1
|
Hogberg HT, Fritsche E, Gröters S, Kovi RC, Rao DB, Terron A, Winter MJ. 2024 International Academy of Toxicologic Pathology (IATP) Satellite Symposium: New Approach Methodologies (NAMs) for Neurotoxicity Assessment and Regulatory Perspectives. Toxicol Pathol 2025:1926233251335719. [PMID: 40370040 DOI: 10.1177/01926233251335719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The International Academy of Toxicologic Pathology (IATP) Satellite Symposium on "New Approach Methodologies (NAMs) for Neurotoxicity Assessment and Regulatory Perspectives," organized in Spain, addressed the growing need for improved assessment of neurotoxicity. Traditional neurotoxicity assessment using in vivo animal studies are impractical for testing the substantial number of environmental chemicals that currently lack data and in the early detection of neuro-related adverse reactions in drug discovery. The NAMs, including human in vitro assays and small model organisms, have been developed for faster and cost-effective assessment of neurotoxic potential. While NAMs offer improved practicality, utility, and valuable mechanistic insights, their integration into regulatory decision-making requires robust scientific validation and technical characterization. Confidence in and regulatory application of NAMs data can be supported by mapping cellular outcomes to neuropathological findings in mammals, including humans, through the Adverse Outcome Pathway (AOP) framework, and the Integrated Approach to Testing and Assessment (IATA). Case studies presented demonstrated the application of NAMs in chemical and drug safety evaluations, focusing on developmental neurotoxicity (DNT), Parkinson's disease, and drug-induced seizures. In conjunction with in vivo toxicology studies, NAMs represent a significant step toward advancing chemical and drug toxicity assessment via hazard identification and drug screening safety assessments.
Collapse
Affiliation(s)
- Helena T Hogberg
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Ellen Fritsche
- SCHAT - Swiss Centre for Applied Human Toxicology, University of Basel, Basel, Switzerland
| | | | - Ramesh C Kovi
- Alnylam Pharmaceuticals Inc, Cambridge, Massachusetts, USA
| | - Deepa B Rao
- Greenfield Pathology Services, Inc, Greenfield, Indiana, USA
| | | | | |
Collapse
|
2
|
Ilhan S, Somuncu S, Atmaca H. Effects of acute exposure to azoxystrobin on embryos and juveniles of the freshwater snail Lymnaea stagnalis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 295:110209. [PMID: 40268212 DOI: 10.1016/j.cbpc.2025.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Azoxystrobin (AZ) is a systemic fungicide applied to soil to control a wide range of plant pathogenic fungi. AZ residues have been detected in surface waters due to excessive release, posing a risk to aquatic organisms. This study evaluated the toxic effects of short-term AZ exposure on embryos and juveniles of Lymnaea stagnalis. First, the 96-h LC50 values of AZ were estimated as 7.98 (6.50-9.85) mg/L for embryos and 2.90 (2.30-3.86) mg/L for juveniles, indicating that juveniles are more sensitive to acute AZ toxicity. Additional experiments were conducted to assess the sublethal effects of AZ on embryos and juveniles. The highest sublethal exposure concentrations were set at approximately 20 % of the respective estimated LC50 values for embryos and juveniles, while the lower concentrations were determined by successive ten-fold dilutions to include environmentally relevant AZ levels. Accordingly, embryos were exposed to 0, 15, 150, and 1500 μg/L, whereas juveniles were exposed to 0, 5, 50, and 500 μg/L over a 96-h period. In embryos, AZ exposure led to developmental delays, reduced growth, decreased hatching success and mortality at 1500 μg/L. Likewise, juvenile snails displayed marked biochemical and molecular alterations across all tested concentrations. AZ-induced ROS generation and elevated MDA levels were observed, alongside increased activities of SOD, CAT, GPx, and GR. Additionally, mRNA transcripts of HSP40, HSP70, SOD, CAT, GPx, and GR were upregulated in juveniles, even at the lowest exposure concentration. In conclusion, AZ contamination poses a significant ecological risk to the early life stages of freshwater gastropods.
Collapse
Affiliation(s)
- Suleyman Ilhan
- Department of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, 45140 Manisa, Türkiye
| | - Sezgi Somuncu
- Department of Biology, Faculty of Science, Sakarya University, 54050 Serdivan, Türkiye
| | - Harika Atmaca
- Department of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, 45140 Manisa, Türkiye.
| |
Collapse
|
3
|
Perovani IS, Yamamoto PA, da Silva RM, Lopes NP, de Moraes NV, de Oliveira ARM. Unveiling CYP450 inhibition by the pesticide prothioconazole through integrated in vitro studies and PBPK modeling. Arch Toxicol 2025:10.1007/s00204-025-04053-9. [PMID: 40254707 DOI: 10.1007/s00204-025-04053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Prothioconazole (PTC), a widely used triazole fungicide with low human toxicity, was evaluated for its potential to inhibit human cytochrome P450 (CYP450) enzymes and its implications for pesticide-drug interactions (PDI). Through in vitro assays, PTC demonstrated significant inhibition of CYP2C9, CYP2C19, and CYP3A, with inhibition constant (Ki) values ranging from 0.08 to 5.88 µmol L⁻1. Initial predictions using a basic static model suggested potential for PDI, particularly with CYP2C9 substrates. To refine these predictions, a physiologically-based pharmacokinetic (PBPK) rat model was developed using mass balance studies and pharmacokinetic data across doses of 2 and 150 mg kg-1. The model's accuracy was confirmed by simulated versus observed maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) values, with errors remaining within two-fold. The rat model was subsequently extrapolated to humans using in vitro binding and metabolism data. Simulations with 10 virtual trials, each involving 10 fasted human subjects, assessed PDI potential under multiple daily doses of PTC at multiples of the acceptable daily intake (ADI, 0.05 mg kg-1). AUC ratios for CYP3A (midazolam, nifedipine), CYP2C19 (omeprazole), and CYP2C9 (tolbutamide) substrates indicated no significant inhibition at ADI levels. This study underscores the safety of PTC in terms of PDIs at dietary exposure levels and highlights the utility of PBPK modeling as a robust tool for pesticide risk assessment. The findings strengthen confidence in PTC's safety for human health.
Collapse
Affiliation(s)
- Icaro S Perovani
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, USP Av. dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Priscila A Yamamoto
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Rodrigo M da Silva
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14090-903, Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14090-903, Brazil
| | - Natalia V de Moraes
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA.
| | - Anderson R M de Oliveira
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, USP Av. dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil.
- Toxicological Evaluation and Removal of Micropollutants and Radioactivities (INCT-DATREM), Unesp, Institute of Chemistry, National Institute for Alternative Technologies of Detection, P.O. Box 355, Araraquara, SP, 14800-900, Brazil.
| |
Collapse
|
4
|
Zhu L, Huang F, Wang H, Zhao Y, Luan S, Xiao C, Huang Q. Antifungal Activity of Novel Isoindoline-2-Yl Putrescines as Potential Autophagy-Activated Fungicide. Chem Biodivers 2025; 22:e202402205. [PMID: 39375484 DOI: 10.1002/cbdv.202402205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
The exacerbation of plant fungal diseases necessitates the development of new fungicides to prevent outbreaks. In this study, five novel isoindoline-2-yl putrescines (ISPs) were synthesized, and their synthetic procedures and gram-scale preparation were explored. When tested at 50 μg mL-1, ISPs did not significantly inhibit mycelial growth on agar plates. However, at 100 μg mL-1, they demonstrated remarkable in vivo efficacy in mitigating Botrytis cinerea infection, especially ISP3 showed curative and protective activities of 91.9 % and 92.6 %, respectively. Moreover, ISP3 also effectively halted lesion expansion of gray mold, Sclerotic rot, and Fusarium scabs, while inducing excessive malformed top mycelial branches of B. cinerea and Sclerotinia sclerotiorum, suppressing sclerotia formation in S. sclerotiorum, and triggering autophagic vacuolization with numerous autophagosomes in the mycelia of these fungi. Molecular docking revealed that ISP3 effectively bound to the active site of BcAtg3, forming hydrogen bonds with Ser279, Gly343, Asp370, and Asp13, along with establishing a stable salt bridge with Asp13. Furthermore, ISP3 possessed favorable ADMET properties. These findings highlight ISP3 as a promising antifungal candidate through autophagy activation.
Collapse
Affiliation(s)
- Lisong Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fengcheng Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hongye Wang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yanjun Zhao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ciying Xiao
- School of Biochemical Engineering, East China University of Science and Technology, Shanghai, 20037, P. R. China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
5
|
Liu X, Zhang J, Qin Z, Zhang C, Liu H, Zhou T, Wang L, Luo Y, Zeng Z. Synthesis and antifungal activity of arecoline derivatives containing amino acid fragments. Mol Divers 2025:10.1007/s11030-024-11102-5. [PMID: 39853649 DOI: 10.1007/s11030-024-11102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025]
Abstract
A series of new arecoline derivatives containing amino acid fragments were synthesized, and their fungicidal activities were investigated. All synthesized compounds were characterized by 1H NMR, 13CNMR, and HRMS. Preliminary bioactivity assays demonstrated that Compounds 3k, 3n, 3p, 3q, 3r, and 3s exhibited significant antifungal activity against Botryosphaeria cactivora, Botryosphaeria dothidea, and Fusarium pseudograminearum at a concentration of 100 μg/mL. Among them, Compound 3s displayed the highest inhibitory activity against Botryosphaeria dothidea (96.63%), surpassing the commercial fungicide chlorothalonil (91.30%). To explore the underlying mechanisms of the compounds, preliminary investigations into the antifungal mechanism involved molecular docking study, scanning electron microscopy and fluorescence microscopy observations, assessments of membrane permeability, and measurements of malondialdehyde content were carried out, respectively. The findings demonstrated that Compound 3s effectively inhibits fungal hyphal growth by compromising the integrity of the hyphal cell membrane. These results indicate that arecoline derivatives containing amino acid benzyl esters have potential as promising fungicides.
Collapse
Affiliation(s)
- Xianwu Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Jianwen Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Zefang Qin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Chengcheng Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Huaxin Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ting Zhou
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Lanying Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yanping Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, China.
| | - Zhigang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China.
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
6
|
Zhang X, Li Z. Modeling the impact of pesticide drift deposition on off-field non-target receptors. CHEMOSPHERE 2024; 365:143363. [PMID: 39299464 DOI: 10.1016/j.chemosphere.2024.143363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Pesticide application can result in residue drift deposition in off-field areas, which can be harmful to non-target organisms inhabiting adjacent off-field environments. In order to comprehend the impact of pesticide drift deposition on off-field non-target organisms, an integrated modeling approach was incorporated into the life cycle analysis perspective for the assessment of their exposure to pesticide residues and the characterization of their human toxicity and ecotoxicity potentials. The modeling assumption comprises four modeling scenarios: children & cattle & sensitive crops (tomatoes) based on exposure assessment, and the continent-scale human health toxicity & ecotoxicity under a life cycle analysis perspective. The simulation results for the nearby off-field exposure scenario revealed that pesticide dissipation kinetics in environments and drift deposition type were two important factors influencing non-target organisms' exposure to pesticide residues deposited in off-field environments. The continental scenario simulated via USEtox revealed that considering off-field drift deposition resulted in lower simulated human toxicity potentials of pesticides when compared to simulation results that did not consider drift deposition, given that pesticide residues remaining within the treated field contributed the most to overall human exposure. Taking drift deposition into account, on the other hand, could result in higher or lower simulated ecotoxicity potentials of pesticides than not taking drift deposition in off-field areas into account, depending on the physicochemical properties of pesticides. The proposed modeling approach, which is adaptable to drift deposition types and chemical species, can aid in investigating the off-field impacts of pesticide residues. Future research will incorporate spatiotemporal factors to characterize region-specific drift deposition functions and pesticide fate in off-field environments to conduct site-specific impact assessments.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
7
|
Kato AY, Freitas TAL, Gomes CRA, Alves TRR, Ferraz YMM, Trivellato MF, De Jong D, Biller JD, Nicodemo D. Bixafen, Prothioconazole, and Trifloxystrobin Alone or in Combination Have a Greater Effect on Health Related Gene Expression in Honey Bees from Nutritionally Deprived than from Protein Supplemented Colonies. INSECTS 2024; 15:523. [PMID: 39057256 PMCID: PMC11277445 DOI: 10.3390/insects15070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
The aim of this study was to evaluate whether alterations in food availability compromise the metabolic homeostasis of honey bees exposed to three fungicides alone or together. Ten honey bee colonies were used, with half receiving carbohydrate-protein supplementation for 15 weeks while another five colonies had their protein supply reduced with pollen traps. Subsequently, forager bees were collected and exposed by contact to 1 or 7 µg of bixafen, prothioconazole, or trifloxystrobin, either individually or in combination. After 48 h, bee abdomens without the intestine were used for the analysis of expression of antioxidant genes (SOD-1, CAT, and GPX-1), detoxification genes (GST-1 and CYP306A1), the storage protein gene vitellogenin, and immune system antimicrobial peptide genes (defensin-1, abaecin, hymenoptaecin, and apidaecin), through real-time PCR. All fungicide treatments induced changes in gene expression, with bixafen showing the most prominent upregulation. Exposure to 1 µg of each of the three pesticides resulted in upregulation of genes associated with detoxification and nutrition processes, and downregulation of immune system genes. When the three pesticides were combined at a dose of 7 µg each, there was a pronounced downregulation of all genes. Food availability in the colonies affected the impact of fungicides on the expression of the studied genes in forager bees.
Collapse
Affiliation(s)
- Aline Y. Kato
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Tainá A. L. Freitas
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Cássia R. A. Gomes
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Thais R. R. Alves
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Yara M. M. Ferraz
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Matheus F. Trivellato
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - David De Jong
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Jaqueline D. Biller
- Department of Animal Science, College of Agricultural and Technology Sciences, São Paulo State University (Unesp), Dracena 17915-899, SP, Brazil
| | - Daniel Nicodemo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
8
|
Chen L, Wu C, Jia F, Xu M, Liu X, Wang Y. Combined toxicity of abamectin and carbendazim on enzymatic and transcriptional levels in the soil-earthworm microcosm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44815-44827. [PMID: 38955968 DOI: 10.1007/s11356-024-34177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changxing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Fangzhao Jia
- Zunyi City Company Suiyang Branch, Guizhou Province Tobacco Company, Suiyang, 563300, Guizhou, China
| | - Mingfei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
9
|
Kreutz A, Oyetade OB, Chang X, Hsieh JH, Behl M, Allen DG, Kleinstreuer NC, Hogberg HT. Integrated Approach for Testing and Assessment for Developmental Neurotoxicity (DNT) to Prioritize Aromatic Organophosphorus Flame Retardants. TOXICS 2024; 12:437. [PMID: 38922117 PMCID: PMC11209292 DOI: 10.3390/toxics12060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Organophosphorus flame retardants (OPFRs) are abundant and persistent in the environment but have limited toxicity information. Their similarity in structure to organophosphate pesticides presents great concern for developmental neurotoxicity (DNT). However, current in vivo testing is not suitable to provide DNT information on the amount of OPFRs that lack data. Over the past decade, an in vitro battery was developed to enhance DNT assessment, consisting of assays that evaluate cellular processes in neurodevelopment and function. In this study, behavioral data of small model organisms were also included. To assess if these assays provide sufficient mechanistic coverage to prioritize chemicals for further testing and/or identify hazards, an integrated approach to testing and assessment (IATA) was developed with additional information from the Integrated Chemical Environment (ICE) and the literature. Human biomonitoring and exposure data were identified and physiologically-based toxicokinetic models were applied to relate in vitro toxicity data to human exposure based on maximum plasma concentration. Eight OPFRs were evaluated, including aromatic OPFRs (triphenyl phosphate (TPHP), isopropylated phenyl phosphate (IPP), 2-ethylhexyl diphenyl phosphate (EHDP), tricresyl phosphate (TMPP), isodecyl diphenyl phosphate (IDDP), tert-butylphenyl diphenyl phosphate (BPDP)) and halogenated FRs ((Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(2-chloroethyl) phosphate (TCEP)). Two representative brominated flame retardants (BFRs) (2,2'4,4'-tetrabromodiphenyl ether (BDE-47) and 3,3',5,5'-tetrabromobisphenol A (TBBPA)) with known DNT potential were selected for toxicity benchmarking. Data from the DNT battery indicate that the aromatic OPFRs have activity at similar concentrations as the BFRs and should therefore be evaluated further. However, these assays provide limited information on the mechanism of the compounds. By integrating information from ICE and the literature, endocrine disruption was identified as a potential mechanism. This IATA case study indicates that human exposure to some OPFRs could lead to a plasma concentration similar to those exerting in vitro activities, indicating potential concern for human health.
Collapse
Affiliation(s)
- Anna Kreutz
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | - Oluwakemi B. Oyetade
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | - Xiaoqing Chang
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | - Jui-Hua Hsieh
- NIH/NIEHS/DTT/PTB, Research Triangle Park, NC 27560, USA;
| | - Mamta Behl
- Neurocrine Biosciences Inc., San Diego, CA 92130, USA;
| | - David G. Allen
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | | | | |
Collapse
|
10
|
Yin C, Larson M, Lahr N, Paulitz T. Wheat Rhizosphere-Derived Bacteria Protect Soybean from Soilborne Diseases. PLANT DISEASE 2024; 108:1565-1576. [PMID: 38105448 DOI: 10.1094/pdis-08-23-1713-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important oilseed crop with a high economic value. However, three damaging soybean diseases, soybean cyst nematode (SCN; Heterodera glycines Ichinohe), Sclerotinia stem rot caused by the fungus Sclerotinia sclerotiorum (Lid.) de Bary, and soybean root rot caused by Fusarium spp., are major constraints to soybean production in the Great Plains. Current disease management options, including resistant or tolerant varieties, fungicides, nematicides, and agricultural practices (crop rotation and tillage), have limited efficacy for these pathogens or have adverse effects on the ecosystem. Microbes with antagonistic activity are a promising option to control soybean diseases with the advantage of being environmentally friendly and sustainable. In this study, 61 bacterial strains isolated from wheat rhizospheres were used to examine their antagonistic abilities against three soybean pathogens. Six bacterial strains significantly inhibited the growth of Fusarium graminearum in the dual-culture assay. These bacterial strains were identified as Chryseobacterium ginsengisoli, C. indologenes, Pseudomonas poae, two Pseudomonas spp., and Delftia acidovorans by 16S rRNA gene sequencing. Moreover, C. ginsengisoli, C. indologenes, and P. poae significantly increased the mortality of SCN second-stage juveniles (J2), and two Pseudomonas spp. inhibited the growth of S. sclerotiorum in vitro. Further growth chamber tests found that C. ginsengisoli and C. indologenes reduced soybean Fusarium root rot disease. C. ginsengisoli and P. poae dramatically decreased SCN egg number on SCN-susceptible soybean 'Williams 82'. Two Pseudomonas spp. protected soybean plants from leaf damage and collapse after being infected by S. sclerotiorum. These bacteria exhibit versatile antagonistic potential. This work lays the foundation for further research on the field control of soybean pathogens.
Collapse
Affiliation(s)
- Chuntao Yin
- North Central Agricultural Research Laboratory, USDA-ARS, Brookings, SD
| | - Matt Larson
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD
| | - Nathan Lahr
- North Central Agricultural Research Laboratory, USDA-ARS, Brookings, SD
| | - Timothy Paulitz
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA
| |
Collapse
|
11
|
Kahveci K, Düzgün MB, Atis AE, Yılmaz A, Shahraki A, Coskun B, Durdagi S, Birgul Iyison N. Discovering allatostatin type-C receptor specific agonists. Nat Commun 2024; 15:3965. [PMID: 38730017 PMCID: PMC11087482 DOI: 10.1038/s41467-024-48156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Currently, there is no pesticide available for the selective control of the pine processionary moth (Thaumetopoea pityocampa-specific), and conventional methods typically rely on mechanical techniques such as pheromone traps or broad-spectrum larvicidal chemicals. As climate change increases the range and dispersion capacity of crop and forest pests, outbreaks of the pine processionary occur with greater frequency and significantly impact forestry and public health. Our study is carried out to provide a T. pityocampa-specific pesticide targeting the Allatostatin Type-C Receptor (AlstR-C). We use a combination of computational biology methods, a cell-based screening assay, and in vivo toxicity and side effect assays to identify, for the first time, a series of AlstR-C ligands suitable for use as T. pityocampa-specific insecticides. We further demonstrate that the novel AlstR-C targeted agonists are specific to lepidopteran larvae, with no harmful effects on coleopteran larvae or adults. Overall, our study represents an important initial advance toward an insect GPCR-targeted next-generation pesticide design. Our approach may apply to other invertebrate GPCRs involved in vital metabolic pathways.
Collapse
Affiliation(s)
- Kübra Kahveci
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Türkiye
| | | | - Abdullah Emre Atis
- Plant Protection Product and Toxicology Department, Plant Protection Central Research Institute, Ankara, Türkiye
| | - Abdullah Yılmaz
- Plant Protection Product and Toxicology Department, Plant Protection Central Research Institute, Ankara, Türkiye
| | - Aida Shahraki
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Türkiye
- Kolb Lab, Department of Pharmacy, The Philipp University of Marburg, Marburg, Germany
| | - Basak Coskun
- Plant Protection Product and Toxicology Department, Plant Protection Central Research Institute, Ankara, Türkiye
| | - Serdar Durdagi
- Molecular Therapy Lab, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, İstanbul, Türkiye.
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, İstanbul, Türkiye.
- Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, İstanbul, Türkiye.
| | - Necla Birgul Iyison
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Türkiye.
| |
Collapse
|
12
|
Patel MA, Vora RK, Sanghvi YS, Kapdi AR. Ambient Temperature Metal-Free Thiomethylation of Chloroheteroarenes and Chloropurines. Chem Asian J 2024:e202400114. [PMID: 38598666 DOI: 10.1002/asia.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Herein, we report an in-situ mild and metal-free protocol for thiomethylation of heteroarenes in high yields. The thiomethylation of various chloropurines, nucleosides, and chloroheteroarenes has been accomplished offering easy access to agrochemicals and synthetic molecules useful for drug discovery.
Collapse
Affiliation(s)
- Manisha A Patel
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Raj K Vora
- Department of Chemistry, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, 440010, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, CA 92024-6615, U.S.A
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| |
Collapse
|
13
|
Li S, Sun J, Gao Y, Zou A, Cheng J. Enhanced fungicidal efficacy and improved interfacial properties with the co-delivery of prothioconazole and tebuconazole using polylactic acid microspheres. PEST MANAGEMENT SCIENCE 2024; 80:1831-1838. [PMID: 38031966 DOI: 10.1002/ps.7913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Prothioconazole (PTC) is one of the leading fungicide products worldwide. However, excessive use of PTC facilitates the development of resistance. Pesticide compounding technology plays an important role in reducing pesticide resistance. Microspherization technology for the construction of pesticide dual-loaded systems has recently provided a new direction for researching novel and efficient pesticide formulations. In this study, prothioconazole-tebuconazole@polylactic acid microspheres (PTC-TBA@PLA MS) were constructed by combining these two technologies. RESULTS The final PTC-TBA@PLA MS were selected by an orthogonal method, which were uniformly spherical with smooth surface. The resultant drug loading (DL) and average particle size of PTC-TBA@PLA MS were 31.34% and 22.3 μm, respectively. A PTC-TBA@PLA MS suspending agent (SC) with a high suspension rate of 94.3% was prepared according to the suspension rate, dumping ability and stability. Compared with a commercial SC, the PTC-TBA@PLA MS SC had a larger cumulative release and better interfacial properties. Biological experiments showed that PTC-TBA@PLA MS SC had an obviously improved bactericidal effect than the commercial SC. CONCLUSION The constructed PTC-TBA@PLA MS system detailed here is expected to reduce the risk of resistance and the frequency of pesticide use while enhancing fungal control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shujing Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yue Gao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Aihua Zou
- Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Wei D, Zhu D, Zhang Y, Yang Z, Hu Y, Song C, Yang W, Chang X. Pseudomonas chlororaphis IRHB3 assemblies beneficial microbes and activates JA-mediated resistance to promote nutrient utilization and inhibit pathogen attack. Front Microbiol 2024; 15:1328863. [PMID: 38380096 PMCID: PMC10877055 DOI: 10.3389/fmicb.2024.1328863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction The rhizosphere microbiome is critical to plant health and resistance. PGPR are well known as plant-beneficial bacteria and generally regulate nutrient utilization as well as plant responses to environmental stimuli. In our previous work, one typical PGPR strain, Pseudomonas chlororaphis IRHB3, isolated from the soybean rhizosphere, had positive impacts on soil-borne disease suppression and growth promotion in the greenhouse, but its biocontrol mechanism and application in the field are not unclear. Methods In the current study, IRHB3 was introduced into field soil, and its effects on the local rhizosphere microbiome, disease resistance, and soybean growth were comprehensively analyzed through high-throughput sequencing and physiological and molecular methods. Results and discussion We found that IRHB3 significantly increased the richness of the bacterial community but not the structure of the soybean rhizosphere. Functional bacteria related to phosphorus solubilization and nitrogen fixation, such as Geobacter, Geomonas, Candidatus Solibacter, Occallatibacter, and Candidatus Koribacter, were recruited in rich abundance by IRHB3 to the soybean rhizosphere as compared to those without IRHB3. In addition, the IRHB3 supplement obviously maintained the homeostasis of the rhizosphere microbiome that was disturbed by F. oxysporum, resulting in a lower disease index of root rot when compared with F. oxysporum. Furthermore, JA-mediated induced resistance was rapidly activated by IRHB3 following PDF1.2 and LOX2 expression, and meanwhile, a set of nodulation genes, GmENOD40b, GmNIN-2b, and GmRIC1, were also considerably induced by IRHB3 to improve nitrogen fixation ability and promote soybean yield, even when plants were infected by F. oxysporum. Thus, IRHB3 tends to synergistically interact with local rhizosphere microbes to promote host growth and induce host resistance in the field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoli Chang
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Kant T, Shrivas K, Tejwani A, Tandey K, Sharma A, Gupta S. Progress in the design of portable colorimetric chemical sensing devices. NANOSCALE 2023; 15:19016-19038. [PMID: 37991896 DOI: 10.1039/d3nr03803c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The need for precise determination of heavy metals, anions, biomolecules, pesticides, drugs, and other substances is vital across clinical, environmental, and food safety domains. Recent years have seen significant progress in portable colorimetric chemical sensing devices, revolutionizing on-the-spot analysis. This review offers a comprehensive overview of these advancements, covering handheld colorimetry, RGB-based colorimetry, paper-based colorimetry, and wearable colorimetry devices. It explores the underlying principles, functional materials (chromophoric reagents/dyes and nanoparticles), detection mechanisms, and their applications in environmental monitoring, clinical care, and food safety. Noble metal nanoparticles (NPs) have arisen as promising substitutes in the realm of sensing materials. They display notable advantages, including heightened sensitivity, the ability to fine-tune their plasmonic characteristics for improved selectivity, and the capacity to induce visible color changes, and simplifying detection. Integration of NPs fabricated paper device with smartphones and wearables facilitates reagent-free, cost-effective, and portable colorimetric sensing, enabling real-time analysis and remote monitoring.
Collapse
Affiliation(s)
- Tushar Kant
- Shaheed Kawasi Rodda Pedda, Govt. College Kuakonda, Dantewada-494552, CG, India.
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, CG, India.
| | - Ankita Tejwani
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, CG, India.
| | - Khushali Tandey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, CG, India.
| | - Anuradha Sharma
- Department of Zoology, Govt. Nagarjuna P.G. College of Science, Raipur-492010, CG, India
| | - Shashi Gupta
- Department of Zoology, Govt. Nagarjuna P.G. College of Science, Raipur-492010, CG, India
| |
Collapse
|
16
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Yang T, Wu Z, Li L, Jiang M, Fang X, Huang W, Zhou Y. Identification and analysis of toxins in novel Bacillus thuringiensis strain Bt S3076-1 against Spodoptera frugiperda and Helicoverpa armigera (Lep.: Noctuidae). Arch Microbiol 2023; 205:168. [PMID: 37017772 DOI: 10.1007/s00203-023-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
Despite the successful application of toxins from Bacillus thuringiensis as biological control agents against pests, pests are showing resistance against an increasing number of Bacillus thuringiensis toxins due to evolution; thus, new toxins with higher toxicity and broad-spectrum activity against insects are being increasingly identified. To find new toxins, whole genome sequencing of the novel B. thuringiensis strain Bt S3076-1 was performed, and ten predicted toxic genes were identified in this study, including six cry genes, two tpp genes, one cyt gene and one vip gene, among which six were novel toxins. Subsequently, SDS‒PAGE analysis showed that the major proteins at the spore maturation stage were approximately 120 kDa, 70 kDa, 67 kDa, 60 kDa and 40 kDa, while active proteins after trypsin digestion (approximately 70 kDa and 40 kDa) exhibited LC50 values of 149.64 μg/g and 441.47 μg/g against Spodoptera frugiperda and Helicoverpa armigera larvae, respectively. Furthermore, pathological observation results showed that the peritrophic membrane of Spodoptera frugiperda and Helicoverpa armigera larvae was degraded. These findings will provide an experimental reference for further research on the insecticidal activity, toxicity spectrum and synergism of these toxins in Bt S3076-1.
Collapse
Affiliation(s)
- Tianbao Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Zhongqi Wu
- Hainan Institute of Tropical Agricultural Resources, Sanya, 572025, Hainan, People's Republic of China
- Institute of Life Science, Jiyang College of Zhejiang A&F University, Zhuji, 311800, Zhejiang, People's Republic of China
| | - Liuping Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Xuanjun Fang
- Hainan Institute of Tropical Agricultural Resources, Sanya, 572025, Hainan, People's Republic of China
- Institute of Life Science, Jiyang College of Zhejiang A&F University, Zhuji, 311800, Zhejiang, People's Republic of China
| | - Wenshan Huang
- Guangxi Lvyounong Biological Technology Co., Ltd, Nanning, 537100, People's Republic of China
| | - Yan Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, People's Republic of China.
| |
Collapse
|
18
|
Wang J, Li R, Zhao Z, Zhu M, Wang Y. Bioactivity, Uptake, and Distribution of Prothioconazole Loaded on Fluorescent Double-Hollow Shelled Mesoporous Silica in Soybean Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4521-4535. [PMID: 36896464 DOI: 10.1021/acs.jafc.3c00200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Prothioconazole (PTC) has been widely utilized for plant fungal disease control, but its metabolite prothioconazole-desthio (PTC-d) exhibits reproductive toxicity. In the present study, carbon quantum dot (CQD)-modified fluorescent double-hollow shelled mesoporous silica nanoparticles (FL-MSNs) loaded with PTC, referred to as PTC@FL-MSNs, were constructed with an average size of 369 nm and a loading capacity of 28.1 wt %, which could increase the antifungal efficiency of PTC. In addition, upright fluorescence microscope and UPLC-MS/MS studies showed that PTC@FL-MSNs could be effectively transported via root uptake and foliar spray in soybean plants. Compared to a 30% PTC dispersible oil suspension agent, the PTC@FL-MSN treatment group showed higher concentrations (leaves: 0.50 > 0.48 mg/kg), longer half-lives for degradation (leaves: 3.62 > 3.21 d; roots: 3.39 > 2.82 d), and fewer metabolites. These findings suggest that sustained pesticide release and toxicity reduction are potential applications for PTC nanofungicide delivery technology.
Collapse
Affiliation(s)
- Jingyuan Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Department of Pesticide Science, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Rong Li
- Key Laboratory of Agri-Food Safety of Anhui Province, Department of Pesticide Science, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zongyuan Zhao
- Key Laboratory of Agri-Food Safety of Anhui Province, Department of Pesticide Science, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Department of Pesticide Science, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
19
|
Meng Z, Yan Z, Sun W, Bao X, Feng W, Gu Y, Tian S, Wang J, Chen X, Zhu W. Azoxystrobin Disrupts Colonic Barrier Function in Mice via Metabolic Disorders Mediated by Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:789-801. [PMID: 36594455 DOI: 10.1021/acs.jafc.2c05543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The widespread use of azoxystrobin (AZO) over the past few decades has drawn great attention to its environmental health effects. The objective of the present study was to explore the effects of AZO on intestinal barrier function in mice from the perspective of gut microbiota. Specifically, exposure to AZO could cause colonic barrier dysfunction in mice. Meanwhile, AZO could also cause dysbiosis of gut microbiota. Further studies revealed that the metabolic profile of the microbiota was significantly disturbed with AZO exposure. Last but not least, we confirmed that the gut microbiota played a central role in AZO-induced colonic barrier dysfunction through the gut microbiota transplantation experiment. Gut microbiota mediated colonic barrier dysfunction induced by AZO via inducing dysbiosis of the microbiota metabolic profile. The findings of this study strongly support a new insight that the gut microbiota can be a key target of health risks of pesticides.
Collapse
Affiliation(s)
- Zhiyuan Meng
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zixin Yan
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xin Bao
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Wenjing Feng
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou, Jiangsu 225009, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Başımoğlu Koca Y, Koca S, Öztel Z, Balcan E. Determination of histopathological effects and myoglobin, periostin gene-protein expression levels in Danio rerio muscle tissue after acaricide yoksorrun-5EC (hexythiazox) application. Drug Chem Toxicol 2023; 46:50-58. [PMID: 34879781 DOI: 10.1080/01480545.2021.2007945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although pesticides are essential agrochemicals to annihilate harmful organisms in agriculture, their uncontrolled use has become an important threat to environmental health. Exposure to pesticides can affect many biological systems including immune system, endocrine system, and nervous system. However, the potential side effects of pesticides to skeletal muscle system remain unclear. Present study has focused on the evaluation of this issue by using an acaricide, yoksorrun-5EC (hexythiazox), in an aquatic model organism, Danio rerio. The histological analyses revealed that increased concentrations of the acaricide cause degradation of skeletal muscle along with increased necrosis and atrophy in myocytes, intercellular edema, and increased infiltrations between perimysium sheaths of muscle fibers. The effects of acaricide on myoglobin and periostin, which are associated with oxygen transport and muscle regeneration, respectively, were investigated at the gene and protein levels. RT-PCR results suggested that high concentration yoksorrun-5EC (hexythiazox) can induce myoglobin and periostin genes. Similar results were also obtained in the protein levels of these genes by western blotting analysis. These results suggested that yoksorrun-5EC (hexythiazox)-dependent disruption of skeletal muscle architecture is closely associated with the expression levels of myoglobin and periostin genes in Danio rerio model.
Collapse
Affiliation(s)
- Yücel Başımoğlu Koca
- Department of Biology, Zoology Section, Faculty of Science and Art, Adnan Menderes University, Aydin, Turkey
| | - Serdar Koca
- Department of Biology, General Biology Section, Faculty of Science and Art, Adnan Menderes University, Aydin, Turkey
| | - Zübeyde Öztel
- Department of Biology, Molecular Biology Section, Faculty of Science and Art, Manisa Celal Bayar University, Manisa, Turkey
| | - Erdal Balcan
- Department of Biology, Molecular Biology Section, Faculty of Science and Art, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
21
|
Cestonaro LV, Macedo SMD, Piton YV, Garcia SC, Arbo MD. Toxic effects of pesticides on cellular and humoral immunity: an overview. Immunopharmacol Immunotoxicol 2022; 44:816-831. [PMID: 35770924 DOI: 10.1080/08923973.2022.2096466] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
People are exposed to pesticides through food, drinking water, and the environment. These compounds are associated with several disorders, such as inflammatory diseases, rheumatoid arthritis, cancer, and a condition related to metabolic syndrome. The immunotoxicants or immunotoxic compounds can cause a wide variety of effects on immune function, altering humoral immunity and cell-mediated immunity, resulting in adverse effects to the body. Here, immune system disorders are highlighted because they are closely linked to multiple organs, including the nervous, endocrine, reproductive, cardiovascular, and respiratory systems, leading to transient or permanent changes. Therefore, this study reviewed the mechanisms involved in the immunotoxicity of fungicides, herbicides, and insecticides in cells, animals, and humans in the past 11 years. According to the studies analyzed, the pesticides interfere with innate and adaptive immune functions, but the effects observed mainly on cellular and humoral immunity were highlighted. These compounds affected specific immune cells, causing apoptosis, changes in factor nuclear kappa B (NF-κB) expression, pro-inflammatory factors interleukin 6 (IL-6), interleukin 8 (IL-8), interferon-gamma (IFN-γ), chemokines (CXCL-c1c), and anti-inflammatory factor, such as interleukin 10 (IL-10). To verify the threats of these compounds, new evaluations with immunotoxicological biomarkers are necessary. HighlightsPesticides interfere with the innate and adaptive immune response.Cells, animals and human studies demonstrate the immunotoxicity of pesticides in the cellular and humoral immune response.Fungicides, herbicides, and insecticides alter the immune system by various mechanisms, such as pro-inflammatory and anti-inflammatory factors.
Collapse
Affiliation(s)
- Larissa Vivan Cestonaro
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Sandra Manoela Dias Macedo
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Yasmin Vendrusculo Piton
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Marcelo Dutra Arbo
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
22
|
Hu L, Wang X, Bao Z, Xu Q, Qian M, Jin Y. The fungicide prothioconazole and its metabolite prothioconazole-desthio disturbed the liver-gut axis in mice. CHEMOSPHERE 2022; 307:136141. [PMID: 36007749 DOI: 10.1016/j.chemosphere.2022.136141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The triazole fungicide prothioconazole (PTC) can cause adverse effects in animals, and its main metabolite prothioconazole-desthio (PTC-d) is even much more harmful. However, the toxic effects of PTC and PTC-d on the liver-gut axis of mice are still unknown. In the present experiment, we found that oral exposure to PTC and PTC-d increased total bile acids (TBAs) levels in the serum, liver, and feces. Correspondingly, the transcription of genes involved in bile acids (BAs) disposition was significantly influenced by PTC or PTC-d exposure. Furthermore, the BAs composition of serum BAs was analyzed by LC-MS, and the results indicated that PTC and PTC-d exposure changed the BAs composition, lowered the ratio of conjugated/unconjugated BAs, elevated the ratio of CA/b-MCA, and enhanced the hydrophobicity of BAs pool. 16s RNA gene sequencing of the DNA from colonic contents uncovered that PTC and PTC-d exposure altered the relative abundance and constitution of intestinal microbiota, increasing the relative level of Lactobacillus with bile salt hydrolase (BSH) activity. Furthermore, PTC and PTC-d exposure impaired the gut barrier function, causing an increase in mucus secretion. In particular, the effects of PTC-d on some endpoints in the BAs metabolism and gut barrier function had been proven to be more significant than the parent compound PTC. All these findings draw attention to the health risk of PTC and PTC-d exposure in regulating BAs metabolism, which might lead to some metabolic disorders and occur of related diseases in animals.
Collapse
Affiliation(s)
- Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
23
|
Shahid M, Khan MS. Ecotoxicological implications of residual pesticides to beneficial soil bacteria: A review. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105272. [PMID: 36464377 DOI: 10.1016/j.pestbp.2022.105272] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
Optimization of crop production in recent times has become essential to fulfil food demands of constantly increasing human populations worldwide. To address this formidable challenge, application of agro-chemicals including synthetic pesticides in intensive farm practices has increased alarmingly. The excessive and indiscriminate application of pesticides to foster food production however, leads to its exorbitant deposition in soils. After accumulation in soils beyond threshold limits, pesticides harmfully affect the abundance, diversity and composition and functions of rhizosphere microbiome. Also, the cost of pesticides and emergence of resistance among insect-pests against pesticides are other reasons that require attention. Due to this, loss in soil nutrient pool cause a substantive reduction in agricultural production which warrant the search for newer environmentally friendly technology for sustainable crop production. Rhizosphere microbes, in this context, play vital roles in detoxifying the polluted environment making soil amenable for cultivation through detoxification of pollutants, rhizoremediation, bioremediation, pesticide degradation, and stress alleviation, leading to yield optimization. The response of soil microorganisms to range of chemical pesticides is variable ranging from unfavourable to the death of beneficial microbes. At cellular and biochemical levels, pesticides destruct the morphology, ultrastructure, viability/cellular permeability, and many biochemical reactions including protein profiles of soil bacteria. Several classes of pesticides also disturb the molecular interaction between crops and their symbionts impeding the overall useful biological processes. The harmful impact of pesticides on soil microbes, however, is poorly researched. In this review, the recent findings related with potential effects of synthetic pesticides on a range of soil microbiota is highlighted. Emphasis is given to find and suggest strategies to minimize the chemical pesticides usage in the real field conditions to preserve the viability of soil beneficial bacteria and soil quality for safe and sustainable crop production even in pesticide contaminated soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
24
|
Bruckmann FS, Schnorr C, Oviedo LR, Knani S, Silva LFO, Silva WL, Dotto GL, Bohn Rhoden CR. Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022; 27:6261. [PMID: 36234798 PMCID: PMC9572628 DOI: 10.3390/molecules27196261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The extensive use of pesticides in agriculture has significantly impacted the environment and human health, as these pollutants are inadequately disposed of into water bodies. In addition, pesticides can cause adverse effects on humans and aquatic animals due to their incomplete removal from the aqueous medium by conventional wastewater treatments. Therefore, processes such as heterogeneous photocatalysis and adsorption by nanocomposites have received special attention in the scientific community due to their unique properties and ability to degrade and remove several organic pollutants, including pesticides. This report reviews the use of nanocomposites in pesticide adsorption and photocatalytic degradation from aqueous solutions. A bibliographic search was performed using the ScienceDirect, American Chemical Society (ACS), and Royal Society of Chemistry (RSC) indexes, using Boolean logic and the following descriptors: "pesticide degradation" AND "photocatalysis" AND "nanocomposites"; "nanocomposites" AND "pesticides" AND "adsorption". The search was limited to research article documents in the last ten years (from January 2012 to June 2022). The results made it possible to verify that the most dangerous pesticides are not the most commonly degraded/removed from wastewater. At the same time, the potential of the supported nanocatalysts and nanoadsorbents in the decontamination of wastewater-containing pesticides is confirmed once they present reduced bandgap energy, which occurs over a wide range of wavelengths. Moreover, due to the great affinity of the supported nanocatalysts with pesticides, better charge separation, high removal, and degradation values are reported for these organic compounds. Thus, the class of the nanocomposites investigated in this work, magnetic or not, can be characterized as suitable nanomaterials with potential and unique properties useful in heterogeneous photocatalysts and the adsorption of pesticides.
Collapse
Affiliation(s)
- Franciele S. Bruckmann
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Carlos Schnorr
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - Leandro R. Oviedo
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Salah Knani
- College of Science, Northern Border University, Arar 91431, Saudi Arabia
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, University of Monastir, Monastir 5079, Tunisia
| | - Luis F. O. Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - William L. Silva
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Guilherme L. Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Department of Chemical Enginnering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Cristiano R. Bohn Rhoden
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| |
Collapse
|
25
|
Moreau J, Rabdeau J, Badenhausser I, Giraudeau M, Sepp T, Crépin M, Gaffard A, Bretagnolle V, Monceau K. Pesticide impacts on avian species with special reference to farmland birds: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:790. [PMID: 36107257 DOI: 10.1007/s10661-022-10394-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
For decades, we have observed a major biodiversity crisis impacting all taxa. Avian species have been particularly well monitored over the long term, documenting their declines. In particular, farmland birds are decreasing worldwide, but the contribution of pesticides to their decline remains controversial. Most studies addressing the effects of agrochemicals are limited to their assessment under controlled laboratory conditions, the determination of lethal dose 50 (LD50) values and testing in a few species, most belonging to Galliformes. They often ignore the high interspecies variability in sensitivity, delayed sublethal effects on the physiology, behaviour and life-history traits of individuals and their consequences at the population and community levels. Most importantly, they have entirely neglected to test for the multiple exposure pathways to which individuals are subjected in the field (cocktail effects). The present review aims to provide a comprehensive overview for ecologists, evolutionary ecologists and conservationists. We aimed to compile the literature on the effects of pesticides on bird physiology, behaviour and life-history traits, collecting evidence from model and wild species and from field and lab experiments to highlight the gaps that remain to be filled. We show how subtle nonlethal exposure might be pernicious, with major consequences for bird populations and communities. We finally propose several prospective guidelines for future studies that may be considered to meet urgent needs.
Collapse
Affiliation(s)
- Jérôme Moreau
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Juliette Rabdeau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Isabelle Badenhausser
- Unité de Recherche Pluridisciplinaire Prairies Plantes Fourragères, INRAE, 86600, Lusignan, France
| | - Mathieu Giraudeau
- UMR IRD, CREEC, Université de Montpellier, 224-CNRS 5290, Montpellier, France
- Centre de Recherche en Écologie Et Évolution de La Sante (CREES), Montpellier, France
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266, CNRS- La Rochelle Université, La Rochelle, France
| | - Tuul Sepp
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Malaury Crépin
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Agathe Gaffard
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Vincent Bretagnolle
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360, Villiers-en-Bois, France
| | - Karine Monceau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France.
| |
Collapse
|
26
|
Chen G, Wang M, Zhu P, Wang G, Hu T. Adverse effects of SYP-3343 on zebrafish development via ROS-mediated mitochondrial dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129382. [PMID: 35749898 DOI: 10.1016/j.jhazmat.2022.129382] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
As a newly-invented and highly-efficiency strobilurin fungicide, pyraoxystrobin (SYP-3343) has been recognized as a highly poisonous toxin for a variety of aquatic organisms. Nevertheless, the developmental toxicity and potential mechanism of SYP-3343 have not been well-documented. The results showed that SYP-3343 was relatively stable and maintained within the range of 20 % in 24 h, and the LC50 value to embryos at 72 hpf was 17.13 μg/L. The zebrafish embryotoxicity induced by 1, 2, 4, and 8 μg/L SYP-3343 is demonstrated by repressive embryo incubation, enhancive mortality rate, abnormal heart rate, malformed morphological characteristic, and impaired spontaneous coiling, indicating SYP-3343 mostly exerted its toxicity in a dose- and time-dependent manner. Besides SYP-3343 was critically involved in regulating cell cycle, mitochondrial membrane potential, and reactive oxygen species production as well as zebrafish primary cells apoptosis, which can be mitigated using antioxidant N-acetyl-L-cysteine. A significant change occurred in total protein content, the biochemical indices, and antioxidant capacities owing to SYP-3343 exposure. Additionally, SYP-3343 altered the mRNA levels of heart development-, mitochondrial function-, and apoptosis-related genes in zebrafish embryos. These results indicated that SYP-3343 induced apoptosis accompanying reactive oxygen species-initiated mitochondrial dysfunction in zebrafish embryos.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Panpan Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
27
|
Necibi M, Abdelaui D, Mzoughi N. Organochlorine pesticide residues in agricultural draining water in Tunisia. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1109-1126. [PMID: 35787235 DOI: 10.1080/15257770.2022.2094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Organochlorines pesticides (OCPs) are persistent organic pollutants known by their persistence, their ability to bioaccumulate in the food chain and by their toxicity. This work aims to analyze pesticides in draining water samples taken from two different regions from Tunisia. A liquid-liquid extraction method proposed by the International Atomic Energy Agency (IAEA) has been adopted for the extraction of OCPs from draining water. The analysis of these compounds was carried out with a gas chromatography coupled to mass spectrometry. Eight draining water sample was analyzed from the region of Kebili and levels of OCPs ranged between ND and 3.415 ng L-1. Four draining water samples were sampled from the region of Cap Bon and levels of OCPs in draining water varied between 14.955 and 59.305 ng L-1. The concentration of OCPs in draining water didn't exceed the limits standardized by the regulations for drainage water, which makes possible the reuse of this water for agricultural purposes after having undergone a secondary treatment.
Collapse
Affiliation(s)
- Mouna Necibi
- High Institute of Environmental Sciences and Technologies of Borj Cedria, Environmental Sciences and Technologies Laboratory, University of Carthage, Hammam Lif, Tunisia
| | - Dorsaf Abdelaui
- High Institute of Environmental Sciences and Technologies of Borj Cedria, Environmental Sciences and Technologies Laboratory, University of Carthage, Hammam Lif, Tunisia
| | - Nadia Mzoughi
- High Institute of Environmental Sciences and Technologies of Borj Cedria, Environmental Sciences and Technologies Laboratory, University of Carthage, Hammam Lif, Tunisia
| |
Collapse
|
28
|
Jara MDL, Alvarez LAC, Guimarães MCC, Antunes PWP, de Oliveira JP. Lateral flow assay applied to pesticides detection: recent trends and progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46487-46508. [PMID: 35507227 PMCID: PMC9067001 DOI: 10.1007/s11356-022-20426-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Devices based on lateral flow assay (LFA) have been gaining more and more space in the detection market mainly due to their simplicity, speed, and low cost. These devices have excellent sensing format versatility and make these strips an ideal choice for field applications. The COVID-19 pandemic boosted the democratization of this method as a "point of care testing" (POCT), and the trend is that these devices become protagonists for the monitoring of pesticides in the environment. However, designing LFA devices for detecting and monitoring pesticides in the environment is still a challenge. This is because analytes are small molecules and have only one antigenic determinant, which makes it difficult to apply direct immunoassays. Furthermore, most LFA devices provide only qualitative or semi-quantitative results and have a limited number of applications in multi-residue analysis. Here, we present the state of the art on the use of LFA in the environmental monitoring of pesticides. Based on well-documented results, we review all available LFA formats and strategies for pesticide detection, which may have important implications for the future of monitoring pesticides in the environment. The main advances, challenges, and perspectives of these devices for a direction in this field of study are also presented.
Collapse
Affiliation(s)
- Marcia Daniela Lazo Jara
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil
| | | | - Marco C C Guimarães
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil
| | - Paulo Wagnner Pereira Antunes
- Bioengen Consulting, Engineering and Environmental Planning, R. Belo Horizonte, Lote 05-Quadra W - Alterosas, Serra, ES, 29168-068, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil.
| |
Collapse
|
29
|
Zhu W, Wang J, Zhang Y. The Mechanism of Chlorantraniliprole Resistance and Detoxification in Trichogramma chilonis (Hymenoptera: Trichogrammatidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6651453. [PMID: 35903824 PMCID: PMC9334689 DOI: 10.1093/jisesa/ieac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 06/06/2023]
Abstract
Parasitic Trichogramma chilonis Ishii, an egg parasitoid of Grapholita molesta, is a critical agent for biological control of insect pests in crop plants. However, the efficiency of T. chilonis is influenced by its resistance to the common pesticide chlorantraniliprole. To elucidate the chlorantraniliprole detoxification mechanism, differentially expressed genes (DEGs) related to chlorantraniliprole resistance were studied at different developmental stages of the wasp. Individuals of T. chilonis were grouped and treated with chlorantraniliprole at different developmental stages. Untreated wasps were used as controls. Transcriptomic analysis identified the DEGs associated with chlorantraniliprole resistance and detoxification in T. chilonis. A total of 1,483 DEGs were associated with chlorantraniliprole resistance at all developmental stages. DEGs that correlated with chlorantraniliprole sensitivity of T. chilonis at different developmental stages were distinct and had various functions. The newly identified DEGs are involved in cytochrome P450- and glutathione metabolism-related pathways, which were predicted to contribute to chlorantraniliprole detoxification. Chlorantraniliprole detoxification by T. chilonis was associated with cytochrome P450- and glutathione-related pathways. Our findings may be useful for balancing chemical and biological control practices aimed to optimize agricultural production.
Collapse
Affiliation(s)
- Wenya Zhu
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Juan Wang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | | |
Collapse
|
30
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
31
|
Piro A, Nisticò DM, Oliva D, Fagà FA, Mazzuca S. Physiological and Metabolic Response of Arthrospira maxima to Organophosphates. Microorganisms 2022; 10:microorganisms10051063. [PMID: 35630505 PMCID: PMC9146548 DOI: 10.3390/microorganisms10051063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
The Spirulina spp. exhibited an ability to tolerate the organophosphates. This study aimed to explore the effects of the herbicide glyphosate on a selected strain of the cyanobacteria Arthrospira maxima cultivated in a company. Experimental cultivations acclimated in aquaria were treated with 0.2 mM glyphosate [N-(phosphonomethyl) glycine]. The culture biomass, the phycocyanin, and the chlorophyll a concentrations were evaluated every week during 42 days of treatment. The differentially expressed proteins in the treated cyanobacteria versus the control cultivations were evaluated weekly during 21 days of treatment. Even if the glyphosate treatment negatively affected the biomass and the photosynthetic pigments, it induced resistance in the survival A. maxima population. Proteins belonging to the response to osmotic stress and methylation pathways were strongly accumulated in treated cultivation; the response to toxic substances and the negative regulation of transcription seemed to have a role in the resistance. The glyphosate-affected enzyme, chorismate synthase, a key enzyme in the shikimic acid pathway, was accumulated during treatment, suggesting that the surviving strain of A. maxima expressed a glyphosate-resistant target enzyme.
Collapse
Affiliation(s)
- Amalia Piro
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
- Correspondence:
| | - Dante Matteo Nisticò
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
| | - Daniela Oliva
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
| | | | - Silvia Mazzuca
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
| |
Collapse
|
32
|
In vitro-in vivo correlation of the chiral pesticide prothioconazole after interaction with human CYP450 enzymes. Food Chem Toxicol 2022; 163:112947. [DOI: 10.1016/j.fct.2022.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
|
33
|
Liu Y, Yi J, Li Y, Hussain R, Zhu S, Li Y, Ouyang Z, Mehmood K, Hu L, Pan J, Tang Z, Li Y, Zhang H. Residue of thiram in food, suppresses immune system stress signals and disturbs sphingolipid metabolism in chickens. Vet Immunol Immunopathol 2022; 247:110415. [PMID: 35344810 DOI: 10.1016/j.vetimm.2022.110415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Thiram, a well-known sulfur containing organic compound is frequently and extensively used in agriculture because of high biological activity to control different pests. In certain cases, due to long persistence in the environment pesticides and other environmental contaminants induce undesirable toxic impacts to public health and environment. To ascertain the potential mechanisms of toxicity of thiram on different immune organs of broilers, a total of 100 one-day-old chicks were obtained and randomly divided into two groups including thiram group (50 mg/kg) and untreated control group. Thymus and spleen tissues were collected at the age of 14 days from the experimental birds. At necropsy level, thymus was congested, enlarged and hyperemic while spleen had no obvious lesions. The results on mechanisms (apoptosis and autophagy) of immunotoxicity showed significantly increased expression of bax, caspase3, cytc, ATG5, beclin1 and p62 in spleen of treated mice. Results indicated significantly decreased expression of m-TOR and bcl2 to activate apoptosis and autophagy. The expressions of bax, p53 and m-TOR were up-regulated in the thymus while the expressions of ATG5 and Beclin1 were down-regulated to mediate cell apoptosis and inhibit autophagy. The results on different metabolome investigation showed that the sphingolipid metabolism in the thymus of chicks exposed to thiram was disrupted resulting in up-regulation of metabolites related to cell membrane components such as SM, galactosylceramide and lactosylceramide. The results of our experimental research suggest that thiram can interfere with the sphingolipid metabolism in thymus and angiogenesis, inhibit the proliferation of vascular endothelial cells to induce potential toxic effects in chicken.
Collapse
Affiliation(s)
- Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Shanshan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhuanxu Ouyang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqing Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
34
|
Chen B, Mason CJ, Peiffer M, Zhang D, Shao Y, Felton GW. Enterococcal symbionts of caterpillars facilitate the utilization of a suboptimal diet. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104369. [PMID: 35157920 DOI: 10.1016/j.jinsphys.2022.104369] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Bacterial gut symbionts of insect herbivores can impact their host through different mechanisms. However, in most lepidopteran systems we lack experimental examples to explain how specific members of the gut bacterial community influence their host. We used fall armyworm (Spodoptera frugiperda) as a model system to address this objective. We implemented axenic and gnotobiotic techniques using two semi-artificial diets with pinto bean and wheat germ-based components. Following an initial screen of bacterial isolates representing different genera, larvae inoculated with Enterococcus FAW 2-1 exhibited increased body mass on the pinto bean diet, but not on the wheat germ diet. We conducted a systematic bioassay screening of Enterococcus isolated from fall armyworm, revealing they had divergent effects on the hosts' usage pinto bean diet, even among phylogenetically similar isolates. Dilution of the pinto bean diet revealed that larvae performed better on less-concentrated diets, suggesting the presence of a potential toxin. Collectively, these results demonstrate that some gut microorganisms of lepidopterans can benefit the host, but the dietary context is key towards understanding the direction of the response and magnitude of the effect. We provide evidence that gut microorganisms may play a wider role in mediating feeding breadth in lepidopteran pests, but overall impacts could be related to the environmental stress and the metabolic potentials of the microorganisms inhabiting the gut.
Collapse
Affiliation(s)
- Bosheng Chen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA; College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Michelle Peiffer
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dayu Zhang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
35
|
Quinone binding sites of cyt bc complexes analysed by X-ray crystallography and cryogenic electron microscopy. Biochem Soc Trans 2022; 50:877-893. [PMID: 35356963 PMCID: PMC9162462 DOI: 10.1042/bst20190963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
Cytochrome (cyt) bc1, bcc and b6f complexes, collectively referred to as cyt bc complexes, are homologous isoprenoid quinol oxidising enzymes present in diverse phylogenetic lineages. Cyt bc1 and bcc complexes are constituents of the electron transport chain (ETC) of cellular respiration, and cyt b6f complex is a component of the photosynthetic ETC. Cyt bc complexes share in general the same Mitchellian Q cycle mechanism, with which they accomplish proton translocation and thus contribute to the generation of proton motive force which drives ATP synthesis. They therefore require a quinol oxidation (Qo) and a quinone reduction (Qi) site. Yet, cyt bc complexes evolved to adapt to specific electrochemical properties of different quinone species and exhibit structural diversity. This review summarises structural information on native quinones and quinone-like inhibitors bound in cyt bc complexes resolved by X-ray crystallography and cryo-EM structures. Although the Qi site architecture of cyt bc1 complex and cyt bcc complex differs considerably, quinone molecules were resolved at the respective Qi sites in very similar distance to haem bH. In contrast, more diverse positions of native quinone molecules were resolved at Qo sites, suggesting multiple quinone binding positions or captured snapshots of trajectories toward the catalytic site. A wide spectrum of inhibitors resolved at Qo or Qi site covers fungicides, antimalarial and antituberculosis medications and drug candidates. The impact of these structures for characterising the Q cycle mechanism, as well as their relevance for the development of medications and agrochemicals are discussed.
Collapse
|
36
|
Wang W, Zhao Z, Yan H, Zhang H, Li QX, Liu X. Carboxylesterases from bacterial enrichment culture degrade strobilurin fungicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152751. [PMID: 34979227 DOI: 10.1016/j.scitotenv.2021.152751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Strobilurin fungicides are a class of persistent fungicides frequently detected in the environment. Microbes can effectively degrade strobilurins, but the mechanisms are complex and diverse. Compared with isolated strains, bacterial consortia are more robust in terms of the degradation of multiple pollutants. The enrichment culture XS19 is a group of bacterial strains enriched from soil and degrades six strobilurins at 50 mg/L within 8 d, including azoxystrobin, picoxystrobin, trifloxystrobin, kresoxim-methyl, pyraclostrobin and enestroburin. LC-Q-TOF-MS analysis confirmed that XS19 can demethylate these strobilurins via hydrolysis of the methyl ester group. Analysis of the bacterial communities suggested that Pseudomonas (69.8%), Sphingobacterium (21.2%), Delftia (6.3%), and Achromobacter (1.6%) spp. were highly associated with the removal of strobilurins in the system. Metagenomics-based comprehensive analysis of XS19 suggested that carboxylesterases in Pseudomonas and Sphingobacterium play a central role in the catabolism of strobilurins. Moreover, the carboxylesterase inhibitor bis-p-nitrophenyl phosphate inhibited the degradation activity of strobilurins in XS19. This work proved that XS19 or carboxylesterases can effectively hydrolyze strobilurins, providing a reliable bioremediation paradigm.
Collapse
Affiliation(s)
- Weijun Wang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zixi Zhao
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Yan
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyang Zhang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Xiaolu Liu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
37
|
Xiao X, Huang YQ, Tian HY, Bai J, Cheng F, Wang X, Ke ML, Chen FE. Robust, scalable construction of an electrophilic deuterated methylthiolating reagent: facile access to SCD 3-containing scaffolds. Chem Commun (Camb) 2022; 58:3015-3018. [PMID: 35147615 DOI: 10.1039/d1cc07184j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have established a practical and concise method for the straightforward access of a universal deuterated methylthiolating reagent through a one-pot gram-scale operation under mild conditions. This odourless electrophilic SCD3 reagent was widely applied to react with numerous representative nucleophiles and approached various valuable SCD3 analogues with excellent levels of deuterium content (>99% D). The divergent further transformations were smoothly carried out to obtain the significant derivatives with different oxidative states in high efficiency.
Collapse
Affiliation(s)
- Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yin-Qiu Huang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Hong-Yu Tian
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Jun Bai
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fei Cheng
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xu Wang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Miao-Lin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| |
Collapse
|
38
|
Wang L, Liu H, Yin Z, Li Y, Lu C, Wang Q, Ding X. A Novel Guanine Elicitor Stimulates Immunity in Arabidopsis and Rice by Ethylene and Jasmonic Acid Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:841228. [PMID: 35251109 PMCID: PMC8893958 DOI: 10.3389/fpls.2022.841228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
Rice sheath blight (ShB) caused by Rhizoctonia solani is one of the most destructive diseases in rice. Fungicides are widely used to control ShB in agriculture. However, decades of excessive traditional fungicide use have led to environmental pollution and increased pathogen resistance. Generally, plant elicitors are regarded as environmentally friendly biological pesticides that enhance plant disease resistance by triggering plant immunity. Previously, we identified that the plant immune inducer ZhiNengCong (ZNC), a crude extract of the endophyte, has high activity and a strong ability to protect plants against pathogens. Here, we further found that guanine, which had a significant effect on inducing plant resistance to pathogens, might be an active component of ZNC. In our study, guanine activated bursts of reactive oxygen species, callose deposition and mitogen-activated protein kinase phosphorylation. Moreover, guanine-induced plant resistance to pathogens depends on ethylene and jasmonic acid but is independent of the salicylic acid signaling pathway. Most importantly, guanine functions as a new plant elicitor with broad-spectrum resistance to activate plant immunity, providing an efficient and environmentally friendly biological elicitor for bacterial and fungal disease biocontrol.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Haoqi Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., Ltd., Tai’an, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
39
|
Barroso G, Pazini JB, Iost Filho FH, Barbosa DPL, de Paiva ACR, Matioli TF, Yamamoto PT. Are Pesticides Used to Control Thrips Harmonious with Soil-Dwelling Predatory Mite Cosmolaelaps sabelis (Mesostigmata: Laelapidae)? JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:151-159. [PMID: 34791336 DOI: 10.1093/jee/toab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Edaphic predatory mites could be introduced in pest management programs of pests that live, or spend part of their life cycle, in the soil. Some mesostigmatic mites have been widely used for the management of different species of thrips (Thysanoptera), especially in protected cultivation. The edaphic predator Cosmolaelaps sabelis (Mesostigmata: Laelapidae) was a model species in this study, being exposed to the most applied insecticides for the control of thrips in Brazil. After lethal, sublethal and transgenerational effects were evaluated. The pesticides acephate, acetamiprid + etofenprox, azadirachtin, spinetoram, formetanate hydrochloride, and imidacloprid were classified according to the IOBC/WPRS (International Organization for Biological Control-West Paleartic Regional Section) recommendation, considering the acute toxicity and the effects on adult females' reproduction, in the maternal and first generation. The pesticides acetamiprid + etofenprox and azadirachtin were classified as slightly harmful (Class 2), while spinetoram was classified as moderately harmful (Class 3). Acephate and formetanate hydrochloride were classified as harmful (Class 4). Only imidacloprid didn't cause negative effects on the females. Regarding effects on the first generation, acetamiprid + etofenprox, azadirachtin, and spinetoram caused reduction in the oviposition rates. Therefore, we suggest that complimentary bioassays should be done under semi-field and field conditions using the pesticides that were considered harmful in this study, to assess their effects on this predator in other environments prior to recommending not to use them in integrated programs to manage soil-based pests using chemical and biological tools.
Collapse
Affiliation(s)
- G Barroso
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - J B Pazini
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - F H Iost Filho
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - D P L Barbosa
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - A C R de Paiva
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - T F Matioli
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - P T Yamamoto
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
40
|
Dong G, Zhang R, Hu Q, Martin EM, Qin Y, Lu C, Xia Y, Wang X, Du G. Prothioconazole induces cell cycle arrest by up-regulation of EIF4EBP1 in extravillous trophoblast cells. Arch Toxicol 2022; 96:559-570. [PMID: 35048155 DOI: 10.1007/s00204-021-03203-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Prothioconazole (PTC) is a new broad-spectrum triazole antibacterial agent that is being widely used in agriculture. PTC has been linked to a number of reproductive outcomes including embryo implantation disorder; however, the exact mechanism underlying this relationship has yet to be determined. Proper trophoblast proliferation and migration is a prerequisite for successful embryo implantation. To elucidate the underlying molecular perturbations, we detect the effect of PTC on extravillous trophoblast cells proliferation and migration, and investigate its potential mechanisms. Exposure to different concentrations of PTC (0-500 μM) significantly inhibited the cell viability and migration ability (5 μM PTC exposure), and also caused the cell cycle arrest at the lowest dose (1 μM PTC exposure). Transcriptome analysis revealed that PTC exposure disturbed multiple biological processes including cell cycle and apoptosis, consistent with cell phenotype. Specifically, eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1, 4E-BP1) was identified as up-regulated in PTC exposure group and knockdown of EIF4EBP1, and attenuated the G1 phase arrest induced by PTC exposure. In summary, our data demonstrated that 4E-BP1 participated in PTC-induced cell cycle arrest in extravillous trophoblast cells by regulating cyclin D1. These findings shed light on the potential adverse effect of PTC exposure on the embryo implantation.
Collapse
Affiliation(s)
- Guangzhu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Baijiahu Community Health Service Center, Moling Street, Jiangning District, Nanjing, 211102, China
| | - Rui Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Center for Disease Control and Prevention, Beilun District, Ningbo, 315899, China
| | - Elizabeth M Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, 27709, USA
- Department of Health and Human Services, Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
41
|
GÜL N, YİĞİT N, SAYGILI YİĞİT F, YAZICI ÖZÇELİK E, ESKİZENGİN H. The Effects of Diflubenzuron on Acetylcholinesterase (EC 3.1.1.7) Activity and Liver Ultrastructure in Wistar Rats. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.868668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Tian S, Yan H, Meng Z, Jia M, Sun W, Huang S, Wang Y, Zhou Z, Diao J, Zhu W. Prothioconazole and prothioconazole-desthio induced different hepatotoxicities via interfering with glycolipid metabolism in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104983. [PMID: 34955176 DOI: 10.1016/j.pestbp.2021.104983] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Prothioconazole (PTA), a new triazole fungicide, has been widely used worldwide. A recent study has confirmed that PTA and its main metabolite prothioconazole-desthio (dPTA) interfere with the liver metabolism in reptiles. However, little is known about liver toxicity of these two pollutants in mammals. Here, female mice were orally exposed to PTA (1.5 mg/kg body weight/day) and dPTA (1.5 mg/kg body weight/day) for 30 days. Additionally, growth phenotype and indexes related to serum and liver function were examined. Using metabolomics and gene expression analysis, PTA- and dPTA-induced hepatotoxicity was studied to clarify its potential underlying mechanism of action. Together, the results indicated that PTA and dPTA exposure caused changes in growth phenotypes, including elevated blood glucose levels, triglyceride accumulation, and damage of liver function. Additionally, exposure to PTA and dPTA caused changes in genes and metabolites related to glycolipid metabolism in female mice, thereby interfering with the pyruvate metabolism and glycolysis/gluconeogenesis pathways, ultimately leading to hepatic metabolism disorders. In particular, the effect of dPTA on hepatotoxicity has been proven to be more significant than that of PTA. Thus, these findings help us understand the underlying mechanism of action of PTA and dPTA exposure-induced hepatotoxicity in mammals and possibly humans.
Collapse
Affiliation(s)
- Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hang Yan
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Zhiyuan Meng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
43
|
Liu XS, Tang Z, Li Z, Li M, Xu L, Liu L. Modular and stereoselective synthesis of tetrasubstituted vinyl sulfides leading to a library of AIEgens. Nat Commun 2021; 12:7298. [PMID: 34911935 PMCID: PMC8674301 DOI: 10.1038/s41467-021-27167-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Tetraarylethylenes exhibit intriguing photophysical properties and sulfur atom frequently play a vital role in organic photoelectric materials and biologically active compounds. Tetrasubstituted vinyl sulfides, which include both sulfur atom and tetrasubstituted alkenes motifs, might be a suitable skeleton for the discovery of the new material molecules and drug with unique functions and properties. However, how to modular synthesis these kinds of compounds is still challenging. Herein, a chemo- and stereo-selective Rh(II)-catalyzed [1,4]-acyl rearrangements of α-diazo carbonyl compounds and thioesters has been developed, providing a modular strategy to a library of 63 tetrasubstituted vinyl sulfides. In this transformation, the yield is up to 95% and the turnover number is up to 3650. The mechanism of this reaction is investigated by combining experiments and density functional theory calculation. Moreover, the "aggregation-induced emission" effect of tetrasubstituted vinyl sulfides were also investigated, which might useful in functional material, biological imaging and chemicalnsing via structural modification.
Collapse
Affiliation(s)
- Xun-Shen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Zhiqiong Tang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
| | - Mingjia Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Lin Xu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
44
|
Gad MF, Mossa ATH, Refaie AA, Ibrahim NE, Mohafrash SMM. Benchmark dose and the adverse effects of exposure to pendimethalin at low dose in female rats. Basic Clin Pharmacol Toxicol 2021; 130:301-319. [PMID: 34738321 DOI: 10.1111/bcpt.13683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Pendimethalin (PND) is a dinitroaniline herbicide widely used to control broadleaf and annual grasses. Although the acute oral toxicity of PND is >5 g/kg b.wt. in humans (LD50 for rats >5000 g/kg b.wt.), it has been classified as a possible human carcinogen. It is still used in agriculture so, agricultural workers and their families, as well as consumers, can be exposed to this herbicide. The present study is the first report investigating the dose-response effect using the benchmark dose (BMD) and the adverse effects of exposure to PND at low dose via apoptosis responses linked to the expression of tumor necrosis factor-α (TNF-α), FAS, and BAX proteins; oxidative stress; and DNA and liver damage in female rats. The rats were exposed to PND via drinking water at doses equivalent to no-observed-adverse-effect level (NOAEL = 100 mg/kg b.wt.), 200, and 400 mg/kg b.wt. for 28 days. PND caused the overexpression of Tnf-α, Fas, and Bax; increased the levels of serum liver biomarkers; and increased oxidative stress in the liver and erythrocytes. Furthermore, it induced DNA and liver damage in a dose-dependent manner. The BMD showed that serum alkaline phosphatase (ALP) and total antioxidant capacity (78.4 and 30.1 mg/kg b.wt./day, respectively), lipid peroxidation in liver tissue (30.9 mg/kg b.wt./day), catalase in erythrocytes (14.0 mg/kg b.wt./day), and FAS expression in liver tissue (6.89 mg/kg b.wt./day) were highly sensitive biomarkers of PND toxicity. Our findings suggest the generation of reactive oxygen species as a possible mechanism of PND-induced gene overexpression of tumor necrosis factor-α (TNF-α), FAS, and BAX proteins, oxidative stress, and DNA and liver damage in female rats.
Collapse
Affiliation(s)
- Marwa F Gad
- Pesticide Chemistry Department, National Research Centre (NRC), Giza, Egypt
| | | | - Amel A Refaie
- Pesticide Chemistry Department, National Research Centre (NRC), Giza, Egypt
| | - Noha E Ibrahim
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), Giza, Egypt
| | | |
Collapse
|
45
|
Yahyazadeh R, Baradaran Rahimi V, Yahyazadeh A, Mohajeri SA, Askari VR. Promising effects of gingerol against toxins: A review article. Biofactors 2021; 47:885-913. [PMID: 34418196 DOI: 10.1002/biof.1779] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Ginger is a medicinal and valuable culinary plant. Gingerols, as an active constituent in the fresh ginger rhizomes of Zingiber officinale, exhibit several promising pharmacological properties. This comprehensive literature review was performed to assess gingerol's protective and therapeutic efficacy against the various chemical, natural, and radiational stimuli. Another objective of this study was to investigate the mechanism of anti-inflammatory, antioxidant, and antiapoptotic properties of gingerol. It should be noted that the data were gathered from in vivo and in vitro experimental studies. Gingerols can exert their protective activity through different mechanisms and cell signaling pathways. For example, these are mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-kB), Wnt/β-catenin, nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), transforming growth factor beta1/Smad3 (TGF-β1/Smad3), and extracellular signal-related kinase/cAMP-response element-binding protein (ERK/CREB). We hope that more researchers can benefit from this review to conduct preclinical and clinical studies, treat cancer, inflammation, and attenuate the side effects of drugs and industrial pollutants.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Ritika A, Ritika G, Nikita J, Bableen K, Arunima M, Minakshi B, Anu S, Nitin A, Dinesh K. In silico prediction, characterization and molecular docking studies on Glutathione-S-transferase as a molecular sieve for toxic agrochemicals explored in survey of North Indian farmers. Heliyon 2021; 7:e07875. [PMID: 34504970 PMCID: PMC8417331 DOI: 10.1016/j.heliyon.2021.e07875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/15/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
All across the globe, India is considered as an agricultural nation because its agro products drive the economy. An increase in population growth and a hike in food demands lead to the use of hazardous chemicals in farm fields. An in-depth field survey in Northern India was conducted to understand the types of agrochemicals that were used, farmers' knowledge about their safe handling, and their practices on its usage. Ninety-two responders (primarily farmers) from 37 districts of 12 states were interviewed to collect the information. The library containing 58 compounds as toxic spray constituents were developed and further screened in-silico for ADMET, drug-likeness, toxicity prediction, and molecular docking against their target actions in the human system. Glutathione S-transferases (GSTs) was selected as target protein showing the best-docked score with Bordeaux, Indoxacarb, Cyphenothrin, Deltamethrin, and Beta-cyfluthrin. The study revealed various adverse effects on human health and advocated provisions of alternative solutions such as using GST as a binding agents to hold the toxic chemicals out of living system and eventually saves valuable lives of the farmers.
Collapse
Affiliation(s)
- Aggarwal Ritika
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Gera Ritika
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali Ambala, Kurukshetra University, Kurukshetra, Haryana, 133101, India
| | - Jain Nikita
- Department of Chemistry, JAV College, CCS University, Meerut, Uttar Pradesh, 250611, India
| | - Kaur Bableen
- Department of Biotechnology, Jamia Millia Islamia University, Okhla, Delhi, 110025, India
| | - Murali Arunima
- Department of Biotechnology, St. Thomas College, Ruabandha Bhilai, Hemachand Yadav University, Chattisgarh, 490009, India
| | - Baruah Minakshi
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781030, India
| | - Supriya Anu
- Department of Chemistry, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, 123031, India
| | - Atre Nitin
- Bioinformatics and Data Management, ICMR - National Institute of Virology, Pune, India
| | - Khedkar Dinesh
- Dept of Botany, Shri Shivaji Science College, Amravati, Sant Gadgebaba Amravati University, Amravati, India
| |
Collapse
|
47
|
Xu C, Cao L, Bilal M, Cao C, Zhao P, Zhang H, Huang Q. Multifunctional manganese-based carboxymethyl chitosan hydrogels for pH-triggered pesticide release and enhanced fungicidal activity. Carbohydr Polym 2021; 262:117933. [DOI: 10.1016/j.carbpol.2021.117933] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
|
48
|
Detoxification Esterase StrH Initiates Strobilurin Fungicide Degradation in Hyphomicrobium sp. Strain DY-1. Appl Environ Microbiol 2021; 87:AEM.00103-21. [PMID: 33741617 DOI: 10.1128/aem.00103-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Strobilurin fungicides are widely used in agricultural production due to their broad-spectrum and fungal mitochondrial inhibitory activities. However, their massive application has restrained the growth of eukaryotic algae and increased collateral damage in freshwater systems, notably harmful cyanobacterial blooms (HCBs). In this study, a strobilurin fungicide-degrading strain, Hyphomicrobium sp. strain DY-1, was isolated and characterized successfully. Moreover, a novel esterase gene, strH, responsible for the de-esterification of strobilurin fungicides, was cloned, and the enzymatic properties of StrH were studied. For trifloxystrobin, StrH displayed maximum activity at 50°C and pH 7.0. The catalytic efficiencies (k cat/Km ) of StrH for different strobilurin fungicides were 196.32 ± 2.30 μM-1 · s-1 (trifloxystrobin), 4.64 ± 0.05 μM-1 · s-1 (picoxystrobin), 2.94 ± 0.02 μM-1 · s-1 (pyraclostrobin), and (2.41 ± 0.19)×10-2 μM-1 · s-1 (azoxystrobin). StrH catalyzed the de-esterification of a variety of strobilurin fungicides, generating the corresponding parent acid to achieve the detoxification of strobilurin fungicides and relieve strobilurin fungicide growth inhibition of Chlorella This research will provide insight into the microbial remediation of strobilurin fungicide-contaminated environments.IMPORTANCE Strobilurin fungicides have been widely acknowledged as an essential group of pesticides worldwide. So far, their residues and toxic effects on aquatic organisms have been reported in different parts of the world. Microbial degradation can eliminate xenobiotics from the environment. Therefore, the degradation of strobilurin fungicides by microorganisms has also been reported. However, little is known about the involvement of enzymes or genes in strobilurin fungicide degradation. In this study, a novel esterase gene responsible for the detoxification of strobilurin fungicides, strH, was cloned in the newly isolated strain Hyphomicrobium sp. DY-1. This degradation process detoxifies the strobilurin fungicides and relieves their growth inhibition of Chlorella.
Collapse
|
49
|
Wang X, Li X, Wang Y, Qin Y, Yan B, Martyniuk CJ. A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116671. [PMID: 33582629 DOI: 10.1016/j.envpol.2021.116671] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Strobilurins are popular fungicides used in agriculture on a global scale. Due to their widespread use as agrochemicals, they can enter aquatic environments at concentrations that can elicit adverse effects in organisms. This review synthesizes the current state of knowledge regarding the toxic effects of strobilurin fungicides on aquatic species, including algal species, Daphnia magna, and fish species, to determine risk to aquatic organisms and ecosystems. Data show that the toxicities of strobilurins vary widely across aquatic species. Strobilurins bind cytochrome bc1 in mitochondrial complex III in fungi, and as such, research in aquatic species has focused on mitochondria-related endpoints following exposures to strobilurins. In fish, studies into the activities of mitochondrial complexes and the expression of genes involved in the electron transfer chain have been conducted, converging on the theme that mitochondrial complexes and their enzymes are impaired by strobilurins. In general, the order of toxicity of strobilurins for fish species are pyraoxystrobin > pyraclostrobin ≈ trifloxystrobin > picoxystrobin > kresoxim-methyl > fluoxastrobin > azoxystrobin. In addition to mitochondrial toxicity, studies also report genotoxicity, immunotoxicity, cardiotoxicity, neurotoxicity, and endocrine disruption, and each of these events can potentially impact whole organism-level processes such as development, reproduction, and behavior. Screening data from the US Environmental Protection Agency ToxCast database supports the hypothesis that these fungicides may act as endocrine disruptors, and high throughput data suggest estrogen receptor alpha and thyroid hormone receptor beta can be activated by some strobilurins. It is recommended that studies investigate the potential for endocrine disruption by strobilurins more thoroughly in aquatic species. Based on molecular, physiological, and developmental outcomes, a proposed adverse outcome pathway is presented with complex III inhibition in the electron transfer chain as a molecular initiating event. This review comprehensively addresses sub-lethal toxicity mechanisms of strobilurin fungicides, important as the detection of strobilurins in aquatic environments suggests exposure risks in wildlife.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoyu Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yue Wang
- The New Hope Liuhe Co., Ltd., Qingdao, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
50
|
Wang CC, Qu YL, Liu XH, Ma ZW, Yang B, Liu ZJ, Chen XP, Chen YJ. Synthesis of Five-Membered Cyclic Guanidines via Cascade [3 + 2] Cycloaddition of α-Haloamides with Organo-cyanamides. J Org Chem 2021; 86:3546-3554. [PMID: 33538590 DOI: 10.1021/acs.joc.0c02932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The convenient preparation of N2-unprotected five-membered cyclic guanidines was achieved through a cascade [3 + 2] cycloaddition between organo-cyanamides and α-haloamides under mild conditions in good to excellent yields (up to 99%). The corresponding cyclic guanidines could be easily transformed into hydantoins via hydrolysis.
Collapse
Affiliation(s)
- Chuan-Chuan Wang
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China.,College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Ya-Li Qu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Xue-Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Zhi-Wei Ma
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China
| | - Bo Yang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Zhi-Jing Liu
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China
| | - Xiao-Pei Chen
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China
| | - Ya-Jing Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| |
Collapse
|