1
|
Zou R, Shi J, Lu Q, Sun C, Ye H, Yan X, Tian F, Li H. Cobalt MOF-hybridized nanozyme catalysts breaking pH limitations for boosted chlorpyrifos sensing performance. Food Chem 2025; 475:143399. [PMID: 39961208 DOI: 10.1016/j.foodchem.2025.143399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Given the potential dangers of organophosphorus pesticides to food safety and human health, the development of a reliable and precise detection platform for pesticides is essential. In this study, we present a novel 'armor-plating' laccase-mimetic catalyst (DNA-Cu@MOFs)-based colorimetric platform, which enables stable and selective pesticide detection. The DNA-Cu@MOFs enhance catalytic stability and overcome pH limitations, enabling effective catalysis under neutral and alkaline physiological conditions, making them well-suited for practical applications in biosensor development. By combining the catalytic properties of DNA-Cu@MOFs with a high-affinity biorecognition element (acetylcholinesterase), the platform achieves a linear detection range of 3.0-90 ng mL-1 for chlorpyrifos, with a detection limit of 0.75 ng mL-1. Notably, this platform demonstrates significant stability in chlorpyrifos detection even in the presence of environmental interferents. This robust colorimetric platform offers new possibilities for pesticide detection and provides a solid foundation for the development of comprehensive and accurate pesticide monitoring systems.
Collapse
Affiliation(s)
- Ruiqi Zou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Junxiao Shi
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Qi Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xu Yan
- Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Fangjie Tian
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Ghanbarlou S, Kahforoushan D, Abdollahi H, Zarrintaj P, Alomar A, Villanueva C, Davachi SM. Advances in quantum dot-based fluorescence sensors for environmental and biomedical detection. Talanta 2025; 294:128176. [PMID: 40262347 DOI: 10.1016/j.talanta.2025.128176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
This review explores the evolution and application of fluorescence sensors based on quantum dots (QDs) for detecting environmental and biological analytes across diverse real-world scenarios and complex sample matrices and also categorizes different types of quantum dots, such as carbon dots (C-dots), graphene quantum dots (GQDs), and metal-doped QDs and examines their properties, including tunable fluorescence, low toxicity, and photostability, which make them ideal for a variety of applications. Key sensing mechanisms, including Förster Resonance Energy Transfer (FRET) and fluorescence quenching, are discussed alongside innovations like paper-based, ratiometric, and turn-on/turn-off sensors. Additionally, case studies are provided to showcase the application of these sensors in environmental and biomedical fields, where they provide rapid, sensitive, and cost-effective solutions. This review presents the potential of quantum dot-based fluorescence sensors to transform analytical detection technologies, offering new opportunities in environmental monitoring, bioimaging, and public health safety.
Collapse
Affiliation(s)
- Samaneh Ghanbarlou
- Chemical Engineering Department, Sahand University of Technology, Tabriz, Iran
| | - Davood Kahforoushan
- Chemical Engineering Department, Sahand University of Technology, Tabriz, Iran
| | | | - Payam Zarrintaj
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, 78041, United States
| | - Adam Alomar
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, 78041, United States
| | - Carlos Villanueva
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, 78041, United States
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, 78041, United States.
| |
Collapse
|
3
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
4
|
Gao Y, Huo S, Chen C, Du S, Xia R, Liu J, Chen D, Diao Z, Han X, Yin Z. Gold nanorods as biocompatible nano-agents for the enhanced photothermal therapy in skin disorders. J Biomed Res 2024; 39:1-17. [PMID: 39375931 PMCID: PMC11873593 DOI: 10.7555/jbr.38.20240119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Rod-shaped gold nanomaterials, known as gold nanorods (GNRs), may undergo specific surface modification, because of their straightforward surface chemistry. This feature makes them appropriate for use as functional and biocompatible nano-formulations. By optimizing the absorption of longitudinally localized surface plasmon resonance in the near-infrared region, which corresponds to the near-infrared bio-tissue window, GNRs with appropriate modifications may improve the results of photothermal treatment (PTT). In dermatology, potential noninvasive uses of GNRs to enhance wound healing, manage infections, combat cutaneous malignancies, and remodel skin tissues via PTT have attracted research attention in recent years. The review discussed the basic properties of GNRs, such as their shape, size, optical performance, photothermal efficiency, and metabolism. Then, the disadvantages of using these particles in photodynamic therapy are highlighted. Next, biological applications of GNRs-based PTT are explored in detail. Finally, the limitations and future perspectives of this research are addressed, providing a comprehensive perspective on the potential GNRs with PTT.
Collapse
Affiliation(s)
- Yamei Gao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaohu Huo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Chao Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Shiyu Du
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ruiyuan Xia
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dandan Chen
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ziyue Diao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Han
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Zhiqiang Yin
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
5
|
Zhang Y, Yu W, Zhang W, Lai J, Liu L, Wang W, Wang X. Ratiometric fluorescence and colorimetric strategies for assessing activity of butyrylcholinesterase in human serum using g-C 3N 4 nanosheets, silver ion and o-phenylenediamine. Mikrochim Acta 2024; 191:411. [PMID: 38900245 DOI: 10.1007/s00604-024-06488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Ratiometric fluorescence and colorimetric strategies for detecting activity of butyrylcholinesterase (BChE) in human serum were developed by using g-C3N4 nanosheets, silver ion (Ag+) and o-phenylenediamine (OPD) as chromogenic agents. The oxidation-reduction reaction of OPD and Ag+ generates 2,3-diaminophenazine (oxOPD). Under exciation at 370 nm, g-C3N4 nanosheets and oxOPD emit fluorescence at 440 nm (F440) and 560 nm (F560), respectively. Additionally, oxOPD exhibits quenching ability towards g-C3N4 nanosheets via photoinduced electron transfer (PET) process. Thiocholine (TCh), as a product of BChE-catalyzed hydrolysis reaction of butylthiocholine iodide (BTCh), can coordinate with Ag+ intensively, and consequently diminish the amount of free Ag+ in the testing system. Less amount of free Ag+ leads to less production of oxOPD, resulting in less fluorescence quenching towards g-C3N4 nanosheets as well as less fluorescence emission of oxOPD. Therefore, by using g-C3N4 nanosheets and oxOPD as fluorescence indicators, the intensity ratio of their fluorescence (F440/F560) was calculated and employed to evaluate the activity of BChE. Similarly, the color variation of oxOPD indicated by the absorbance at 420 nm (ΔA420) was monitored for the same purpose. These strategies were validated to be sensitive and selective for detecting BChE activity in human serum, with limits of detection (LODs) of 0.1 U L-1 for ratiometric fluorescence mode and 0.7 U L-1 for colorimetric mode.
Collapse
Affiliation(s)
- Yue Zhang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wei Yu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Wei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jinyu Lai
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wei Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
6
|
Zhao H, You Q, Zhu W, Li J, Deng H, Li MB, Zhao Y, Wu Z. Nanoclusterzyme for Dual Colorimetric Sensings: A Case Study on [Au 14 (Dppp) 5 I 4 ] 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207936. [PMID: 37060229 DOI: 10.1002/smll.202207936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The enzymatic activity of atomically precise metal nanoclusters has recently been recognized; however, the number of nanoclusterzymes is very small. Besides, the applications of nanoclusterzyme wait to be explored. Herein, a novel nanoclusterzyme is synthesized and its structure is majorly resolved by single-crystal X-ray diffraction and mass spectrometry, which reveal that the nanocluster consists of an Au13 icosahedron capped by an exterior shell including four I, three Dppp (1,3-bis(diphenylphosphino) propane) ligands, and a rarely reported Dppp-Au-Dppp handle staple, which contributes a lot to the enzyme activity of [Au14 (Dppp)5 I4 ]2+ nanocluster. The as-obtained nanocluster can catalyze oxygen to O2 •- under visible light irradiation with a specific activity up to 0.182 U·mg-1 and lead to the blue color of 3,3',5,5'-tetramethylbenzidine (TMB) in both solution and solid states. With the addition of acetylcholinesterase (AChE), the blue color of (Au14 + TMB) solution system disappears due to the nanoclusterzyme activity inhibition, but the further addition of organophosphorus pesticides (OPs) into the above mixture can restore the nanoclusterzyme and recover the blue color. Based on the color turn-off and on, the various nanoclusterzyme-containing systems are used to colorimetrically sense AChE and OPs with the detection limits reaching 0.04 mU·mL-1 and 0.02 ng·mL-1 , respectively.
Collapse
Affiliation(s)
- Hongliang Zhao
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Wanli Zhu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Man-Bo Li
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yan Zhao
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Zhikun Wu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
7
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
8
|
Abstract
In the last few decades, plasmonic colorimetric biosensors raised increasing interest in bioanalytics thanks to their cost-effectiveness, responsiveness, and simplicity as compared to conventional laboratory techniques. Potential high-throughput screening and easy-to-use assay procedures make them also suitable for realizing point of care devices. Nevertheless, several challenges such as fabrication complexity, laborious biofunctionalization, and poor sensitivity compromise their technological transfer from research laboratories to industry and, hence, still hamper their adoption on large-scale. However, newly-developing plasmonic colorimetric biosensors boast impressive sensing performance in terms of sensitivity, dynamic range, limit of detection, reliability, and specificity thereby continuously encouraging further researches. In this review, recently reported plasmonic colorimetric biosensors are discussed with a focus on the following categories: (i) on-platform-based (localized surface plasmon resonance, coupled plasmon resonance and surface lattice resonance); (ii) colloid aggregation-based (label-based and label free); (iii) colloid non-aggregation-based (nanozyme, etching-based and growth-based).
Collapse
|
9
|
Li CH, Wang WF, Stanislas N, Yang JL. Facile preparation of fluorescent water-soluble non-conjugated polymer dots and fabricating an acetylcholinesterase biosensor. RSC Adv 2022; 12:7911-7921. [PMID: 35424765 PMCID: PMC8982230 DOI: 10.1039/d1ra07854b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/26/2022] [Indexed: 11/26/2022] Open
Abstract
Acetylcholinesterase (AChE) has been demonstrated as a crucial enzyme in the development and treatment of Alzheimer's disease (AD). The present work reported the preparation of high fluorescence emission, water-soluble, non-conjugated polymer dots (NCPDs) via Schiff base reaction, and its self-assembly between hyperbranched poly(ethylenimine) (PEI) and pyrogallol in aqueous solutions. A one-pot method was introduced, which made the preparation process of the NCPDs more convenient, energy-efficient, and environmentally friendly. The mechanism of the inherent fluorescence of NCPDs and its fluorescence properties were investigated. This study, for the first time, explored the application of NCPDs to a nanoquencher biosensing system, discovering the reversible quenching effect of MnO2 nanosheets for NCPDs. Furthermore, the quenching mechanism of MnO2 for NCPDs was demonstrated to be an inner filter effect (IFE). The NCPDs-MnO2 biosensing system showed a broader detection range from 12.3 to 3675 U L-1 for AChE and the limit of detection (LOD) was as low as 4.9 U L-1. The sensing system has been applied to screen AChE inhibitors, and the result of the positive drug was highly consistent with previous studies. The established method showed a promising prospect in screening for leading compounds in new drug discoveries for AD.
Collapse
Affiliation(s)
- Cai-Hong Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
| | - Nsanzamahoro Stanislas
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
| |
Collapse
|
10
|
Li J, Yang F, Huang J, Xiang Y, Wang B, Sun X, Liu Y, Kong Q, Chen W, Li P, Guo Y. Novel Pyramidal DNA Nanostructure as a Signal Probe Carrier Platform for Detection of Organophosphorus Pesticides. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Hou L, Zhang X, Huang Y, Wang M, Chen X, Lin T, Tan Y, Zhao S. A ratiometric electrochemical biosensor via alkaline phosphatase mediated dissolution of nano-MnO 2 and Ru(III) redox recycling for the determination of dimethoate. J Pharm Biomed Anal 2022; 207:114400. [PMID: 34624818 DOI: 10.1016/j.jpba.2021.114400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/21/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
A sensitive and ratiometric electrochemical biosensor was developed for the determination of dimethoate via alkaline phosphatase (ALP) mediated dissolution of nano-MnO2 and [Ru(NH3)6]3+(Ru(III)) redox recycling. The electroactive probe Ru(III) was adsorbed on the nano-MnO2 with the high specific surface area through electrostatic interaction to form the MnO2-Ru(III) nanocomposite, which was then fixed on the surface of the glassy carbon electrode. When the dimethoate inhibited the catalytic activity of ALP in a homogeneous system, the hydrolysate L-ascorbic acid (AA) produced by ALP hydrolysis of L-ascorbic acid-trisodium 2-phosphate (AAP) decreased. The solution was then incubated with a glassy carbon electrode modified by MnO2-Ru(III). At this time, only a small amount of MnO2-Ru(III) was decomposed and Ru(III) was rapidly electroreduced to Ru(II) on the surface of the electrode. The in-situ produced Ru(II) was chemically oxidized back to Ru(III) by Fe(III). The redox recycling of Ru(III) was completed and the Ru(III) reduction current signal was amplified. The process consumed part of Fe(III) to reduce the reduction current signal of Fe(III), and the ratio of the two reduction currents (IRu(III)/IFe(III)) increased significantly. The IRu(III)/IFe(III) value increased with the increase of dimethoate concentration in the linear range of 0.01-300 ng mL-1, and the detection limit was 6.3 pg mL-1. It has been successfully applied to the determination of dimethoate in oilseed rape and lettuce with a satisfactory result.
Collapse
Affiliation(s)
- Li Hou
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Xuanhan Zhang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yuxiu Huang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Min Wang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Xiaoyu Chen
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| | - Yanhui Tan
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| | - Shulin Zhao
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
12
|
Mao J. Aptamer-engineered gold nanorod driven an absorbance enhanced strategy for sensitive biomacromolecule profiling. Talanta 2021; 239:123116. [PMID: 34864534 DOI: 10.1016/j.talanta.2021.123116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/28/2022]
Abstract
Gold nanorods (AuNRs)-based plasmonic biosensor offers new opportunity for quantification of biomacromolecules due to their high designability and low technical demands. However, existing methods for the optical detection of biomacromolecule require the targets to induce the aggregation or etching of AuNRs. This limits the range of targets that can be detected, because molecules at extremely low concentration are difficult to arouse aggregation or etching of AuNRs. Thus, it is still challenge to design a scheme for the biomacromolecules at extremely low concentration which can't arouse aggregation or etching of AuNRs based on their plasmonic property. This study proposes a universal absorbance enhanced strategy for biomacromolecule detection with aptamers engineered AuNRs. The biosensor assay (Apts/AuNRs) is designed through assembly of two aptamers on AuNRs to specified recognize the target biomacromolecules, forming closed-loop conformation based on the proximity-dependent ligation, producing absorbance enhancement in the plasmonic peak of AuNRs. It is interesting that the absorbance enhancement increases gradually with increasing protein concentration within a certain range, whereas no aggregation or etching of AuNRs was observed compared with the typical AuNRs based LSPR sensor. Taking advantage of the excellent near infrared light absorption of AuNRs, Apts/AuNRs could be utilized to detect red protein such as cytochrome C, which exhibited better performance than AuNPs based plasmonic sensor. On this basis, the selectivity detection of cytochrome C with the detection of limit down to picomole level was demonstrated. By changing the type of aptamers on AuNRs, the sensitive and credible method was also utilized for the analysis of telomerase activity in nerve cell lysate. Telomerase activity in 4 × 104 neuroblastoma cell was determined to be about 3.575 U/L, which was close to the result of ELISA kit. Good recovery was achieved using standard samples recovery. This study broadens the scope of AuNRs based plasmonic property and offer a simple, sensitive and selective strategy for biomacromolecules detection in complexed biofluid.
Collapse
Affiliation(s)
- Jinpeng Mao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
Bhattu M, Verma M, Kathuria D. Recent advancements in the detection of organophosphate pesticides: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4390-4428. [PMID: 34486591 DOI: 10.1039/d1ay01186c] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are generally utilized for the protection of crops from pests. Because the use of OPPs in various agricultural operations has expanded dramatically, precise monitoring of their concentration levels has become the critical issue, which will help in the protection of ecological systems and food supply. However, the World Health Organization (WHO) has classified them as extremely dangerous chemical compounds. Taking their immense use and toxicity into consideration, the development of easy, rapid and highly sensitive techniques is necessary. Despite the fact that there are numerous conventional ways for detecting OPPs, the development of portable sensors is required to make routine analysis considerably more convenient. Some of these advanced techniques include colorimetric sensors, fluorescence sensors, molecular imprinted polymer-based sensors, and surface plasmon resonance-based sensors. This review article specifically focuses on the colorimetric, fluorescence and electrochemical sensors. In this article, the sensing strategies of these developed sensors, analytical conditions and their respective limit of detection are compiled.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| | - Deepika Kathuria
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| |
Collapse
|
15
|
Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3856. [PMID: 34204853 PMCID: PMC8199770 DOI: 10.3390/s21113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hazwani Suhaila Hashim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
16
|
Colorimetric determination of sarcosine in human urine with enzyme-like reaction mediated Au nanorods etching. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Fu R, Zhou J, Wang Y, Liu Y, Liu H, Yang Q, Zhao Q, Jiao B, He Y. Oxidase-like Nanozyme-Mediated Altering of the Aspect Ratio of Gold Nanorods for Breaking through H 2O 2-Supported Multicolor Colorimetric Assay: Application in the Detection of Acetylcholinesterase Activity and Its Inhibitors. ACS APPLIED BIO MATERIALS 2021; 4:3539-3546. [PMID: 35014439 DOI: 10.1021/acsabm.1c00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient, fast, and colorful colorimetric platform with high resolution for acetylcholinesterase (AChE) activity and its inhibitors detection based on the regulation of oxidase-like nanozyme-mediated etching of gold nanorods (AuNRs) has been proposed in this work. MnO2 nanosheets are selected as the nanozyme. Their excellent oxidase-like activity enables the etching process to proceed smoothly without the usage of unstable H2O2. When AChE is present, it catalytically hydrolyzes acetylthiocholine (ATCh) to thiocholine (TCh). With high reducing ability, TCh induces the decomposition of MnO2 nanosheets, causing them to lose their oxidase-like activity. Thus, the etching of AuNRs is hampered. Consequently, with the increasing concentration of AChE, an apparent change in the AuNRs solution color is observed. The proposed platform achieves high-sensitivity detection of AChE (limit of detection = 0.18 mU/mL). Furthermore, the proposed platform also has been demonstrated its applicability for its inhibitors detection. Benefiting from the advantages of convenient and high resolution of visual readout, the proposed platform holds great potential for the detection of AChE and its inhibitors in clinical diagnosis.
Collapse
Affiliation(s)
- Ruijie Fu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Jing Zhou
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yiwen Wang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yanlin Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Haoran Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Qin Yang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Qiyang Zhao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Bining Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yue He
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| |
Collapse
|
18
|
Zhang Q, Fu C, Guo X, Gao J, Zhang P, Ding C. Fluorescent Determination of Butyrylcholinesterase Activity and Its Application in Biological Imaging and Pesticide Residue Detection. ACS Sens 2021; 6:1138-1146. [PMID: 33503372 DOI: 10.1021/acssensors.0c02398] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Butyrylcholinesterase (BChE) is an essential human cholinesterase relevant to liver conditions and neurodegenerative diseases, which makes it a pivotal biomarker of health. It therefore remains challenging and highly desired to elaborate efficient chemical tools for BChE with simple operations and satisfactory working performance. In this work, a background-free detection strategy was built by virtue of the judicious coupling of a specific BChE-enzymatic reaction and in situ cyclization. High sensitivity with a low limit of detection (LOD) of 0.075 μg/mL could be readily achieved from the blank background and the as-produced emissive indicators, and the specific reaction site contributed to the high selectivity over other bio-species even acetylcholinesterase (AChE). In addition to the multifaceted spectral experiments to verify the sensing mechanism, this work assumed comprehensive studies on the application. The bio-investigation ranged from cells to an organism, declaring a noteworthy prospect in disease diagnosis, especially for Alzheimer's disease (AD), a common neurodegenerative disease with over-expressed BChE. Moreover, its excellent work for inhibition efficacy elucidation was also proved with the accuracy IC50 of tacrine for BChE (8.6 nM), giving rise to an expanded application for trace pesticide determination.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caixia Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
19
|
Mugaka BP, Zhang S, Li RQ, Ma Y, Wang B, Hong J, Hu YH, Ding Y, Xia XH. One-Pot Preparation of Peptide-Doped Metal-Amino Acid Framework for General Encapsulation and Targeted Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11195-11204. [PMID: 33645961 DOI: 10.1021/acsami.0c22194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs), especially those made by biological molecules (bio-MOFs), have been proved to be prospective candidates for biomedical applications. However, a simple and universal bio-MOF to load different substances for precise targeting is still lacking. In this work, we propose a facile one-pot method to prepare a peptide-doped bio-MOF for general encapsulation and targeted delivery. This bio-MOF is constructed by 9-fluorenylmethyloxycarbonyl-modified histidine (Fmoc-His) as a bridging linker that coordinates with Zn2+ ions, denoted as ZFH. The Fmoc-His-Asp-Gly-Arg peptide (Fmoc-HDGR) can be easily doped into the ZFH structure with different ratios to modulate the targeting ability of ZFH-DGR. Containing both hydrophobic Fmoc and hydrophilic His moieties, this framework is compatible with encapsulating various types of payloads, including hydrophobic chemotherapeutic, hydrophilic protein, and positively/negatively charged inorganic nanoparticles. It has also been proved to be highly biocompatible and stable in circulation, exhibit the capabilities to target ανβ3 integrin overexpressed on tumor cells, and trigger drug release in a low pH microenvironment at the tumor site. As a proof of concept, Doxorubicin (Dox)-loaded ZFH-DGR (ZFH-DGR/Dox) demonstrated high cell selectivity between liver hepatocellular carcinoma (HepG2) cells and normal liver (L02) cells, which express high and low ανβ3 integrin, respectively. This selectivity endows ZFH-DGR/Dox precise treatment and low toxicity in Heps-bearing liver cancer mice. This work develops a de novo approach to construct a peptide-doped bio-MOF system for universal load, precise delivery, and peptide drug combination therapy in the future.
Collapse
Affiliation(s)
- Benson Peter Mugaka
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Rui-Qi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Biomedical Functional Materials, School of Sciences, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Jin Hong
- Key Laboratory of Biomedical Functional Materials, School of Sciences, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Yi-Hui Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Zhang D, Ye Z, Liu H, Wang X, Hua J, Ling Y, Wei L, Xia Y, Sun S, Xiao L. Cell membrane coated smart two-dimensional supraparticle for in vivo homotypic cancer targeting and enhanced combinational theranostics. Nanotheranostics 2021; 5:275-287. [PMID: 33654654 PMCID: PMC7914337 DOI: 10.7150/ntno.57657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Development of intelligent and multifunctional nanoparticle for the diagnosis and treatment of cancer has drawn great attention recently. In this work, we design a smart two-dimensional (2D) supraparticle for tumor targeted magnetic resonance imaging (MRI)/photothermal imaging (PTI) and chemo/photothermal therapy (PTT). Methods: The nanoparticle consists of a manganese dioxide (MnO2) nanosheet coated gold nanorod (GNR) core (loading with chemotherapeutics doxorubicin (DOX)), and cancer cell membrane shell (denoted as CM-DOX-GMNPs). Decoration of cell membrane endows the nanoparticle with greatly improved colloidal stability and homotypic cancer cell targeting ability. Once the nanoparticles enter tumor cells, MnO2 nanosheets can be etched to Mn2+ by glutathione (GSH) and acidic hydrogen peroxide (H2O2) in the cytosol, leading to the release of DOX. Meanwhile, stimuli dependent releasing of Mn2+ can act as MRI contrast agent for tumor diagnosis. Illumination with near-infrared (NIR) light, photothermal conversion effect of GNRs can be activated for synergistic cancer therapy. Results:In vivo results illustrate that the CM-DOX-GMNPs display tumor specific MRI/PTI ability and excellent inhibition effect on tumor growth. Conclusion: This bioinspired nanoparticle presents an effective and intelligent approach for tumor imaging and therapy, affording valuable guidance for the rational design of robust theranostics nanoplatform.
Collapse
Affiliation(s)
- Di Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongju Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jianhao Hua
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yunyun Ling
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Lin Wei
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yunsheng Xia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Shaokai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Hua Z, Yu T, Liu D, Xianyu Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens Bioelectron 2021; 179:113076. [PMID: 33601132 DOI: 10.1016/j.bios.2021.113076] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Food safety issue remains a challenge worldwide. Common substances in food can pose a great threat to human health including but not limited to food borne-pathogens, heavy metals, mycotoxins, pesticides, herbicides, veterinary drugs, allergens and illegal additives. To develop rapid, low-cost, portable and on-site detection methods of those contaminants and allergens to ensure food safety, gold nanoparticles (AuNPs) of versatile shapes and morphologies such as nanorods, nanoclusters, nanoflowers, nanostars, nanocages, nanobipyramids and nanowires have been employed as probes because they possess extraordinary properties that can be used to design biosensors enabling detecting various contaminants and allergens. By means of surface modification, AuNPs can directly or indirectly sense specific targets based on different mechanisms, such as hydrogen bonds, nucleic acid hybridization, aptamer-target binding, antigen-antibody recognition, enzyme inhibition, and enzyme-mimicking activity. AuNPs can induce a distinct color change from red to blue when they transform from a monodispersed state to an aggregated state in liquid solution, which can be observed by naked eyes. If Raman molecules are functionalized on AuNPs, their aggregation will alter the interparticle distance and induce the surface-enhanced Raman scattering that can be employed for highly sensitive detection. Ultra-small AuNPs such as Au nanoclusters also feature in fluorescence that enable a fluorescent readout. The formats of AuNPs for food safety detection in real world range broadly including but not limited to films, fibers, liquid solutions, tapes, chips and lateral flow strips. In this review, recent applications of AuNPs-based biosensors for food safety detection will be discussed, mainly in the aspect of different contaminants and allergens encountered in food samples.
Collapse
Affiliation(s)
- Zheng Hua
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
22
|
Zhai X, Xu F, Li Y, Jun F, Li S, Zhang C, Wang H, Cao B. A highly selective and recyclable sensor for the electroanalysis of phosphothioate pesticides using silver-doped ZnO nanorods arrays. Anal Chim Acta 2021; 1152:338285. [PMID: 33648640 DOI: 10.1016/j.aca.2021.338285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Silver-doped ZnO nanorods (Ag/ZnO) arrays have in-situ grown onto indium tin oxide (ITO) via the one-pot hydrothermal route towards a highly selective and recyclable electroanalysis of phosphothioate pesticides (PTs) with phoxim (Phox) as a model. It was discovered that the Ag/ZnO arrays-modified electrode could obtain a steady and sharp electrochemical output of solid-state Ag/AgCl at a low potential (i.e., 0.12 V). More importantly, the achieved Ag/AgCl signals could decrease selectively induced by sulfide (S)-containing Phox by the specific Cl-S displacement reaction, which would trigger AgCl into non-electroactive Ag-Phox complex. The Ag/ZnO arrays-modified sensors present a linear range from 0.050 to 700.0 μM for the detection of Phox, with a limit of detection down to 0.010 μM. The practical applicability of the developed electroanalysis strategy was successfully employed to detect Phox in the tap water and cabbage samples. Moreover, the photocatalytic performances of the Ag/ZnO arrays were subsequently verified for the degradation of Phox, displaying the higher photocatalytic efficiency than pure ZnO nanorods. Besides, the as-developed sensor can allow for the recyclable detection of Phox by the Ag/ZnO-photocatalyzed removal of Phox after each of the detection cycles. Therefore, the sensors platform based on Ag/ZnO arrays can be expected to have potential for the electrochemical monitoring and photocatalytic degradation of toxic pesticides in the food and environmental fields.
Collapse
Affiliation(s)
- Xiurong Zhai
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China; Department of Chemistry and Chemical Engineering, Jining University, Qufu City, Shandong Province, 273155, PR China
| | - Fan Xu
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China
| | - Yujiao Li
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China
| | - Fangying Jun
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China
| | - Shuai Li
- Institute of Medicine and Materials Applied Technologies, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province, 273165, PR China
| | - Chunxian Zhang
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China; Department of Chemistry and Chemical Engineering, Jining University, Qufu City, Shandong Province, 273155, PR China
| | - Hua Wang
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China; Institute of Medicine and Materials Applied Technologies, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province, 273165, PR China.
| | - Bingqiang Cao
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
23
|
Li W, Rong Y, Wang J, Li T, Wang Z. MnO2 switch-bridged DNA walker for ultrasensitive sensing of cholinesterase activity and organophosphorus pesticides. Biosens Bioelectron 2020; 169:112605. [DOI: 10.1016/j.bios.2020.112605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
|
24
|
A Bioorthogonally Synthesized and Disulfide-Containing Fluorescence Turn-On Chemical Probe for Measurements of Butyrylcholinesterase Activity and Inhibition in the Presence of Physiological Glutathione. Catalysts 2020. [DOI: 10.3390/catal10101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a biomarker in human blood. Aberrant BChE activity has been associated with human diseases. Here we developed a fluorescence resonance energy transfer (FRET) chemical probe to specifically quantify BChE activity in serum, while simultaneously discriminating against glutathione (GSH). The FRET chemical probe 11 was synthesized from a key trifunctional bicyclononyne exo-6 and derivatives of 5-(2-aminoethylamino)-1-naphthalenesulfonic acid (EDANS) and 4-[4-(dimethylamino)phenylazo]benzoic acid (DABCYL). EDANS fluorescence visualization and kinetic analysis of 11 in the presence of diverse compounds confirmed the outstanding reactivity and specificity of 11 with thiols. The thiol-dependent fluorescence turn-on property of 11 was attributed to a general base-catalyzed SN2 nucleophilic substitution mechanism and independent of metal ions. Moreover, all thiols, except GSH, reacted swiftly with 11. Kinetic studies of 11 in the presence of covalently modified GSH derivatives corroborated that the steric hindrance of 11 imposing on GSH was the likely cause of the distinguished reactivity. Since GSH commonly interferes in assays measuring BChE activity in blood samples, the 11-based fluorescent assay was employed to directly quantify BChE activity without GSH interference, and delivered a linear range of 4.3–182.2 U L−1 for BChE activity with detection limit of 4.3 U L−1, and accurately quantified serum BChE activity in the presence of 10 μM GSH. Finally, the 11-based assay was exploited to determine Ki of 5 nM for tacrine inhibition on BChE catalysis. We are harnessing the modulated characteristics of 6 to synthesize advanced chemical probes able to more sensitively screen for BChE inhibitors and quantify BChE activity in serum.
Collapse
|
25
|
Ultrasensitive split-type electrochemical sensing platform for sensitive determination of organophosphorus pesticides based on MnO 2 nanoflower-electron mediator as a signal transduction system. Anal Bioanal Chem 2020; 412:6939-6945. [PMID: 32691085 DOI: 10.1007/s00216-020-02824-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022]
Abstract
Organophosphorus pesticides (OPs) are extensively used worldwide as agrochemicals; however, excess use may threaten the health of humans. Thus, it is an urgent need to develop a sensitive method for determination of OPs. Herein, a simple and sensitive split-type electrochemical method was developed by using MnO2 nanoflower-electron mediator as a signal transduction element. The MnO2 nanoflower-electron mediator was synthesized and shows an excellent electrochemical signal attributed to the high specific surface area of MnO2 nanoflower. Meanwhile, the inhibition of OPs on butyrylcholinesterase (BChE) was carried out in the homogeneous system. In the absence of target molecule, a large number of thiocholines (TCh) were yielded from hydrolysis of acetylthiocholine (ATCh) by BChE. The MnO2 nanoflower was cracked, and subsequently, multiple electron mediator molecules were released from the platform after treated with TCh, thus decreasing the electrochemical response. Furthermore, the inhibition of OPs on BChE resulted in the reduced generation of TCh, thus inducing the recovery of electrochemical signal. Under the optimal experimental, dichlorvos can be detected in a wide range of 10-6-10-10 M, with a detection limit of 3 × 10-10 M. Moreover, the assay was successfully used to analyze dichlorvos in cucumber juice and pear juice, showing a great promising potential for detecting organophosphorus pesticides in complex samples. Graphical abstract In this assay, a split-type electrochemical biosensor was proposed for the ultrasensitive determination of organophosphorus pesticides based on the MnO2 nanoflower-electron mediator as an electrochemical signal component.
Collapse
|
26
|
Chen P, Zheng C, Chen C, Huang K, Wang X, Hu P, Geng J. Thiol inhibition of Hg cold vapor generation in SnCl 2/NaBH 4 system: A homogeneous bioassay for H 2O 2/glucose and butyrylcholinesterase/pesticide sensing by atomic spectrometry. Anal Chim Acta 2020; 1111:8-15. [PMID: 32312400 DOI: 10.1016/j.aca.2020.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/18/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023]
Abstract
Recently, the use of atomic spectrometry (AS) for biochemical analysis has attracted considerable attention due to its high sensitivity, selectivity and anti-interference ability. In this work, we conducted a detailed study on a phenomenon of thiol inhibition of mercury (Hg2+) cold vapor generation (CVG) and found L-cysteine (L-Cys), glutathione (GSH), dithiothreitol, N-Acetyl-L-cysteine, 3-mercaptopropionic acid, β-mercaptoethanol, and NaI can inhibit the CVG of Hg2+, while EDTA has no inhibitory effect. Furthermore, changing the content of -SH can effectively adjust the CVG atomic fluorescence spectrometer (CVG-AFS) signal of Hg2+. As as a consequence, an AS-based homogeneous bioassay was constructed by adjusting the oxidation ratio and production quantity of -SH in the system. The quantitative analysis of the system was demonstrated by using AFS as a representative detector. Hydrogen peroxide (H2O2) and glucose were used as representative analytes for the validation of Hg2+ atomic fluorescence signal turn-off strategy, and butyrylcholinesterase (BChE) as well as parathion (organophosphorus pesticides, OPs) as utilized as representative targets for the signal turn-on strategy. Under optimal experimental conditions, the homogeneous CVG-AFS sensor can be successfully used to detect 3 μM H2O2, 30 μM glucose, 0.25 U/L BChE, and 0.4 μg/mL parathion. In addition, the detection results of glucose and BChE in human serum samples agreed well with those obtained by using glucometer and kit, showing the promising potential of this method for practical applications. Therefore, this work provides a perspective for the construction of AS-based homogeneous bioassays and shows great potential for the detection of biomarkers.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Chuan Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China; Institute of Pharmacology & School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xiu Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Pingyue Hu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
27
|
Li T, Sun J, Liu J, Dong B, Zhao H, Qiao X, Shan W, Zhang J, Shao B. Constructing boronate-bridged core-satellite gold nanoassembly and its application in high sensitive colorimetric detection of benzoyl peroxide residues in food matrices. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Bi S, Feng C, Wang M, Kong M, Liu Y, Cheng X, Wang X, Chen X. Temperature responsive self-assembled hydroxybutyl chitosan nanohydrogel based on homogeneous reaction for smart window. Carbohydr Polym 2020; 229:115557. [DOI: 10.1016/j.carbpol.2019.115557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
|
29
|
Che Sulaiman IS, Chieng BW, Osman MJ, Ong KK, Rashid JIA, Wan Yunus WMZ, Noor SAM, Kasim NAM, Halim NA, Mohamad A. A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Mikrochim Acta 2020; 187:131. [PMID: 31940088 DOI: 10.1007/s00604-019-3893-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/06/2019] [Indexed: 01/08/2023]
Abstract
This review (with 99 refs.) summarizes the progress that has been made in colorimetric (i.e. spectrophotometric) determination of organophosphate pesticides (OPPs) using gold and silver nanoparticles (NPs). Following an introduction into the field, a first large section covers the types and functions of organophosphate pesticides. Methods for colorimetric (spectrophotometric) measurements including RGB techniques are discussed next. A further section covers the characteristic features of gold and silver-based NPs. Syntheses and modifications of metal NPs are covered in section 5. This is followed by overviews on enzyme inhibition-based assays, aptamer-based assays and chemical (non-enzymatic) assays, and a discussion of specific features of colorimetric assays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section addresses current challenges and discusses potential future trends and opportunities. Graphical abstractSchematic representation of organophosphate pesticide determinations based on aggregation of nanoparticles (particular silver or gold nanoparticles). This leads to a color change which can be determined visually and monitored by a red shift in the absorption spectrum.
Collapse
Affiliation(s)
- I S Che Sulaiman
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - B W Chieng
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - M J Osman
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - K K Ong
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia. .,Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia.
| | - J I A Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - W M Z Wan Yunus
- Centre for Tropicalisation, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - S A M Noor
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - N A M Kasim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia.,Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - N A Halim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - A Mohamad
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Xu W, Lin Q, Yin Y, Xu D, Huang X, Xu B, Wang G. A Review on Cancer Therapy Based on the Photothermal Effect of Gold Nanorod. Curr Pharm Des 2020; 25:4836-4847. [DOI: 10.2174/1381612825666191216150052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/29/2019] [Indexed: 02/05/2023]
Abstract
Background:
Cancer causes millions of deaths and huge economic losses every year. The currently
practiced methods for cancer therapy have many defects, such as side effects, low curate rate, and discomfort for
patients.
Objective:
Herein, we summarize the applications of gold nanorods (AuNRs) in cancer therapy based on their
photothermal effect-the conversion of light into local heat under irradiation.
Methods:
The recent advances in the synthesis and regulation of AuNRs, and facile surface functionalization
further facilitate their use in cancer treatment. For cancer therapy, AuNRs need to be modified or coated with
biocompatible molecules (e.g. polyethylene glycol) and materials (e.g. silicon) to reduce the cytotoxicity and
increase their biocompatibility, stability, and retention time in the bloodstream. The accumulation of AuNRs in
cancerous cells and tissues is due to the high leakage in tumors or the specific interaction between the cell surface
and functional molecules on AuNRs such as antibodies, aptamers, and receptors.
Results:
AuNRs are employed not only as therapeutics to ablate tumors solely based on the heat produced under
laser that could denature protein and activate the apoptotic pathway, but also as synergistic therapies combined
with photodynamic therapy, chemotherapy, and gene therapy to kill cancer more efficiently. More importantly,
other materials like TiO2, graphene oxide, and silicon, etc. are incorporated on the AuNR surface for multimodal
cancer treatment with high drug loadings and improved cancer-killing efficiency. To highlight their applications
in cancer treatment, examples of therapeutic effects both in vitro and in vivo are presented.
Conclusion:
AuNRs have potential applications for clinical cancer therapy.
Collapse
Affiliation(s)
- Weizhen Xu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Qinlu Lin
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yueqin Yin
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Dong Xu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaohui Huang
- Hunan Edible Fungi Institute, Changsha, 410004, China
| | - Bucheng Xu
- Wangcheng Commodity Inspection Center, Changsha, 410200, China
| | - Guangwei Wang
- Biomedical Research Center, Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
31
|
Ma Q, Fang X, Zhang J, Zhu L, Rao X, Lu Q, Sun Z, Yu H, Zhang Q. Discrimination of cysteamine from mercapto amino acids through isoelectric point-mediated surface ligand exchange of β-cyclodextrin-modified gold nanoparticles. J Mater Chem B 2020; 8:4039-4045. [DOI: 10.1039/d0tb00462f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A pI-mediated R6G-β-CD@AuNPs system was designed for the first time for the discrimination of CA from GSH/Cys/Hcy in human serum samples.
Collapse
Affiliation(s)
- Quanbao Ma
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- China
| | - Xun Fang
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- China
| | - Junting Zhang
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- China
| | - Lili Zhu
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- China
| | - Xiabing Rao
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- China
| | - Qi Lu
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- China
| | - Zhijun Sun
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- China
| | - Huan Yu
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- China
| | - Qunlin Zhang
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- China
| |
Collapse
|
32
|
Wang B, Li R, Guo G, Xia Y. Janus and core@shell gold nanorod@Cu2−xS supraparticles: reactive site regulation fabrication, optical/catalytic synergetic effects and enhanced photothermal efficiency/photostability. Chem Commun (Camb) 2020; 56:8996-8999. [DOI: 10.1039/d0cc00433b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein present a reactive site regulation strategy for fabricating well-defined Janus and core@shell gold nanorod-Cu2−xS dual metal–semiconductor plasmonic supraparticles.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
| | - Ruirui Li
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
| | - Ge Guo
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
| | - Yunsheng Xia
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
| |
Collapse
|
33
|
Shi D, Cui CJ, Sun CX, Du JP, Liu CS. A new [Co21(H2O)4(OH)12]30+ unit-incorporating polyoxotungstate for sensitive detection of dichlorvos. NEW J CHEM 2020. [DOI: 10.1039/d0nj01539c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new [Co21(H2O)4(OH)12]30+ unit-incorporating polyoxotungstate (denoted as Co25Si6W60) has been hydrothermally synthesized and fully characterized. The unique Co25Si6W60-based biosensing system offers an environmentally-friendly route for detecting dichlorvos.
Collapse
Affiliation(s)
- Dongying Shi
- Henan Provincial Key Laboratory of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Chao-Jie Cui
- Henan Provincial Key Laboratory of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Chun-Xiao Sun
- Henan Provincial Key Laboratory of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Jun-Ping Du
- Henan Provincial Key Laboratory of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Chun-Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| |
Collapse
|
34
|
Yang Y, Liu H, Chen Z, Wu T, Jiang Z, Tong L, Tang B. A Simple 3D-Printed Enzyme Reactor Paper Spray Mass Spectrometry Platform for Detecting BuChE Activity in Human Serum. Anal Chem 2019; 91:12874-12881. [DOI: 10.1021/acs.analchem.9b02728] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Huimin Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Tianhong Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
35
|
An acetylcholinesterase biosensor based on doping Au nanorod@SiO2 nanoparticles into TiO2-chitosan hydrogel for detection of organophosphate pesticides. Biosens Bioelectron 2019; 141:111452. [DOI: 10.1016/j.bios.2019.111452] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/23/2022]
|
36
|
|
37
|
Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Mikrochim Acta 2019; 186:50. [DOI: 10.1007/s00604-018-3110-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/25/2018] [Indexed: 12/16/2022]
|
38
|
Ciriello R, Lo Magro S, Guerrieri A. Assay of serum cholinesterase activity by an amperometric biosensor based on a co-crosslinked choline oxidase/overoxidized polypyrrole bilayer. Analyst 2019; 143:920-929. [PMID: 29363680 DOI: 10.1039/c7an01757j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Based on choline oxidase immobilized by co-crosslinking on an overoxidised polypyrrole modified platinum electrode, a novel electrochemical assay for cholinesterase activity in human serum was developed. The assay was performed by adding an aliquot of cholinesterase standard solution or serum sample to phosphate buffer containing choline or thiocholine ester and measuring the oxidation current of hydrogen peroxide at the rotating modified electrode polarized at +0.7 V vs. SCE. The influence of some experimental parameters such as pH of the assay, mass transport at the electrode, type and concentration of the cholinesterase substrate was studied and optimised. Reversible inhibition of choline oxidase from cholinesterase substrates was evidenced for the first time, which increases in the order of acetylcholine, butyrylcholine and s-butyrylthiocholine. Wide linear range, fast response time and appreciable long-term stability were assured for both acethyl- and butyrylcholinesterase assays. On allowing the polypyrrole layer to efficiently remove interferences from the electroactive compounds in the sample, the present method revealed to be suitable for the detection of butyrylcholinesterase in human serum at activities as low as 0.5 U L-1. The validation with a reference spectrophotometric method showed no significant differences when human serum samples were analysed.
Collapse
Affiliation(s)
- Rosanna Ciriello
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | | | | |
Collapse
|
39
|
Kostara A, Tsogas GZ, Vlessidis AG, Giokas DL. Generic Assay of Sulfur-Containing Compounds Based on Kinetics Inhibition of Gold Nanoparticle Photochemical Growth. ACS OMEGA 2018; 3:16831-16838. [PMID: 31458309 PMCID: PMC6643451 DOI: 10.1021/acsomega.8b02804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/27/2018] [Indexed: 05/22/2023]
Abstract
This work describes a new, equipment-free, generic method for the determination of sulfur-containing compounds that is based on their ability to slow down the photoreduction kinetics of gold ions to gold nanoparticles. The method involves tracking the time required for a red coloration to appear in the tested sample, indicative of the formation of gold nanoparticles, and compare the measured time relative to a control sample in the absence of the target analyte. The method is applicable with minimal and simple steps requiring only two solutions (i.e., a buffer and a gold solution), a source of light (UV or visible), and a timer. The method responds to a large variety of sulfur-containing compounds including thiols, thioesters, disulfides, thiophosphates, metal-sulfur bonds, and inorganic sulfur and was therefore applied to the determination of a variety of compounds such as dithiocarbamate and organophosphorous pesticides, biothiols, pharmaceutically active compounds, and sulfides in different samples such as natural waters and wastewater, biological fluids, and prescription drugs. The analytical figures of merit of the method include satisfactory sensitivity (quantitation limits at the low μM levels), good recoveries (from 93 to 109%), and satisfactory reproducibility (from 4.8 to 9.8%). The method is easily adoptable to both laboratory settings and nonlaboratory conditions for quantitative and semiquantitative analysis, respectively, is user-friendly even for the minimally trained user, and can be performed with limited resources at low cost.
Collapse
|
40
|
Ma Y, Zhu Y, Liu B, Quan G, Cui L. Colorimetric Determination of Hypochlorite Based on the Oxidative Leaching of Gold Nanorods. MATERIALS 2018; 11:ma11091629. [PMID: 30200555 PMCID: PMC6164613 DOI: 10.3390/ma11091629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022]
Abstract
Hypochlorite plays a critical role in killing microorganisms in the water. However, it can also cause cardiovascular diseases, neuron degeneration, and cancer to humans. Although traditional methods feature excellent sensitivity and reliability in detecting hypochlorite, the expensive instruments and strict determination conditions have limited their application in environmental analysis to some extent. Thus, it is necessary and urgent to propose a cheap, facile, and quick analytical assay for hypochlorite. This paper proposes a colorimetric assay for hypochlorite utilizing gold nanorods (AuNRs) as the nanoreactor and color reader. The AuNRs were acquired via a reported seed-mediated method. NaClO with strong oxidation property can cause the etching of gold from the longitudinal tips of AuNRs, which could shorten the aspect ratio of AuNRs, decrease the absorption in the UV–Vis spectrum and also induce the solution color changing from red to pale yellow. Thus, according to the solution color change and the absorbance of longitudinal surface plasmon resonance of AuNRs, we established the calibration curve of NaClO within 0.08 μM to 125 μM (∆Abs = 0.0547 + 0.004 CNaClO, R2 = 0.9631). Compared to traditional method, we obtained the conversion formula between the concentration of residual-chlorine in tap water and the concentration of hypochlorite detected by the proposed colorimetric assay, which is Cresidual-chlorine = 0.24 CNaClO. Finally, the real application of the colorimetric assay in tap water was successfully performed, and the accuracy of the colorimetric method can reach from −6.78% to +8.53%.
Collapse
Affiliation(s)
- Yurong Ma
- School of Environmental Science and Engineering, Yancheng Istitute of technology, Yancheng 224051, China.
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yingyi Zhu
- School of Environmental Science and Engineering, Yancheng Istitute of technology, Yancheng 224051, China.
| | - Benzhi Liu
- School of Environmental Science and Engineering, Yancheng Istitute of technology, Yancheng 224051, China.
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Istitute of technology, Yancheng 224051, China.
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Istitute of technology, Yancheng 224051, China.
| |
Collapse
|
41
|
|
42
|
Chen G, Feng H, Jiang X, Xu J, Pan S, Qian Z. Redox-Controlled Fluorescent Nanoswitch Based on Reversible Disulfide and Its Application in Butyrylcholinesterase Activity Assay. Anal Chem 2018; 90:1643-1651. [PMID: 29298486 DOI: 10.1021/acs.analchem.7b02976] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Butyrylcholinesterase (BChE) mainly contributing to plasma cholinesterase activity is an important indicator for routinely diagnosing liver function and organophosphorus poisoning in clinical diagnosis, but its current assays are scarce and frequently suffer from some significant interference and instability. Herein, we report a redox-controlled fluorescence nanoswtich based on reversible disulfide bonds, and further develop a fluorometric assay of BChE via thiol-triggered disaggregation-induced emission. Thiol-functionalized carbon quantum dots (thiol-CQDs) with intense fluorescence is found to be responsive to hydrogen peroxide, and their redox reaction transforms thiol-CQDs to nonfluorescent thiol-CQD assembly. The thiols inverse this process by a thiol-exchange reaction to turn on the fluorescence. The fluorescence can be reversibly switched by the formation and breaking of disulfide bonds caused by external redox stimuli. The specific thiol-triggered disaggregation-induced emission enables us to assay BChE activity in a fluorescence turn-on and real-time way using butyrylthiocholine iodide as the substrate. As-established BChE assay achieves sufficient sensitivity for practical determination in human serum, and is capable of avoiding the interference from micromolar glutathione and discriminatively quantifying BChE from its sister enzyme acetylcholinesterase. The first design of reversible redox-controlled nanosiwtch based on disulfide expands the application of disulfide chemistry in sensing and clinical diagnostics, and this novel BChE assay enriches the detection methods for cholinesterase activity.
Collapse
Affiliation(s)
- Guilin Chen
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| | - Hui Feng
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| | - Xiaogan Jiang
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| | - Jing Xu
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| | - Saifei Pan
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| | - Zhaosheng Qian
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| |
Collapse
|
43
|
Wang J, Wu Y, Zhou P, Yang W, Tao H, Qiu S, Feng C. A novel fluorescent aptasensor for ultrasensitive and selective detection of acetamiprid pesticide based on the inner filter effect between gold nanoparticles and carbon dots. Analyst 2018; 143:5151-5160. [DOI: 10.1039/c8an01166d] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent aptasensor based on the inner filter effect of carbon dots has been proposed for the ultrasensitive and selective detection of acetamiprid pesticide in vegetable samples.
Collapse
Affiliation(s)
- Jinlong Wang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy
- School of Liquor and Food Engineering
- Guizhou University
- Huaxi District
- China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy
- School of Liquor and Food Engineering
- Guizhou University
- Huaxi District
- China
| | - Pei Zhou
- Key Laboratory of Urban Agriculture (South)
- Ministry of Agriculture
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Wenping Yang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy
- School of Liquor and Food Engineering
- Guizhou University
- Huaxi District
- China
| | - Han Tao
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy
- School of Liquor and Food Engineering
- Guizhou University
- Huaxi District
- China
| | - Shuyi Qiu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy
- School of Liquor and Food Engineering
- Guizhou University
- Huaxi District
- China
| | - Caiwei Feng
- Engineering Research Center of Nation Combined with Local on Biological Detection Technologies for Food Safety
- Guizhou Kwinbon Food Safety Science and Technology Co
- Ltd
- Guiyang 550025
- China
| |
Collapse
|
44
|
Cui HF, Wu WW, Li MM, Song X, Lv Y, Zhang TT. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens Bioelectron 2018; 99:223-229. [DOI: 10.1016/j.bios.2017.07.068] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|
45
|
Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P. Gold nanoparticle-based colorimetric biosensors. NANOSCALE 2017; 10:18-33. [PMID: 29211091 DOI: 10.1039/c7nr06367a] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gold nanoparticles (AuNPs) provide excellent platforms for the development of colorimetric biosensors as they can be easily functionalised, displaying different colours depending on their size, shape and state of aggregation. In the last decade, a variety of biosensors have been developed to exploit the extent of colour changes as nano-particles (NPs) either aggregate or disperse, in the presence of analytes. Of critical importance to the design of these methods is that the behaviour of the systems has to be reproducible and predictable. Much has been accomplished in understanding the interactions between a variety of substrates and AuNPs, and how these interactions can be harnessed as colorimetric reporters in biosensors. However, despite these developments, only a few biosensors have been used in practice for the detection of analytes in biological samples. The transition from proof of concept to market biosensors requires extensive long-term reliability and shelf life testing, and modification of protocols and design features to make them safe and easy to use by the population at large. Developments in the next decade will see the adoption of user friendly biosensors for point-of-care and medical diagnosis as innovations are brought to improve the analytical performances and usability of the current designs. This review discusses the mechanisms, strategies, recent advances and perspectives for the use of AuNPs as colorimetric biosensors.
Collapse
Affiliation(s)
- H Aldewachi
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Lu H, Quan S, Xu S. Highly Sensitive Ratiometric Fluorescent Sensor for Trinitrotoluene Based on the Inner Filter Effect between Gold Nanoparticles and Fluorescent Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9807-9814. [PMID: 29068213 DOI: 10.1021/acs.jafc.7b03986] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this work, we developed a simple and sensitive ratiometric fluorescent assay for sensing trinitrotoluene (TNT) based on the inner filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent nanoparticles (RFNs), which was designed by hybridizing green emissive carbon dots (CDs) and red emissive quantum dots (QDs) into a silica sphere as a fluorophore pair. AuNPs in their dispersion state can be a powerful absorber to quench CDs, while the aggregated AuNPs can quench QDs in the IFE-based fluorescent assays as a result of complementary overlap between the absorption spectrum of AuNPs and emission spectrum of RFNs. As a result of the fact that TNT can induce the aggregation of AuNPs, with the addition of TNT, the fluorescent of QDs can be quenched, while the fluorescent of CDs would be recovered. Then, ratiometric fluorescent detection of TNT is feasible. The present IFE-based ratiometric fluorescent sensor can detect TNT ranging from 0.1 to 270 nM, with a detection limit of 0.029 nM. In addition, the developed method was successfully applied to investigate TNT in water and soil samples with satisfactory recoveries ranging from 95 to 103%, with precision below 4.5%. The simple sensing approach proposed here could improve the sensitivity of colorimetric analysis by changing the ultraviolet analysis to ratiometric fluorescent analysis and promote the development of a dual-mode detection system.
Collapse
Affiliation(s)
- Hongzhi Lu
- School of Chemistry and Chemical Engineering and ‡School of Materials Science and Engineering, Linyi University , Linyi, Shandong 276005, People's Republic of China
| | - Shuai Quan
- School of Chemistry and Chemical Engineering and ‡School of Materials Science and Engineering, Linyi University , Linyi, Shandong 276005, People's Republic of China
| | - Shoufang Xu
- School of Chemistry and Chemical Engineering and ‡School of Materials Science and Engineering, Linyi University , Linyi, Shandong 276005, People's Republic of China
| |
Collapse
|
47
|
Off-on-off detection of the activity of acetylcholine esterase and its inhibitors using MoOx quantum dots as a photoluminescent probe. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2519-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Wu S, Li D, Gao Z, Wang J. Controlled etching of gold nanorods by the Au(III)-CTAB complex, and its application to semi-quantitative visual determination of organophosphorus pesticides. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2468-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Zhu H, Wang Y, Chen C, Ma M, Zeng J, Li S, Xia Y, Gao M. Monodisperse Dual Plasmonic Au@Cu 2-xE (E= S, Se) Core@Shell Supraparticles: Aqueous Fabrication, Multimodal Imaging, and Tumor Therapy at in Vivo Level. ACS NANO 2017; 11:8273-8281. [PMID: 28742316 DOI: 10.1021/acsnano.7b03369] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We herein report aqueous fabrication of well-defined Au@Cu2-xE (E = S, Se) core@shell dual plasmonic supraparticles (SPs) for multimodal imaging and tumor therapy at the in vivo level. By means of a modified self-limiting self-assembly based strategy, monodisperse core@shell dual plasmonic SPs, including spherical Au@Cu2-xS SPs, Au@Cu2-xSe SPs, and rod-like Au@Cu2-xS SPs, are reliably and eco-friendly fabricated in aqueous solution. Due to plasmonic coupling from the core and shell materials, the as-prepared hybrid products possess an extremely large extinction coefficient (9.32 L g-1 cm-1 for spherical Au@Cu2-xS SPs) at 808 nm, which endows their excellent photothermal effect. Furthermore, the hybrid core@shell SPs possess the properties of good biocompatibility, low nonspecific interactions, and high photothermal stability. So, they show favorable performances for photoacoustic imaging and X-ray computed tomography imaging as well as photothermal therapy of tumors, indicating their application potentials in biological field.
Collapse
Affiliation(s)
- Hui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, China
| | - Yong Wang
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation, Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Chao Chen
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore
| | - Mingrou Ma
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation, Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore
| | - Yunsheng Xia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation, Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, China
| |
Collapse
|
50
|
Abstract
Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.
Collapse
Affiliation(s)
- Longhua Tang
- State
Key Laboratory of Modern Optical Instrumentation, College of Optical
Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jinghong Li
- Department
of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|