-MS); and shortened gradient RP-UHPLC-HRIM-MS. UHPLC-MS data acquisition was 2 h per injection, in contrast to high-throughput 1 min data acquisition of the FIA-HRIM-MS technique. A rapid 2D peptide map has been demonstrated by combining shortened gradient RP-UHPLC with HRIM, to optimize the resolution of the Asn-, Asp-, and isoAsp-containing peptides, increasing the likelihood of detecting peptides containing these quality attributes with expedited data acquisition. Additionally, this paper provides an ion mobility calibration data set for therapeutically relevant peptides (unmodified and modified) over an ion-neutral collisional cross-section range of 300-800 Å2.
Collapse
Affiliation(s)
- Andrew B Dykstra
- Pre-Pivotal Attribute Sciences, Amgen, Inc, Thousand Oaks, California 91320, United States
| | | | - Heidi Vitrac
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Iain D G Campuzano
- Molecular Analytics, Amgen, Inc, Thousand Oaks, California 91320, United States
| | - Pavel V Bondarenko
- Pre-Pivotal Attribute Sciences, Amgen, Inc, Thousand Oaks, California 91320, United States
| | - Ashli R Simone
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
2
|
Sakaue H, Kuno A. isoAsp-Quest: workflow development for isoAsp identification using database searches. J Biochem 2025; 177:37-44. [PMID: 39441692 DOI: 10.1093/jb/mvae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
A recent study reported that isomerization of aspartyl residues (Asp) occurs in various tissues and proteins in vivo. For a comprehensive analysis of post-translational modifications, the mass spectrometry (MS)-based proteomic approach is a straightforward method; however, the isomerization of Asp does not alter its molecular weight. Therefore, a unique method is required to analyse Asp isomers using MS. Herein, we present a novel strategy, isoAsp-Quest, which is a database search-oriented isoAsp identification method. isoAsp is specifically converted to 18O-labelled Lα-Asp by the enzymatic reaction of protein L-isoaspartyl-O-methyltransferase (PIMT) in 18O water with a mass shift of 2 Da, which, in principle, enables us to distinguish Asp isomers. However, in practise, a labelled Lα-Asp signal overlaps with that of endogenous Lα-Asp, making detection challenging. Therefore, degradation of the endogenous Lα-Asp peptide by AspN and subsequent removal of AspN were performed prior to the PIMT reaction. This strategy was applied to bovine lens α-crystallin. Consequently, several Asp isomerization sites, consistent with human αA-crystallin, were identified in bovine αA-crystallin, indicating that this strategy is also effective for biological proteins. Therefore, isoAsp-Quest enables the analysis of Lβ-Asp in a straightforward and rapid workflow, which may be useful for the quality control of protein products and biomarker discovery.
Collapse
Affiliation(s)
- Hiroaki Sakaue
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
3
|
Okyem S, Sweedler JV. Recent Advancements in the Characterization of D-Amino Acid and Isoaspartate Post-Translational Modifications. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39558451 DOI: 10.1002/mas.21916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
One of the great triumphs of mass spectrometry-based peptide and protein characterization is the characterization of their modifications as most modifications have a characteristic mass shift. What happens when the modification does not change the mass of the peptide? Here, the characterization of several peptide and proteins modifications that do not involve a mass shift are highlighted. Protein and peptide synthesis on ribosomes involves L-amino acids; however, posttranslational modifications (PTMs) can convert these L-amino acids into their D-isomers. As another example, nonenzymatic PTM of aspartate leads to the formation of three different isomers, with isoaspartate being the most prevalent. Both modifications do not alter the mass of the peptide and yet can have profound impact on the physicochemical characteristics of the peptide. Several MS and ion mobility techniques are highlighted, as are other methods such as chromatography, enzymatic enrichment, and labeling. The challenges inherent to these analytical methods and prospective developments in bioinformatics and computational strategies are discussed for these zero-dalton PTMs.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Sadiki A, Liu S, Vaidya SR, Kercher EM, Lang RT, McIsaac J, Spring BQ, Auclair JR, Zhou ZS. Site-Specific Conjugation of Native Antibody: Transglutaminase-Mediated Modification of a Conserved Glutamine While Maintaining the Primary Sequence and Core Fc Glycan via Trimming with an Endoglycosidase. Bioconjug Chem 2024; 35:465-471. [PMID: 38499390 PMCID: PMC11036358 DOI: 10.1021/acs.bioconjchem.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
A versatile chemo-enzymatic tool to site-specifically modify native (nonengineered) antibodies is using transglutaminase (TGase, E.C. 2.3.2.13). With various amines as cosubstrates, this enzyme converts the unsubstituted side chain amide of glutamine (Gln or Q) in peptides and proteins into substituted amides (i.e., conjugates). A pleasant surprise is that only a single conserved glutamine (Gln295) in the Fc region of IgG is modified by microbial TGase (mTGase, EC 2.3.2.13), thereby providing a highly specific and generally applicable conjugation method. However, prior to the transamidation (access to the glutamine residue by mTGase), the steric hindrance from the nearby conserved N-glycan (Asn297 in IgG1) must be reduced. In previous approaches, amidase (PNGase F, EC 3.5.1.52) was used to completely remove the N-glycan. However, PNGase F also converts a net neutral asparagine (Asn297) to a negatively charged aspartic acid (Asp297). This charge alteration may markedly change the structure, function, and immunogenicity of an IgG antibody. In contrast, in our new method presented herein, the N-glycan is trimmed by an endoglycosidase (EndoS2, EC 3.2.1.96), hence retaining both the core N-acetylglucosamine (GlcNAc) moiety and the neutral asparaginyl amide. The trimmed glycan also reduces or abolishes Fc receptor-mediated functions, which results in better imaging agents by decreasing nonspecific binding to other cells (e.g., immune cells). Moreover, the remaining core glycan allows further derivatization such as glycan remodeling and dual conjugation. Practical and robust, our method generates conjugates in near quantitative yields, and both enzymes are commercially available.
Collapse
Affiliation(s)
- Amissi Sadiki
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shanshan Liu
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shefali R. Vaidya
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Eric M. Kercher
- Translational
Biophotonics Cluster, Department of Physics, Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ryan T. Lang
- Translational
Biophotonics Cluster, Department of Physics, Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - James McIsaac
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Bryan Q. Spring
- Translational
Biophotonics Cluster, Department of Physics, Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jared R. Auclair
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhaohui Sunny Zhou
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Miyagi M, Kiesel E, Neumbo K, Nakazawa T. Deuterium Labeling of Isoaspartic and Isoglutamic Acids for Mass Spectrometry Analysis. Anal Chem 2024; 96:3077-3086. [PMID: 38344941 PMCID: PMC10984558 DOI: 10.1021/acs.analchem.3c05194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/02/2024]
Abstract
Isoaspartic acid (isoAsp) is a common protein modification that spontaneously arises from asparagine or aspartic acid and has been linked to various diseases and health conditions. However, current methods for identifying isoAsp sites in proteins often suffer from ambiguity and have not gained widespread adoption. We developed a novel method that exclusively labels isoAsp with deuterium. This method capitalizes on the unique structural characteristics of isoAsp residues, which possess a free α-carboxyl group and can form an oxazolone ring. Once the oxazolone ring forms, it facilitates racemization at the Cα-position, incorporating a deuteron from a D2O solvent. The sites of deuterium-incorporated isoAsp in proteins can be unequivocally determined by comparing the precursor and product ion masses of the peptides from proteins reacted in H2O and D2O. The effectiveness of this method has been demonstrated through its application to model proteins lysozyme and rituximab. Furthermore, we have confirmed that the isoAsp deuterium-labeling reaction efficiently labels both l- and d-isoAsp without distinction, as well as isoglutamic acid (isoGlu), for which no effective detection methods currently exist.
Collapse
Affiliation(s)
- Masaru Miyagi
- Department
of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4988, United States
| | - Evan Kiesel
- Department
of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4988, United States
| | - Kelao Neumbo
- Department
of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4988, United States
| | - Takashi Nakazawa
- Department
of Chemistry, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
6
|
Yang ML, Lam TT, Kanyo J, Kang I, Zhou ZS, Clarke SG, Mamula MJ. Natural isoaspartyl protein modification of ZAP70 alters T cell responses in lupus. Autoimmunity 2023; 56:2282945. [PMID: 37994408 PMCID: PMC10897934 DOI: 10.1080/08916934.2023.2282945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Protein posttranslational modifications (PTMs) arise in a number of normal cellular biological pathways and in response to pathology caused by inflammation and/or infection. Indeed, a number of PTMs have been identified and linked to specific autoimmune responses and metabolic pathways. One particular PTM, termed isoaspartyl (isoAsp or isoD) modification, is among the most common spontaneous PTM occurring at physiological pH and temperature. Herein, we demonstrate that isoAsp modifications arise within the ZAP70 protein tyrosine kinase upon T-cell antigen receptor (TCR) engagement. The enzyme protein L-isoaspartate O-methyltransferase (PCMT1, or PIMT, EC 2.1.1.77) evolved to repair isoaspartyl modifications in cells. In this regard, we observe that increased levels of isoAsp modification that arise under oxidative stress are correlated with reduced PIMT activity in patients with systemic lupus erythematosus (SLE). PIMT deficiency leads to T cell hyper-proliferation and hyper-phosphorylation through ZAP70 signaling. We demonstrate that inducing the overexpression of PIMT can correct the hyper-responsive phenotype in lupus T cells. Our studies reveal a phenotypic role of isoAsp modification and phosphorylation of ZAP70 in lupus T cell autoimmunity and provide a potential therapeutic target through the repair of isoAsp modification.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - TuKiet T. Lam
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
- Department of Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Insoo Kang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Bickel F, Griaud F, Kern W, Kroener F, Gritsch M, Dayer J, Barteau S, Denefeld B, Kao-Scharf CY, Lang M, Slupska-Muanza I, Schmidt C, Berg M, Sigg J, Boado L, Chelius D. Restoring the biological activity of crizanlizumab at physiological conditions through a pH-dependent aspartic acid isomerization reaction. MAbs 2023; 15:2151075. [PMID: 36519228 PMCID: PMC9762811 DOI: 10.1080/19420862.2022.2151075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we report the isomerization of an aspartic acid residue in the complementarity-determining region (CDR) of crizanlizumab as a major degradation pathway. The succinimide intermediate and iso-aspartic acid degradation products were successfully isolated by ion exchange chromatography for characterization. The isomerization site was identified at a DG motif in the CDR by peptide mapping. The biological characterization of the isolated variants showed that the succinimide variant exhibited a loss in target binding and biological activity compared to the aspartic acid and iso-aspartic acid variants of the molecule. The influence of pH on this isomerization reaction was investigated using capillary zone electrophoresis. Below pH 6.3, the succinimide formation was predominant, whereas at pH values above 6.3, iso-aspartic acid was formed and the initial amounts of succinimide dropped to levels even lower than those observed in the starting material. Importantly, while the succinimide accumulated at long-term storage conditions of 2 to 8°C at pH values below 6.3, a complete hydrolysis of succinimide was observed at physiological conditions (pH 7.4, 37°C), resulting in full recovery of the biological activity. In this study, we demonstrate that the critical quality attribute succinimide with reduced potency has little or no impact on the efficacy of crizanlizumab due to the full recovery of the biological activity within a few hours under physiological conditions.
Collapse
Affiliation(s)
- Fabian Bickel
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - François Griaud
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Wolfram Kern
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Frieder Kroener
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Manuela Gritsch
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Jérôme Dayer
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Samuel Barteau
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Blandine Denefeld
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Chi-Ya Kao-Scharf
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Manuel Lang
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Izabela Slupska-Muanza
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Carla Schmidt
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Matthias Berg
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Jürgen Sigg
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Lina Boado
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Dirk Chelius
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland,CONTACT Dirk Chelius Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
8
|
Butler KE, Dodds JN, Flick T, Campuzano IDG, Baker ES. High-Resolution Demultiplexing (HRdm) Ion Mobility Spectrometry-Mass Spectrometry for Aspartic and Isoaspartic Acid Determination and Screening. Anal Chem 2022; 94:6191-6199. [PMID: 35421308 PMCID: PMC9635094 DOI: 10.1021/acs.analchem.1c05533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isomeric peptide analyses are an analytical challenge of great importance to therapeutic monoclonal antibody and other biotherapeutic product development workflows. Aspartic acid (Asp, D) to isoaspartic acid (isoAsp, isoD) isomerization is a critical quality attribute (CQA) that requires careful control, monitoring, and quantitation during the drug discovery and production processes. While the formation of isoAsp has been implicated in a variety of disease states such as autoimmune diseases and several types of cancer, it is also understood that the formation of isoAsp results in a structural change impacting efficacy, potency, and immunogenic properties, all of which are undesirable. Currently, lengthy ultrahigh-performance liquid chromatography (UPLC) separations are coupled with MS for CQA analyses; however, these measurements often take over an hour and drastically limit analysis throughput. In this manuscript, drift tube ion mobility spectrometry-mass spectrometry (DTIMS-MS) and both a standard and high-resolution demultiplexing approach were utilized to study eight isomeric Asp and isoAsp peptide pairs. While the limited resolving power associated with the standard DTIMS analysis only separated three of the eight pairs, the application of HRdm distinguished seven of the eight and was only unable to separate DL and isoDL. The rapid high-throughput HRdm DTIMS-MS method was also interfaced with both flow injection and an automated solid phase extraction system to present the first application of HRdm for isoAsp and Asp assessment and demonstrate screening capabilities for isomeric peptides in complex samples, resulting in a workflow highly suitable for biopharmaceutical research needs.
Collapse
Affiliation(s)
- Karen E Butler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tawnya Flick
- Pivotal Attribute Sciences, Amgen Process Development, Thousand Oaks, California 91320, United States
| | - Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, Thousand Oaks, California 91320, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
9
|
Edwards HM, Wu HT, Julian RR, Jackson GP. Differentiating aspartic acid isomers and epimers with charge transfer dissociation mass spectrometry (CTD-MS). Analyst 2022; 147:1159-1168. [PMID: 35188507 DOI: 10.1039/d1an02279b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to understand the function of a protein often relies on knowledge about its detailed structure. Sometimes, seemingly insignificant changes in the primary structure of a protein, like an amino acid substitution, can completely disrupt a protein's function. Long-lived proteins (LLPs), which can be found in critical areas of the human body, like the brain and eye, are especially susceptible to primary sequence alterations in the form of isomerization and epimerization. Because long-lived proteins do not have the corrective regeneration capabilities of most other proteins, points of isomerism and epimerization that accumulate within the proteins can severely hamper their functions and can lead to serious diseases like Alzheimer's disease, cancer and cataracts. Whereas tandem mass spectrometry (MS/MS) in the form of collision-induced dissociation (CID) generally excels at peptide characterization, MS/MS often struggles to pinpoint modifications within LLPs, especially when the differences are only isomeric or epimeric in nature. One of the most prevalent and difficult-to-identify modifications is that of aspartic acid between its four isomeric forms: L-Asp, L-isoAsp, D-Asp, and D-isoAsp. In this study, peptides containing isomers of Asp were analyzed by charge transfer dissociation (CTD) mass spectrometry to identify spectral features that could discriminate between the different isomers. For the four isomers of Asp in three model peptides, CTD produced diagnostic ions of the form cn+57 on the N-terminal side of iso-Asp residues, but not on the N-terminal side of Asp residues. Using CTD, the L- and D forms of Asp and isoAsp could also be differentiated based on the relative abundance of y- and z ions on the C-terminal side of Asp residues. Differentiation was accomplished through a chiral discrimination factor, R, which compares an ion ratio in a spectrum of one epimer or isomer to the same ion ratio in the spectrum of a different epimer or isomer. The R values obtained using CTD are as robust and statistically significant as other fragmentation techniques, like radical directed dissociation (RDD). In summary, the extent of backbone and side-chain fragments produced by CTD enabled the differentiation of isomers and epimers of Asp in a variety of peptides.
Collapse
Affiliation(s)
- Halle M Edwards
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA. .,Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
10
|
Silzel JW, Lambeth TR, Julian RR. PIMT-Mediated Labeling of l-Isoaspartic Acid with Tris Facilitates Identification of Isomerization Sites in Long-Lived Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:548-556. [PMID: 35113558 PMCID: PMC9930442 DOI: 10.1021/jasms.1c00355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isomerization of individual residues in long-lived proteins (LLPs) is a subject of growing interest in connection with many age-related human diseases. When isomerization occurs in LLPs, it can lead to deleterious changes in protein structure, function, and proteolytic degradation. Herein, we present a novel labeling technique for rapid identification of l-isoAsp using the enzyme protein l-isoaspartyl methyltransferase (PIMT) and Tris. The succinimide intermediate formed during reaction of l-isoAsp-containing peptides with PIMT and S-adenosyl methionine (SAM) is reactive with Tris base and results in a Tris-modified aspartic acid residue with a mass shift of +103 Da. Tris-modified aspartic acid exhibits prominent and repeated neutral loss of water when subjected to collisional activation. In addition, another dissociation pathway regenerates the original peptide following loss of a characteristic mass shift. Furthermore, it is demonstrated that Tris modification can be used to identify sites of isomerization in LLPs from biological samples such as the lens of the eye. This approach simplifies identification by labeling isomerization sites with a tag that causes a mass shift and provides characteristic loss during collisional activation.
Collapse
Affiliation(s)
| | | | - Ryan R. Julian
- Corresponding Author correspondence should be sent to: , Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA 92521, USA, (951) 827-3959
| |
Collapse
|
11
|
Sang-Aroon W, Phatchana R, Tontapha S, Ruangpornvisuti V. A DFT calculation on nonenzymatic degradation of isoaspartic residue. J Mol Model 2021; 27:300. [PMID: 34570254 DOI: 10.1007/s00894-021-04920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022]
Abstract
βAsp is an isomer of Asp that can be formed by either deamidation of Asn or isomerization of Asp and known as biological clock. The presence of βAsp affects the proteolytic stability of the protein. Formation of the isomerized Asp plays a diverse and crucial role in aging, cancer, autoimmune, neurodegenerative, and other diseases. A number of methods have been developed to detect βAsp, and they are usually used in conjunction. Because of identical mass, differentiation of βAsp and Asp residues is challenged. Degradation of βAsp is still unclear and needed to be explored. The energetics and mechanism of five possible pathways for cleavages at βAsp in peptide model have been investigated by DFT/B3LYP/6-311 + + G(d,p) level of the theory. The calculations show that peptide bond cleavage at α-chain (amino side) due to αOC → αCN ring closure is the most favorable reaction. The result is in agreement with experiment utilizing PSD/CRF method. The second most favorable pathway is due to αOC → βC ring closure results in β-chain cleavage. The cleavage products βAsp and Asp fragments can be used to signify an abundance of βAsp residue in nonenzymatic condition. Other three cyclizations initiated by either α- or β-amino nitrogen result in various cleavages, isomerization to Asp, and reconversion to original βAsp. These three cyclization pathways are obstructed because they require mostly high activation barriers and their intermediates are quite less thermodynamically stable. Thus, computational results also confirm that βAsp → Asp is prohibited in case of nonenzymatic condition which means that protein L-isoaspartyl O-methyl transferase (PIMT) is needed for this modification.
Collapse
Affiliation(s)
- Wichien Sang-Aroon
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, KhonKaen Campus, Khon Kaen, 40000, Thailand.
| | - Ratchanee Phatchana
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, KhonKaen Campus, Khon Kaen, 40000, Thailand
| | - Sarawut Tontapha
- Post Doctoral Research Fellow, Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, KhonKaen University, Khon Kaen, 40001, Thailand
| | - Vithaya Ruangpornvisuti
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10320, Thailand
| |
Collapse
|
12
|
Dykstra AB, Flick TG, Lee B, Blue LE, Angell N. Chip-Based Capillary Zone Electrophoresis Mass Spectrometry for Rapid Resolution and Quantitation of Critical Quality Attributes in Protein Biotherapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1952-1963. [PMID: 33730487 DOI: 10.1021/jasms.0c00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aspiration of the multi-attribute method (MAM) is to utilize a single mass spectrometry-based method that can measure multiple attributes simultaneously, thus enabling data-driven decisions more quickly and efficiently. However, challenges associated with identifying and quantitating critical quality attributes such as asparagine deamidation and isoaspartic acid using conventional ultrahigh-pressure liquid chromatography (UHPLC) coupled to mass spectrometry have necessitated long gradients to ensure sufficient separation for quantitation. Microfluidic chip-based capillary zone electrophoresis mass spectrometry (CZE-MS) shows potential to enable rapid charge-based separation of peptide mixtures, and this approach was evaluated using multipeptide mixtures of synthetic peptides as well as digested protein therapeutics. In these experiments, repeatability, linearity, and peak-to-peak resolution of several peptide families containing asparagine deamidation and/or isoaspartic acid were demonstrated. In addition, a comparison of peptide map results acquired with both UHPLC-MS and CZE-MS for two enzymatically digested biological therapeutics showed comparable sequence coverage and quantitation results between the two approaches. As MAM becomes increasingly utilized for analysis of biological therapeutics, MS instrument demand will rapidly increase, resulting in a bottleneck. A CZE-based separation shows potential to alleviate this bottleneck by drastically increasing MAM throughput while providing results comparable to those acquired using conventional UHPLC separations.
Collapse
Affiliation(s)
- Andrew B Dykstra
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Tawnya G Flick
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Burton Lee
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Laura E Blue
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Nic Angell
- Department of Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
13
|
Sadiki A, Vaidya SR, Abdollahi M, Bhardwaj G, Dolan ME, Turna H, Arora V, Sanjeev A, Robinson TD, Koid A, Amin A, Zhou ZS. Site-specific conjugation of native antibody. Antib Ther 2020; 3:271-284. [PMID: 33644685 PMCID: PMC7906296 DOI: 10.1093/abt/tbaa027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditionally, non-specific chemical conjugations, such as acylation of amines on lysine or alkylation of thiols on cysteines, are widely used; however, they have several shortcomings. First, the lack of site-specificity results in heterogeneous products and irreproducible processes. Second, potential modifications near the complementarity-determining region may reduce binding affinity and specificity. Conversely, site-specific methods produce well-defined and more homogenous antibody conjugates, ensuring developability and clinical applications. Moreover, several recent side-by-side comparisons of site-specific and stochastic methods have demonstrated that site-specific approaches are more likely to achieve their desired properties and functions, such as increased plasma stability, less variability in dose-dependent studies (particularly at low concentrations), enhanced binding efficiency, as well as increased tumor uptake. Herein, we review several standard and practical site-specific bioconjugation methods for native antibodies, i.e., those without recombinant engineering. First, chemo-enzymatic techniques, namely transglutaminase (TGase)-mediated transamidation of a conserved glutamine residue and glycan remodeling of a conserved asparagine N-glycan (GlyCLICK), both in the Fc region. Second, chemical approaches such as selective reduction of disulfides (ThioBridge) and N-terminal amine modifications. Furthermore, we list site-specific antibody–drug conjugates in clinical trials along with the future perspectives of these site-specific methods.
Collapse
Affiliation(s)
- Amissi Sadiki
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Shefali R Vaidya
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Mina Abdollahi
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Gunjan Bhardwaj
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Michael E Dolan
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA.,Downstream Development, Biologics Process Development, Millennium Pharmaceuticals, Inc., (a wholly-owned subsidiary of Takeda Pharmaceuticals Company Limited), Cambridge, Massachusetts 02139, USA
| | - Harpreet Turna
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Varnika Arora
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Athul Sanjeev
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Timothy D Robinson
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Andrea Koid
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Aashka Amin
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| |
Collapse
|
14
|
Sadiki A, Kercher EM, Lu H, Lang RT, Spring BQ, Zhou ZS. Site-specific Bioconjugation and Convergent Click Chemistry Enhances Antibody-Chromophore Conjugate Binding Efficiency. Photochem Photobiol 2020; 96:596-603. [PMID: 32080860 DOI: 10.1111/php.13231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022]
Abstract
Photosensitizer (PS)-antibody conjugates (photoimmunoconjugates, PICs) enable cancer cell-targeted photodynamic therapy (PDT). Nonspecific chemical bioconjugation is widely used to synthesize PICs but gives rise to several shortcomings. The conjugates are heterogeneous, and the process is not easily reproducible. Moreover, modifications at or near the binding sites alter both binding affinity and specificity. To overcome these limitations, we introduce convergent assembly of PICs via a chemo-enzymatic site-specific approach. First, an antibody is conjugated to a clickable handle via site-specific modification of glutamine (Gln) residues catalyzed by transglutaminase (TGase, EC 2.3.2.13). Second, the modified antibody intermediate is conjugated to a compatible chromophore via click chemistry. Utilizing cetuximab, we compared this site-specific conjugation protocol to the nonspecific chemical acylation of amines using N-hydroxysuccinimide (NHS) chemistry. Both the heavy and light chains were modified via the chemical route, whereas, only a glutamine 295 in the heavy chain was modified via chemo-enzymatic conjugation. Furthermore, a 2.3-fold increase in the number of bound antibodies per cell was observed for the site-specific compared with nonspecific method, suggesting that multiple stochastic sites of modification perturb the antibody-antigen binding. Altogether, site-specific bioconjugation leads to homogenous, reproducible and well-defined PICs, conferring higher binding efficiency and probability of clinical success.
Collapse
Affiliation(s)
- Amissi Sadiki
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA
| | - Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA
| | - Haibin Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA.,College of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Ryan T Lang
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA.,Department of Bioengineering, Northeastern University, Boston, MA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Acedo JZ, Bothwell IR, An L, Trouth A, Frazier C, van der Donk WA. O-Methyltransferase-Mediated Incorporation of a β-Amino Acid in Lanthipeptides. J Am Chem Soc 2019; 141:16790-16801. [PMID: 31568727 DOI: 10.1021/jacs.9b07396] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lanthipeptides represent a large class of cyclic natural products defined by the presence of lanthionine (Lan) and methyllanthionine (MeLan) cross-links. With the advances in DNA sequencing technologies and genome mining tools, new biosynthetic enzymes capable of installing unusual structural features are continuously being discovered. In this study, we investigated an O-methyltransferase that is a member of the most prominent auxiliary enzyme family associated with class I lanthipeptide biosynthetic gene clusters. Despite the prevalence of these enzymes, their function has not been established. Herein, we demonstrate that the O-methyltransferase OlvSA encoded in the olv gene cluster from Streptomyces olivaceus NRRL B-3009 catalyzes the rearrangement of a highly conserved aspartate residue to a β-amino acid, isoaspartate, in the lanthipeptide OlvA(BCSA). We elucidated the NMR solution structure of the GluC-digested peptide, OlvA(BCSA)GluC, which revealed a unique ring topology comprising four interlocking rings and positions the isoaspartate residue in a solvent exposed loop that is stabilized by a MeLan ring. Gas chromatography-mass spectrometry analysis further indicated that OlvA(BCSA) contains two dl-MeLan rings and two Lan rings with an unusual ll-stereochemistry. Lastly, in vitro reconstitution of OlvSA activity showed that it is a leader peptide-independent and S-adenosyl methionine-dependent O-methyltransferase that mediates the conversion of a highly conserved aspartate residue in a cyclic substrate into a succinimide, which is hydrolyzed to generate an Asp or isoAsp containing peptide. This overall transformation converts an α-amino acid into a β-amino acid in a ribosomally synthesized peptide, via an electrophilic intermediate that may be the intended product.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Ian R Bothwell
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Linna An
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Abby Trouth
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Clara Frazier
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
16
|
Mishra PKK, Mahawar M. PIMT-Mediated Protein Repair: Mechanism and Implications. BIOCHEMISTRY (MOSCOW) 2019; 84:453-463. [PMID: 31234761 DOI: 10.1134/s0006297919050018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amino acids undergo many covalent modifications, but only few amino acid repair enzymes have been identified. Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PIMT), also known as L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (PCMT), methylates covalently modified isoaspartate (isoAsp) residues accumulated in proteins via Asn deamidation and Asp hydrolysis. This cytoplasmic reaction occurs through the formation of succinimide cyclical intermediate and generates either isoAsp or Asp from succinimide. Succinimide conversion into Asp is spontaneous, while isoAsp is restored by PIMT using S-adenosylmethionine as a methyl donor. PIMT transforms isoAsp into succinimide, thereby creating an opportunity for the later to be converted into Asp. Apart from normal cell physiology, formation of isoAsp in proteins is promoted by various stress conditions. The resulting isoAsp can form a kink or bend in the protein backbone thus making the protein conformationally and functionally distorted. Many PIMT-interacting proteins (proteins with isoAsp residues) have been reported in eukaryotes, but only few of them have been found in prokaryotes. Extensive studies in mice have shown the importance of PIMT in neurodegeneration. Detail elucidation of PIMT function can create a platform for addressing various disorders such as Alzheimer's disease and cancer.
Collapse
Affiliation(s)
- P K K Mishra
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - M Mahawar
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
17
|
Warmack RA, Shawa H, Liu K, Lopez K, Loo JA, Horwitz J, Clarke SG. The l-isoaspartate modification within protein fragments in the aging lens can promote protein aggregation. J Biol Chem 2019; 294:12203-12219. [PMID: 31239355 DOI: 10.1074/jbc.ra119.009052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Indexed: 01/15/2023] Open
Abstract
Transparency in the lens is accomplished by the dense packing and short-range order interactions of the crystallin proteins in fiber cells lacking organelles. These features are accompanied by a lack of protein turnover, leaving lens proteins susceptible to a number of damaging modifications and aggregation. The loss of lens transparency is attributed in part to such aggregation during aging. Among the damaging post-translational modifications that accumulate in long-lived proteins, isomerization at aspartate residues has been shown to be extensive throughout the crystallins. In this study of the human lens, we localize the accumulation of l-isoaspartate within water-soluble protein extracts primarily to crystallin peptides in high-molecular weight aggregates and show with MS that these peptides are from a variety of crystallins. To investigate the consequences of aspartate isomerization, we investigated two αA crystallin peptides 52LFRTVLDSGISEVR65 and 89VQDDFVEIH98, identified within this study, with the l-isoaspartate modification introduced at Asp58 and Asp91, respectively. Importantly, whereas both peptides modestly increase protein precipitation, the native 52LFRTVLDSGISEVR65 peptide shows higher aggregation propensity. In contrast, the introduction of l-isoaspartate within a previously identified anti-chaperone peptide from water-insoluble aggregates, αA crystallin 66SDRDKFVIFL(isoAsp)VKHF80, results in enhanced amyloid formation in vitro The modification of this peptide also increases aggregation of the lens chaperone αB crystallin. These findings may represent multiple pathways within the lens wherein the isomerization of aspartate residues in crystallin peptides differentially results in peptides associating with water-soluble or water-insoluble aggregates. Here the eye lens serves as a model for the cleavage and modification of long-lived proteins within other aging tissues.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Harrison Shawa
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Kate Liu
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Katia Lopez
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Joseph Horwitz
- Molecular Biology Institute, UCLA, Los Angeles, California 90095; Jules Stein Eye Institute, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095.
| |
Collapse
|
18
|
Lu X, Nobrega RP, Lynaugh H, Jain T, Barlow K, Boland T, Sivasubramanian A, Vásquez M, Xu Y. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. MAbs 2018; 11:45-57. [PMID: 30526254 PMCID: PMC6343770 DOI: 10.1080/19420862.2018.1548233] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Contemporary in vivo and in vitro discovery platform technologies greatly increase the odds of identifying high-affinity monoclonal antibodies (mAbs) towards essentially any desired biologically relevant epitope. Lagging discovery throughput is the ability to select for highly developable mAbs with drug-like properties early in the process. Upstream consideration of developability metrics should reduce the frequency of failures in later development stages. As the field moves towards incorporating biophysical screening assays in parallel to discovery processes, similar approaches should also be used to ensure robust chemical stability. Optimization of chemical stability in the early stages of discovery has the potential to reduce complications in formulation development and improve the potential for successful liquid formulations. However, at present, our knowledge of the chemical stability characteristics of clinical-stage therapeutic mAbs is fragmented and lacks comprehensive comparative assessment. To address this knowledge gap, we produced 131 mAbs with amino acid sequences corresponding to the variable regions of clinical-stage mAbs, subjected these to low and high pH stresses and identified the resulting modifications at amino acid-level resolution via tryptic peptide mapping. Among this large set of mAbs, relatively high frequencies of asparagine deamidation events were observed in CDRs H2 and L1, while CDRs H3, H2 and L1 contained relatively high frequencies of instances of aspartate isomerization.
Collapse
Affiliation(s)
- Xiaojun Lu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | | | | | - Tushar Jain
- b Computational Biology , Adimab , Palo Alto , CA , USA
| | - Kyle Barlow
- b Computational Biology , Adimab , Palo Alto , CA , USA
| | - Todd Boland
- b Computational Biology , Adimab , Palo Alto , CA , USA
| | | | | | - Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| |
Collapse
|
19
|
Ayrton ST, Chen X, Bain RM, Pulliam CJ, Achmatowicz M, Flick TG, Ren D, Cooks RG. Gas Phase Ion Chemistry to Determine Isoaspartate in a Peptide Backbone. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1339-1344. [PMID: 29546595 DOI: 10.1007/s13361-018-1923-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Proof of concept evidence is presented for a new method for the determination of isoaspartate, an important post-translational modification. Chemical derivatization is performed using common reagents for the modification of carboxylic acids and shown to yield suitable diagnostic information with regard to isomerization at the aspartate residue. The diagnostic gas phase chemistry is probed by collision-induced dissociation mass spectrometry, on the timescale of the MS experiment and semi-quantitative calibration of the percentage of isoaspartate in a peptide sample is demonstrated. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- S T Ayrton
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - X Chen
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - R M Bain
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - C J Pulliam
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - M Achmatowicz
- Department of Analytical Research & Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - T G Flick
- Department of Analytical Research & Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - D Ren
- Department of Analytical Research & Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - R G Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Hao P, Adav SS, Gallart-Palau X, Sze SK. Recent advances in mass spectrometric analysis of protein deamidation. MASS SPECTROMETRY REVIEWS 2017; 36:677-692. [PMID: 26763661 DOI: 10.1002/mas.21491] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Protein deamidation has been proposed to represent a "molecular clock" that progressively disrupts protein structure and function in human degenerative diseases and natural aging. Importantly, this spontaneous process can also modify therapeutic proteins by altering their purity, stability, bioactivity, and antigenicity during drug synthesis and storage. Deamidation occurs non-enzymatically in vivo, but can also take place spontaneously in vitro, hence artificial deamidation during proteomic sample preparation can hamper efforts to identify and quantify endogenous deamidation of complex proteomes. To overcome this, mass spectrometry (MS) can be used to conduct rigorous site-specific characterization of protein deamidation due to the high sensitivity, speed, and specificity offered by this technique. This article reviews recent progress in MS analysis of protein deamidation and discusses the strengths and limitations of common "top-down" and "bottom-up" approaches. Recent advances in sample preparation methods, chromatographic separation, MS technology, and data processing have for the first time enabled the accurate and reliable characterization of protein modifications in complex biological samples, yielding important new data on how deamidation occurs across the entire proteome of human cells and tissues. These technological advances will lead to a better understanding of how deamidation contributes to the pathology of biological aging and major degenerative diseases. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:677-692, 2017.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
21
|
Jansson ET. Strategies for analysis of isomeric peptides. J Sep Sci 2017; 41:385-397. [PMID: 28922569 DOI: 10.1002/jssc.201700852] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023]
Abstract
This review presents an overview and recent progress of strategies for detecting isomerism in peptides, with focus on d/l epimerization and the various isomers that the presence of an aspartic acid residue may yield in a protein or peptide. While mass spectrometry has become a majorly used method of choice within proteomics, isomerism is inherently difficult to analyze because it is a modification that does not yield any change in mass of the analyte. Here, several techniques used for analysis of peptide isomerism are discussed, including enzymatic assays, liquid chromatography, and capillary electrophoresis. Recent progress in method development using mass spectrometry is also discussed, including labeling strategies, fragmentation techniques, and ion-mobility spectrometry.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Puri A, Quan Y, Narang AS, Adams M, Gandhi R, Nashine VC. A Fluorescence-Based High-Throughput Coupled Enzymatic Assay for Quantitation of Isoaspartate in Proteins and Peptides. AAPS PharmSciTech 2017; 18:803-808. [PMID: 27342117 DOI: 10.1208/s12249-016-0570-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/07/2016] [Indexed: 01/02/2023] Open
Abstract
Formation of isoaspartate (IsoAsp) from spontaneous asparagine (Asn) deamidation or aspartate (Asp) isomerization is one of the most common non-enzymatic pathways of chemical degradation of protein and peptide pharmaceuticals. Rapid quantitation of IsoAsp formation can enable rank-ordering of potential drug candidates, mutants, and formulations as well as support shelf life prediction and stability requirements. A coupled enzymatic fluorescence-based IsoAsp assay (CEFIA) was developed as a high-throughput method for quantitation of IsoAsp in peptides and proteins. In this note, application of this method to two therapeutic candidate proteins with distinct structural scaffolds is described. In addition, the results obtained with this method are compared to those from conventional assays.
Collapse
|
23
|
Janetzko J, Walker S. Aspartate Glycosylation Triggers Isomerization to Isoaspartate. J Am Chem Soc 2017; 139:3332-3335. [PMID: 28207246 DOI: 10.1021/jacs.6b12866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
O-Linked β-N-acetylglucosamine transferase (OGT) is an essential human enzyme that glycosylates numerous nuclear and cytoplasmic proteins on serine and threonine. It also cleaves Host cell factor 1 (HCF-1) by a mechanism in which the first step involves glycosylation on glutamate. Replacing glutamate with aspartate in an HCF-1 proteolytic repeat was shown to prevent peptide backbone cleavage, but whether aspartate glycosylation occurred was not examined. We report here that OGT glycosylates aspartate much faster than it glycosylates glutamate in an otherwise identical model peptide substrate; moreover, once formed, the glycosyl aspartate reacts further to form a succinimide intermediate that hydrolyzes to produce the corresponding isoaspartyl peptide. Aspartate-to-isoaspartate isomerization in proteins occurs in cells but was previously thought to be exclusively non-enzymatic. Our findings suggest it may also be enzyme-catalyzed. In addition to OGT, enzymes that may catalyze aspartate to isoaspartate isomerization include PARPs, enzymes known to ribosylate aspartate residues in the process of poly(ADP-ribosyl)ation.
Collapse
Affiliation(s)
- John Janetzko
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States.,Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
24
|
Degradation Mechanisms of Polysorbate 20 Differentiated by 18O-labeling and Mass Spectrometry. Pharm Res 2016; 34:84-100. [DOI: 10.1007/s11095-016-2041-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/16/2016] [Indexed: 01/18/2023]
|
25
|
Comparison of Protein N-Homocysteinylation in Rat Plasma under Elevated Homocysteine Using a Specific Chemical Labeling Method. Molecules 2016; 21:molecules21091195. [PMID: 27617989 PMCID: PMC5292613 DOI: 10.3390/molecules21091195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 11/30/2022] Open
Abstract
Elevated blood concentrations of homocysteine have been well established as a risk factor for cardiovascular diseases and neuropsychiatric diseases, yet the etiologic relationship of homocysteine to these disorders remains poorly understood. Protein N-homocysteinylation has been hypothesized as a contributing factor; however, it has not been examined globally owing to the lack of suitable detection methods. We recently developed a selective chemical method to label N-homocysteinylated proteins with a biotin-aldehyde tag followed by Western blotting analysis, which was further optimized in this study. We then investigated the variation of protein N-homocysteinylation in plasma from rats on a vitamin B12 deficient diet. Elevated “total homocysteine” concentrations were determined in rats with a vitamin B12 deficient diet. Correspondingly, overall levels of plasma protein N-homocysteinylation displayed an increased trend, and furthermore, more pronounced and statistically significant changes (e.g., 1.8-fold, p-value: 0.03) were observed for some individual protein bands. Our results suggest that, as expected, a general metabolic correlation exists between “total homocysteine” and N-homocysteinylation, although other factors are involved in homocysteine/homocysteine thiolactone metabolism, such as the transsulfuration of homocysteine by cystathionine β-synthase or the hydrolysis of homocysteine thiolactone by paraoxonase 1 (PON1), may play more significant or direct roles in determining the level of N-homocysteinylation.
Collapse
|
26
|
Qu W, Catcott KC, Zhang K, Liu S, Guo JJ, Ma J, Pablo M, Glick J, Xiu Y, Kenton N, Ma X, Duclos RI, Zhou ZS. Capturing Unknown Substrates via in Situ Formation of Tightly Bound Bisubstrate Adducts: S-Adenosyl-vinthionine as a Functional Probe for AdoMet-Dependent Methyltransferases. J Am Chem Soc 2016; 138:2877-80. [DOI: 10.1021/jacs.5b05950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Kun Zhang
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | | | | | - Jisheng Ma
- School
of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mildly acidic conditions eliminate deamidation artifact during proteolysis: digestion with endoprotease Glu-C at pH 4.5. Amino Acids 2016; 48:1059-1067. [PMID: 26748652 DOI: 10.1007/s00726-015-2166-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/25/2015] [Indexed: 10/22/2022]
Abstract
Common yet often overlooked, deamidation of peptidyl asparagine (Asn or N) generates aspartic acid (Asp or D) or isoaspartic acid (isoAsp or isoD). Being a spontaneous, non-enzymatic protein post-translational modification, deamidation artifact can be easily introduced during sample preparation, especially proteolysis where higher-order structures are removed. This artifact not only complicates the analysis of bona fide deamidation but also affects a wide range of chemical and enzymatic processes; for instance, the newly generated Asp and isoAsp residues may block or introduce new proteolytic sites, and also convert one Asn peptide into multiple species that affect quantification. While the neutral to mildly basic conditions for common proteolysis favor deamidation, mildly acidic conditions markedly slow down the process. Unlike other commonly used endoproteases, Glu-C remains active under mildly acid conditions. As such, as demonstrated herein, deamidation artifact during proteolysis was effectively eliminated by simply performing Glu-C digestion at pH 4.5 in ammonium acetate, a volatile buffer that is compatible with mass spectrometry. Moreover, nearly identical sequence specificity was observed at both pH's (8.0 for ammonium bicarbonate), rendering Glu-C as effective at pH 4.5. In summary, this method is generally applicable for protein analysis as it requires minimal sample preparation and uses the readily available Glu-C protease.
Collapse
|
28
|
Luo Q, Chung HH, Borths C, Janson M, Wen J, Joubert MK, Wypych J. Structural Characterization of a Monoclonal Antibody–Maytansinoid Immunoconjugate. Anal Chem 2015; 88:695-702. [DOI: 10.1021/acs.analchem.5b03709] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Quanzhou Luo
- Department of Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Hyo Helen Chung
- Department of Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Christopher Borths
- Department of Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Matthew Janson
- Department of Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Jie Wen
- Department of Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Marisa K. Joubert
- Department of Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Jette Wypych
- Department of Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| |
Collapse
|
29
|
Yu X, Sargaeva NP, Thompson CJ, Costello CE, Lin C. In-Source Decay Characterization of Isoaspartate and β-Peptides. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 390:101-109. [PMID: 26644780 PMCID: PMC4669973 DOI: 10.1016/j.ijms.2015.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Deamidation and the subsequent formation of isoaspartic acid (isoAsp) are common modifications of asparagine (Asn) residues in proteins. Differentiation of isoAsp and Asp residues is a challenging task owing to their similar chemical properties and identical molecular mass. Recent studies showed that they can be differentiated using electron capture dissociation (ECD) which generates diagnostic fragments c'+57 and z•-57 specific to the isoAsp residue. However, the ECD approach is only applicable towards multiply charged precursor ions and generally does not work for β-amino acids other than isoAsp. In this study, the potential of in-source decay (ISD) in characterization of isoAsp and other β-amino acids was explored. For isoAsp-containing peptides, ISD with a conventional hydrogen-donating matrix produced ECD-like, c'+57 and z•-57 diagnostic ions, even for singly charged precursor ions. For other β-amino acids, a hydrogen-accepting matrix was used to induce formation of site-specific a-14 ions from a synthetic β-analogue of substance P. These results indicated that ISD can be broadly applied for β-peptide characterization.
Collapse
Affiliation(s)
- Xiang Yu
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | - Nadezda P. Sargaeva
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | | | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| |
Collapse
|
30
|
Bults P, van de Merbel NC, Bischoff R. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays. Expert Rev Proteomics 2015; 12:355-74. [DOI: 10.1586/14789450.2015.1050384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Tang Y, Zheng SJ, Qi CB, Feng YQ, Yuan BF. Sensitive and Simultaneous Determination of 5-Methylcytosine and Its Oxidation Products in Genomic DNA by Chemical Derivatization Coupled with Liquid Chromatography-Tandem Mass Spectrometry Analysis. Anal Chem 2015; 87:3445-52. [DOI: 10.1021/ac504786r] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Tang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028, P.R. China
| | - Shu-Jian Zheng
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Chu-Bo Qi
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
- Department
of Pathology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Yu-Qi Feng
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Bi-Feng Yuan
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
32
|
Duclos RI, Cleary DC, Catcott KC, Zhou ZS. Synthesis and characterization of Se-adenosyl-L-selenohomocysteine selenoxide. J Sulphur Chem 2014; 36:135-144. [PMID: 26005494 DOI: 10.1080/17415993.2014.979173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Selenium is an essential micronutrient in humans due to the important roles of the selenocysteine-containing selenoproteins. Organoselenium metabolites are generally found to be substrates for the biochemical pathways of their sulfur analogs, and the redox chemistry of selenomethionine and some other metabolites have been previously reported. We now report the first synthesis and characterization of Se-adenosylselenohomocysteine selenoxide (SeAHO) prepared via hydrogen peroxide oxidation of Se-adenosylselenohomocysteine (SeAH). The selenoxide SeAHO, in contrast to its corresponding sulfoxide S-adenosylhomocysteine (SAHO), can form hydrate, has an electrostatic interaction between the α-amino acid moiety and the highly polar selenoxide functional group, and readily oxidizes glutathione (GSH) and cysteine thiols.
Collapse
Affiliation(s)
- Richard I Duclos
- Department of Pharmaceutical Sciences, 140 The Fenway Bldg., Room 206, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, Tel: +1 617 373 3163
| | - Dillon C Cleary
- Department of Chemistry and Chemical Biology, Hurtig Hall, Room 102, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, Tel: +1 617 373 2800
| | - Kalli C Catcott
- Department of Chemistry and Chemical Biology, Hurtig Hall, Room 102, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, Tel: +1 617 373 2800
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Hurtig Hall, Room 102, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, Tel: +1 617 373 2800
| |
Collapse
|
33
|
Chumsae C, Zhou LL, Shen Y, Wohlgemuth J, Fung E, Burton R, Radziejewski C, Zhou ZS. Discovery of a chemical modification by citric acid in a recombinant monoclonal antibody. Anal Chem 2014; 86:8932-6. [PMID: 25136741 PMCID: PMC4165448 DOI: 10.1021/ac502179m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023]
Abstract
Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called "acidic species" that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity.
Collapse
Affiliation(s)
- Chris Chumsae
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Liqiang Lisa Zhou
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Yang Shen
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Jessica Wohlgemuth
- NBE
Analytical Research and Development, AbbVie, Ludwigshafen 67061, Germany
| | - Emma Fung
- Biologics, AbbVie
Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Randall Burton
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Czeslaw Radziejewski
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Zhaohui Sunny Zhou
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000, United States
| |
Collapse
|
34
|
Klaene JJ, Ni W, Alfaro JF, Zhou ZS. Detection and quantitation of succinimide in intact protein via hydrazine trapping and chemical derivatization. J Pharm Sci 2014; 103:3033-42. [PMID: 25043726 DOI: 10.1002/jps.24074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/01/2014] [Accepted: 06/04/2014] [Indexed: 12/19/2022]
Abstract
The formation of aspartyl succinimide is a common post-translational modification of protein pharmaceuticals under acidic conditions. We present a method to detect and quantitate succinimide in intact protein via hydrazine trapping and chemical derivatization. Succinimide, which is labile under typical analytical conditions, is first trapped with hydrazine to form stable hydrazide and can be directly analyzed by mass spectrometry. The resulting aspartyl hydrazide can be selectively derivatized by various tags, such as fluorescent rhodamine sulfonyl chloride that absorbs strongly in the visible region (570 nm). Our tagging strategy allows the labeled protein to be analyzed by orthogonal methods, including HPLC-UV-Vis, liquid chromatography mass spectrometry (LC-MS), and SDS-PAGE coupled with fluorescence imaging. A unique advantage of our method is that variants containing succinimide, after derivatization, can be readily resolved via either affinity enrichment or chromatographic separation. This allows further investigation of individual factors in a complex protein mixture that affect succinimide formation. Some additional advantages are imparted by fluorescence labeling including the facile detection of the intact protein without proteolytic digestion to peptides; and high sensitivity, for example, without optimization, 0.41% succinimide was readily detected. As such, our method should be useful for rapid screening, optimization of formulation conditions, and related processes relevant to protein pharmaceuticals.
Collapse
Affiliation(s)
- Joshua J Klaene
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | | | | | | |
Collapse
|
35
|
Dimitrijevic A, Qin Z, Aswad DW. Isoaspartyl formation in creatine kinase B is associated with loss of enzymatic activity; implications for the linkage of isoaspartate accumulation and neurological dysfunction in the PIMT knockout mouse. PLoS One 2014; 9:e100622. [PMID: 24955845 PMCID: PMC4067349 DOI: 10.1371/journal.pone.0100622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/29/2014] [Indexed: 01/12/2023] Open
Abstract
Isoaspartate (isoAsp) formation is a common type of spontaneous protein damage that is normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). PIMT-KO (knockout) mice exhibit a pronounced neuropathology highlighted by death from an epileptic seizure at 30 to 60 days after birth. The mechanisms by which isoaspartyl damage disrupts normal brain function are incompletely understood. Proteomic analysis of the PIMT-KO mouse brain has shown that a number of key neuronal proteins accumulate high levels of isoAsp, but the extent to which their cellular functions is altered has yet to be determined. One of the major neuronal targets of PIMT is creatine kinase B (CKB), a well-characterized enzyme whose activity is relatively easy to assay. We show here that (1) the specific activity of CKB is significantly reduced in the brains of PIMT-deficient mice, (2) that in vitro aging of recombinant CKB results in significant accumulation of isoAsp sites with concomitant loss of enzymatic activity, and (3) that incubation of in vitro aged CKB with PIMT and its methyl donor S-adenosyl-L-methionine substantially repairs the aged CKB with regard to both its isoAsp content and its enzymatic activity. These results, combined with similarity in phenotypes of PIMT-KO and CKB-KO mice, suggests that loss of normal CKB structure and function contributes to the mechanisms by which isoAsp accumulation leads to CNS dysfunction in the PIMT-KO mouse.
Collapse
Affiliation(s)
- Aleksandra Dimitrijevic
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
36
|
Liu M, Zhang Z, Cheetham J, Ren D, Zhou ZS. Discovery and characterization of a photo-oxidative histidine-histidine cross-link in IgG1 antibody utilizing ¹⁸O-labeling and mass spectrometry. Anal Chem 2014; 86:4940-8. [PMID: 24738698 PMCID: PMC4030806 DOI: 10.1021/ac500334k] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel photo-oxidative cross-linking
between two histidines (His-His)
has been discovered and characterized in an IgG1 antibody via the
workflow of XChem-Finder, 18O labeling and mass spectrometry
(Anal. Chem.2013, 85, 5900−590823634697). Its structure was elucidated by peptide
mapping with multiple proteases with various specificities (e.g.,
trypsin, Asp-N, and GluC combined with trypsin or Asp-N) and mass
spectrometry with complementary fragmentation modes (e.g., collision-induced
dissociation (CID) and electron-transfer dissociation (ETD)). Our
data indicated that cross-linking occurred across two identical conserved
histidine residues on two separate heavy chains in the hinge region,
which is highly flexible and solvent accessible. On the basis of model
studies with short peptides, it has been proposed that singlet oxygen
reacts with the histidyl imidazole ring to form an endoperoxide and
then converted to the 2-oxo-histidine (2-oxo-His) and His+32 intermediates, the latter is
subject to a
nucleophilic attack by the unmodified histidine; and finally, elimination
of a water molecule leads to the final adduct with a net mass increase
of 14 Da. Our findings are consistent with this mechanism. Successful
discovery of cross-linked His-His again demonstrates the broad applicability
and utility of our XChem-Finder approach in the discovery and elucidation
of protein cross-linking, particularly without a priori knowledge of the chemical nature and site of cross-linking.
Collapse
Affiliation(s)
- Min Liu
- Analytical Research and Development, Amgen , One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | |
Collapse
|
37
|
Qin Z, Yang J, Klassen HJ, Aswad DW. Isoaspartyl protein damage and repair in mouse retina. Invest Ophthalmol Vis Sci 2014; 55:1572-9. [PMID: 24550364 DOI: 10.1167/iovs.13-13668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To determine the propensity of retinal proteins for spontaneous damage via formation of isoaspartyl sites, a common type of protein damage that could contribute to retinal disease. METHODS Tissue extracts were obtained from retinas and brains of control mice and from mice in which the gene for protein L-isoaspartate O-methyltransferase (PIMT; an enzyme that repairs isoaspartyl protein damage) was knocked out. PIMT expression in these extracts was measured by Western blot, and its specific activity was assayed by monitoring the rate of [(3)H]methyl transfer from S-adenosyl-[methyl-(3)H]L-methionine to γ-globulin. Isoaspartate levels in extracts were measured by their capacity to accept [(3)H]methyl groups via the PIMT-catalyzed methylation reaction. To compare molecular weight distributions of isoaspartyl-rich proteins in retina versus brain, proteins from PIMT knockout (KO) and control mice were separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF). Isoaspartyl proteins were (3)H-labeled on-blot using a PIMT overlay and imaged by autoradiography. RESULTS When normalized to the β-actin content of each tissue, retina was found to be nearly identical to brain with regard to expression and activity of PIMT and its propensity to accumulate isoaspartyl sites when PIMT is absent. The two tissues show distinct differences in the molecular weight distribution of isoaspartyl proteins. CONCLUSIONS The retina is rich in PIMT activity and contains a wide range of proteins that are highly susceptible to this type of protein damage. Recoverin may be one such protein. Isoaspartate formation, along with oxidation, should be considered as a potential source of protein dysfunction and autoimmunity in retinal disease.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | | | | | |
Collapse
|
38
|
Chumsae C, Gifford K, Lian W, Liu H, Radziejewski CH, Zhou ZS. Arginine modifications by methylglyoxal: discovery in a recombinant monoclonal antibody and contribution to acidic species. Anal Chem 2013; 85:11401-9. [PMID: 24168114 PMCID: PMC3869466 DOI: 10.1021/ac402384y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneity is common among protein therapeutics. For example, the so-called acidic species (charge variants) are typically observed when recombinant monoclonal antibodies (mAbs) are analyzed by weak-cation exchange chromatography (WCX). Several protein post-translational modifications have been established as contributors but still cannot completely account for all heterogeneity. As reported herein, an unexpected modification by methylglyoxal (MGO) was identified, for the first time, in a recombinant monoclonal antibody expressed in Chinese hamster ovary (CHO) cells. Modifications of arginine residues by methylglyoxal lead to two adducts (dihydroxyimidazolidine and hydroimidazolone) with increases of molecular weights of 72 and 54 Da, respectively. In addition, the modification by methylglyoxal causes the antibody to elute earlier in the weak cation exchange chromatogram. Consequently, the extent to which an antibody was modified at multiple sites corresponds to the degree of shift in elution time. Furthermore, cell culture parameters also affected the extent of modifications by methylglyoxal, a highly reactive metabolite that can be generated from glucose or lipids or other metabolic pathways. Our findings again highlight the impact that cell culture conditions can have on the product quality of recombinant protein pharmaceuticals.
Collapse
Affiliation(s)
- Chris Chumsae
- Protein Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, USA
| | - Kathreen Gifford
- Protein Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, USA
| | - Wei Lian
- Cell Culture, Manufacturing Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, USA
| | - Hongcheng Liu
- Protein Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, USA
| | - Czeslaw H. Radziejewski
- Protein Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, USA
| | - Zhaohui Sunny Zhou
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
39
|
Yu X, Warme C, Lee D, Zhang J, Zhong W. Characterization of a low-level unknown isomeric degradation product using an integrated online-offline top-down tandem mass spectrometry platform. Anal Chem 2013; 85:8964-7. [PMID: 24003984 DOI: 10.1021/ac401911n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An integrated online-offline platform was developed combining automated online LC-MS fraction collection, continuous accumulation of selected ions (CASI), and offline top-down electron capture dissociation (ECD) tandem mass spectrometry experiments to identify a low-level, unknown isomeric degradant in a formulated drug product during an accelerated stability study. By identifying the diagnostic ions of the isoaspartic acid (isoAsp), the top-down ECD experiment showed that the Asp9 in exenatide was converted to isoAsp9 to form the unknown isomeric degradant. The platform described here provides an accurate, straightforward, and low limit of detection method for the analysis of Asp isomerization as well as other potential low-level degradants in therapeutic polypeptides and proteins. It is especially useful for unstable and time-sensitive degradants and impurities.
Collapse
Affiliation(s)
- Xiang Yu
- Structure Elucidation Group, Global Process & Analytical Chemistry, Merck Research Laboratories , 556 Morris Ave., Summit, New Jersey 07901, United States
| | | | | | | | | |
Collapse
|
40
|
Analysis of biopharmaceutical proteins in biological matrices by LC-MS/MS I. Sample preparation. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Liu M, Zhang Z, Zang T, Spahr C, Cheetham J, Ren D, Sunny Zhou Z. Discovery of undefined protein cross-linking chemistry: a comprehensive methodology utilizing 18O-labeling and mass spectrometry. Anal Chem 2013; 85:5900-8. [PMID: 23634697 PMCID: PMC3691076 DOI: 10.1021/ac400666p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Characterization of protein cross-linking, particularly without prior knowledge of the chemical nature and site of cross-linking, poses a significant challenge, because of their intrinsic structural complexity and the lack of a comprehensive analytical approach. Toward this end, we have developed a generally applicable workflow-XChem-Finder-that involves four stages: (1) detection of cross-linked peptides via (18)O-labeling at C-termini; (2) determination of the putative partial sequences of each cross-linked peptide pair using a fragment ion mass database search against known protein sequences coupled with a de novo sequence tag search; (3) extension to full sequences based on protease specificity, the unique combination of mass, and other constraints; and (4) deduction of cross-linking chemistry and site. The mass difference between the sum of two putative full-length peptides and the cross-linked peptide provides the formulas (elemental composition analysis) for the functional groups involved in each cross-linking. Combined with sequence restraint from MS/MS data, plausible cross-linking chemistry and site were inferred, and ultimately confirmed, by matching with all data. Applying our approach to a stressed IgG2 antibody, 10 cross-linked peptides were discovered and found to be connected via thioethers originating from disulfides at locations that had not been previously recognized. Furthermore, once the cross-link chemistry was revealed, a targeted cross-link search yielded 4 additional cross-linked peptides that all contain the C-terminus of the light chain.
Collapse
Affiliation(s)
- Min Liu
- Analytical Research and Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Zhongqi Zhang
- Process and Product Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Tianzhu Zang
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Chris Spahr
- Biologic Optimization, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Janet Cheetham
- Analytical Research and Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Da Ren
- Process and Product Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Zhaohui Sunny Zhou
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
42
|
Dai S, Ni W, Patananan AN, Clarke SG, Karger BL, Zhou ZS. Integrated proteomic analysis of major isoaspartyl-containing proteins in the urine of wild type and protein L-isoaspartate O-methyltransferase-deficient mice. Anal Chem 2013; 85:2423-30. [PMID: 23327623 DOI: 10.1021/ac303428h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The formation of isoaspartyl residues (isoAsp or isoD) via either aspartyl isomerization or asparaginyl deamidation alters protein structure and potentially biological function. This is a spontaneous and nonenzymatic process, ubiquitous both in vivo and in nonbiological systems, such as in protein pharmaceuticals. In almost all organisms, protein L-isoaspartate O-methyltransferase (PIMT, EC2.1.1.77) recognizes and initiates the conversion of isoAsp back to aspartic acid. Additionally, alternative proteolytic and excretion pathways to metabolize isoaspartyl-containing proteins have been proposed but not fully explored, largely due to the analytical challenges for detecting isoAsp. We report here the relative quantitation and site profiling of isoAsp in urinary proteins from wild type and PIMT-deficient mice, representing products from excretion pathways. First, using a biochemical approach, we found that the total isoaspartyl level of proteins in urine of PIMT-deficient male mice was elevated. Subsequently, the major isoaspartyl protein species in urine from these mice were identified as major urinary proteins (MUPs) by shotgun proteomics. To enhance the sensitivity of isoAsp detection, a targeted proteomic approach using electron transfer dissociation-selected reaction monitoring (ETD-SRM) was developed to investigate isoAsp sites in MUPs. A total of 38 putative isoAsp modification sites in MUPs were investigated, with five derived from the deamidation of asparagine that were confirmed to contribute to the elevated isoAsp levels. Our findings lend experimental evidence for the hypothesized excretion pathway for isoAsp proteins. Additionally, the developed method opens up the possibility to explore processing mechanisms of isoaspartyl proteins at the molecular level, such as the fate of protein pharmaceuticals in circulation.
Collapse
Affiliation(s)
- Shujia Dai
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
43
|
Quantitation of asparagine deamidation by isotope labeling and liquid chromatography coupled with mass spectrometry analysis. Anal Biochem 2013; 432:16-22. [DOI: 10.1016/j.ab.2012.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/17/2012] [Indexed: 12/20/2022]
|
44
|
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of Therapeutic Antibodies and Related Products. Anal Chem 2012; 85:715-36. [DOI: 10.1021/ac3032355] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| |
Collapse
|
45
|
Calabrese AN, Markulic K, Musgrave IF, Guo H, Zhang L, Bowie JH. Structural and activity changes in three bioactive anuran peptides when Asp is replaced by isoAsp. Peptides 2012; 38:427-36. [PMID: 23069634 DOI: 10.1016/j.peptides.2012.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
The Asp and isoAsp isomers of three bioactive peptides, Crinia angiotensin 11 [APGDRIYHPF(OH)], uperin 1.1 [pEADPNAFYGLM(NH(2))] and citropin 1.1 [GLFDVIKKVASVIGGL(NH(2))] were tested for changes in (i) susceptibility towards proteolytic cleavage, (ii) activity (smooth muscle activity for Crinia angiotensin 11 and uperin 1.1 isomers, and antimicrobial activity for the two isomers of citropin 1.1), and (iii) 3D structures in water, trifluoroethanol-d(3)/water (1:1) and DPC micelles as determined by 2D nuclear magnetic resonance spectroscopy. Proteolytic cleavage with trypsin was identical for each pair of Asp/isoAsp isomers. Cleavage with chymotrypsin was the same for the Crinia angiotensin and uperin 1.1 isomeric pairs, but different for the two Asp/isoAsp citropin 1.1 isomers. Chymotrypsin cleaved at Phe3 (adjacent to Asp4) for citropin 1.1, but not at Phe3 (adjacent to isoAsp4) for isoAsp citropin 1.1. The smooth muscle activity of the isoAsp isomer of Crinia angiotensin 11 was less than that of the Asp isomer. The smooth muscle activity of isoAsp3-uperin 1.1 is greater than that of the Asp isomer at low concentration (<10(-9)M) but no different from the Asp isomer at concentrations>10(-9) M. Citropin 1.1 is a wide-spectrum antibiotic against Gram positive organisms, while the isoAsp isomer is inactive against the test pathogens Staphylococcus aureus and Bacillus subtilis. The observed changes in activity are accompanied by changes in the 3D structures of isomers as determined by 2D nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Antonio N Calabrese
- Department of Chemistry, School of Chemistry and Physics, The University of Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Morrison GJ, Ganesan R, Qin Z, Aswad DW. Considerations in the identification of endogenous substrates for protein L-isoaspartyl methyltransferase: the case of synuclein. PLoS One 2012; 7:e43288. [PMID: 22905247 PMCID: PMC3419188 DOI: 10.1371/journal.pone.0043288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/18/2012] [Indexed: 01/06/2023] Open
Abstract
Protein L-isoaspartyl methyltransferase (PIMT) repairs abnormal isoaspartyl peptide bonds in age-damaged proteins. It has been reported that synuclein, a protein implicated in neurodegenerative diseases, is a major target of PIMT in mouse brain. To extend this finding and explore its possible relevance to neurodegenerative diseases, we attempted to determine the stoichiometry of isoaspartate accumulation in synuclein in vivo and in vitro. Brain proteins from PIMT knockout mice were separated by 2D electrophoresis followed by on-blot [3H]-methylation to label isoaspartyl proteins, and by immunoblotting to confirm the coincident presence of synuclein. On-blot 3H-methylation revealed numerous isoaspartyl proteins, but no signal in the position of synuclein. This finding was corroborated by immunoprecipitation of synuclein followed by on-blot 3H-methylation. To assess the propensity of synuclein to form isoaspartyl sites in vitro, samples of recombinant mouse and human α-synucleins were aged for two weeks by incubation at pH 7.5 and 37°C. The stoichiometries of isoaspartate accumulation were extremely low at 0.02 and 0.07 mol of isoaspartate per mol of protein respectively. Using a simple mathematical model based on the first order kinetics of isoaspartyl protein methyl ester hydrolysis, we ascribe the discrepancy between our results and the previous report to methodological limitations of the latter stemming from an inherent, and somewhat counterintuitive, relationship between the propensity of proteins to form isoaspartyl sites and the instability of the 3H-methyl esters used to tag them. The results presented here indicate that synuclein is not a major target of PIMT in vivo, and emphasize the need to minimize methyl ester hydrolysis when using methylation to assess the abundance of isoaspartyl sites in proteins.
Collapse
Affiliation(s)
- Gareth J. Morrison
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Ranjani Ganesan
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W. Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Du Y, Wang F, May K, Xu W, Liu H. Determination of Deamidation Artifacts Introduced by Sample Preparation Using 18O-Labeling and Tandem Mass Spectrometry Analysis. Anal Chem 2012; 84:6355-60. [DOI: 10.1021/ac3013362] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yi Du
- Merck Research Laboratory, 1011
Morris Avenue, Union, New Jersey 07083, United States
| | - Fengqiang Wang
- Merck Research Laboratory, 1011
Morris Avenue, Union, New Jersey 07083, United States
| | - Kimberly May
- Merck Research Laboratory, 1011
Morris Avenue, Union, New Jersey 07083, United States
| | - Wei Xu
- Merck Research Laboratory, 1011
Morris Avenue, Union, New Jersey 07083, United States
| | - Hongcheng Liu
- Merck Research Laboratory, 1011
Morris Avenue, Union, New Jersey 07083, United States
| |
Collapse
|
48
|
Abstract
Although differentiation of the isomeric Asn deamidation products (Asp and isoAsp) at the peptide level by electron capture dissociation (ECD) has been well-established, isoAsp identification at the intact protein level remains a challenging task. Here, a comprehensive top-down deamidation study is presented using the protein beta2-microglobulin (β(2)M) as the model system. Of the three deamidation sites identified in the aged β(2)M, isoAsp formation was detected at only one site by the top-down ECD analysis. The absence of diagnostic ions likely resulted from an increased number of competing fragmentation channels and a decreased likelihood of product ion separation in ECD of proteins. To overcome this difficulty, an MS(3) approach was applied where a protein ion was first fragmented by collisionally activated dissociation (CAD) and the resulting product ion was isolated and further analyzed by ECD. IsoAsp formation at all three deamidation sites was successfully identified by this CAD-ECD approach. Furthermore, the abundance of the isoAsp diagnostic ion was found to increase linearly with the extent of deamidation. These results demonstrated the potential of ECD in the detection and quantitative analysis of isoAsp formation using the top-down approach.
Collapse
Affiliation(s)
- Xiaojuan Li
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | - Xiang Yu
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | | |
Collapse
|
49
|
Beck A, Sanglier-Cianférani S, Van Dorsselaer A. Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal Chem 2012; 84:4637-46. [PMID: 22510259 DOI: 10.1021/ac3002885] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This Feature will introduce the strategies of therapeutic antibodies (mAbs) in-depth characterization by mass spectrometry (MS) and discuss analytical comparison of biosimilar to originator mAbs, with the cases of trastuzumab and cetuximab. In addition, the structural and functional insights gained both by state-of-the art and emerging MS methods used for biobetters and next generation antibodies design and optimization will also be highlighted.
Collapse
Affiliation(s)
- Alain Beck
- Centre d'Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois, France.
| | | | | |
Collapse
|