1
|
Sarkar S, Jagirdar BR. Ionic liquid-directed synthesis of Au-AgBr Janus nanoparticles via digestive ripening and solvated metal atom dispersion. NANOSCALE 2025; 17:8057-8068. [PMID: 40035558 DOI: 10.1039/d5nr00010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Multicomponent nanoparticles (MCNs) leverage the synergistic properties of their constituents, offering enhanced performance in diverse applications, including catalysis and photocatalysis. Among them, Janus nanoparticles (JNPs) with their dual domains, stand out as particularly promising. This study presents a novel two-step method to synthesize Au-AgBr JNPs, combining the solvated metal atom dispersion (SMAD) method with digestive ripening (DR). Using ultra-pure metals as precursors negates the need for post-synthesis purification. By adjusting the Au/Ag molar ratio, yields of JNPs up to 85% with precise control of particle size and composition were achieved. The ionic liquid [C18BIm]Br plays a crucial role in promoting AgBr growth on Au nanoparticles, with only low concentrations of ionic liquid favoring Janus structure formation. Additionally, a wet chemical reduction method was also carried out, affording results comparable to those obtained using SMAD and digestive ripening. A mechanistic study for the formation of Au-AgBr JNPs has also been carried out. Driven by a galvanic replacement reaction, the formation mechanism of Au-AgBr JNPs was traced using X-ray photoelectron spectroscopy (XPS). Further, a bromide-free ionic liquid ([C18BIm]NTf2) was also employed for the synthesis which yields AgAu alloy only and no Janus heterostructure formation.
Collapse
Affiliation(s)
- Saibalendu Sarkar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Balaji R Jagirdar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Bassani CL, Engel M. Kinetically Trapped Nanocrystals with Symmetry-Preserving Shapes. J Am Chem Soc 2025; 147:9487-9495. [PMID: 40036735 DOI: 10.1021/jacs.4c17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The shape of nanocrystals is crucial in determining their surface area, reactivity, optical properties, and self-assembly behavior. Traditionally, shape control has been achieved through empirical methods, highlighting the need for a more refined theoretical framework. A comprehensive model should account for the kinetic factors at distinct stages of the shape formation process to identify the key determinants of nanocrystal morphology. By modulating kinetics at terraces, ledges, and kinks, we reveal that the primary factors are the adatom nucleation energies and the geometry of growth islands. Transient sites dominate the growth process, leading to kinetically trapped, metastable shapes. We illustrate these concepts with face-centered cubic nanocrystals, demonstrating diverse shape evolutions, including surface roughening and the preservation of crystal symmetry in cubes, octahedra, rhombic dodecahedra, and their truncated variants. This study reveals the mechanisms driving the formation of cubic nanocrystal shapes and offers guidance for their precise synthesis.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Liu Y, Luo Y, Zhang M, Zhang A, Wang L. The Emerging Strategy of Symmetry Breaking for Enhancing Energy Conversion and Storage Performance. SMALL METHODS 2025; 9:e2401067. [PMID: 39449238 DOI: 10.1002/smtd.202401067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Symmetry breaking has emerged as a novel strategy to enhance energy conversion and storage performance, which refers to changes in the atomic configurations within a material reducing its internal symmetry. According to the location of the symmetry breaking, it can be classified into spontaneous symmetry breaking within the material, local symmetry breaking on the surface of the material, and symmetry breaking caused by external fields outside the material. However, there are currently few summaries in this field, so it is necessary to summarize how symmetry breaking improves energy conversion and storage performance. In this review, the fundamentals of symmetry breaking are first introduced, which allows for a deeper understanding of its meaning. Then the applications of symmetry breaking in energy conversion and storage are systematically summarized, providing various mechanisms in energy conversion and storage, as well as how to improve energy conversion performance and storage efficiency. Last but not least, the current applications of symmetry breaking are summarized and provide an outlook on its future development. It is hoped that this review can provide new insights into the applications of symmetry breaking and promote its further development.
Collapse
Affiliation(s)
- Yongqi Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Yixiang Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Mengyang Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Anlei Zhang
- College of Science, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Lin H, Guo H, Cheng X, Su A, Huang L, Yao Q, Shi X, Wang R, Chen H. Liquid Active Surface Growth: Explaining the Symmetry Breaking in Liquid Nanoparticles. ACS NANO 2025; 19:5269-5278. [PMID: 39808722 DOI: 10.1021/acsnano.4c12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles. For this synthetic control, the imbalance of the said interplay is the critical factor, as demonstrated by carefully designed control experiments. Thus, LASG provides a coherent mechanism that encompasses a wide range of liquid-derived nanostructures, including hollow nanospheres, asymmetric teardrops, and hollow nanobottles with an opening. By adapting nanosynthesis techniques from the solid to liquid realm, we believe that LASG would provide deeper insights and more sophisticated synthetic controls.
Collapse
Affiliation(s)
- Huai Lin
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Huiying Guo
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xuejun Cheng
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - An Su
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Liping Huang
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qingwu Yao
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohuo Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, Zhejiang Province China
| | - Ruoxu Wang
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hongyu Chen
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
5
|
Ding X, Ling Z, Fang J, Cheng M, Wu J. A novel controllable nanocyclic plasma coupled array in SERS trace detection of multi-component pollutants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125271. [PMID: 39418680 DOI: 10.1016/j.saa.2024.125271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The development and design of a novel, uniform and highly active local electromagnetic field enhanced structure is crucial for expanding Surface-enhanced Raman Scattering (SERS) applications. In this study, we developed Ag ring-coupled nanoarrays (Ag RCNAs) with controllable nanogaps using a substrate rotary evaporation coating technique with self-assembled polystyrene (PS) microspheres as templates. This straightforward and cost-effective method efficiently prepares plasma-coupled nanoarrays. Ag RCNAs demonstrated high sensitivity in detecting organic dyes, our prepared Ag RCNAs showed high sensitivity (with the limit of detection of 10-8 M), high signal reproducibility (with the relative standard deviation of 6.73 %). Furthermore, Ag RCNAs showed remarkable sensitivity to a broad spectrum of dyes in river water, indicating the large-area uniform and highly active circular-ring-shaped nanogaps can realize highly sensitive detection of various pollutants. This approach offers advantages in electromagnetic field enhancement, tunable nanogaps, uniformity, reproducibility, and recyclability, making it promising for applications in environmental monitoring, bioassays, food safety, and medical diagnostics.
Collapse
Affiliation(s)
- Xuanyang Ding
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Zhuangzhuang Ling
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Jinghuai Fang
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Mingfei Cheng
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China.
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
6
|
Shen H, Wang P, Xu J, Fu Z, Kang X, Pei Y, Zhu M. Symmetrical and asymmetrical surface structure expansions of silver nanoclusters with atomic precision. Chem Sci 2025; 16:2373-2381. [PMID: 39781223 PMCID: PMC11706232 DOI: 10.1039/d4sc06847e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Controlling symmetrical or asymmetrical growth has allowed a series of novel nanomaterials with prominent physicochemical properties to be produced. However, precise and continuous size growth based on a preserved template has long been a challenging pursuit, yet little has been achieved in terms of manipulation at the atomic level. Here, a correlated silver cluster series has been established, enabling atomically precise manipulation of symmetrical and asymmetrical surface structure expansions of metal nanoclusters. Specifically, the C 3-axisymmetric Ag29(BDTA)12(PPh3)4 nanocluster underwent symmetrical and asymmetrical surface structure expansions via an acid-mediated synthetic procedure, giving rise to C 3-axisymmetric Ag32(BDTA)12(PPh3)10 and C 1-axisymmetric Ag33(BDTA)12(PPh3)11, respectively. In addition, structural transformations, including structural degradation from Ag32 to Ag29 and asymmetrical structural expansion from Ag32 to Ag33, were rationalized theoretically. More importantly, the asymmetrically structured Ag33 nanoclusters followed a chiral crystallization mode, and their crystals displayed high optical activity, derived from CD and CPL characterization. This work not only provides an important model for unlocking the symmetrical/asymmetrical size growth mechanism at the atomic level but also pioneers a promising approach to activate the optical activity of cluster-based nanomaterials.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Jiawei Xu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Ziwei Fu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Xi Kang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Xiangtan Hunan 411105 P. R. China
| | - Manzhou Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| |
Collapse
|
7
|
Hu S, Gong J, Tao Y, Ma R, Guan J, Liu X, Hu J, Yan J, Wang S, Zhang Z, Liang X, Zhuang Z, Han Y, Zheng X, Yan W, Chen C, Zhu W, Wang D, Xiong Y. Coordination-in-pipe engineering of Pt-based intermetallic compounds with nanometer to angstrom precision. Chem Sci 2025:d4sc07905a. [PMID: 39911330 PMCID: PMC11791777 DOI: 10.1039/d4sc07905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
The simultaneous regulation of particle size, surface coordinated environment and composition for Pt-based intermetallic compound (Pt-IMC) nanoparticles to manipulate their reactivity for energy storage is of great importance. Herein, we report a general synthetic method for Pt-IMCs using SBA-15 for coordination-in-pipe engineering. The particle size can be regulated to 3-9 nm by carrying out the coordination in pipes with different diameters and the coordination number of the interface metal atoms can be adjusted by altering the N source. Moreover, this strategy can also be expanded to the synthesis of Pt-IMCs with the majority of fourth period transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn). The Pt3Co IMC using 1,10-phenanthroline as the nitrogen source (Pt3Co@CN) shows the highest catalytic performance in the methanol oxidation reaction (MOR; 2.19 A mgPt -1) among the investigated nitrogen sources. The high chemical states of surface Pt and Co, affected by the nitrogen coordination number at the angstrom scale, facilitate electron accumulation on active sites, reduce the activation energy of the rate-determining step and enhance the catalytic performance of Pt-IMCs in the MOR.
Collapse
Affiliation(s)
- Shouyao Hu
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jiaxin Gong
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Yu Tao
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Runze Ma
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jianping Guan
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Xu Liu
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jinhua Hu
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jun Yan
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Shibin Wang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310032 China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University Beijing 100084 China
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 China
| | - Chengjin Chen
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| |
Collapse
|
8
|
Su Z, Chen X, Sun M, Yang X, Kang J, Cai Z, Guo L. Amorphous Nanobelts for Efficient Electrocatalytic Ammonia Production. Angew Chem Int Ed Engl 2025; 64:e202416878. [PMID: 39363749 DOI: 10.1002/anie.202416878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
One-dimensional (1D) amorphous nanomaterials combine the advantages of high active site concentration of amorphous structure, high specific surface area and efficient charge transfer of 1D materials, so they present promising opportunities for catalysis. However, how to achievie the balance between the high orientation of 1D morphology and the isotropy of amorphous structure is a significant challenge, which severely obstructs the controllable preparation of 1D amorphous materials. Guided by the hard-soft acids-bases theory, here we develop a general strategy for preparing 1D amorphous nanomaterials through the precise modulation of bond strength between metal ions and organic ligands for a moderated fastness. The soft base dodecanethiol (DT) is multifunctionally served as both structure-regulating agent and morphology-directing agent. Compared with the borderline acids (e.g. Fe2+, Co2+, Ni2+) to construct amorphous structure, soft acid of Cu+ which produced crystalline nanobelts can still be amorphized by reducing the hardness of Cu ions through redox reaction to weak Cu-SR bond. Due to the combined advantages of amorphous structure and one-dimensional morphology, amorphous CuDT nanobelts exhibited excellent electrocatalytic activity in electrochemical nitrate reduction, outperformed most of the reported Cu-based catalysts. This work will effectively bridge the gap between traditional 1D crystalline nanomaterials synthesis and their amorphization preparation.
Collapse
Affiliation(s)
- Ziming Su
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Xiangyu Chen
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Mingke Sun
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Xiuyi Yang
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jianxin Kang
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Zhi Cai
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Lin Guo
- School of Chemistry, Beihang University, 100191, Beijing, China
| |
Collapse
|
9
|
Li S, Wang W, Jia Y, Xu H, Liu R, Wang Z, Xie Z, Zhang L, He R, Wang L. Colloidal Synthesis of Na 2Fe 2(SO 4) 3 Nanocrystals as the Cathode Toward High-Rate Capability and High-Energy Density Sodium-ion Batteries. SMALL METHODS 2025:e2402110. [PMID: 39780738 DOI: 10.1002/smtd.202402110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Alluaudite-type Na2+2xFe2-x(SO4)3 (NFS) with high theoretical energy density is regarded as the promising cathode of sodium-ion batteries (SIBs), while practical rate and cyclic performances are still hindered by intrinsic poor conductivity. Here, a facile method is developed, collaborating high-boiling organic solvents assisted colloidal synthesis (HOS-CS) with sintering for tailoring Na2Fe2(SO4)3 nanocrystals decorated by conductive carbon network toward high-rate-capability cathode of SIBs. Impressively, the as-prepared Na2Fe2(SO4)3@MC provides 60.6 and 46.9 mAh g-1 of reversible capacities even at ultrahigh rates of 20 and 30 C, respectively, ranking the superior state among the current NFS-based cathode. More importantly, Na2Fe2(SO4)3@MC achieves 73% of capacity retention at 20 C after 500 cycles, highlighting its potential for application as a fast chargeable cathode. As a bonus, the full-cell configuration constructed with Na2Fe2(SO4)3@MC cathode and commercial hard carbon (HC) anode delivers 45.6 mAh g-1 at 10 C and 68.3 mAh g-1 of initial capacity with ≈79.4% of retention after 100 cycles at 2 C. Also, Na2Fe2(SO4)3@MC||HC full cell supplies as high as 140 Wh kg-1 of practical energy density. This work offers a novel approach to prepare NFS cathode for SIBs with both high energy density and fast-charging ability.
Collapse
Affiliation(s)
- Shuhui Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Weihuang Wang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yixin Jia
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Huidong Xu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Rui Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zheng Wang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zicheng Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Lantian Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Liangbing Wang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
10
|
Sánchez‐Iglesias A, Grzelczak M. Expanding Chemical Space in the Synthesis of Gold Bipyramids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407735. [PMID: 39520337 PMCID: PMC11735876 DOI: 10.1002/smll.202407735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Gold bipyramids (AuBPs), despite having superior properties compared to their spectroscopically similar counterparts, gold nanorods, have found comparatively limited applications. This discrepancy is primarily due to the lack of protocols to tailor their dimensions. Typically, the concentration of Au seeds is virtually the sole factor that determines the aspect ratio and thus, the optical properties of AuBPs. As a result, varying the volumes of AuBPs while incurring minimal changes to their optical spectra remains a synthetically non-trivial task. Here, the chemical space in the seeded growth of AuBPs, is expanded by exploiting the interplay between bromide, silver ions, and seed concentration for tuning the final dimensions and optical properties of AuBPs. Specifically, a 6 fold change in volumes of AuBPs is achieved while maintaining the fixed plasmon band position. Further overgrowth of as-prepared bipyramids broadens the realizable dimensions without compromising quality and initial morphology. Overall, the results expand the chemical toolbox in the wet-chemistry synthesis of anisotropic gold nanoparticles, which is relevant for health, colorimetric sensors, and energy applications.
Collapse
Affiliation(s)
- Ana Sánchez‐Iglesias
- Centro de Física de Materiales (CSIC‐UPV/EHU)Paseo Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC‐UPV/EHU)Paseo Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
- Donostia International Physics Center (DIPC)Paseo Manuel de Lardizabal 4Donostia‐Sebastián20018Spain
| |
Collapse
|
11
|
Kordan MA, Schrenk C, Schnepf A. Ag 108(PEt 3) 24Cl 6: A Hexagonal Prismatic Metalloid Cluster. Chemistry 2024; 30:e202403838. [PMID: 39431712 DOI: 10.1002/chem.202403838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The ligands used for the protection of metalloid clusters heavily influence the resulting structure and shape. For silver, thiolate and alkynyl ligands are commonly used, while phosphines usually play a minor role as co-ligands. Herein, we report the synthesis and structural characterization of Ag108(PEt3)24Cl6 (1), the largest structurally characterized metalloid silver cluster with phosphines and halides as sole ligands. Instead of the frequently observed spherical shape of metalloid clusters, 1's structure resembles a hexagonal prism. The highly light and temperature sensitive compound features many similarities to its smaller congener Ag64(PnBu3)16Cl6, though there are distinct structural and electronic differences present. Within 1, a Ag64 subunit can be found, which identifies these clusters as molecular seeds for the formation of faceted nanoparticles.
Collapse
Affiliation(s)
- Mike Alexander Kordan
- Chemistry Department, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Claudio Schrenk
- Chemistry Department, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Andreas Schnepf
- Chemistry Department, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
12
|
Saleem F, Liu G, Liu G, Chen B, Yun Q, Ge Y, Zhang A, Wang X, Zhou X, Wang G, Liao L, He Z, Li L, Zhang H. Crystal-Phase-Selective Etching of Heterophase Au Nanostructures. SMALL METHODS 2024; 8:e2400430. [PMID: 38970552 PMCID: PMC11579570 DOI: 10.1002/smtd.202400430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/17/2024] [Indexed: 07/08/2024]
Abstract
Selective oxidative etching is one of the most effective ways to prepare hollow nanostructures and nanocrystals with specific exposed facets. The mechanism of selective etching in noble metal nanostructures mainly relies on the different reactivity of metal components and the distinct surface energy of multimetallic nanostructures. Recently, phase engineering of nanomaterials (PEN) offers new opportunities for the preparation of unique heterostructures, including heterophase nanostructures. However, the synthesis of hollow multimetallic nanostructures based on crystal-phase-selective etching has been rarely studied. Here, a crystal-phase-selective etching method is reported to selectively etch the unconventional 4H and 2H phases in the heterophase Au nanostructures. Due to the coating of Pt-based alloy and the crystal-phase-selective etching of 4H-Au in 4H/face-centered cubic (fcc) Au nanowires, the well-defined ladder-like Au@PtAg nanoframes are prepared. In addition, the 2H-Au in the fcc-2H-fcc Au nanorods and 2H/fcc Au nanosheets can also be selectively etched using the same method. As a proof-of-concept application, the ladder-like Au@PtAg nanoframes are used for the electrocatalytic hydrogen evolution reaction (HER) in acidic media, showing excellent performance that is comparable to the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Faisal Saleem
- Department of ChemistryCity University of Hong KongHong KongChina
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies)Nanjing Tech UniversityNanjing211816China
| | - Guangyao Liu
- Department of ChemistryCity University of Hong KongHong KongChina
| | - Guigao Liu
- Department of ChemistryCity University of Hong KongHong KongChina
- National Special Superfine Powder Engineering Research CenterSchool of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Bo Chen
- Department of ChemistryCity University of Hong KongHong KongChina
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Qinbai Yun
- Department of ChemistryCity University of Hong KongHong KongChina
| | - Yiyao Ge
- Department of ChemistryCity University of Hong KongHong KongChina
| | - An Zhang
- Department of ChemistryCity University of Hong KongHong KongChina
| | - Xixi Wang
- Department of ChemistryCity University of Hong KongHong KongChina
| | - Xichen Zhou
- Department of ChemistryCity University of Hong KongHong KongChina
| | - Gang Wang
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Lingwen Liao
- Department of ChemistryCity University of Hong KongHong KongChina
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031China
| | - Zhen He
- Department of ChemistryCity University of Hong KongHong KongChina
- Hong Kong Institute for Clean EnergyCity University of Hong KongKowloonHong KongChina
| | - Lujiang Li
- Department of ChemistryCity University of Hong KongHong KongChina
| | - Hua Zhang
- Department of ChemistryCity University of Hong KongHong KongChina
- Hong Kong Institute for Clean EnergyCity University of Hong KongKowloonHong KongChina
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong KongChina
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057China
| |
Collapse
|
13
|
Ondry JC, Zhou Z, Lin K, Gupta A, Chang JH, Wu H, Jeong A, Hammel BF, Wang D, Fry HC, Yazdi S, Dukovic G, Schaller RD, Rabani E, Talapin DV. Reductive pathways in molten inorganic salts enable colloidal synthesis of III-V semiconductor nanocrystals. Science 2024; 386:401-407. [PMID: 39446954 DOI: 10.1126/science.ado7088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024]
Abstract
Colloidal quantum dots, with their size-tunable optoelectronic properties and scalable synthesis, enable applications in which inexpensive high-performance semiconductors are needed. Synthesis science breakthroughs have been key to the realization of quantum dot technologies, but important group III-group V semiconductors, including colloidal gallium arsenide (GaAs), still cannot be synthesized with existing approaches. The high-temperature molten salt colloidal synthesis introduced in this work enables the preparation of previously intractable colloidal materials. We directly nucleated and grew colloidal quantum dots in molten inorganic salts by harnessing molten salt redox chemistry and using surfactant additives for nanocrystal shape control. Synthesis temperatures above 425°C are critical for realizing photoluminescent GaAs quantum dots, which emphasizes the importance of high temperatures enabled by molten salt solvents. We generalize the methodology and demonstrate nearly a dozen III-V solid-solution nanocrystal compositions that have not been previously reported.
Collapse
Affiliation(s)
- Justin C Ondry
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Zirui Zhou
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Kailai Lin
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aritrajit Gupta
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jun Hyuk Chang
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Haoqi Wu
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Ahhyun Jeong
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin F Hammel
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Di Wang
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Sadegh Yazdi
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
| | - Gordana Dukovic
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Yu H, Janssen A, Pawlik V, Xia Y. Bipyramidal Nanocrystals of Noble Metals: From Synthesis to Applications. Chemistry 2024; 30:e202402478. [PMID: 39085050 DOI: 10.1002/chem.202402478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Shape control has been a major theme of nanocrystal research in terms of synthesis, property tailoring, and optimization of performance in a variety of applications. Among the possible shapes, bipyramids are unique owing to their symmetry, planar defects, and exposed facets. In this article, we focus on the colloidal synthesis of noble-metal nanocrystals featuring a triangular bipyramidal shape, together with highlights of their properties and applications. We start with a brief discussion of the general classification and requirements for the nucleation and growth of bipyramidal nanocrystals, followed by specific aspects regarding the synthetic methods with a focus on the roles of reduction, etching, and capping, as well as controls of facet, size, aspect ratio, and corner truncation. In the end, we illustrate how these aspects affect the properties of bipyramidal nanocrystals for plasmonic and catalytic applications, together with future perspectives.
Collapse
Affiliation(s)
- Hansong Yu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Annemieke Janssen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Veronica Pawlik
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, United States
| |
Collapse
|
15
|
Nieukirk BD, Tang R, Hughes RA, Neretina S. Site-Selective Deposition of Silica Nanoframes and Nanocages onto Faceted Gold Nanostructures Using a Primer-free Tetraethyl Orthosilicate Synthesis. ACS NANO 2024; 18:19257-19267. [PMID: 38984856 DOI: 10.1021/acsnano.4c05258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The Stöber method for forming spherical silica colloids is well-established as one of the pillars of colloidal synthesis. In a modified form, it has been extensively used to deposit both porous and protective shells over metal nanomaterials. Current best-practice techniques require that the vitreophobic surface of metal nanoparticles be primed with a surface ligand to promote silica deposition. Although such techniques have proved highly successful in forming core-shell configurations, the site-selective deposition of silica onto preselected areas of faceted metal nanostructures has proved far more challenging. Herein, a primer-free TEOS-based synthesis is demonstrated that is capable of forming architecturally complex nanoframes and nanocages on the pristine surfaces of faceted gold nanostructures. The devised synthesis overcomes vitreophobicity using elevated TEOS concentrations that trigger silica nucleation along the low-coordination sites where gold facets meet. Continued deposition sees the emergence of a well-connected frame followed by the lateral infilling of the openings formed over gold facets. With growth readily terminated at any point in this sequence, the synthesis distinguishes itself in being able to achieve patterned and tunable silica depositions expressing interfaces that are uncorrupted by primers. The so-formed structures are demonstrated as template materials capable of asserting high-level control over synthesis and assembly processes by using the deposited silica as a mask that deactivates selected areas against these processes while allowing them to proceed elsewhere. The work, hence, extends the capabilities and versatility of TEOS-based syntheses and provides pathways for forming multicomponent nanostructures and nanoassemblies with structurally engineered properties.
Collapse
Affiliation(s)
- Brendan D Nieukirk
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Runze Tang
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
16
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
17
|
Ma H, Pan SQ, Wang WL, Yue X, Xi XH, Yan S, Wu DY, Wang X, Liu G, Ren B. Surface-Enhanced Raman Spectroscopy: Current Understanding, Challenges, and Opportunities. ACS NANO 2024; 18:14000-14019. [PMID: 38764194 DOI: 10.1021/acsnano.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
While surface-enhanced Raman spectroscopy (SERS) has experienced substantial advancements since its discovery in the 1970s, it is an opportunity to celebrate achievements, consider ongoing endeavors, and anticipate the future trajectory of SERS. In this perspective, we encapsulate the latest breakthroughs in comprehending the electromagnetic enhancement mechanisms of SERS, and revisit CT mechanisms of semiconductors. We then summarize the strategies to improve sensitivity, selectivity, and reliability. After addressing experimental advancements, we comprehensively survey the progress on spectrum-structure correlation of SERS showcasing their important role in promoting SERS development. Finally, we anticipate forthcoming directions and opportunities, especially in deepening our insights into chemical or biological processes and establishing a clear spectrum-structure correlation.
Collapse
Affiliation(s)
- Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Xiaxia Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Han Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Lin G, Tao J, Sun Y, Cui Y, Manners I, Qiu H. Breaking of Lateral Symmetry in Two-Dimensional Crystallization-Driven Self-Assembly on a Surface. J Am Chem Soc 2024; 146:14734-14744. [PMID: 38748980 DOI: 10.1021/jacs.4c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Symmetry breaking is prevalent in nature and provides distinctive access to hierarchical structures for artificial materials. However, it is rarely explored in two-dimensional (2D) entities, especially for lateral asymmetry. Herein, we describe a unique symmetry breaking process in surface-initiated 2D living crystallization-driven self-assembly. The 2D epitaxial growth occurs only at one lateral side of the immobilized cylindrical micelle seeds, accessing unilateral platelets with the yield increasing with the seed length, the growth temperature, and poly(2-vinylpyridine) corona length (maximum = 92%). Generally, the tilted immobilization of seeds blocks one lateral side and triggers the lateral symmetry breaking, where the intensity and spatial arrangement of seed-surface interactions dictate the regulation. Segmented unilateral platelets with segmented corona regions are further fabricated with the addition of different blended unimers. Remarkably, discrete slope-like and dense blade-like platelet arrays grow off the surface when seeds are compactly aligned either with spherical micelles or themselves. This strategy provides nanoscale insights into the symmetry breaking in long-range self-assembly and would be promising for the design of innovative colloids and smart surfaces.
Collapse
Affiliation(s)
- Geyu Lin
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiawei Tao
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Sun
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P5C2, Canada
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
19
|
Wu Z, Yang G, Liu Z, Du S, Zhang Q, Peng F. Explosive Leidenfrost-Droplet-Mediated Synthesis of Monodispersed High-Entropy-Alloy Nanoparticles for Electrocatalysis. NANO LETTERS 2024. [PMID: 38776264 DOI: 10.1021/acs.nanolett.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
High-entropy-alloy nanoparticles (HEA NPs) exhibit promising potential in various catalytic applications, yet a robust synthesis strategy has been elusive. Here, we introduce a straightforward and universal method, involving the microexplosion of Leidenfrost droplets housing carbon black and metal salt precursors, to fabricate PtRhPdIrRu HEA NPs with a size of ∼2.3 nm. The accumulated pressure within the Leidenfrost droplet triggers an intense explosion within milliseconds, propelling the carbon support and metal salt rapidly into the hot solvent through explosive force. The exceptionally quick temperature rise ensures the coreduction of metal salts, and the dilute local concentration of metal ions limits the final size of the HEA NPs. Additionally, the explosion process can be fine-tuned by selecting different solvents, enabling the harvesting of diverse HEA NPs with superior electrocatalytic activity for alcohol electrooxidation and hydrogen electrocatalysis compared to commercial Pt (Pd) unitary catalysts.
Collapse
Affiliation(s)
- Zenan Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Guangxing Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Zhiting Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Shengjun Du
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
20
|
Bassani CL, Engel M, Sum AK. Mesomorphology of clathrate hydrates from molecular ordering. J Chem Phys 2024; 160:190901. [PMID: 38767264 DOI: 10.1063/5.0200516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 05/22/2024] Open
Abstract
Clathrate hydrates are crystals formed by guest molecules that stabilize cages of hydrogen-bonded water molecules. Whereas thermodynamic equilibrium is well described via the van der Waals and Platteeuw approach, the increasing concerns with global warming and energy transition require extending the knowledge to non-equilibrium conditions in multiphase, sheared systems, in a multiscale framework. Potential macro-applications concern the storage of carbon dioxide in the form of clathrates, and the reduction of hydrate inhibition additives currently required in hydrocarbon production. We evidence porous mesomorphologies as key to bridging the molecular scales to macro-applications of low solubility guests. We discuss the coupling of molecular ordering with the mesoscales, including (i) the emergence of porous patterns as a combined factor from the walk over the free energy landscape and 3D competitive nucleation and growth and (ii) the role of molecular attachment rates in crystallization-diffusion models that allow predicting the timescale of pore sealing. This is a perspective study that discusses the use of discrete models (molecular dynamics) to build continuum models (phase field models, crystallization laws, and transport phenomena) to predict multiscale manifestations at a feasible computational cost. Several advances in correlated fields (ice, polymers, alloys, and nanoparticles) are discussed in the scenario of clathrate hydrates, as well as the challenges and necessary developments to push the field forward.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Amadeu K Sum
- Phases to Flow Laboratory, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
21
|
Zhang X, Huang Q, Yin W, Zheng W. Challenges in Developing Perovskite Nanocrystals for Commercial Applications. Chempluschem 2024; 89:e202300693. [PMID: 38179846 DOI: 10.1002/cplu.202300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Zero-dimensional lead halide perovskite nanocrystals (NCs) exhibit size-dependent bandgap and carrier confinement compared to bulk counterparts due to the quantum confinement effect, making them essential for achieving wide-color-gamut displays, studying excitonic spin relaxation, and constructing superlattices. Despite their promising potential, they face a variety of technical bottlenecks, such as insufficient color reproducibility, limited large-scale production, low stability, and toxicity. An outline of a research roadmap is provided in the review, which highlights key challenges in developing perovskite NCs for commercial applications.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Qianqian Huang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Wenxu Yin
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
22
|
Nguyen Q, Kim EM, Ding Y, Janssen A, Wang C, Li KK, Kim J, Fichthorn KA, Xia Y. Elucidating the Role of Reduction Kinetics in the Phase-Controlled Growth on Preformed Nanocrystal Seeds: A Case Study of Ru. J Am Chem Soc 2024; 146:12040-12052. [PMID: 38554283 PMCID: PMC11066843 DOI: 10.1021/jacs.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
This study demonstrates the crucial role of reduction kinetics in phase-controlled synthesis of noble-metal nanocrystals using Ru nanocrystals as a case study. We found that the reduction kinetics played a more important role than the templating effect from the preformed seed in dictating the crystal structure of the deposited overlayers despite their intertwined effects on successful epitaxial growth. By employing two different polyols, a series of Ru nanocrystals with tunable sizes of 3-7 nm and distinct patterns of crystal phase were synthesized by incorporating different types of Ru seeds. Notably, the use of ethylene glycol and triethylene glycol consistently resulted in the formation of Ru shell in natural hexagonal close-packed (hcp) and metastable face-centered cubic (fcc) phases, respectively, regardless of the size and phase of the seed. Quantitative measurements and theoretical calculations suggested that this trend was a manifestation of the different reduction kinetics associated with the precursor and the chosen polyol, which, in turn, affected the reduction pathway (solution versus surface) and packing sequence of the deposited Ru atoms. This work not only underscores the essential role of reduction kinetics in controlling the packing of atoms and thus the phase taken by Ru nanocrystals but also suggests a potential extension to other noble-metal systems.
Collapse
Affiliation(s)
- Quynh
N. Nguyen
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Eun Mi Kim
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16803, United States
| | - Yong Ding
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Annemieke Janssen
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Chenxiao Wang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Kei Kwan Li
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Junseok Kim
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16803, United States
| | - Kristen A. Fichthorn
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16803, United States
| | - Younan Xia
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Xia Z, Gao Y, Cai Q, Wang Y, Yang D, Li T, Dong A. Controllable synthesis of star-shaped FeCoMnO x nanocrystals and their self-assembly into superlattices with low-packing densities. Chem Commun (Camb) 2024; 60:3409-3412. [PMID: 38440958 DOI: 10.1039/d4cc00332b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
We present a novel method for synthesizing monodisperse, star-shaped FeCoMnOx nanocrystals with tunable concavity. Through liquid-air interfacial assembly, these colloidal nanostars can form two-dimensional superlattices, which are characterized by low packing densities. Notably, the ability to adjust the degree of concavity of nanostars allows for the tuning of the packing symmetry of the assembled superlattices.
Collapse
Affiliation(s)
- Zhe Xia
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yutong Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qingfu Cai
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yajun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Tongtao Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Angang Dong
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Park W, Lee S, Oh MJ, Zhao Q, Kim J, Lee S, Haddadnezhad M, Jung I, Park S. Step-by-Step Nanoscale Top-Down Blocking and Etching Lead to Nanohexapods with Cartesian Geometry. ACS NANO 2024; 18:7402-7410. [PMID: 38411049 DOI: 10.1021/acsnano.3c09844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this research, we designed a stepwise synthetic method for Au@Pt hexapods where six elongated Au pods are arranged in a pairwise perpendicular fashion, sharing a common point (the central origin in a Cartesian-coordinate-like hexapod shape), featured with tip-selectively decorated Pt square nanoplates. Au@Pt hexapods were successfully synthesized by applying three distinctive chemical reactions in a stepwise manner. The Pt adatoms formed discontinuous thin nanoplates that selectively covered six concave facets of a Au truncated octahedron and served as etching masks in the succeeding etching process, which prevented underlying Au atoms from being oxidized. The subsequent isotropic etching proceeded radially, starting from the bare Au surface, carving the central nanocrystal in a concave manner. By controlling the etching conditions, Au@Pt hexapods were successfully fabricated, wherein the core Au domain is connected to six protruding arms, which hold Pt nanoplates at the ends. Due to their morphology, Au@Pt hexapods feature distinctive optical properties in the near-infrared region, as a proof of concept, allowing for surface-enhanced Raman spectroscopy (SERS)-based monitoring of in situ CO electrooxidation. We further extended our synthetic library by tailoring the size of the Pt nanoplates and neck widths of Au branches, demonstrating the validity of selective blocking and etching-based colloidal synthesis.
Collapse
Affiliation(s)
- Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | | | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
25
|
Gu J, Li L, Yang Q, Tian F, Zhao W, Xie Y, Yu J, Zhang A, Zhang L, Li H, Zhong J, Jiang J, Wang Y, Liu J, Lu J. Twinning Engineering of Platinum/Iridium Nanonets as Turing-Type Catalysts for Efficient Water Splitting. J Am Chem Soc 2024; 146:5355-5365. [PMID: 38358943 DOI: 10.1021/jacs.3c12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.
Collapse
Affiliation(s)
- Jialun Gu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Lanxi Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Qi Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Wei Zhao
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Youneng Xie
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Lei Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Hongkun Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jing Zhong
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jiali Jiang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Yanju Wang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Jiahua Liu
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- CityU-Shenzhen Futian Research Institute, No. 3, Binglang Road, Futian District, Shenzhen 518000, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518000, China
| |
Collapse
|
26
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Zhang M, Wu T, Zhang H, Chen Z, Yang Y, Ling Y, Zhou Y. Mesoporous carbon hemispheres integrated with Fe-Gd nanoparticles for potential MR/PA imaging-guided photothermal therapy. J Mater Chem B 2024; 12:658-666. [PMID: 37934458 DOI: 10.1039/d3tb02073h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Asymmetric carbon has emerged as an important material to enrich morphologies as well as enhance functions for bioapplications. Here, asymmetric mesoporous carbon hemispheres (CHS) integrated with γ-Fe2O3 and GdPO4 (Fe-Gd) nanoparticles are proposed and prepared for potential imaging-guided photothermal therapy (PTT). Interestingly, Fe-Gd/CHS contributes to an almost 1.5 times enhancement in light harvesting and photothermal conversion efficiency as compared with its corresponding spherical analogue. The possible underlying mechanism is discussed in view of the unique asymmetric structure-featured carbon. Further identification of the inherited photoacoustic (PA) and magnetic resonance (MR) imaging properties leads to the consequent in vivo evaluation of its imaging and PTT performances, which demonstrates its capability as a function-integrated system for potential theranostics.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Tianze Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Hui Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Zhenxia Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
28
|
Ondry JC, Gupta A, Zhou Z, Chang JH, Talapin DV. Synthesis of Ternary and Quaternary Group III-Arsenide Colloidal Quantum Dots via High-Temperature Cation Exchange in Molten Salts: The Importance of Molten Salt Speciation. ACS NANO 2024; 18:858-873. [PMID: 38108289 DOI: 10.1021/acsnano.3c09490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Colloidal semiconductor nanocrystals are an important class of materials which have many desirable optoelectronic properties. In their bulk phases, gallium- and aluminum-containing III-V materials such as GaAs, GaP, and Al1-xGaxAs represent some of the most technologically important semiconductors. However, their colloidal synthesis by traditional methods is difficult due to the high temperatures needed to crystallize these highly covalent materials and the extreme reactivity of Ga- and Al- precursors toward organic solvents at such high temperatures. A recently developed paradigm shift in the synthesis of these materials is to use molten inorganic salts as solvents to prepare Ga- containing III-V colloidal nanocrystals by cation exchange of the corresponding indium pnictide (InPn) colloidal nanocrystals. There have been several successful applications of molten salt solvents to prepare III-phosphide colloidal nanocrystals. However, little is known about the nature of these reaction environments at the relevant reaction conditions and synthesis of III-arsenide colloidal nanocrystals remains challenging. Herein we report a detailed study on cation exchange of InPn nanocrystals using nominally Lewis basic molten salt solvents with added gallium halides. Surprisingly, these salt systems phase separate into two immiscible phases, and the nanocrystals preferentially segregate to one of the phases. Using a suite of in situ spectroscopy tools, we identify the phase the nanocrystals segregate to as Lewis neutral alkali tetrahalogallate molten salts. We apply in situ high-temperature Raman spectroscopy to identify the chemical species present in several molten salt compositions at experimentally relevant reaction conditions to elucidate a molecular basis for the reactivity observed. We then employ Lewis neutral KGaI4 molten salts to prepare high-quality In1-xGaxAs and In1-xGaxP nanocrystals and demonstrate that deviation from Lewis neutral conditions accelerate nanocrystal decomposition in the case of III-arsenide materials. Further, we expand to KAlI4-based molten salts to prepare In1-x-yGaxAlyAs nanocrystals which represent an example of solution-synthesized quaternary III-V nanocrystals. These insights provide a molecular basis for the rational development of molten salt solvents, thus allowing the preparation of a diverse array of multicomponent III-V colloidal nanocrystals.
Collapse
Affiliation(s)
- Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Aritrajit Gupta
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Zirui Zhou
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jun Hyuk Chang
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
29
|
Jia J, Metzkow N, Park SM, Wu YL, Sample AD, Diloknawarit B, Jung I, Odom TW. Spike Growth on Patterned Gold Nanoparticle Scaffolds. NANO LETTERS 2023. [PMID: 38048438 DOI: 10.1021/acs.nanolett.3c03778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
This work reports a scaffold-templated, bottom-up synthesis of 3D anisotropic nanofeatures on periodic arrays of gold nanoparticles (AuNPs). Our method relies on substrate-bound AuNPs as large seeds with hemispherical shapes and smooth surfaces after the thermal annealing of as-fabricated particles. Spiky features were grown by immersing the patterned AuNPs into a growth solution consisting of a gold salt and Good's buffer; the number and length of spikes could be tuned by changing the solution pH and buffer concentration. Intermediate structures that informed the growth mechanism were characterized as a function of time by correlating the optical properties and spike features. Large-area (cm2) spiky AuNP arrays exhibited surface-enhanced Raman spectroscopy enhancement that was associated with increased numbers of high-aspect-ratio spikes formed on the AuNP seeds.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nadia Metzkow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander D Sample
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bundit Diloknawarit
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Insub Jung
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Zhang L, Xu Z, Feng T, He M, Hansen TW, Wagner JB, Liu C, Cheng H. Breaking the Axis-Symmetry of a Single-Wall Carbon Nanotube During Its Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304905. [PMID: 37897312 PMCID: PMC10754088 DOI: 10.1002/advs.202304905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Indexed: 10/30/2023]
Abstract
The asymmetrical growth of a single-wall carbon nanotube (SWCNT) by introducing a change of a local atomic structure, is usually inevitable and supposed to have a profound effect on the chirality control and property tailor. However, the breaking of the symmetry during SWCNT growth remains unexplored and its origins at the atomic-scale are elusive. Here, environmental transmission electron microscopy is used to capture the process of breaking the symmetry of a growing SWCNT from a sub-2-nm platinum catalyst nanoparticle in real-time, demonstrating that topological defects formed on the side of a SWCNT can serve as a buffer for stress release and inherently break its axis-symmetrical growth. Atomic-level details reveal the importance of the tube-catalyst interface and how the atom rearrangement of the solid-state platinum catalyst around the interface influences the final tubular structure. The active sites responsible for trapping carbon dimers and providing enough driving force for carbon incorporation and asymmetric growth are shown to be low-coordination step edges, as confirmed by theoretical simulations.
Collapse
Affiliation(s)
- Lili Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences72 Wenhua RoadShenyang110016China
| | - Ziwei Xu
- School of Materials Science and EngineeringJiangsu UniversityZhenjiang212013China
| | - Tian‐liang Feng
- School of Materials Science and EngineeringJiangsu UniversityZhenjiang212013China
| | - Maoshuai He
- College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
| | | | | | - Chang Liu
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences72 Wenhua RoadShenyang110016China
| | - Hui‐Ming Cheng
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences72 Wenhua RoadShenyang110016China
- Institute of Technology for Carbon NeutralityShenzhen Institute of Advanced TechnologyChinese Academy of Sciences1068 Xueyuan RoadShenzhen518055China
| |
Collapse
|
31
|
Chen T, Qiu M, Peng Y, Yi C, Xu Z. Colloidal Polymer-Templated Formation of Inorganic Nanocrystals and their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303282. [PMID: 37409416 DOI: 10.1002/smll.202303282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Indexed: 07/07/2023]
Abstract
Inorganic nanocrystals possess unique physicochemical properties compared to their bulk counterparts. Stabilizing agents are commonly used for the preparation of inorganic nanocrystals with controllable properties. Particularly, colloidal polymers have emerged as general and robust templates for in situ formation and confinement of inorganic nanocrystals. In addition to templating and stabilizing inorganic nanocrystals, colloidal polymers can tailor their physicochemical properties such as size, shape, structure, composition, surface chemistry, and so on. By incorporating functional groups into colloidal polymers, desired functions can be integrated with inorganic nanocrystals, advancing their potential applications. Here, recent advances in the colloidal polymer-templated formation of inorganic nanocrystals are reviewed. Seven types of colloidal polymers, including dendrimer, polymer micelle, stare-like block polymer, bottlebrush polymer, spherical polyelectrolyte brush, microgel, and single-chain nanoparticle, have been extensively applied for the synthesis of inorganic nanocrystals. Different strategies for the development of these colloidal polymer-templated inorganic nanocrystals are summarized. Then, their emerging applications in the fields of catalysis, biomedicine, solar cells, sensing, light-emitting diodes, and lithium-ion batteries are highlighted. Last, the remaining issues and future directions are discussed. This review will stimulate the development and application of colloidal polymer-templated inorganic nanocrystals.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
32
|
Zhou X, Li J, Qian X, Zhu J, Kong X, Peng X. Selective Formation of Monodisperse Right Trigonal-Bipyramidal and Cube-Shaped CdSe Nanocrystals: Stacking Faults and Facet-Ligand Pairing. J Am Chem Soc 2023; 145:23238-23248. [PMID: 37830933 DOI: 10.1021/jacs.3c07949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Formation of monodisperse right trigonal-bipyramidal (rTriBP) and cube-shaped CdSe nanocrystals─both being encased with six (100) facets─is found to be dictated by type of stacking faults along the (111) direction of the zinc-blende structure and an ideal facet-ligand pairing for the (100) facets. During growth with little kinetic overdriving, seeds with single twin boundary (TB) and single intrinsic stacking fault (ISF) grow into rTriBP and cube-shaped nanocrystals, respectively, through two consecutive stages. During the facet-formation stage, each seed would grow rapidly into the smallest faceted one to contain the ∼3 nm seed, with cube-shaped ones growing much faster than rTriBP ones because of the stacking-fault-dependent seed location in the final faceted nanocrystals. In the following facet-growth stage, cube-shaped nanocrystals also grow faster, presumably due to the highly reactive stacking fault edges. Consistent with this hypothesis, growth of rTriBP nanocrystals can become faster than that of cube-shaped ones by intentionally introducing additional intrinsic stacking fault(s) in the seeds. Cube-shaped and rTriBP CdSe nanocrystals exhibit distinctive optical properties, representing two classes of optical materials.
Collapse
Affiliation(s)
- Xionglin Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xudong Qian
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jie Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
33
|
Wang Y, Chen J, Li R, Götz A, Drobek D, Przybilla T, Hübner S, Pelz P, Yang L, Apeleo Zubiri B, Spiecker E, Engel M, Ye X. Controlled Self-Assembly of Gold Nanotetrahedra into Quasicrystals and Complex Periodic Supracrystals. J Am Chem Soc 2023; 145:17902-17911. [PMID: 37534987 DOI: 10.1021/jacs.3c05299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The self-assembly of shape-anisotropic nanocrystals into large-scale structures is a versatile and scalable approach to creating multifunctional materials. The tetrahedral geometry is ubiquitous in natural and manmade materials, yet regular tetrahedra present a formidable challenge in understanding their self-assembly behavior as they do not tile space. Here, we report diverse supracrystals from gold nanotetrahedra including the quasicrystal (QC) and the dimer packing predicted more than a decade ago and hitherto unknown phases. We solve the complex three-dimensional (3D) structure of the QC by a combination of electron microscopy, tomography, and synchrotron X-ray scattering. Nanotetrahedron vertex sharpness, surface ligands, and assembly conditions work in concert to regulate supracrystal structure. We also discover that the surface curvature of supracrystals can induce structural changes of the QC tiling and eventually, for small supracrystals with high curvature, stabilize a hexagonal approximant. Our findings bridge the gap between computational design and experimental realization of soft matter assemblies and demonstrate the importance of accurate control over nanocrystal attributes and the assembly conditions to realize increasingly complex nanopolyhedron supracrystals.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jun Chen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexander Götz
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Dominik Drobek
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Thomas Przybilla
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Sabine Hübner
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Philipp Pelz
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
34
|
Wei A, OuYang J, Guo Y, Jiang S, Chen F, Huang J, Xiao Q, Wu Z. Controlled synthesis of monodisperse gold nanorods with a small diameter of around 10 nm and largest plasmon wavelength of 1200 nm. Phys Chem Chem Phys 2023; 25:20843-20853. [PMID: 37503681 DOI: 10.1039/d3cp02203j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Gold nanorods have been widely used in various fields due to their tunable anisotropic localized surface plasmon resonance (SPR) property. The facile preparation of gold nanorods with a tunable SPR wavelength extending to a near-infrared window, and at the same time, a relatively small particle size for facilitating applications especially in the biomedical field is of great value yet highly challenging. In this work, a new reducing agent, 1,6-dihydroxynaphthalene, is proposed for the synthesis of gold nanorods. The results indicate that gold nanorods with good monodispersity, high shape yield, maximum SPR wavelength of 1200 nm, and especially small diameter of around 10 nm can be acquired simultaneously. In terms of spectral and size controls, by respectively varying the experimental parameters including the amount of silver ions, reducing agents, and gold seeds not only can a good linear correlation be acquired corresponding to a SPR wavelength ranging from around 600 nm to 1200 nm, but a regular change in the particle diameter from 10.5 nm to 7.5 nm could also be observed. The structural and morphological evolutions of the particle for each changed parameter were carefully studied, and insights were gained into the growth mechanism based on the detailed analysis of particle evolution at a specific stage of the growth process.
Collapse
Affiliation(s)
- Anhua Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jingfang OuYang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Yuyang Guo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Suju Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Feifei Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Zihua Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
35
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
36
|
Tuff WJ, Hughes RA, Golze SD, Neretina S. Ion Beam Milling as a Symmetry-Breaking Control in the Synthesis of Periodic Arrays of Identically Aligned Bimetallic Janus Nanocrystals. ACS NANO 2023; 17:4050-4061. [PMID: 36799807 DOI: 10.1021/acsnano.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bimetallic Janus nanostructures represent a highly functional class of nanomaterials due to important physicochemical properties stemming from the union of two chemically distinct metal segments where each maintains a partially exposed surface. Essential to their synthesis is the incorporation of a symmetry-breaking control that is able to induce the regioselective deposition of a secondary metal onto a preexisting nanostructure even though such depositions are, more often than not, in opposition to the innate tendencies of heterogeneous growth modes. Numerous symmetry-breaking controls have been forwarded but the ensuing Janus structure syntheses have not yet achieved anywhere near the same level of control over nanostructure size, shape, and composition as their core-shell and single-element counterparts. Herein, a collimated ion beam is demonstrated as a symmetry-breaking control that allows for the selective removal of a passivating oxide shell from one side of a metal nanostructure to create a configuration that is transformable into a substrate-bound Au-Ag Janus nanostructure. Two different modalities are demonstrated for achieving Janus structures where in one case the oxide dissolves in the growth solution while in the other it remains affixed to form a three-component system. The devised procedures distinguish themselves in their ability to realize complex Janus architectures arranged in periodic arrays where each structure has the same alignment relative to the underlying substrate. The work, hence, provides an avenue for forming precisely tailored Janus structures and, in a broader sense, advances the use of oxides as an effective means for directing nanometal syntheses.
Collapse
Affiliation(s)
- Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Spencer D Golze
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
37
|
Liu S, Huang G, Wang J, Bao J, Wang M, Wei Y, Zhong Y, Bai F. Noble Metal Nanoparticle-Loaded Porphyrin Hexagonal Submicrowires Composites (M-HW): Photocatalytic Synthesis and Enhanced Photocatalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040660. [PMID: 36839028 PMCID: PMC9959543 DOI: 10.3390/nano13040660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/01/2023]
Abstract
Surface plasmon resonance (SPR) photocatalysts have attracted considerable attention because of their strong absorption capacity of visible light and enhanced photogenic carrier separation efficiency. However, the separate production of metal nanoparticles (NPs) and semiconductors limits the photogenic charge transfer. As one of the most promising organic photocatalysts, porphyrin self-assemblies with a long-range ordered structure-enhance electron transfer. In this study, plasmonic noble metal-based porphyrin hexagonal submicrowires composites (M-HW) loaded with platinum (Pt), silver (Ag), gold (Au), and palladium (Pd) NPs were synthesized through a simple in situ photocatalytic method. Homogeneous and uniformly distributed metal particles on the M-HW composites enhanced the catalytic or chemical properties of the organic functional nanostructures. Under the same loading of metal NPs, the methyl orange photocatalytic degradation efficiency of Ag-HW [kAg-HW (0.043 min-1)] composite was three times higher than that of HW, followed by Pt-HW [kPt-HW (0.0417 min-1)], Au-HW [kAu-HW (0.0312 min-1)], and Pd-HW [kPd-HW (0.0198 min-1)]. However, the rhodamine B (RhB) and eosin B photocatalytic degradations of Pt-HW were 4 times and 2.6 times those of HW, respectively. Finally, the SPR-induced electron injection, trapping, and recombination processes of the M-HW system were investigated. These results showed that M-HW plasmonic photocatalysts exhibited excellent photocatalytic performances, making them promising materials for photodegrading organic pollutants.
Collapse
Affiliation(s)
- Shuanghong Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guan Huang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jiefei Wang
- International Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshuai Bao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Mengyue Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yaqun Wei
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| |
Collapse
|