1
|
Kuhn AJ, Outlaw VK, Marcink TC, Yu Z, Mears MC, Cajimat MN, Kreitler DF, Cleven PR, Mook JC, Bente DA, Porotto M, Gellman SH, Moscona A. Enhancing the solubility of SARS-CoV-2 inhibitors to increase future prospects for clinical development. J Virol 2025; 99:e0215924. [PMID: 39902960 PMCID: PMC11915835 DOI: 10.1128/jvi.02159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 02/06/2025] Open
Abstract
SARS-CoV-2 poses an ongoing threat to human health as variants continue to emerge. Several effective vaccines are available, but a diminishing number of Americans receive the updated vaccines (only 22% received the 2023 update). Public hesitancy towards vaccines and common occurrence of "breakthrough" infections (i.e., infections of vaccinated individuals) highlight the need for alternative methods to reduce viral transmission. SARS-CoV-2 enters cells by fusing its envelope with the target cell membrane in a process mediated by the viral spike protein, S. The S protein operates via a Class I fusion mechanism in which fusion between the viral envelope and host cell membrane is mediated by structural rearrangements of the S trimer. We previously reported lipopeptides derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibit fusion by SARS-CoV-2, both in vitro and in vivo. These lipopeptides bear an attached cholesterol unit to anchor them in the membrane. Here, to improve prospects for experimental development and future clinical utility, we employed structure-guided design to incorporate charged residues at specific sites in the peptide to enhance aqueous solubility. This effort resulted in two new, potent lipopeptide inhibitors. IMPORTANCE Despite the existence of vaccines for SARS-CoV-2, the constant evolution of new variants and the occurrence of breakthrough infections highlight the need for new and effective antiviral approaches. We have shown that lipopeptides designed to bind a conserved region on the SARS-CoV-2 spike protein can effectively block viral entry into cells and thereby block infection. To support the feasibility of using this approach in humans, we re-designed these lipopeptides to be more soluble, using information about the structure of the spike protein interacting with the peptides to modify the peptide chain. The new peptides are effective against both SARS-CoV-2 and MERS. The lipopeptides described here could serve as treatment for people who are unvaccinated or who experience breakthrough infections, and the approach to increasing solubility can be applied in a broad spectrum approach to treating infections with emerging viruses.
Collapse
Affiliation(s)
- Ariel J Kuhn
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Victor K Outlaw
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Tara C Marcink
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Zhen Yu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Megan C Mears
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maria N Cajimat
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Dale F Kreitler
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Payton R Cleven
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Jee Ching Mook
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Dennis A Bente
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Matteo Porotto
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Anne Moscona
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Reynard O, Iampietro M, Dumont C, Le Guellec S, Durand S, Moroso M, Brisebard E, Dhondt KP, Pelissier R, Mathieu C, Cabrera M, Le Pennec D, Amurri L, Alabi C, Cardinaud S, Porotto M, Moscona A, Vecellio L, Horvat B. Development of nebulized inhalation delivery for fusion-inhibitory lipopeptides to protect non-human primates against Nipah-Bangladesh infection. Antiviral Res 2025; 235:106095. [PMID: 39870114 DOI: 10.1016/j.antiviral.2025.106095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Nipah virus (NiV) is a lethal zoonotic paramyxovirus that can be transmitted from person to person through the respiratory route. There are currently no licensed vaccines or therapeutics. A lipopeptide-based fusion inhibitor was developed and previously evaluated for efficacy against the NiV-Malaysia strain. Intraperitoneal administration in hamsters showed superb prophylactic activity and promising efficacy, however the intratracheal delivery mode in non-human primates proved intractable and spurred the development of an aerosolized delivery route that could be clinically applicable. We developed an aerosol delivery system in an artificial respiratory 3D model and optimized the combinations of flow rate and particle size for lung deposition. We characterized the nebulizer device and assessed the safety of lipopeptide nebulization in an African green monkey model that mimics human NiV infection. Three nebulized doses of fusion-inhibitory lipopeptide were administered every 24 h, resulting in peptide deposition across multiple regions of both lungs without causing toxicity or adverse hematological and biochemical effects. In peptide-treated monkeys challenged with a lethal dose of NiV-Bangladesh, animals retained robust levels of T and B-lymphocytes in the blood, infection-induced lethality was significantly delayed, and 2 out of 5 monkeys were protected from NiV infection. The present study establishes the safety and feasibility of the nebulizer delivery method for AGM studies. Future studies will compare delivery methods using next-generation fusion-inhibitory anti-NiV lipopeptides to evaluate the potential role of this aerosol delivery approach in achieving a rapid antiviral response.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Sandrine Le Guellec
- DTF-Aerodrug, R&D Aerosoltherapy Department of DTF Medical (Saint Etienne, France), Faculté de Médecine, Université de Tours, 37032, Tours, France
| | - Stephanie Durand
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | | | | | - Kévin P Dhondt
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Rodolphe Pelissier
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Maria Cabrera
- CEPR, INSERM U1100, Université de Tours, Tours, France
| | | | - Lucia Amurri
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Christopher Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Sylvain Cardinaud
- Vaccine Research Institute, Créteil, France; Inserm U955, Team 16, Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Créteil, France
| | - Matteo Porotto
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA; Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Anne Moscona
- Division of Pediatric Critical Care Medicine and Hospital Medicine, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA; Department of Microbiology & Immunology and Department of Physiology & Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | | | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
3
|
Du Y, Xiong Y, Sha Z, Guo D, Fu B, Lin X, Wu H. Cell-Penetrating Peptides in infection and immunization. Microbiol Res 2025; 290:127963. [PMID: 39522201 DOI: 10.1016/j.micres.2024.127963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Bacteria and viruses pose significant threats to human health, as drug molecules and therapeutic agents are often hindered by cell membranes and tissue barriers from reaching intracellular targets. Cell-penetrating peptides (CPPs), composed of 5-30 amino acids, function as molecular shuttles that facilitate the translocation of therapeutic agents across biological barriers. Despite their therapeutic potential, CPPs exhibit limitations, such as insufficient cell specificity, low in vivo stability, reduced delivery efficiency, and limited tolerance under serum conditions. However, intelligent design and chemical modifications can enhance their cell penetration, stability, and selectivity. These advancements could significantly improve CPP-based drug delivery strategies, facilitating both infection treatment and immunization against bacterial and viral diseases. This review provides an overview of the applications of CPPs in various infections and immune diseases, summarizing their mechanisms and the challenges encountered during their application.
Collapse
Affiliation(s)
- Yongliang Du
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Beibei Fu
- College of Pharmacy and Medical Laboratory, Medical Laboratory, Army Medical University, Chongqing 400038, China
| | - Xiaoyuan Lin
- College of Pharmacy and Medical Laboratory, Medical Laboratory, Army Medical University, Chongqing 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
5
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Guarracino DA, Iannaccone J, Cabrera A, Kancharla S. Harnessing the Therapeutic Potential and Biological Activity of Antiviral Peptides. Chembiochem 2022; 23:e202200415. [PMID: 36075015 DOI: 10.1002/cbic.202200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Peptides are ideal candidates for the development of antiviral therapeutics due to their specificity, chemical diversity and potential for highly potent, safe, molecular interventions. By restricting conformational freedom and flexibility, cyclic peptides frequently increase peptide stability. Viral targets are often very challenging as their evasive strategies for infectivity can preclude standard therapies. In recent years, several peptides from natural sources mitigated an array of viral infections. In parallel, short peptides derived from key viral proteins, modified with chemical groups such as lipids and cell-penetrating sequences, led to highly effective antiviral inhibitor designs. These strategies have been further developed during the recent COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2. Several anti-SARS-CoV-2 peptides are gaining ground in pre-clinical development. Overall, peptides are strong contenders for lead compounds against many life-threatening viruses and may prove to be the key to future efforts revealing viral mechanisms of action and alleviating their effects.
Collapse
Affiliation(s)
| | | | | | - Sneha Kancharla
- The College of New Jersey School of Science, Chemistry, UNITED STATES
| |
Collapse
|
7
|
Monroe MK, Wang H, Anderson CF, Jia H, Flexner C, Cui H. Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. J Control Release 2022; 348:1028-1049. [PMID: 35752254 PMCID: PMC11022941 DOI: 10.1016/j.jconrel.2022.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Peptides and peptide-based materials have an increasing role in the treatment of viral infections through their use as active pharmaceutical ingredients, targeting moieties, excipients, carriers, or structural components in drug delivery systems. The discovery of peptide-based therapeutic compounds, coupled with the development of new stabilization and formulation strategies, has led to a resurgence of antiviral peptide therapeutics over the past two decades. The ability of peptides to bind cell receptors and to facilitate membrane penetration and subsequent intracellular trafficking enables their use in various antiviral systems for improved targeting efficiency and treatment efficacy. Importantly, the self-assembly of peptides into well-defined nanostructures provides a vast library of discrete constructs and supramolecular biomaterials for systemic and local delivery of antiviral agents. We review here the recent progress in exploiting the therapeutic, biological, and self-assembling potential of peptides, peptide conjugates, and their supramolecular assemblies in treating human viral infections, with an emphasis on the treatment strategies for Human Immunodeficiency Virus (HIV).
Collapse
Affiliation(s)
- Maya K Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Hongpeng Jia
- Department of Surgery, The Johns Hopkins University School of Medicine, United States of America
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, The Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, United States of America.
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Deptartment of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America; Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States of America.
| |
Collapse
|
8
|
Abstract
The ability of SARS-CoV-2 to evolve in response to selective pressures poses a challenge to vaccine and antiviral efficacy. The S1 subunit of the spike (S) protein contains the receptor-binding domain and is therefore under selective pressure to evade neutralizing antibodies elicited by vaccination or infection. In contrast, the S2 subunit of S is only transiently exposed after receptor binding, which makes it a less efficient target for antibodies. As a result, S2 has a lower mutational frequency than S1. We recently described monomeric and dimeric SARS-CoV-2 fusion-inhibitory lipopeptides that block viral infection by interfering with S2 conformational rearrangements during viral entry. Importantly, a dimeric lipopeptide was shown to block SARS-CoV-2 transmission between ferrets in vivo. Because the S2 subunit is relatively conserved in newly emerging SARS-CoV-2 variants of concern (VOCs), we hypothesize that fusion-inhibitory lipopeptides are cross-protective against infection with VOCs. Here, we directly compared the in vitro efficacies of two fusion-inhibitory lipopeptides against VOC, in comparison with a set of seven postvaccination sera (two doses) and a commercial monoclonal antibody preparation. For the beta, delta, and omicron VOCs, it has been reported that convalescent and postvaccination sera are less potent in virus neutralization assays. Both fusion-inhibitory lipopeptides were equally effective against all five VOCs compared to ancestral virus, whereas postvaccination sera and therapeutic monoclonal antibody lost potency to newer VOCs, in particular to omicron BA.1 and BA.2. The neutralizing activity of the lipopeptides is consistent, and they can be expected to neutralize future VOCs based on their mechanism of action.
Collapse
|
9
|
Antiviral peptide engineering for targeting membrane-enveloped viruses: Recent progress and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183821. [PMID: 34808121 DOI: 10.1016/j.bbamem.2021.183821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022]
Abstract
Membrane-enveloped viruses are a major cause of global health challenges, including recent epidemics and pandemics. This mini-review covers the latest efforts to develop membrane-targeting antiviral peptides that inhibit enveloped viruses by 1) preventing virus-cell fusion or 2) disrupting the viral membrane envelope. The corresponding mechanisms of antiviral activity are discussed along with peptide engineering strategies to modulate membrane-peptide interactions in terms of potency and selectivity. Application examples are presented demonstrating how membrane-targeting antiviral peptides are useful therapeutics and prophylactics in animal models, while a stronger emphasis on biophysical concepts is proposed to refine mechanistic understanding and support potential clinical translation.
Collapse
|
10
|
Behzadipour Y, Hemmati S. Viral Prefusion Targeting Using Entry Inhibitor Peptides: The Case of SARS-CoV-2 and Influenza A virus. Int J Pept Res Ther 2022; 28:42. [PMID: 35002586 PMCID: PMC8722418 DOI: 10.1007/s10989-021-10357-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
Abstract
In this study, peptide entry inhibitors against the fusion processes of severe acute respiratory syndrome coronavirus-2 (SCV2) and influenza A virus (IAV) were designed and evaluated. Fusion inhibitor peptides targeting the conformational shift of the viral fusion protein were designed based on the relatively conserved sequence of HR2 from SCV2 spike protein and the conserved fusion peptide from hemagglutinin (HA) of IAV. Helical HR2 peptides bind more efficiently to HR1 trimer, while helical amphipathic anti-IAV peptides have higher cell penetration and endosomal uptake. The initial sequences were mutated by increasing the amphipathicity, using helix favoring residues, and residues likely to form salt- and disulfide-bridges. After docking against their targets, all anti-SCV2 designed peptides bonded with the HR1 3-helical bundle's hydrophobic crevice, while AntiSCV2P1, AntiSCV2P3, AntiSCV2P7, and AntiSCV2P8 expected to form coiled coils with at least one of the HR1 strands. Four of the designed anti-IAV peptides were cell-penetrating (AntiIAVP2, AntiIAVP3, AntiIAVP4, AntiIAVP7). All of them interacted with the fusion peptide of HA and some of the residues in the conserved hydrophobic pocket of HA2 in H1N1, H3N1, and H5N1 subtypes of IAV. AntiIAVP3 and AntiIAVP4 peptides had the best binding to HA2 conserved hydrophobic pocket, while, AntiIAVP2 and AntiIAVP6 showed the best binding to the fusion peptide region. According to analyses for in-vivo administration, AntiSCV2P1, AntiSCV2P7, AntiIAVP2, and AntiIAVP7 were the best candidates. AntiSCV2 and AntiIAV peptides were also conjugated using an in vivo cleavable linker sensitive to TMPRSS2 applicable as a single therapeutic in coinfections or uncertain diagnosis.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Düzgüneş N, Fernandez-Fuentes N, Konopka K. Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Pathogens 2021; 10:1599. [PMID: 34959554 PMCID: PMC8709411 DOI: 10.3390/pathogens10121599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Fusion of lipid-enveloped viruses with the cellular plasma membrane or the endosome membrane is mediated by viral envelope proteins that undergo large conformational changes following binding to receptors. The HIV-1 fusion protein gp41 undergoes a transition into a "six-helix bundle" after binding of the surface protein gp120 to the CD4 receptor and a co-receptor. Synthetic peptides that mimic part of this structure interfere with the formation of the helix structure and inhibit membrane fusion. This approach also works with the S spike protein of SARS-CoV-2. Here we review the peptide inhibitors of membrane fusion involved in infection by influenza virus, HIV-1, MERS and SARS coronaviruses, hepatitis viruses, paramyxoviruses, flaviviruses, herpesviruses and filoviruses. We also describe recent computational methods used for the identification of peptide sequences that can interact strongly with protein interfaces, with special emphasis on SARS-CoV-2, using the PePI-Covid19 database.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UK;
| | - Krystyna Konopka
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| |
Collapse
|
12
|
The pH-sensitive action of cholesterol-conjugated peptide inhibitors of influenza virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183762. [PMID: 34478733 DOI: 10.1016/j.bbamem.2021.183762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
Influenza viruses are major human pathogens, responsible for respiratory diseases affecting millions of people worldwide, with high morbidity and significant mortality. Infections by influenza can be controlled by vaccines and antiviral drugs. However, this virus is constantly under mutations, limiting the effectiveness of these clinical antiviral strategies. It is therefore urgent to develop new ones. Influenza hemagglutinin (HA) is involved in receptor binding and promotes the pH-dependent fusion of viral and cell endocytic membranes. HA-targeted peptides may emerge as a novel antiviral option to block this viral entry step. In this study, we evaluated three HA-derived (lipo)peptides using fluorescence spectroscopy. Peptide membrane interaction assays were performed at neutral and acidic pH to better resemble the natural conditions in which influenza fusion occurs. We found that peptide affinity towards membranes decreases upon the acidification of the environment. Therefore, the released peptides would be able to bind their complementary domain and interfere with the six-helix bundle formation necessary for viral fusion, and thus for the infection of the target cell. Our results provide new insight into molecular interactions between HA-derived peptides and cell membranes, which may contribute to the development of new influenza virus inhibitors.
Collapse
|
13
|
Yu D, Zhu Y, Jiao T, Wu T, Xiao X, Qin B, Chong H, Lei X, Ren L, Cui S, Wang J, He Y. Structure-based design and characterization of novel fusion-inhibitory lipopeptides against SARS-CoV-2 and emerging variants. Emerg Microbes Infect 2021; 10:1227-1240. [PMID: 34057039 PMCID: PMC8216258 DOI: 10.1080/22221751.2021.1937329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
The ongoing pandemic of COVID-19, caused by SARS-CoV-2, has severely impacted the global public health and socio-economic stability, calling for effective vaccines and therapeutics. In this study, we continued our efforts to develop more efficient SARS-CoV-2 fusion inhibitors and achieved significant findings. First, we found that the membrane-proximal external region (MPER) sequence of SARS-CoV-2 spike fusion protein plays a critical role in viral infectivity and can serve as an ideal template for design of fusion-inhibitory peptides. Second, a panel of novel lipopeptides was generated with greatly improved activity in inhibiting SARS-CoV-2 fusion and infection. Third, we showed that the new inhibitors maintained the potent inhibitory activity against emerging SARS-CoV-2 variants, including those with the major mutations of the B.1.1.7 and B.1.351 strains circulating in the United Kingdom and South Africa, respectively. Fourth, the new inhibitors also cross-inhibited other human CoVs, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Fifth, the structural properties of the new inhibitors were characterized by circular dichroism (CD) spectroscopy and crystallographic approach, which revealed the mechanisms underlying the high binding and inhibition. Combined, our studies provide important information for understanding the mechanism of SARS-CoV-2 fusion and a framework for the development of peptide therapeutics for the treatment of SARS-CoV-2 and other CoVs.
Collapse
Affiliation(s)
- Danwei Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tao Jiao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tong Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xia Xiao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Gao B, Zhao D, Li L, Cheng Z, Guo Y. Antiviral Peptides with in vivo Activity: Development and Modes of Action. Chempluschem 2021; 86:1547-1558. [PMID: 34755499 DOI: 10.1002/cplu.202100351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/28/2021] [Indexed: 12/25/2022]
Abstract
The viral pandemic has resulted in a growing demand for antiviral drugs. The existing small-molecule antiviral drugs are limited, due to their incidence of drug resistance and adverse side effects. As potential drugs, antiviral peptides have the benefits of high activity, high stability, and few side effects. Furthermore, the diversity of acquisition methods allows antiviral peptides to be quickly designed and yielded. The drug properties (such as high bioavailability and in vivo stability) of antiviral peptides can be improved by the developed modifications. Currently, two peptide antiviral drugs have been approved for the treatment of acquired immunodeficiency syndrome (AIDS). Many antiviral peptides have entered clinical trials for the treatment of diseases caused by viruses. In addition, new antiviral peptides are continuously being identified and validated against virus infections. Given the benefits of antiviral peptides, they will become major antiviral drugs to combat new outbreaks caused by unknown viruses in the future. This review provides an overview of recent developments in antiviral peptides with in vivo activity.
Collapse
Affiliation(s)
- Bing Gao
- School of Public Health, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Dongdong Zhao
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Lingmu Li
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Zhigang Cheng
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Ye Guo
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| |
Collapse
|
15
|
Wirchnianski AS, Wec AZ, Nyakatura EK, Herbert AS, Slough MM, Kuehne AI, Mittler E, Jangra RK, Teruya J, Dye JM, Lai JR, Chandran K. Two Distinct Lysosomal Targeting Strategies Afford Trojan Horse Antibodies With Pan-Filovirus Activity. Front Immunol 2021; 12:729851. [PMID: 34721393 PMCID: PMC8551868 DOI: 10.3389/fimmu.2021.729851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple agents in the family Filoviridae (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry. Despite this variability in the antigenic surface of GP, all filoviruses share a site of vulnerability-the binding site for the universal filovirus entry receptor, Niemann-Pick C1 (NPC1). Unfortunately, this site is shielded in extracellular GP and only uncovered by proteolytic cleavage by host proteases in late endosomes and lysosomes, which are generally inaccessible to antibodies. To overcome this obstacle, we previously developed a 'Trojan horse' therapeutic approach in which engineered bispecific antibodies (bsAbs) coopt viral particles to deliver GP:NPC1 interaction-blocking antibodies to their endo/lysosomal sites of action. This approach afforded broad protection against members of the genus Ebolavirus but could not neutralize more divergent filoviruses. Here, we describe next-generation Trojan horse bsAbs that target the endo/lysosomal GP:NPC1 interface with pan-filovirus breadth by exploiting the conserved and widely expressed host cation-independent mannose-6-phosphate receptor for intracellular delivery. Our work highlights a new avenue for the development of single therapeutics protecting against all known and newly emerging filoviruses.
Collapse
Affiliation(s)
- Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anna Z. Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elisabeth K. Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrew S. Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ana I. Kuehne
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jonathan Teruya
- Antibody Discovery and Research group, Mapp Biopharmaceutical, San Diego, CA, United States
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
16
|
Mendonça DA, Bakker M, Cruz-Oliveira C, Neves V, Jiménez MA, Defaus S, Cavaco M, Veiga AS, Cadima-Couto I, Castanho MARB, Andreu D, Todorovski T. Penetrating the Blood-Brain Barrier with New Peptide-Porphyrin Conjugates Having anti-HIV Activity. Bioconjug Chem 2021; 32:1067-1077. [PMID: 34033716 PMCID: PMC8485325 DOI: 10.1021/acs.bioconjchem.1c00123] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Passing
through the blood-brain barrier (BBB) to treat neurological
conditions is one of the main hurdles in modern medicine. Many drugs
with promising in vitro profiles become ineffective in vivo due to
BBB restrictive permeability. In particular, this includes drugs such
as antiviral porphyrins, with the ability to fight brain-resident
viruses causing diseases such as HIV-associated neurocognitive disorders
(HAND). In the last two decades, BBB shuttles, particularly peptide-based
ones, have shown promise in carrying various payloads across the BBB.
Thus, peptide–drug conjugates (PDCs) formed by covalent attachment
of a BBB peptide shuttle and an antiviral drug may become key therapeutic
tools in treating neurological disorders of viral origin. In this
study, we have used various approaches (guanidinium, phosphonium,
and carbodiimide-based couplings) for on-resin synthesis of new peptide–porphyrin
conjugates (PPCs) with BBB-crossing and potential antiviral activity.
After careful fine-tuning of the synthetic chemistry, DIC/oxyma has
emerged as a preferred method, by which 14 different PPCs have been
made and satisfactorily characterized. The PPCs are prepared by coupling
a porphyrin carboxyl group to an amino group (either N-terminal or a Lys side chain) of the peptide shuttle and show effective
in vitro BBB translocation ability, low cytotoxicity toward mouse
brain endothelial cells, and low hemolytic activity. Three of the
PPCs, MP-P5, P4-MP, and P4-L-MP, effectively inhibiting HIV infectivity
in vitro, stand out as most promising. Their efficacy against other
brain-targeting viruses (Dengue, Zika, and SARS-CoV-2) is currently
under evaluation, with preliminary results confirming that PPCs are
a promising strategy to treat viral brain infections.
Collapse
Affiliation(s)
- Diogo A Mendonça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mariët Bakker
- Avans University of Applied Sciences, 5223 DE Breda, Netherlands
| | - Christine Cruz-Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Maria Angeles Jiménez
- Department of Biological Physical Chemistry, Institute of Physical Chemistry Rocasolano (IQFR-CSIC), 28006 Madrid, Spain
| | - Sira Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Iris Cadima-Couto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Toni Todorovski
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| |
Collapse
|
17
|
de Vries RD, Schmitz KS, Bovier FT, Predella C, Khao J, Noack D, Haagmans BL, Herfst S, Stearns KN, Drew-Bear J, Biswas S, Rockx B, McGill G, Dorrello NV, Gellman SH, Alabi CA, de Swart RL, Moscona A, Porotto M. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science 2021; 371:1379-1382. [PMID: 33597220 PMCID: PMC8011693 DOI: 10.1126/science.abf4896] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/04/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Containment of the COVID-19 pandemic requires reducing viral transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is initiated by membrane fusion between the viral and host cell membranes, which is mediated by the viral spike protein. We have designed lipopeptide fusion inhibitors that block this critical first step of infection and, on the basis of in vitro efficacy and in vivo biodistribution, selected a dimeric form for evaluation in an animal model. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour cohousing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and thus may readily translate into safe and effective intranasal prophylaxis to reduce transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Francesca T Bovier
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Caserta, Italy
| | - Camilla Predella
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | | | - Danny Noack
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Kyle N Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jennifer Drew-Bear
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sudipta Biswas
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Barry Rockx
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Gaël McGill
- Digizyme Inc., Brookline, MA, USA
- Center for Molecular and Cellular Dynamics, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - N Valerio Dorrello
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands.
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Caserta, Italy
| |
Collapse
|
18
|
de Vries RD, Schmitz KS, Bovier FT, Noack D, Haagmans BL, Biswas S, Rockx B, Gellman SH, Alabi CA, de Swart RL, Moscona A, Porotto M. Intranasal fusion inhibitory lipopeptide prevents direct contact SARS-CoV-2 transmission in ferrets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.04.361154. [PMID: 33173865 PMCID: PMC7654853 DOI: 10.1101/2020.11.04.361154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Containment of the COVID-19 pandemic requires reducing viral transmission. SARS-CoV-2 infection is initiated by membrane fusion between the viral and host cell membranes, mediated by the viral spike protein. We have designed a dimeric lipopeptide fusion inhibitor that blocks this critical first step of infection for emerging coronaviruses and document that it completely prevents SARS-CoV-2 infection in ferrets. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour co-housing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and non-toxic and thus readily translate into a safe and effective intranasal prophylactic approach to reduce transmission of SARS-CoV-2. ONE-SENTENCE SUMMARY A dimeric form of a SARS-CoV-2-derived lipopeptide is a potent inhibitor of fusion and infection in vitro and transmission in vivo .
Collapse
Affiliation(s)
| | | | - Francesca T. Bovier
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, NY, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Danny Noack
- Department Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Sudipta Biswas
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Barry Rockx
- Department Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Christopher A. Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Rik L. de Swart
- Department Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, NY, USA
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, NY, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
19
|
Outlaw VK, Bovier FT, Mears MC, Cajimat MN, Zhu Y, Lin MJ, Addetia A, Lieberman NAP, Peddu V, Xie X, Shi PY, Greninger AL, Gellman SH, Bente DA, Moscona A, Porotto M. Inhibition of Coronavirus Entry In Vitro and Ex Vivo by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain. mBio 2020; 11:e01935-20. [PMID: 33082259 PMCID: PMC7587434 DOI: 10.1128/mbio.01935-20] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the etiological agent of the 2019 coronavirus disease (COVID-19), has erupted into a global pandemic that has led to tens of millions of infections and hundreds of thousands of deaths worldwide. The development of therapeutics to treat infection or as prophylactics to halt viral transmission and spread is urgently needed. SARS-CoV-2 relies on structural rearrangements within a spike (S) glycoprotein to mediate fusion of the viral and host cell membranes. Here, we describe the development of a lipopeptide that is derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibits infection by SARS-CoV-2. The lipopeptide inhibits cell-cell fusion mediated by SARS-CoV-2 S and blocks infection by live SARS-CoV-2 in Vero E6 cell monolayers more effectively than previously described lipopeptides. The SARS-CoV-2 lipopeptide exhibits broad-spectrum activity by inhibiting cell-cell fusion mediated by SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) and blocking infection by live MERS-CoV in cell monolayers. We also show that the SARS-CoV-2 HRC-derived lipopeptide potently blocks the spread of SARS-CoV-2 in human airway epithelial (HAE) cultures, an ex vivo model designed to mimic respiratory viral propagation in humans. While viral spread of SARS-CoV-2 infection was widespread in untreated airways, those treated with SARS-CoV-2 HRC lipopeptide showed no detectable evidence of viral spread. These data provide a framework for the development of peptide therapeutics for the treatment of or prophylaxis against SARS-CoV-2 as well as other coronaviruses.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, placing strain on health care systems and resulting in rapidly increasing numbers of cases and mortalities. Despite the growing need for medical intervention, no FDA-approved vaccines are yet available, and treatment has been limited to supportive therapy for the alleviation of symptoms. Entry inhibitors could fill the important role of preventing initial infection and preventing spread. Here, we describe the design, synthesis, and evaluation of a lipopeptide that is derived from the HRC domain of the SARS-CoV-2 S glycoprotein that potently inhibits fusion mediated by SARS-CoV-2 S glycoprotein and blocks infection by live SARS-CoV-2 in both cell monolayers (in vitro) and human airway tissues (ex vivo). Our results highlight the SARS-CoV-2 HRC-derived lipopeptide as a promising therapeutic candidate for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Victor K Outlaw
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Francesca T Bovier
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Caserta, Italy
| | - Megan C Mears
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maria N Cajimat
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yun Zhu
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Michelle J Lin
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Amin Addetia
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vikas Peddu
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Xuping Xie
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Dennis A Bente
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Caserta, Italy
| |
Collapse
|
20
|
Figueira TN, Domingues MM, Illien F, Cadima-Couto I, Todorovski T, Andreu D, Sagan S, Castanho MARB, Walrant A, Veiga AS. Enfuvirtide-Protoporphyrin IX Dual-Loaded Liposomes: In Vitro Evidence of Synergy against HIV-1 Entry into Cells. ACS Infect Dis 2020; 6:224-236. [PMID: 31855415 DOI: 10.1021/acsinfecdis.9b00285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have developed a nanocarrier consisting of large unilamellar vesicles (LUVs) for combined delivery of two human immunodeficiency virus type 1 (HIV-1) entry inhibitors, enfuvirtide (ENF) and protoporphyrin IX (PPIX). The intrinsic lipophilicity of ENF and PPIX, a fusion inhibitor and an attachment inhibitor, respectively, leads to their spontaneous incorporation into the lipid bilayer of the LUVs nanocarrier. Both entry inhibitors partition significantly toward LUVs composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and a 9:1 mixture of POPC:1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DPPE-PEG2000), representative of conventional and immune-evasive drug delivery formulations, respectively. These colocalize in the core of lipid membranes. Dual-loaded nanocarriers are monodispersed and retain the size distribution, thermotropic behavior, and surface charge of the unloaded form. Combination of the two entry inhibitors in the nanocarrier resulted in improved synergy against HIV-1 entry compared to combination in free form, strongly when immune-evasive formulations are used. We propose that the improved action of the entry inhibitors when loaded into the nanocarriers results from their slow release at the site of viral entry. Overall, liposomes remain largely unexplored platforms for combination of viral entry inhibitors, with potential for improvement of current antiretroviral therapy drug safety and application. Our work calls for a reappraisal of the potential of entry inhibitor combinations and delivery for clinical use in antiretroviral therapy.
Collapse
Affiliation(s)
- Tiago N. Figueira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marco M. Domingues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Françoise Illien
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Iris Cadima-Couto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Toni Todorovski
- Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Astrid Walrant
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
21
|
Li H, Chen L, Li S, Liao Y, Wang L, Liu Z, Liu S, Song G. Incorporation of privileged structures into 3-O-β-chacotriosyl ursolic acid can enhance inhibiting the entry of the H5N1 virus. Bioorg Med Chem Lett 2019; 29:2675-2680. [PMID: 31371135 DOI: 10.1016/j.bmcl.2019.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 01/27/2023]
Abstract
The glycoprotein hemagglutinin of influenza virus plays a key role in the initial stage of virus infection, making it a potential target for novel influenza viruses entry inhibitors. Two "privileged fragments", 2-(piperidin-1-yl)ethan-1-amine and 2-(1,3-oxazinan-3-yl)ethan-1-amine were integrated into 3-O-β-chacotriosyl ursolic acid producing new derivatives 5 and 6 with improved activity against IAVs in vitro. Mechanistically, compound 6 was effective in inhibiting infection of H1-, H3-, and H5-typed influenza A viruses by interfering with the viral hemagglutinin. Furthermore, the docking studies were in agreement with the antiviral data. These results showed that the title compound 6 as a new lead compound was meriting further optimization and development.
Collapse
Affiliation(s)
- Hui Li
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Lizhu Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sumei Li
- Department of Human Anatomy, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yixian Liao
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Lei Wang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhihao Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release 2019; 309:106-124. [PMID: 31323244 DOI: 10.1016/j.jconrel.2019.07.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The selective infiltration of cell membranes and tissue barriers often blocks the entry of most active molecules. This natural defense mechanism prevents the invasion of exogenous substances and limits the therapeutic value of most available molecules. Therefore, it is particularly important to find appropriate ways of membrane translocation and therapeutic agent delivery to its target site. Cell penetrating peptides (CPPs) are a group of short peptides harnessed in this condition, possessing a significant capacity for membrane transduction and could be exploited to transfer various biologically active cargoes into the cells. Since their discovery, CPPs have been employed for delivery of a wide variety of therapeutic molecules to treat various disorders including cranial nerve involvement, ocular inflammation, myocardial ischemia, dermatosis and cancer. The promising results of CPPs-derived therapeutics in various tumor models demonstrated a potential and worthwhile scope of CPPs in chemotherapy. This review describes the detailed description of CPPs and CPPs-assisted molecular delivery against various tissues and organs disorders. An emphasis is focused on summarizing the novel insights and achievements of CPPs in surmounting the natural membrane barriers during the last 5 years.
Collapse
Affiliation(s)
- Jiangkang Xu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Manfei Fu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Rujuan Wang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
23
|
Yu M, Li X, Huang X, Zhang J, Zhang Y, Wang H. New Cell-Penetrating Peptide (KRP) with Multiple Physicochemical Properties Endows Doxorubicin with Tumor Targeting and Improves Its Therapeutic Index. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2448-2458. [PMID: 30576099 DOI: 10.1021/acsami.8b21027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell-penetrating peptides (CPPs) are considered as promising drug carriers by virtue of their potent cell-penetrating capacity. However, lack of targetability still represents a bottleneck for their systemic administration. Here, we synthesized a lysine-rich CPP named KRP and developed a tumor-targeted drug delivery system (DDS) by linking KRP and doxorubicin (DOX) with stable covalent bonds (thioether bond and amide bond). Through in vitro and in vivo tests, we confirmed that the multiple physicochemical properties of KRP endow KRP-DOX with multiple synergistic functions, including good biocompatibility and biodistribution, selective accumulation in tumor tissues, inclination to remain in tumor tissues and be internalized by tumor cells; stable covalent bonds prevent free DOX release from KRP-DOX in blood stream, shield normal tissues from the toxic effect of DOX, and lead to the majority of DOX delivery into tumor cells by KRP; lysosome escape of KRP-DOX ensures its tumor-killing effect. In addition, the simple chemical composition and modification reduce the risk of immunogenicity and metabolite toxicity. Our study provides a simple, safe, and efficient platform for tumor-targeted DDS.
Collapse
Affiliation(s)
- Mei Yu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology , SunYat-sen University , Guangzhou 510055 , China
| | - Xiaolong Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology , SunYat-sen University , Guangzhou 510055 , China
| | - Xiaofeng Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology , SunYat-sen University , Guangzhou 510055 , China
| | - Jing Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology , SunYat-sen University , Guangzhou 510055 , China
| | - Yan Zhang
- Laboratory of Cancer and Stem Cell Biology, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University, Guangzhou Higher Education Mega Center , Guangzhou 510006 , China
| | - Hua Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology , SunYat-sen University , Guangzhou 510055 , China
| |
Collapse
|
24
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|