1
|
Voitechovič E, Gaidukevič J, Pauliukaite R. A critical review of electrochemical (bio)sensors for liposoluble antioxidants. Talanta 2025; 288:127728. [PMID: 39961245 DOI: 10.1016/j.talanta.2025.127728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Lipophilic antioxidants (LAOs) are essential for physical and mental health of all mammals. Their importance in the treatment and prevention of diseases is undeniable. Alongside water-soluble antioxidants, LAOs play a crucial role in maintaining the quality and stability of various food, cosmetic, and pharmaceutical products. Electrochemical detection methods have emerged as powerful analytical tools for identifying and quantifying a broad range of analytes. However, LAOs are often overlooked targets for electrochemical analysis. This critical review aims to explore the current advancements, limitations, and future perspectives of electrochemical detection methods for LAOs. The observed electrochemical methods in LAOs investigations are: cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, electrochemical impedance spectroscopy, and square wave anodic stripping voltammetry. Additionally, electrochemical evaluation of total antioxidant capacity and activity are included for the discussions. The review provides an overview of the electrochemical (bio)sensors from 2018 to 2024 for LAOs determination of following groups: synthetic (phenolic, amine and organophosphate antioxidants), and natural (tocopherols, carotenoids, polyunsaturated fatty acids) antioxidants, including vitamins D and K, coenzyme Q, which are not directly associated to the antioxidant group, but also possess antioxidant activity. The general preferences of medium selection and practical aspects of the sample preparation strategy are included.
Collapse
Affiliation(s)
- Edita Voitechovič
- Department od Nanoengineering, Center for Physical Sciences and Technology (FTMC), Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania.
| | - Justina Gaidukevič
- Department od Nanoengineering, Center for Physical Sciences and Technology (FTMC), Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Naugarduko str. 24, LT - 03225, Vilnius, Lithuania
| | - Rasa Pauliukaite
- Department od Nanoengineering, Center for Physical Sciences and Technology (FTMC), Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania
| |
Collapse
|
2
|
Lv S, Tian L, Zhao S, Jones KC, Chen D, Zhong G, Li J, Xu B, Peng P, Zhang G. Aqueous secondary formation substantially contributes to hydrophilic organophosphate esters in aerosols. Nat Commun 2025; 16:4463. [PMID: 40368881 PMCID: PMC12078572 DOI: 10.1038/s41467-025-59361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Chemicals of emerging concern (CECs), like organophosphate esters (OPEs), are toxic substances threatening human and wildlife health. Yet the atmospheric transformation of CECs remains poorly understood. Here we combine field measurements and partitioning models to reveal that OPEs could be enhanced by aqueous-phase processes in aerosols. We show that hydrophobic OPEs are absorbed favorably into the organic phase, whereas hydrophilic OPEs preferably partition into the aqueous phase. We provide field evidence that enhanced aqueous secondary formation of OPEs occurs in winter, and its magnitude is strongly dependent on aerosol water content. We suggest that dissolved inorganic salts and transition metals in aerosols positively impact the formation of particle-bound hydrophilic OPEs, by facilitating aqueous partitioning and/or oxidation. Our findings highlight the important role of aqueous oxidation chemistry for the fate of CECs in the atmosphere, urging better consideration of transformation products in future risk assessment and chemical management.
Collapse
Affiliation(s)
- Shaojun Lv
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - LeLe Tian
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shizhen Zhao
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
| | - Kevin C Jones
- Lancaster Environmental Centre, Lancaster University, Lancaster, UK
| | - Duohong Chen
- Environmental Key Laboratory of Regional Air Quality Monitoring, Ministry of Ecology and Environment, Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Guangcai Zhong
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Li
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Buqing Xu
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Ping'an Peng
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Gan Zhang
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Zhang Y, Qin H, Zu B, Yu Z, Liu C, Shi J, Zhou B. Maternal Exposure to Environmentally Relevant Concentrations of Tris(2,4-di- tert-butylphenyl) Phosphate-Induced Developmental Toxicity in Zebrafish Offspring via Disrupting foxO1/ ripor2 Signaling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5474-5486. [PMID: 40087148 DOI: 10.1021/acs.est.4c14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Abnormal development and mortality in early life stages pose significant threats to the growth and continuation of fish populations. Tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP) is a novel organophosphate ester contaminant detected in natural waters. However, the potential effects of maternal exposure to TDtBPP on the early development of offspring embryos in fish remain unknown. Here, 30-day-old zebrafish were exposed to TDtBPP at 0, 50, 500, or 5000 ng/L for 180 days, and the exposed females were spawned with unexposed males. TDtBPP accumulation was detected in offspring embryos, accompanied by an increased malformation rate and mortality. The developmental abnormality of offspring embryos was identified to originate from the gastrula stage. Furthermore, based on transcriptome analysis, the down-regulation of RHO family interacting cell polarization regulator 2 gene (ripor2) was considered as a key toxic event, and this was confirmed in the subsequent knockdown experiment. Moreover, molecular docking studies and forkhead box O1 (foxO1) transcription factor inhibitor (AS1842856) exposure experiments demonstrated that the blockade of foxO1 transcriptional regulation was responsible for the decreased expression of ripor2. The results of this study demonstrated that the occurrence of developmental malformation and mortality in zebrafish offspring embryos following maternal TDtBPP exposure were triggered by the blockade of foxO1 transcriptional regulation and the consequent down-regulation of ripor2.
Collapse
Affiliation(s)
- Yongkang Zhang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Haiyu Qin
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bowen Zu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zichen Yu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Kang P, Chen Q, Wu J, Zhang Q, Crump D, Su G. Novel Organophosphate Ester Tris(2,4-di- tert-butylphenyl)phosphate Alters Lipid Metabolism: Insights from Lipidomic Analysis and mRNA Expression. Chem Res Toxicol 2025; 38:448-457. [PMID: 39928661 DOI: 10.1021/acs.chemrestox.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Tris(2,4-di-tert-butylphenyl)phosphate (TDTBPP), a novel organophosphate ester (OPE), has been extensively detected in various environmental and biological samples; however, its potential biological effects remain unexplored. In this study, we investigated biotransformation characteristics, alteration of lipid metabolism, and mRNA expression in primary mouse hepatocytes (PMHs) following exposure to TDTBPP. After 36-h exposure in PMHs, TDTBPP exhibited a high stability potential with no statistically significant degradation trend. Subsequently, we analyzed the disruption of lipid homeostasis in PMHs following exposure to 0-4.5 μM TDTBPP. Lipidomic analysis indicated that TDTBPP disrupted lipid homeostasis in PMHs, and several lipid classes were dysregulated, in particular, glycerolipids and glycerophospholipids. Additionally, three lipids were proposed as potential lipid biomarkers of TDTBPP exposure, including triglycerides (TGs) and phosphatidylcholines (PCs). These observations were further supported by transcriptional changes, with significant alteration observed in genes associated with lipid uptake, de novo lipogenesis, β-oxidation of fatty acids, glycerolipid metabolism, and lipid export. Overall, these findings highlight the detrimental effects of TDTBPP on lipid homeostasis, providing important insights for health risk assessments of this abundant OPE in the environment.
Collapse
Affiliation(s)
- Pingping Kang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qianyu Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Wu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qi Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, K1A0H3, Canada
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Wu Y, Yao Y, Chen S, Li X, Wang Z, Wang J, Gao H, Chen H, Wang L, Sun H. Target and Nontarget Analysis of Organophosphorus Flame Retardants and Plasticizers in a River Impacted by Industrial Activity in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:798-810. [PMID: 39723965 DOI: 10.1021/acs.est.4c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Industrial activities are a major source of organophosphorus flame retardants (OPFRs) and plasticizers in aquatic environments. This study investigated the distribution of 40 OPFRs in a river impacted by major industrial manufacturing plants in Eastern China by target analysis. Nontarget analysis using high-resolution mass spectrometry was further employed to identify novel organophosphorus compounds (NOPs). Thirty-four OPFRs were detected in river water samples, with total concentrations of 62.9-1.06 × 103 ng/L (median: 455 ng/L). Triphenylphosphine oxide and diphenyl phosphoric acid were ubiquitously detected up to 620 and 127 ng/L, respectively. Among 26 identified NOPs, 17 were reported for the first time in the environment, including 14 novel organophosphate esters (especially 4 heterocycles and 3 oligomers), 2 organophosphites, and an organophosphonate. Bis(2,4-di-tert-butylphenyl) hydrogen phosphate and 2,2-dimethylpropoxy(propyl)phosphinic acid with high predicted persistence or toxicity were widely detected, with semiquantified concentrations up to 990 and 1.0 × 103 ng/L, respectively. Structurally similar organophosphorus heterocycles exhibited consistent variation trends, suggesting a common emission source. Estimated annual river discharges to the sea were 20.6-37.0 kg/yr for OPFRs and 30.8-161 kg/yr for NOPs. These findings indicate that industrial activities contribute OPFRs and NOPs to the river catchment and its estuary, posing ecological risks to both terrestrial and marine environments.
Collapse
Affiliation(s)
- Yilin Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huixian Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Zhang Y, Qin H, Li B, Yu Z, Zu B, Kong R, Letcher RJ, Liu C, Zhou B. A Novel Organophosphate Ester, Tris(2,4-di tert-butylphenyl) Phosphate, Induced Reproductive Toxicity in Male Zebrafish at Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:279-290. [PMID: 39718999 DOI: 10.1021/acs.est.4c10931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
As a novel organophosphate ester (NOPE), tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) has attracted significant attention due to its unexpectedly high detection in natural environments. However, the ecological toxic effects of environmentally relevant concentrations of TDtBPP in organisms remain entirely unknown. In this study, 1 month old zebrafish were exposed to 0, 50, 500, or 5000 ng/L TDtBPP for 150 days, and the reproductive toxicity in male fish was evaluated. Results demonstrated that TDtBPP exposure significantly inhibited the maturation of spermatozoa and thus decreased spermatogenesis. Furthermore, abnormal sperm morphology and decreased sperm motility were also observed. The decrease in sperm quantity and quality eventually resulted in the declining fecundity. Moreover, TDtBPP exposure downregulated the expression of hsd3b1 in vivo and in vitro and subsequently inhibited the synthesis of androgens in zebrafish testes and Leydig cells. This inhibition of androgen synthesis appeared to be responsible for the observed reproductive toxicity in male fish. Molecular docking and dual-luciferase reporter gene experiments elucidated that TDtBPP inhibited the promotion of vitamin D on hsd3b1 transcription by the vitamin D receptor and thus downregulated the expression of hsd3b1. Our findings provide first time evidence that TDtBPP poses a risk to male fish reproduction at environmentally relevant levels.
Collapse
Affiliation(s)
- Yongkang Zhang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Haiyu Qin
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, China
| | - Zichen Yu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Bowen Zu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Ren Kong
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, OttawaK1S 5B6, Ontario ,Canada
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| |
Collapse
|
7
|
Sørensen L, Zammite C, Igartua A, Christensen MM, Haraldsvik M, Creese M, Gomes T, Booth AM. Towards realism in hazard assessment of plastic and rubber leachates - Methodological considerations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136383. [PMID: 39504771 DOI: 10.1016/j.jhazmat.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
While plastic chemicals are key drivers of observed effects to aquatic species, there remains a lack of standardized and fit-for-purpose approaches for experimentally deconvoluting the effects of plastic chemicals from particle effects. This study investigated differences in chemical composition determined using two different organic solvents for extractions (dichloromethane-ethyl acetate, methanol) and by thermal desorption applied to 51 thermoplastic and elastomer products. The composition of natural water leachates of four select elastomers was also investigated. The number of chemical features in each material varied according to the extraction method, with solvent extracts exhibiting the most chemicals, and only 19 compounds commonly identified by all three methods. The number of chemical features in leachates was generally similar to the corresponding chemical extracts, but strong differences in relative composition were detected. While turbulence had minimal impact on leachate composition, particle loading strongly influenced leachate composition, temperature and salinity influenced the leachate concentration for some chemicals, and leaching time depended upon chemical mobility. Leachate composition cannot be readily predicted from particle characterization and multiple parameters are drivers of compositional variance in aquatic leachates. Recommendations for performing leaching studies that are relevant for hazard characterization in a realistic aquatic environment risk assessment scenario are suggested, with a particular focus on particle loading.
Collapse
Affiliation(s)
| | | | | | | | - Martin Haraldsvik
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Tânia Gomes
- Norwegian Institute of Water Research (NIVA), Oslo, Norway
| | | |
Collapse
|
8
|
Mofokeng NN, Madikizela LM, Tiggelman I, Chimuka L. Chemical profiling of paper recycling grades using GC-MS and LC-MS: An exploration of contaminants and their possible sources. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:148-158. [PMID: 39197183 DOI: 10.1016/j.wasman.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
Paper packaging made with recycled paperboard is used to pack various consumer goods that can include amongst others, electronics, toys, food, cosmetics, and stationery. Chemical profiling of the various paper recycling grades used in the manufacture of recycled paperboard was undertaken to investigate possible sources of contaminants and their propagation in the paper recycling chain. Pre-consumer, retail and post-consumer paper-based materials were collected at papermills, corrugators, grocery stores, household waste, solid waste disposal sites and recycling facilities. In the GC-MS analysis, phthalates, long-chain aliphatic compounds, and fatty acids were the most commonly detected compounds whilst phthalates and bisphenols featured most prevalently in the LC-MS analysis. The factors that were identified as likely contributors to the detection of the different chemical compounds included the presence of wood derivatives, the use of certain chemical additives during manufacturing, and exposure of paper to contaminants from consumers, other goods and the environment. Waste mingling, recovery, sorting and reprocessing into recycled paper were also shown to influence the chemical profile of paper materials. Sparse partial least squares-discriminate analysis indicated that newspaper and office paper had unique chemical constituents, whilst cartons were shown to have higher variability. By looking at key stages of paper recycling, this study showed that the possible persistence and transformation of chemical compounds in additives must be evaluated when considering the recyclability of paper-based materials. Further, it highlighted that different separation approaches may be required to reduce contaminant exposure opportunities in post-consumer paper materials.
Collapse
Affiliation(s)
- Nondumiso N Mofokeng
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg 2000, South Africa; Mpact Operations Pty (Ltd), Innovation, Research & Development, Devon Valley Road, Stellenbosch 7600, South Africa.
| | - Lawrence M Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 28 Pioneer Ave, Roodepoort, Johannesburg 1709, South Africa
| | - Ineke Tiggelman
- Mpact Operations Pty (Ltd), Innovation, Research & Development, Devon Valley Road, Stellenbosch 7600, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg 2000, South Africa
| |
Collapse
|
9
|
Mok S, Lee S, Lee N, Kim S, Choi K, Park J, Kho Y, Moon HB. Nationwide human biomonitoring strategy in Korea: Prioritization of novel contaminants using GC/TOF-MS with suspect and non-target screening. CHEMOSPHERE 2024; 369:143814. [PMID: 39608654 DOI: 10.1016/j.chemosphere.2024.143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
According to global regulations on hazardous chemicals, numerous alternatives have been manufactured and used in various consumer products. Suspect and non-target analyses are advanced analytical techniques used for identifying novel contaminants. In the present study, suspect and non-target analytical approaches using a gas chromatography coupled to a time-of-flight mass spectrometer were applied to identify novel contaminants in 40 pooled serum samples from a sub-population (n = 400) of the 2015-2017 national biomonitoring program. Suspect screening analysis was performed using an in-house library based on retention times and quantifier and qualifier ions for 222 contaminants, including persistent organic pollutants and emerging contaminants. Non-target analysis was performed by matching deconvoluted mass spectra to the spectral library from the National Institute of Standards and Technology. The suspect screening analysis identified organochlorinated pesticides, organophosphate esters, phthalate esters, and alternative plasticizers. Among the 68 compounds identified in the non-target analysis, siloxanes, novel organophosphate esters, and UV ink photoinitiators were considered candidates for future inclusion in the biomonitoring program based upon significant human exposure. Our findings demonstrate the feasibility of suspect and non-target analysis to identify novel contaminants to prioritize for inclusion within a national human biomonitoring program.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Nahyun Lee
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Gyeonggi-do, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
10
|
Schiano ME, Edo C, Blázquez-Blázquez E, Cerrada ML, Fernández-Piñas F, Rosal R. Use of a nanoplastic carrier for assessing the aquatic toxicity of an organo-phosphite polymer additive. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124837. [PMID: 39209056 DOI: 10.1016/j.envpol.2024.124837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This work reports the production of nanoplastics (NPs) from polypropylene (PP) free of the antioxidant Irgafos® 168 (IRG) and alkane oligomers (ALK). PP pellets were milled into a powder with particle sizes in the 100-500 μm range. Additives and oligomers were removed using dichloromethane, and the powder exposed to UV irradiation, followed by filtration through 1 μm filters. PP suspensions, free of antioxidant and oligomers, were reloaded with IRG and ALK to their original commercial concentrations. This approach allowed testing the aquatic toxicity of IRG at concentrations compromised by water solubility limits. Toxicity assays using the cladoceran Daphnia magna with 24-48 h immobilization of neonates as endpoint showed toxicity for NPs containing IRG, with EC20 (48 h) in the 1.8-3.5 mg/L range, that corresponded to IRG exposure <1.2 μg/L. Suspensions of PP containing ALK, but not IRG, exhibited low toxicity (EC20 > 20 mg/L). The results allowed estimating the toxicity of IRG with a EC50 value of 3.3 ± 1.1 μg/L. Assays with different proportions of IRG and its oxidized form showed no differences. This work demonstrated the aquatic toxicity of IRG, for which there were no previous data, and developed a method for testing the toxicity of non-polar additives without being limited by their solubility.
Collapse
Affiliation(s)
- Marica E Schiano
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Via D. Montesano, 49, I-80131, Naples, Italy
| | - Carlos Edo
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - María L Cerrada
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
11
|
Zhao Y, Deng Y, Shen F, Huang J, Yang J, Lu H, Wang J, Liang X, Su G. Characteristics and partitions of traditional and emerging organophosphate esters in soil and groundwater based on machine learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135351. [PMID: 39088951 DOI: 10.1016/j.jhazmat.2024.135351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Organophosphate esters (OPEs) pose hazards to both humans and the environment. This study applied target screening to analyze the concentrations and detection frequencies of OPEs in the soil and groundwater of representative contaminated sites in the Pearl River Delta. The clusters and correlation characteristics of OPEs in soil and groundwater were calculated by self-organizing map (SOM). The risk assessment and partitions of OPEs in industrial park soil and groundwater were conducted. The results revealed that 14 out of 23 types of OPEs were detected. The total concentrations (Σ23OPEs) ranged from 1.931 to 743.571 ng/L in the groundwater, and 0.218 to 79.578 ng/g in the soil, the former showed highly soluble OPEs with high detection frequencies and concentrations, whereas the latter exhibited the opposite trend. SOM analysis revealed that the distribution of OPEs in the soil differed significantly from that in the groundwater. In the industrial park, OPEs posed acceptable risks in both the soil and groundwater. The soil could be categorized into Zone I and II, and the groundwater into Zone I, II, and III, with corresponding management recommendations. Applying SOM to analyze the characteristics and partitions of OPEs may provide references for other new pollutants and contaminated sites.
Collapse
Affiliation(s)
- Yanjie Zhao
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| | - Fang Shen
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Yang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Haijian Lu
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jun Wang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xiaoyang Liang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
12
|
Gong S, Huang J, Wang J, Lv M, Deng Y, Su G. Seasonal variations of organophosphate esters (OPEs) in atmospheric deposition, and their contribution to soil loading. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134845. [PMID: 38876016 DOI: 10.1016/j.jhazmat.2024.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Organophosphate esters (OPEs) are ubiquitous in surface soil, and atmospheric deposition is considered to be the major pollution source. However, the research on the environmental transport behaviors of OPEs between atmospheric deposition and soil is very limited. In this study, we investigated the contamination levels and seasonal variations of OPEs in atmospheric deposition samples (n = 33) collected from an area of South China every month between February 2021 and January 2022, and evaluated the contribution of OPEs in atmospheric deposition to soil. The concentrations of ∑21target-OPEs ranged from 3670 to 18,600 ng/g dry weight (dw), with a mean of 8200 ng/g dw (median: 7600 ng/g dw). ∑21target-OPEs concentrations in all atmospheric deposition samples exhibited significant seasonal differences (p < 0.05) with higher concentrations observed in winter and lower concentrations in summer. Tris(2,4-di-tert-butylphenyl) phosphate (TDTBPP) was the most dominant target OPE in atmospheric deposition (4870 ng/g dw), and its seasonal variation trend was consistent with ∑21OPEs (p < 0.05). Simultaneously, in order to further explore the effect of atmospheric deposition on the levels of OPEs in soil of the study region, input fluxes and accumulation increments were estimated. Ten OPEs (including seven target OPEs and three suspect OPEs) exhibited high input flux means and accumulation increments, indicating that these compounds are prone to accumulate in soil via atmospheric deposition. It is noteworthy that the non-target phosphonate analyte bis(2,4-di-tert-butylphenyl) dibutyl ethane-1,2-diylbis(phosphonate) (BDTBPDEDBP) was detected at highest median concentration (8960 ng/g dw) in atmospheric deposition. Correspondingly, the average input flux and accumulation increment of BDTBPDEDBP were higher than those of all target and suspect OPEs. Collectively, this study quantifies the environmental transport behavior of OPEs between atmospheric deposition and soil, and provides new evidences for the fact that atmospheric deposition is the important pollution source of OPEs in soil.
Collapse
Affiliation(s)
- Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Jun Wang
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Mingchao Lv
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China.
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Zhang Q, Liu Y, Li S, Li H, Gao M, Yao Y, Wang L, Wang Y. Traditional and Novel Organophosphate Esters in Plastic Greenhouse: Occurrence, Multimedia Migration, and Exposure Risk via Vegetable Consumption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13929-13939. [PMID: 38978502 DOI: 10.1021/acs.est.4c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The migration and risk of organophosphate esters (OPEs) in agricultural air-soil-plant multimedia systems due to plastic film application remain unclear. This study investigates the multimedia distribution of traditional OPEs (TOPEs), novel OPEs (NOPEs), and their transformation products (POPEs) in plastic and solar greenhouses. The total concentration of OPE-associated contaminants in air and airborne particles ranged from 594 to 1560 pg/m3 and 443 to 15600 ng/g, respectively. Significant correlations between air OPE concentrations and those in polyolefin film (P < 0.01) indicate plastic film as the primary source. Contaminants were also found in soils (96.8-9630 ng/g) and vegetables (197-7540 ng/g). The primary migration pathway for NOPEs was particle dry deposition onto the soil and leaf, followed by plant accumulation. Leaf absorption was the main uptake pathway for TOPEs and POPEs, influenced by vegetable specific leaf surface area. Moreover, total exposure to OPE-associated contaminants via vegetable intake was assessed at 2250 ng/kg bw/day for adults and 2900 ng/kg bw/day for children, with an acceptable hazard index. However, a high ecological risk was identified for NOPE compounds (median risk quotient, 975). This study provides the first evidence of the multimedia distribution and potential threat posed by OPE-associated contaminants in agricultural greenhouses.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yarui Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Zhang Y, Lv Z, Yu XY, Zhang Y, Zhu L. Integration of Nontarget Screening and QSPR Models to Identify Novel Organophosphate Esters of High Priority in Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39087809 DOI: 10.1021/acs.est.4c04891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
With the development of large numbers of novel organophosphate esters (OPEs) alternatives, it is imperative to screen and identify those with high priority. In this study, surface water, biofilms, and freshwater snails were collected from the flow-in rivers of Taihu Lake Basin, China. Screened by target, suspect, and nontarget analysis, 11 traditional and 14 novel OPEs were identified, of which 5 OPEs were first discovered in Taihu Lake Basin. The OPE concentrations in surface water ranged from 196 to 2568 ng/L, with the primary homologue tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) being newly identified, which was likely derived from the transformation of tris(2,4-ditert-butylphenyl) phosphite. The majority of the newly identified OPEs displayed substantially higher bioaccumulation and biomagnification potentials in the biofilm-snail food chain than the traditional ones. Quantitative structure-property relationship models revealed both hydrophobicity and polarity influenced the bioaccumulation and biomagnification of the OPEs, while electrostatic attraction also had a contribution to the bioaccumulation in the biofilm. TDtBPP was determined as the utmost priority by toxicological priority index scheme, which integrated concentration, bioaccumulation, biomagnification, acute toxicity, and endocrine disrupting potential of the identified OPEs. These findings provide novel insights into the behaviors of OPEs and scientific bases for better management of high-risk pollutants in aquatic ecosystem.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zixuan Lv
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiao-Yong Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
15
|
Zhou R, Geng J, Jiang J, Shao B, Lin L, Mu T, Wang B, Liu T. Contamination of dairy products with tris(2,4-di-tert-butylphenyl) phosphite and implications for human exposure. Food Chem 2024; 448:139144. [PMID: 38579559 DOI: 10.1016/j.foodchem.2024.139144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
Tris(2,4-di-tert-butylphenyl) phosphite (AO168), an organophosphite antioxidant, can be oxidized to tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) during the production, processing, and application of plastics. AO168 = O can be further transformed to bis(2,4-di-tert-butylphenyl) phosphate and 2,4-di-tert-butylphenol. Here, we discovered the contamination of AO168 and its transformation products in dairy products for the first time. More samples contained AO168 (mean concentration: 8.78 ng/g wet weight [ww]), bis(2,4-di-tert-butylphenyl) phosphate (mean:11.1 ng/g ww) and 2,4-di-tert-butylphenol (mean: 46.8 ng/g ww) than AO168 = O (mean: 40.2 ng/g ww). The concentrations of AO168 and its transformation products were significantly correlated, and differed with the packaging material and storage conditions of the product. Estimated daily intakes (EDIs) of AO168 and its transformation products were calculated. Although the overall dietary risks were below one, transformation products accounted for 96.7% of the total hazard quotients. The high-exposure EDIs of total AO168 were above the threshold of toxicological concern (300 ng/kg bw/day), and deserve continual monitoring.
Collapse
Affiliation(s)
- Ruize Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jianqiang Geng
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jie Jiang
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Li Lin
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Tongna Mu
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Baolong Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ting Liu
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| |
Collapse
|
16
|
Zhang X, Shi J, Wang R, Ma J, Li X, Cai W, Li T, Zou W. Acute exposure to tris(2,4-di-tert-butylphenyl)phosphate elicits cardiotoxicity in zebrafish (Danio rerio) larvae via inducing ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134389. [PMID: 38669931 DOI: 10.1016/j.jhazmat.2024.134389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Tris(2,4-di-tert-butylphenyl)phosphate (AO168 =O), a novel organophosphate ester, is prevalent and abundant in the environment, posing great exposure risks to ecological and public health. Nevertheless, the toxicological effects of AO168 =O remain entirely unknown to date. The results in this study indicated that acute exposure to AO168 =O at 10 and 100 μg/L for 5 days obviously impaired cardiac morphology and function of zebrafish larvae, as proofed by decreased heartbeat, stroke volume, and cardiac output and the occurrence of pericardial edema and ventricular hypertrophy. Transcriptomics, polymerase chain reaction, and molecular docking revealed that the strong interaction of AO168 =O and transferrin receptor 1 activated the transportation of ferric iron into intracellular environment. The release of free ferrous ion to cytoplasmic iron pool also contributed to the iron overload in heart region, thus inducing ferroptosis in larvae via generation of excessive reactive oxygen species, glutathione peroxidase 4 inhibition, glutathione depletion and lipid peroxidation. Ferroptosis inhibitor (Fer-1) co-exposure effectively relieved the cardiac dysfunctions of zebrafish, verifying the dominant role of ferroptosis in the cardiotoxicity caused by AO168 =O. This research firstly reported the adverse impact and associated mechanisms of AO168 =O in cardiomyogenesis of vertebrates, underlining the urgency of concerning the health risks of AO168 =O.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Jing Shi
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Ruonan Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Wenwen Cai
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tengfei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
17
|
Yang J, Yao Y, Li X, He A, Chen S, Wang Y, Dong X, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Indoor Air and Dust from Multiple Microenvironments in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7986-7997. [PMID: 38657129 DOI: 10.1021/acs.est.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 μg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.
Collapse
Affiliation(s)
- Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ana He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
18
|
Hu J, Lyu Y, Li M, Wang L, Jiang Y, Sun W. Discovering Novel Organophosphorus Compounds in Wastewater Treatment Plant Effluents through Suspect Screening and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6402-6414. [PMID: 38546437 DOI: 10.1021/acs.est.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Limited knowledge on the structure of emerging organophosphorus compounds (OPCs) hampers our comprehensive understanding of their environmental occurrence and potential risks. Through suspect and nontarget screening, combining data-dependent acquisition, data-independent acquisition, and parallel reaction monitoring modes, we identified 60 OPCs (17 traditional and 43 emerging compounds) in effluents of 14 wastewater treatment plants (WWTPs) in Beijing and Qinghai, China. These OPCs comprise 26 organophosphate triesters, 17 organophosphate diesters, 6 organophosphonates, 7 organothiophosphate esters, and 4 other OPCs. Notably, 14 suspect OPCs were newly identified in WWTP effluents, and 16 nontarget OPCs were newly discovered in environmental matrices. Specifically, the cyclic phosphonate, (5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl dimethyl phosphonate P-oxide (PMMMPn), consistently appeared in all WWTP effluents, with semiquantitative concentrations ranging from 44.4 to 282 ng/L. Its analogue, di-PMMMPn, presented in 93% of wastewater samples. Compositional differences between the WWTP effluents of two cities were mainly attributed to emerging OPCs. Hazard and ecological risk assessment underscored the substantial contribution of chlorinated organophosphate esters and organothiophosphate esters to overall risks of OPCs in WWTP effluents. This study provides the most comprehensive OPC profiles in WWTP effluents to date, highlighting the need for further research on their occurrence, fate, and risks, particularly for chlorinated OPCs.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Mingzhen Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
19
|
Su H, Li J, Ye L, Su G. Establishment of compound database of emerging antioxidants and high-resolution mass spectrometry screening in lake sediment from Taihu Lake Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28341-28352. [PMID: 38532220 DOI: 10.1007/s11356-024-32855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Antioxidants are ubiquitous in various environmental samples, leading to increasing concern regarding their potential risk to environments or humans. However, there is dearth of information regarding the environmental fate of antioxidants and unknown/unexpected antioxidants in the environment. Here, we established a compound database (CDB) containing 320 current-used antioxidants by collecting the chemicals from EPA's functional use database and published documents. Physical-chemical characteristics of these antioxidants were estimated, and 19 ones were considered as persistent and bioaccumulative (P&B) substances. This CDB was further coupled with high resolution mass spectrometry (HRMS) technique, which was employed for suspect screening of antioxidants in extracts of sediments (n = 88) collected from Taihu Lake basin. We screened 119 HRMS features that can match 135 chemical formulas in the CDB, and 20 out of them exhibited the detection frequencies ≥ 90%. The total concentrations of suspect antioxidants in sediments ranged from 6.41 to 830 ng/g dw. Statistical analysis demonstrated that concentrations of suspect antioxidants in Taihu Lake were statistically significantly lower than those in Shihu and Jiulihu Lake, but greater than those from other small lakes. Collectively, this study provided a CDB that could be helpful for further monitoring studies of antioxidant in the environments, and also provided the first evidence regarding the ubiquity of antioxidants in aquatic environment of Taihu Lake basin.
Collapse
Affiliation(s)
- Huijun Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
20
|
Ekpe OD, Choo G, Kang JK, Yun ST, Oh JE. Identification of organic chemical indicators for tracking pollution sources in groundwater by machine learning from GC-HRMS-based suspect and non-target screening data. WATER RESEARCH 2024; 252:121130. [PMID: 38295453 DOI: 10.1016/j.watres.2024.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
In this study, the strong analytical power of gas chromatography coupled to a high resolution mass spectrometry (GC-HRMS) in suspect and non-target screening (SNTS) of organic micropollutants was combined with machine learning tools for proposing a novel and robust systematic environmental forensics workflow, focusing on groundwater contamination. Groundwater samples were collected from four different regions with diverse contamination histories (namely oil [OC], agricultural [AGR], industrial [IND], and landfill [LF]), and a total of 252 organic micropollutants were identified, including pharmaceuticals, personal care products, pesticides, polycyclic aromatic hydrocarbons, plasticizers, phenols, organophosphate flame retardants, transformation products, and others, with detection frequencies ranging from 3 % to 100 %. Amongst the SNTS identified compounds, a total of 51 chemical indicators (i.e., OC: 13, LF: 12, AGR: 19, IND: 7) which included level 1 and 2 SNTS identified chemicals were pinpointed across all sampling regions by integrating a bootstrapped feature selection method involving the bootfs algorithm and a partial least squares discriminant analysis (PLS-DA) model to determine potential prevalent contamination sources. The proposed workflow showed good predictive ability (Q2) of 0.897, and the suggested contamination sources were gasoline, diesel, and/or other light petroleum products for the OC region, anthropogenic activities for the LF region, agricultural and human activities for the AGR region, and industrial/human activities for the IND region. These results suggest that the proposed workflow can select a subset of the most diagnostic features in the chemical space that can best distinguish a specific contamination source class.
Collapse
Affiliation(s)
- Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| | - Gyojin Choo
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Jin-Kyu Kang
- Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea
| | - Seong-Taek Yun
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, South Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
21
|
Xiong Y, Liu J, Yu J, Chen D, Li T, Zhou F, Wu T, Liu X, Du Y. OPEs-ID: A software for non-targeted screening of organophosphate esters based on liquid chromatography-high-resolution mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133275. [PMID: 38157816 DOI: 10.1016/j.jhazmat.2023.133275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers, presenting a potential threat to the environment and human health. To date, no automatic software exists for the nontargeted screening of OPEs. In this study, OPEs-ID, a user-friendly software, was developed for the identification of OPEs using liquid chromatography-high-resolution mass spectrometry. The main workflow of OPEs-ID included fragments-dependent precursor ion screening, elemental composition determination, extracted ion chromatograms (EIC) comparison, and molecular structure identification via MetFrag strategy. A mixture of 17 OPE standards was identified with an identification rate of 100% by OPEs-ID. OPEs-ID demonstrated a rate of 94.1% for correctly ranking within the top 1 candidate in a local database (41.2% in PubChem) for the 17 OPE standards, which remarkably improved the identification when compared to conventional in silico fragmentation algorithms. Using a pooled airborne fine particle sample (PM2.5), OPEs-ID could automatically retrieve 22 valid molecules with structure candidates. The detection frequencies of 9 newly identified OPEs were between 13% and 100% in the 32 PM2.5 samples. Their semi-quantification concentrations were comparable to those of some traditional OPEs. Overall, OPEs-ID offers a powerful tool to significantly enrich our understanding of the OPEs present in the environment.
Collapse
Affiliation(s)
- Yinran Xiong
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China; Chongqing Municipal Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060, China
| | - Jinyue Liu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Yu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fengli Zhou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ting Wu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Yiping Du
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
22
|
Yang M, Ye L, Li J, Xing L, Zhao Y, Yang C, Su G. Uncovering the distribution patterns and origins of organophosphate esters (OPEs) in the Yellow River Estuary via high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167288. [PMID: 37742975 DOI: 10.1016/j.scitotenv.2023.167288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Limited information is available regarding the pollution status of organophosphate esters (OPEs) in the environment of the Yellow River estuary. Here, n = 51 sediment samples were collected from the Yellow River estuary in 2021, and further analyzed by using the integrated target, suspect, and feature fragment-dependent nontarget OPE screening strategy developed in our laboratory. Among the 30 target OPEs, 19 were detectable in at least one of the analyzed samples, with total concentrations (Σ19OPEs) ranging from of 41.4 to 1930 ng/g dry weight (dw). On the basis of an in-house suspect compound database, we further tentatively identified 11 suspect OPEs, and they were semi-quantified. Furthermore, four other interesting findings were observed and described as follows: 1) a statistically significant difference existed in the concentrations of OPEs in sediment samples between the lower reaches of the Yellow River (n = 5 samples), and the Yellow River estuary (n = 46 samples) (unpaired t-test, p < 0.001); 2) tris(2,4-di-tert-butylphenyl)phosphate (TDTBPP) exhibited the greatest concentrations (ranging from 30.7 to 1920 ng/g dw) among all OPEs detected in the sediment samples; 3) samples from the north of the Yellow River estuary had higher OPE concentrations than those from the south; and 4) a suspect screening strategy allowed us to identify a novel OPE structure (tert-butyl)phenyl (ethyne-oxidane) bis(2,4-di-tert-butylphenyl) phosphate (TPBDTP) that exhibited a highly positive correlation relationship with TDTBPP (r = 0.749; p < 0.001). Overall, this study provided evidence that OPEs (especially TDTBPP) were ubiquitous in the sediment environment of the Yellow River estuary; thus, we emphasize that continuous monitoring of OPE pollution should be conducted in this region.
Collapse
Affiliation(s)
- Mengkai Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Liqun Xing
- Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224000, China
| | - Yanmin Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenchen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
23
|
Kutarna S, Chen W, Xiong Y, Liu R, Gong Y, Peng H. Screening of Indoor Transformation Products of Organophosphates and Organophosphites with an in Silico Spectral Database. ACS MEASUREMENT SCIENCE AU 2023; 3:469-478. [PMID: 38145028 PMCID: PMC10740125 DOI: 10.1021/acsmeasuresciau.3c00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
Numerous transformation products are formed indoors, but they are outside the scope of current chemical databases. In this study, an in silico spectral database was established to screen previously unknown indoor transformation products of organophosphorus compounds (OPCs). An R package was developed that incorporated four indoor reactions to predict the transformation products of 712 seed OPCs. By further predicting MS2 fragments, an in silico spectral database was established consisting of 3509 OPCs and 28,812 MS2 fragments. With this database, 40 OPCs were tentatively detected in 23 indoor dust samples. This is the greatest number of OPCs reported to date indoors, among which two novel phosphonates were validated using standards. Twenty-four of the detected OPCs were predicted transformation products in which oxidation from organophosphites plays a major role. To confirm this, the in silico spectral database was expanded to include organophosphites for suspect screening in five types of preproduction plastics. A broad spectrum of 14 organophosphites was detected, with a particularly high abundance in polyvinyl chloride plastics and indoor end-user goods. This demonstrated the significant contribution of organophosphites to indoor organophosphates via oxidation, highlighting the strength of in silico spectral databases for the screening of unknown indoor transformation products.
Collapse
Affiliation(s)
- Steven Kutarna
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Wanzhen Chen
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ying Xiong
- School
of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Runzeng Liu
- Shandong
Key Laboratory of Environmental Processes and Health, School of Environmental
Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yufeng Gong
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
- School
of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
24
|
Chen R, Xing C, Shen G, Jones KC, Zhu Y. Indirect Emissions from Organophosphite Antioxidants Result in Significant Organophosphate Ester Contamination in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20304-20314. [PMID: 37978933 DOI: 10.1021/acs.est.3c07782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Organophosphite antioxidants (OPAs) have been seriously neglected as potential sources of organophosphate esters (OPEs) in environments. This study utilizes a modeling approach to quantify for the first time national emissions and multimedia distributions of triphenyl phosphate (TPHP)─a well-known flame retardant─and three novel OPEs: tris(2,4-ditert-butylphenyl) phosphate (AO168═O), bis(2,4-ditert-butylphenyl) pentaerythritol diphosphate (AO626═O2), and trisnonylphenol phosphate (TNPP). Emphasis is on the quantitative assessment of OPA source in China. TPHP has 1.1-9.7 times higher emission (300 Mg/year in 2019 with half from OPA sources) than AO168═O (278 Mg/year), AO626═O2 (53 Mg/year), and TNPP (32 Mg/year), but AO168═O is predominant in environments (63-79%) except freshwaters. About 72-99% of the studied OPEs are emitted via air, with 88-99% ultimately distributed into soils as the major sink. OPA-source emissions contribute 9.5-57% and 4.7-56% of TPHP masses and concentrations (except in sediments) in different media, respectively. Both AO168═O and AO626═O2 exhibit high overall persistence ranging between 2 and 11 years. Source emissions and environmental concentrations are elevated in economically developed areas, while persistence is higher in northern areas, where precipitation and temperature are lower. This study shows the significance of the sources of OPA to OPE contamination, which supports chemical management of these substances.
Collapse
Affiliation(s)
- Rongcan Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changyue Xing
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Ying Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU-UNIDO Joint Institute of Inclusive and Sustainable Industrial Development, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Wang H, He Y, Zheng Q, Yang Q, Wang J, Zhu J, Zhan X. Toxicity of photoaged polyvinyl chloride microplastics to wheat seedling roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132816. [PMID: 39491995 DOI: 10.1016/j.jhazmat.2023.132816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Photoaging-prone and additive-rich polyvinyl chloride microplastics (PVC-MPs) are abundant in the terrestrial environment, However, current knowledge about the effects of PVC-MPs on terrestrial plants is lacking. Herein, we investigated the physicochemical toxicity mechanisms of photoaged PVC-MP components, i.e. leachate (L), leached PVC-particles (P), and unleached PVC-MPs (UAMP), to wheat seedling roots. 108-h photoaged components were more detrimental to root growth than unaged ones, with root length decline by 3.56%- 7.45%, indicating enhanced ecotoxicity. Notably, 108-h aged UAMP displayed more pronounced inhibition to root architecture, nutrient content and root activity, and more significant stimulation on antioxidant systems compared to 108-h aged L and P. The abovementioned phenomena suggested the presence of a synergistic effect between physical damage from P and chemical harm from L. Surface adsorption experiments demonstrated that the adsorption of photoaging induced smaller particles caused physical damage to root system. Exposure treatment suggested that there was appreciable environmental risk posed by photoaged PVC-MP-derived additives, e.g., Irgafos 168-ox and Irganox 1076. Based on principal component analysis (PCA), additives from leachate played a greater role in UAMP ecotoxicity. Therefore, PVC-MP-derived additives require more consideration and put forward an important new aspect for the impact assessment of PVC-MPs in the environment.
Collapse
Affiliation(s)
- Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qiuping Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qian Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
26
|
Wang X, Leung CW, Cai Z, Hu D. PM 2.5-Bound Organophosphate Flame Retardants in Hong Kong: Occurrence, Origins, and Source-Specific Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14289-14298. [PMID: 37695108 PMCID: PMC10537441 DOI: 10.1021/acs.est.3c04626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Organophosphate flame retardants (OPFRs) are emerging organic pollutants in PM2.5, which have caused significant public health concerns in recent years, given their potential carcinogenic and neurotoxic effects. However, studies on the sources, occurrence, and health risk assessment of PM2.5-bound OPFRs in Hong Kong are lacking. To address this knowledge gap, we characterized 13 OPFRs in one-year PM2.5 samples using gas chromatography-atmospheric pressure chemical ionization tandem mass spectrometry. Our findings showed that OPFRs were present at a median concentration of 4978 pg m-3 (ranging from 1924 to 8481 pg m-3), with chlorinated OPFRs dominating and accounting for 82.7% of the total OPFRs. Using characteristic source markers and positive matrix factorization, we identified one secondary formation and five primary sources of OPFRs. Over 94.0% of PM2.5-bound OPFRs in Hong Kong were primarily emitted, with plastic processing and waste disposal being the leading source (61.0%), followed by marine vessels (14.1%). The contributions of these two sources to OPFRs were more pronounced on days influenced by local pollution emissions (91.9%) than on days affected by regional pollution (44.2%). Our assessment of health risks associated with human exposure to PM2.5-bound OPFRs indicated a low-risk level. However, further source-specific health risk assessment revealed relatively high noncarcinogenic and carcinogenic risks from chlorinated OPFRs emitted from plastic processing and waste disposal, suggesting a need for more stringent emission control of OPFRs from these sources in Hong Kong.
Collapse
Affiliation(s)
- Xuemei Wang
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong 999077, P. R. China
| | - Chin Wai Leung
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong 999077, P. R. China
| | - Zongwei Cai
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong 999077, P. R. China
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, P. R. China
| | - Di Hu
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong 999077, P. R. China
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, P. R. China
- HKBU
Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| |
Collapse
|
27
|
Li X, Yao Y, Zhao M, Yang J, Shi Y, Yu H, Cheng Z, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Rainfall Runoffs and Agricultural Soils around a Plastic Recycling Industrial Park. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12794-12805. [PMID: 37579047 DOI: 10.1021/acs.est.3c02156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Plastic recycling and reprocessing activities may release organophosphate ester (OPE) flame retardants and plasticizers into the surrounding environment. However, the relevant contamination profiles and impacts remain not well studied. This study investigated the occurrence of 28 OPEs and their metabolites (mOPEs) in rainfall runoffs and agricultural soils around one of the largest plastic recycling industrial parks in North China and identified novel organophosphorus compounds (NOPs) using high-resolution mass spectrometry-based nontarget analysis. Twenty and twenty-seven OPEs were detected in runoff water and soil samples, with total concentrations of 86.0-2491 ng/L and 2.53-199 ng/g dw, respectively. Thirteen NOPs were identified, of which eight were reported in the environment for the first time, including a chlorine-containing OPE, an organophosphorus heterocycle, a phosphite, three novel OPE metabolites, and two oligomers. Triphenylphosphine oxide and diphenylphosphinic acid occurred ubiquitously in runoffs and soils, with concentrations up to 390 ng/L and 40.2 ng/g dw, respectively. The downwind areas of the industrial park showed elevated levels of OPEs and NOPs. The contribution of hydroxylated mOPEs was higher in soils than in runoffs. These findings suggest that plastic recycling and reprocessing activities are significant sources of OPEs and NOPs and that biotransformation may further increase the ecological and human exposure risk.
Collapse
Affiliation(s)
- Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
28
|
Manz KE, Dodson RE, Liu Y, Scheidl L, Burks S, Dunn F, Gairola R, Lee NF, Walker ED, Pennell KD, Braun JM. Effects of Corsi-Rosenthal boxes on indoor air contaminants: non-targeted analysis using high resolution mass spectrometry. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:537-547. [PMID: 37414869 PMCID: PMC11185994 DOI: 10.1038/s41370-023-00577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND In response to COVID-19, attention was drawn to indoor air quality and interventions to mitigate airborne COVID-19 transmission. Of developed interventions, Corsi-Rosenthal (CR) boxes, a do-it-yourself indoor air filter, may have potential co-benefits of reducing indoor air contaminant levels. OBJECTIVE We employed non-targeted and suspect screening analysis (NTA and SSA) to detect and identify volatile and semi-volatile organic contaminants (VOCs and SVOCs) that decreased in indoor air following installation of CR boxes. METHODS Using a natural experiment, we sampled indoor air before and during installation of CR boxes in 17 rooms inside an occupied office building. We measured VOCs and SVOCs using gas chromatography (GC) high resolution mass spectrometry (HRMS) with electron ionization (EI) and liquid chromatography (LC) HRMS in negative and positive electrospray ionization (ESI). We examined area count changes during vs. before operation of the CR boxes using linear mixed models. RESULTS Transformed (log2) area counts of 71 features significantly decreased by 50-100% after CR boxes were installed (False Discovery Rate (FDR) p-value < 0.2). Of the significantly decreased features, four chemicals were identified with Level 1 confidence, 45 were putatively identified with Level 2-4 confidence, and 22 could not be identified (Level 5). Identified and putatively identified features (Level ≥4) that declined included disinfectants (n = 1), fragrance and/or food chemicals (n = 9), nitrogen-containing heterocyclic compounds (n = 4), organophosphate esters (n = 1), polycyclic aromatic hydrocarbons (n = 8), polychlorinated biphenyls (n = 1), pesticides/herbicides/insecticides (n = 18), per- and polyfluorinated alkyl substances (n = 2), phthalates (n = 3), and plasticizers (n = 2). IMPACT STATEMENT We used SSA and NTA to demonstrate that do-it-yourself Corsi-Rosenthal boxes are an effective means for improving indoor air quality by reducing a wide range of volatile and semi-volatile organic contaminants.
Collapse
Affiliation(s)
- Katherine E Manz
- School of Engineering, Brown University, Providence, RI, 02912, USA.
| | | | - Yun Liu
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Lukas Scheidl
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Shaunessey Burks
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Fiona Dunn
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Richa Gairola
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Nina Franzen Lee
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Erica D Walker
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
29
|
Zhou R, Geng J, Jiang J, Lin L, Zhang J, Yang Y, Wang W, Niu Y, Shao B. Occurrences and migration of organophosphite and organophosphate esters into food simulants from single-use food packaging in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121782. [PMID: 37164220 DOI: 10.1016/j.envpol.2023.121782] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Organophosphite antioxidants (OPAs) and organophosphate esters (OPEs) are used as additives in food packaging. Because these chemicals have been found in various foods, they have caused increasing concern about potential health risks through food intake. Little information is available about the migration behaviors of OPAs and OPEs from single-use food packaging into food. In the present study, four OPAs and 23 OPEs were analyzed in paper and plastic single-use food packaging (n = 312), which are widely used for take-out food in China. The total concentrations of OPAs and OPEs in the packaging samples were 1966 and 189 ng/g, respectively. Tris (2,4-di-tert-butylphenyl) phosphite (AO168) was the dominant compound. OPAs and OPEs were present at higher concentrations in the plastic packaging than in the paper packaging. In a migration test, four OPAs and 15 OPEs were found in food simulants (4% acetic acid, 10% ethanol, and hexane). Higher levels of individual and total OPAs were found in hexane than the other food simulants, especially for AO168 migration from plastic packaging. The amounts of OPEs in the food simulants increased from the aqueous simulants (4% acetic acid and 10% ethanol) to the fatty food simulant (hexane). The migration efficiencies of the OPAs were higher than those of the OPEs. Preliminary calculations suggest that dietary exposure to OPAs and OPEs because of migration will be low for the population in China.
Collapse
Affiliation(s)
- Ruize Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China; Beijing Institute of Food Inspection and Research(Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jianqiang Geng
- Beijing Institute of Food Inspection and Research(Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jie Jiang
- Beijing Institute of Food Inspection and Research(Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Li Lin
- Beijing Institute of Food Inspection and Research(Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Preventive Medical Research, Beijing, 100013, China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Preventive Medical Research, Beijing, 100013, China
| | - Wenjun Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Preventive Medical Research, Beijing, 100013, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Preventive Medical Research, Beijing, 100013, China.
| |
Collapse
|
30
|
Wang W, Cao G, Zhang J, Qiao H, Wang F, Cai Z. Recent applications of mass spectrometry in the analysis of transformation products of emerging contaminants in PM 2.5. ANALYTICAL SCIENCE ADVANCES 2023; 4:49-59. [PMID: 38715926 PMCID: PMC10989652 DOI: 10.1002/ansa.202200038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 11/16/2024]
Abstract
Ambient pollution correlated to fine particulate matter (PM2.5) is a worldwide environmental issue as it is highly associated with human health and eco-environmental safety. A significant part regarding the toxicity of PM2.5 is attributed to its bonded contaminants. Appreciable efforts have been performed to study the occurrence, exposure, and toxicological properties of chemicals of emerging concerns in PM2.5. Recent works indicated a broad environmental transformation of emerging contaminants in the atmospheric environment and highlighted the significance of PM2.5 bonded transformation products, which may exhibit higher environmental concentrations and toxicities compared to their parent compounds. Among these studies, mass spectrometry has been widely applied for the analysis of transformation products of emerging contaminants in PM2.5 on the aspects of suspect/non-target screening, structure elucidation, concentration profiling, and toxicity determination. This review describes key mass spectrometry-based analytical strategies and applications for determining transformation products in PM2.5 and presents outlooks for their analysis.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Environmental and Biological AnalysisDepartment of ChemistryHong Kong Baptist UniversityHong KongSARChina
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological AnalysisDepartment of ChemistryHong Kong Baptist UniversityHong KongSARChina
| | - Jing Zhang
- State Key Laboratory of Environmental and Biological AnalysisDepartment of ChemistryHong Kong Baptist UniversityHong KongSARChina
| | - Han Qiao
- State Key Laboratory of Environmental and Biological AnalysisDepartment of ChemistryHong Kong Baptist UniversityHong KongSARChina
| | - Fuyue Wang
- State Key Laboratory of Environmental and Biological AnalysisDepartment of ChemistryHong Kong Baptist UniversityHong KongSARChina
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological AnalysisDepartment of ChemistryHong Kong Baptist UniversityHong KongSARChina
| |
Collapse
|
31
|
Hernández-Fernández J, Cano H, Reyes AF. Valoration of the Synthetic Antioxidant Tris-(Diterbutyl-Phenol)-Phosphite (Irgafos P-168) from Industrial Wastewater and Application in Polypropylene Matrices to Minimize Its Thermal Degradation. Molecules 2023; 28:3163. [PMID: 37049926 PMCID: PMC10096021 DOI: 10.3390/molecules28073163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Industrial wastewater from petrochemical processes is an essential source of the synthetic phenolic phosphite antioxidant (Irgafos P-168), which negatively affects the environment. For the determination and analysis of Irgafos P-168, DSC, HPLC-MS, and FTIR methodologies were used. Solid phase extraction (SPE) proved to be the best technique for extracting Irgafos from wastewater. HPLC-MS and SPE determined the repeatability, reproducibility, and linearity of the method and the SPE of the standards and samples. The relative standard deviations, errors, and correlation coefficients for the repeatability and reproducibility of the calibration curves were less than 4.4% and 4.2% and greater than 0.99955, respectively. The analysis of variance (ANOVA), using the Fisher method with confidence in 95% of the data, did not reveal significant differences between the mentioned parameters. The removal of the antioxidant from the wastewater by SPE showed recovery percentages higher than 91.03%, and the chemical characterization of this antioxidant by FTIR spectroscopy, DSC, TGA, and MS showed it to be structurally the same as the Irgafos P-168 molecule. The recovered Irgafos was added to the polypropylene matrix, significantly improving its oxidation times. An OIT analysis, performed using DSC, showed that the recovered Irgafos-blended polypropylene (PP) demonstrated oxidative degradation at 8 min. With the addition of the Irgafos, the oxidation time was 13 min. This increases the polypropylene's useful life and minimizes the environmental impact of the wastewater.
Collapse
Affiliation(s)
- Joaquín Hernández-Fernández
- Chemistry Program, Department of Natural and Exact Sciences, San Pablo Campus, University of Cartagena, Cartagena 130015, Colombia
- Chemical Engineering Program, School of Engineering, Universidad Tecnológica de Bolivar, Parque Industrial y Tecnológico Carlos Vélez Pombo, Km 1 Vía Turbaco, Turbaco 130001, Colombia
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla 30300, Colombia
| | - Heidis Cano
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Ana Fonseca Reyes
- Department of Mechanical Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| |
Collapse
|
32
|
Zhang Q, Wang Y, Gao M, Li Y, Zhao L, Yao Y, Chen H, Wang L, Sun H. Organophosphite Antioxidants and Novel Organophosphate Esters in Dust from China: Large-Scale Distribution and Heterogeneous Phototransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4187-4198. [PMID: 36848063 DOI: 10.1021/acs.est.2c08239] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A large-scale survey was conducted by measuring five organophosphite antioxidants (OPAs) and three novel organophosphate esters (NOPEs) in 139 dust samples across China. The median summed concentrations of OPAs and NOPEs in outdoor dust were 33.8 ng/g (range: 0.12-53,400 ng/g) and 7990 ng/g (2390-27,600 ng/g), respectively. The dust concentrations of OPAs associated with the increasing economic development and population density from western to eastern China, whereas the NOPE concentration in Northeast China (median, 11,900 ng/g; range, 4360-16,400 ng/g) was the highest. Geographically, the distribution of NOPEs was significantly associated with annual sunshine duration and precipitation at each sampling site. Results of laboratory experiments further revealed that the simulated sunlight irradiation promoted the heterogeneous phototransformation of OPAs in dust, and this process was accelerated with the existence of reactive oxygen species and enhanced relative humidity. Importantly, during this phototransformation, the hydroxylated, hydrolyzed, dealkylated, and methylated products, e.g., bis(2,4-di-tert-butylphenyl) methyl phosphate, were identified by nontargeted analysis, part of which were estimated to be more toxic than their parent compounds. The heterogeneous phototransformation pathway of OPAs was suggested accordingly. For the first time, the large-scale distribution of OPAs and NOPEs and the phototransformation of these "new chemicals" in dust were revealed.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
33
|
Zhao A, Wei C, Xin Y, Wang X, Zhu Q, Xie J, Ma H, Xu J, Wang M. Pollution profiles, influencing factors, and source apportionment of target and suspect organophosphate esters in ambient air: A case study in a typical city of Northern China. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130373. [PMID: 36427485 DOI: 10.1016/j.jhazmat.2022.130373] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate esters (OPEs) are attracting attention because they pose risks to biota, including humans. Little research has been performed into the environmental fates of OPEs in the atmosphere. Here, target/suspect OPEs were determined in 122 atmosphere samples (gas phase (n = 31), PM2.5 (n = 30), PM10 (n = 30), and total suspended particles (n = 31)) from a city in Northern China. Pollution profiles were established, influencing factors identified, and sources apportioned. We found 12 target OPEs and 29 suspect OPEs. The target and suspect OPE concentrations in the ambient air samples were 2.2-172.5 and 0.7-53.9 ng/m3, respectively. Tris(chloroethyl) phosphate, tris(1-chloro-2-propyl) phosphate, and tris(2,4-di-t-butylphenyl) phosphate were the dominant OPEs in all samples. The OPEs were not in equilibrium, indicated by a multi-parameter linear free energy relationship model. The air quality index and OPE concentrations significantly correlated, indicating that OPE pollution is often more serious during weather with worse air quality. The target and suspect screening strategy and a positive matrix factorization model allowed OPE sources to be apportioned, improving our understanding of OPE sources. The four dominant sources were (1) construction, (2) indoor emissions, (3) the plastic industry and industrial activities, and (4) traffic emissions, textiles, and foam products.
Collapse
Affiliation(s)
- Ang Zhao
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Chao Wei
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Yue Xin
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiaoli Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Qingqing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jixing Xie
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Haiyun Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Jianzhong Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Mei Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China.
| |
Collapse
|
34
|
Azizi S, Dehghani MH, Naddafi K, Nabizadeh R, Yunesian M. Occurrence of organophosphorus esters in outdoor air fine particulate matter and comprehensive assessment of human exposure: A global systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120895. [PMID: 36529340 DOI: 10.1016/j.envpol.2022.120895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Organophosphate esters (OPEs) are widely used in various industrial items, including plastics, textiles, construction materials, electronics, and auto parts. Several studies have investigated the concentration of OPE compounds in the air, where different compounds have been measured. This systematic review aims to investigate and summarize the relationship between exposure concentrations of OPEs in outdoor air and health risk for different OPE compounds, and correlations between OPE compounds in emission sources. PubMed, Scopus, Embase, Web of Science, and Google Scholar were searched from January 2000 to September 2021 to identify relevant research. The quality of the studies was assessed using the OHAT risk of bias tool. Spearman's correlation and principal component analysis (PCA) were used to analyze the results and correlation between OPE compounds. A total of 7669 manuscripts were found from the search in 5 databases. Finally, 46 studies were included in the systematic review. According to the median concentrations in the studies that were included, Tris(1-chloro-2-propyl) phosphate (TCIPP) (25%), trimethylphenyl phosphate(TMPP) (19%), Tri-iso-butyl phosphate (TiBP) (12%), Triphenyl phosphate (TPHP) (9%) and Tris(2-chloroethyl) phosphate (TCEP) (8%) had the greatest concentrations of OPEs overall. The cumulative contribution of the two main factors, F1 and F2, from the principal component analysis (PCA) results is 49.81%. The EDI value for the compounds is TCEP > TCIPP > TiBP > TMPP > 2-Ethylhexyl diphenyl phosphate (EHDPP) > TPHP > Tri(2-Ethylhexyl) phosphate (TEHP) > Tri-m-cresyl phosphate (mTCP) > Tris(1, 3-dichloro-isopropyl) phosphate (TDCPP) > Tri-n-butyl phosphate (TnBP). The total amount of non-carcinogenic risk (HQ) was for children > infants > adults. The highest value of HQ was for TCEP, TCIPP, and TMPP, respectively. The highest carcinogenic risk value was for TCEP and TMPP.
Collapse
Affiliation(s)
- Salah Azizi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Wu Y, Venier M. High levels of synthetic antioxidants and ultraviolet filters in children's car seats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158637. [PMID: 36096214 DOI: 10.1016/j.scitotenv.2022.158637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Forty-seven compounds among synthetic phenolic and amino antioxidants and ultraviolet filters, three suites of widely used chemical additives, were measured in eighteen popular children's car seats (fabric, foam, and laminated composites of both layers) marketed in the United States in 2018. Significantly higher levels of target compounds were found in foam and composite samples than in fabric samples. Median total concentrations of phenolic antioxidants and their transformation products ranged from 8.11 μg/g in fabric to 213 μg/g in foam In general, isooctyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (AO-1135) and 2,4-di-tert-butylphenol (24-DBP) were the most abundant among all target compounds with maximum levels of526 μg/g in composite and 13.7 μg/g, respectively. The total concentrations of amino antioxidants and their transformation products and of ultraviolet filters were at least one order of magnitude lower than those of phenolic antioxidants, with medians of 0.15-37.1 μg/g and 0.29-1.81 μg/g, respectively, in which the predominant congeners were 4-tert-butyl diphenylamine (BDPA), 4,4'-di-tert-butyl diphenylamine (DBDPA), 4-tert-octyl diphenylamine (ODPA), 2,4-dihydroxybenzophenone (BP-1), 2-hydroxy-4-methoxybenzophenone (BP-3), and 2-(2-benzotriazol-2-yl)-4-methylphenol (UV-P). Large variabilities in usage of these chemicals resulted in different compositional patterns among the car seats. These results suggest that these compounds are major polymeric additives in children's car seats as they are present at greater levels than previously measured groups of chemicals like brominated flame retardants and per- and polyfluoroalkyl substances. Given the documented toxic potentials of synthetic antioxidants and ultraviolet filters, their abundances in children products are a cause for concern.
Collapse
Affiliation(s)
- Yan Wu
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, United States; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
36
|
Bi R, Su G. Dietary intake assessment of known and unknown organophosphate esters (OPEs) in foodstuffs via high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158452. [PMID: 36063922 DOI: 10.1016/j.scitotenv.2022.158452] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
We applied an integrated target, suspect, and non-target screening strategy to analyze known and unknown organophosphate esters (OPEs) in 107 foodstuffs collected from Nanjing City, China, in 2020. Twelve out of 19 target OPEs were detectable in at least one of the analyzed samples. Among the nine food categories, meat samples were contaminated the most severely with a mean ΣOPEs concentration of 68.5 ng/g wet weight (ww). In most food categories, tris(2,4-di-tert-butylphenyl) phosphate was the predominant OPE with a mean concentrations of 2.26 ng/g ww. In the food extract samples, suspect and non-target analysis identified other 6 suspect OPEs and 1 non-target OPE, of which two were fully identified as tri-m-cresyl phosphate, and trihexyl phosphate. Based on the measured OPE concentrations, we estimated the daily per capita dietary intakes of ΣOPEs for Nanjing residents to be 423 ng/kg bw/day, which is less than the reference dosage value of each OPE. Collectively, this study provides new information regarding the comprehensive identification of OPEs in foodstuffs, and revealed the importance of dietary risk assessment of this emerging class of contaminants.
Collapse
Affiliation(s)
- Ruifeng Bi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China.
| |
Collapse
|
37
|
Huang J, Gao Z, Hu G, Su G. Non-target screening and risk assessment of organophosphate esters (OPEs) in drinking water resource water, surface water, groundwater, and seawater. ENVIRONMENT INTERNATIONAL 2022; 168:107443. [PMID: 35961270 DOI: 10.1016/j.envint.2022.107443] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
By use of an integrated target, suspect, and non-target screening strategy, we investigated occurrence and spatial distribution of organophosphate esters (OPEs) in four types of water (drinking water resource water, surface water, groundwater, and seawater) collected from Jiangsu Province (China) in 2021 (n = 111). Eighteen out of 23 target OPEs were detectable at least once in these analyzed samples, and the total concentrations (Σ18OPEs) of OPEs in various water samples exhibited a descending order following as: groundwater (67026 ng/L) > surface water (35803 ng/L) > drinking water resource water (21055 ng/L) > seawater (17820 ng/L). The highest concentration detected in groundwater may be ascribed to pollution from surrounding factories. Among the target OPEs, triethyl phosphate (TEP), tris(chloroethyl) phosphate (TCEP), and tris (1-chloro-2-propyl) phosphate (TCIPP) were the most abundant congeners with the average concentrations of 407 ng/L, 143 ng/L, and 475 ng/L, respectively. Besides of 18 target OPEs, we further identified 17 suspect OPEs (3 of them were fully identified by authentic standards) on the basis of in-house suspect screening OPE database, and 2 non-target organophosphates (OPs) on the basis of feature fragments. One of these 2 non-target OPs was fully identified as bis(2-chloroethyl) 2-chloroethylphosphonate (B2CE2CEPP) by matching the retention time and MS/MS data with authentic standard, and the other one was preliminarily identified as 2,4,8,10-tetra-tert-butyl-6-methoxydibenzo[d,f][1,3,2]dioxaphosphepin-6-one (TTBMDBDOPPO). We also observed that B2CE2CEPP shared a similar structure with TCEP, suggesting that they may have similar toxicological characteristics and commercial sources. The ecological and human health risk assessments indicated that all OPEs posed a low or negligible ecological risk to aquatic organisms (algae, crustacean, and fish), and negligible risk to human health except for trimethyl phosphate (TMP) in drinking water resource water.
Collapse
Affiliation(s)
- Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhanqi Gao
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing 210019, PR China
| | - Guanjiu Hu
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing 210019, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
38
|
Shi J, Huang L, Sanganyado E, Mo J, Zhao H, Xiang L, Wong MH, Liu W. Spatial distribution and ecological risks of polychlorinated biphenyls in a river basin affected by traditional and emerging electronic waste recycling in South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114010. [PMID: 36030683 DOI: 10.1016/j.ecoenv.2022.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
With development of e-waste related legislation in China, formal recycling activities are designated in some areas while informal ones are illegally transferred to emerging areas to avoid supervision. However, the resulting environmental impact and ecological risks are not clear. Here, we investigated the discharge of polychlorinated biphenyls (PCBs) to soil and aquatic environments by e-waste recycling activities in the Lian River Basin, China. The study area included a designated industrial park in the traditional e-waste recycling area (Guiyu, known as the world's largest e-waste center), several emerging informal recycling zones, and their surrounding areas and coastal area. A total of 27 PCBs were analyzed, and the highest concentration was found in an emerging site for soil (354 ng g-1) and in a traditional site for sediment (1350 ng g--1) respectively. The pollution levels were significantly higher in both the traditional and emerging recycling areas than in their respective upstream countryside areas (p = 0.0356 and 0.0179, respectively). Source analysis revealed that the traditional and emerging areas had similar PCB sources mainly associated with three PCB technical mixtures manufactured in Japan (KC600) and the USA (Aroclor 1260 and Aroclor 1262). The PCB pollution in their downstream areas including the coastal area was evidently affected by the formal and informal recycling activities through river runoff. The ecological risk assessments showed that PCBs in soils and sediments in the Lian River Basin could cause adverse ecotoxicological consequences to humans and aquatic organisms.
Collapse
Affiliation(s)
- Jingchun Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Linlin Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of China
| | - Hongzhi Zhao
- College of Environmental Science & Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong, Special Administrative Region of China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, Special Administrative Region of China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
39
|
Gong S, Ren K, Ye L, Deng Y, Su G. Suspect and nontarget screening of known and unknown organophosphate esters (OPEs) in soil samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129273. [PMID: 35739788 DOI: 10.1016/j.jhazmat.2022.129273] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ninety-five soil samples (n = 95) were analyzed using an integrated suspect and non-target organophosphate ester (OPE) screening strategy. This suspect and non-target screening strategy allowed us to fully or tentatively identify 26 OPEs or OPE-like substances. Among these 26 newly identified contaminants, bisphenol A bis(diphenylphosphate) (BPABDP) exhibited the highest detection frequency of 83.2 %, with a concentration range of ND - 385 ng/g dry weight (dw). We also observed that BPABDP was significantly correlated with all other OPEs (p < 0.001 in all pairs), suggesting that BPABDP is widely used as a plasticizer and flame retardant in various commercial products. Another interesting finding was the discovery of four novel OPE structures with tentatively proposed chemical structures. Among these four non-target OPEs, (tert-butyl) phenyl bis(2,4-di-tert-butylphenyl) phosphate (TBPBDTBPP) shared a backbone structure very similar to that of the well-known OPE, tris(2,4-di-tert-butylphenyl) phosphate (TDTBPP). Detection frequency of this newly discovered OPE was high, up to 69.5 %, and it was significantly correlated with isodecyl diphenyl phosphate (IDDP), BPABDP, diphenyl 2-isopropylphenyl phosphate (2IPPDPP), and tricresyl phosphate (TCrP, p < 0.05 in all pairs), respectively. This study reported the most comprehensive suite of OPEs in soil samples, and 16 out of them were recognized in soil for the first time.
Collapse
Affiliation(s)
- Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Yirong Deng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China; Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China.
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
| |
Collapse
|
40
|
Song XC, Canellas E, Dreolin N, Goshawk J, Nerin C. Identification of Nonvolatile Migrates from Food Contact Materials Using Ion Mobility-High-Resolution Mass Spectrometry and in Silico Prediction Tools. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9499-9508. [PMID: 35856243 PMCID: PMC9354260 DOI: 10.1021/acs.jafc.2c03615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The identification of migrates from food contact materials (FCMs) is challenging due to the complex matrices and limited availability of commercial standards. The use of machine-learning-based prediction tools can help in the identification of such compounds. This study presents a workflow to identify nonvolatile migrates from FCMs based on liquid chromatography-ion mobility-high-resolution mass spectrometry together with in silico retention time (RT) and collision cross section (CCS) prediction tools. The applicability of this workflow was evaluated by screening the chemicals that migrated from polyamide (PA) spatulas. The number of candidate compounds was reduced by approximately 75% and 29% on applying RT and CCS prediction filters, respectively. A total of 95 compounds were identified in the PA spatulas of which 54 compounds were confirmed using reference standards. The development of a database containing predicted RT and CCS values of compounds related to FCMs can aid in the identification of chemicals in FCMs.
Collapse
Affiliation(s)
- Xue-Chao Song
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, United Kingdom
| | - Jeff Goshawk
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, United Kingdom
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| |
Collapse
|
41
|
Song XC, Dreolin N, Canellas E, Goshawk J, Nerin C. Prediction of Collision Cross-Section Values for Extractables and Leachables from Plastic Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9463-9473. [PMID: 35730527 PMCID: PMC9261268 DOI: 10.1021/acs.est.2c02853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The use of ion mobility separation (IMS) in conjunction with high-resolution mass spectrometry has proved to be a reliable and useful technique for the characterization of small molecules from plastic products. Collision cross-section (CCS) values derived from IMS can be used as a structural descriptor to aid compound identification. One limitation of the application of IMS to the identification of chemicals from plastics is the lack of published empirical CCS values. As such, machine learning techniques can provide an alternative approach by generating predicted CCS values. Herein, experimental CCS values for over a thousand chemicals associated with plastics were collected from the literature and used to develop an accurate CCS prediction model for extractables and leachables from plastic products. The effect of different molecular descriptors and machine learning algorithms on the model performance were assessed. A support vector machine (SVM) model, based on Chemistry Development Kit (CDK) descriptors, provided the most accurate prediction with 93.3% of CCS values for [M + H]+ adducts and 95.0% of CCS values for [M + Na]+ adducts in testing sets predicted with <5% error. Median relative errors for the CCS values of the [M + H]+ and [M + Na]+ adducts were 1.42 and 1.76%, respectively. Subsequently, CCS values for the compounds in the Chemicals associated with Plastic Packaging Database and the Food Contact Chemicals Database were predicted using the SVM model developed herein. These values were integrated in our structural elucidation workflow and applied to the identification of plastic-related chemicals in river water. False positives were reduced, and the identification confidence level was improved by the incorporation of predicted CCS values in the suspect screening workflow.
Collapse
Affiliation(s)
- Xue-Chao Song
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, U.K.
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Jeff Goshawk
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, U.K.
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
- .
Phone: +34 976761873
| |
Collapse
|
42
|
Ye L, Su G. Elevated concentration and high Diversity of organophosphate esters (OPEs) were Discovered in Sediment from Industrial, and E-Waste Recycling Areas. WATER RESEARCH 2022; 217:118362. [PMID: 35398804 DOI: 10.1016/j.watres.2022.118362] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Aquatic environments in industrial, and e-waste recycling areas might undergo severe contamination; however, there are few studies comprehensively assessing the pollution status of organophosphate esters (OPEs) in these two areas. Here, we applied both atmospheric pressure chemical ionization (APCI) and electron spray ionization (ESI) sources in our target, suspect, and functional group-dependent screening strategy, which enhanced the confidence for confirmation on precursor ions of OPEs. Then, n=53 sediment samples (30 from the industrial area, and 23 from the e-waste recycling area) were analyzed. Twenty-three out of 30 target OPEs were quantifiable in these analyzed samples. Total OPE concentrations (Σ30OPEs) in samples from e-waste recycling area range from 12.8 to 9250 ng/g dry weight (dw), that are statistically significantly greater (t-test, p < 0.001) than those from industrial area (25.1-5520 ng/g dw). Σ30OPEs in the sediments from industrial, or e-waste recycling area are statistically significantly greater (one-way ANOVA, p < 0.001) as compared to those (32.0-369 ng/g dw) from Taihu Lake in our previous study. In sediment from three areas, suspect and non-target analysis fully or tentatively identified other 20 OPEs. Four of them have not been recorded or registered in any of online chemical databases, and they are tentatively named as ((methoxy(phenoxy)phosphoryl)oxy)phenyl diphenyl phosphate (mPPODP), (tert-butyl)phenyl (ethyne-oxidane) bis(2,4-di-tert-butylphenyl) phosphate (TPBDTP), bis(dichlorophenyl) propane-1,3-diyl bis(hexylated phosphate) (BDCBHP), and bis(2-hexadecoxyethyl) ethyl phosphate (BHEPP). Overall, this study provided new insights regarding both analytical methodology and pollution status of OPEs, and highlights that elevated concentrations and high diversity of OPEs exist in sediments from industrial, and e-waste recycling areas.
Collapse
Affiliation(s)
- Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
43
|
Zhang Y, Xu C, Zhang W, Qi Z, Song Y, Zhu L, Dong C, Chen J, Cai Z. p-Phenylenediamine Antioxidants in PM 2.5: The Underestimated Urban Air Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6914-6921. [PMID: 34551519 DOI: 10.1021/acs.est.1c04500] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The wide use and continuous abrasion of rubber-related products appears to be leading to an incredible release of p-phenylenediamine (PPD) antioxidants in the environment. However, no related research has been conducted on the pollution characteristics and potential health risks of PM2.5-bound PPDs. We report for the first time the ubiquitous distributions of six emerging PPDs and a quinone derivative, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ), in PM2.5 from urban areas of China. Atmospheric contamination levels of PM2.5-bound PPDs were found to be mostly in pg m-3 amounts between 2018 and 2019. Urban vehicle rubber tire abrasion was found to probably contribute to the PPDs in PM2.5 and accounted for their significant spatiotemporal-dependent concentration variations. Furthermore, 6PPDQ, an emerging oxidation product of 6PPD in the environment, was first quantified (pg m-3) with a total detection rate of 81% in the urban PM2.5, demonstrating its broad existence. On the basis of the determined ambient concentrations, the annual intakes of PPDs and 6PPDQ for adults were not low, indicating their possible human health risks induced by long-term exposure. This study confirms the widespread occurrence of PPDs and 6PPDQ in PM2.5, showing that the pollution of such compounds in urban air should not be underestimated.
Collapse
Affiliation(s)
- Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, People's Republic of China
| | - Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zenghua Qi
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, People's Republic of China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, People's Republic of China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, People's Republic of China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, People's Republic of China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519000, People's Republic of China
| |
Collapse
|
44
|
Taylor RB, Sapozhnikova Y. Assessing Chemical Migration from Plastic Food Packaging into Food Simulant by Gas and Liquid Chromatography with High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4805-4816. [PMID: 35380818 DOI: 10.1021/acs.jafc.2c00736] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Some components of plastic food packaging can migrate into food, and whereas migration studies of known components are required and relatively straightforward, identification of nonintentionally added substances (NIAS; unknowns) is challenging yet imperative to better characterizing food safety. To this aim, migration was investigated across 24 unique plastic food packaging products including plastic wrap, storage bags, vacuum bags, and meat trays. Gas and liquid chromatography separation systems coupled with Orbitrap mass analyzers were used for comprehensive nontargeted screening of migrants. Tentative identifications of features were assigned by searching commercial databases (e.g., NIST, MZCloud, ChemSpider, Extractables and Leachables) and filtering results based on mass accuracy, retention time indices, and mass spectral patterns. Several migrants showed elevated levels in specific food packaging types, particularly meat trays and plastic wrap, and varying degrees of migration over the 10 days. Eleven putative migrants are listed as substances of potential concern or priority hazardous substances. Additionally, migration amounts of an Irgafos 168 degradation product determined by semiquantitation exceeded proposed theoretical maximum migration values.
Collapse
Affiliation(s)
- Raegyn B Taylor
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, United States
| | - Yelena Sapozhnikova
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, United States
| |
Collapse
|
45
|
Lin H, Taniyasu S, Yamashita N, Khan MK, Masood SS, Saied S, Khwaja HA. Per- and polyfluoroalkyl substances in the atmospheric total suspended particles in Karachi, Pakistan: Profiles, potential sources, and daily intake estimates. CHEMOSPHERE 2022; 288:132432. [PMID: 34606903 DOI: 10.1016/j.chemosphere.2021.132432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/05/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have received continuous attention; however, there is limited understanding of their sources in the atmosphere and related human exposure risks. This study measured PFAS in the atmospheric total suspended particles collected from Karachi, Pakistan, during the winter. Among the quantified PFAS, perfluorobutanoic acid (PFBA) showed the highest average concentration (3.11 ± 2.64 pg/m3), accounting for 32% of the total PFAS. Wind speed was positively correlated with perfluorohexanoic acid (PFHxA) and N-ethyl perfluorooctanesulfonamide (N-EtFOSA), while relative humidity was negatively correlated with perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Weighted potential source contribution function (WPSCF) and concentration weighted trajectory (WCWT) analyses suggested that northwestern Pakistan and western Afghanistan areas were highly associated with the long-range atmospheric transport of PFAS. We also calculated the daily intake of PFAS via inhalation, which were in the range of 0.07-3.98 and 0.01-0.33 pg/kg bw/d for children and adults, respectively. The calculated hazard quotient (HQ) of PFOS and PFOA was significantly lower than 1, indicating less or unlikely to cause non-carcinogenic effect via inhalation exposure. Overall, this study contributes to the understanding of geographic origins and human inhalation risks of airborne PFAS on a regional scale.
Collapse
Affiliation(s)
- Huiju Lin
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Hong Kong; National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | | | - Saiyada Shadiah Masood
- Department of Chemistry, University of Karachi, Karachi, Pakistan; Department of Chemistry, Jinnah University for Women, Karachi, Pakistan
| | - Sumayya Saied
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Haider Abbas Khwaja
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, New York, USA
| |
Collapse
|
46
|
Li J, Zhang Y, Bi R, Ye L, Su G. High-Resolution Mass Spectrometry Screening of Emerging Organophosphate Esters (OPEs) in Wild Fish: Occurrence, Species-Specific Difference, and Tissue-Specific Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:302-312. [PMID: 34898183 DOI: 10.1021/acs.est.1c05726] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a dearth of information regarding the pollution status of emerging organophosphate esters (OPEs) in wild fish. Here, we optimized and validated a quick, easy, cheap, effective, rugged, and safe (QuEChERS) pretreatment method, which was further applied for target, suspect, and nontarget screening of OPEs in n = 48 samples of wild fishes from Taihu Lake (eastern China). This integrated technique allows us to fully identify 20 OPEs, and 9 out of them are emerging OPEs detected in wild fish for the first time. Importantly, some of the emerging OPEs, i.e., tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP), 4-tert-butylphenyl diphenyl phosphate (BPDP), and 2-isopropylphenyl diphenyl phosphate (IPDP), exhibited greater or at least comparable contamination levels as compared to traditional ones. There were no statistically significant interspecies (n = 6) differences regarding OPE concentrations. However, we observed significant differences on OPE concentrations among different tissues of silver carp (Hypophthalmichthys molitrix), for which the intestine has the highest OPE mean concentration (46.5 ng/g wet weight (ww)), followed by the liver (20.1 ng/g ww) ≈ brain (20.0 ng/g ww) > gill (14.8 ng/g ww) > muscle (11.4 ng/g ww). An interesting exception is IPDP, which presents an unexpectedly high concentration in the brain (0.510 ng/g ww). Collectively, this study expands our understanding of OPE contamination in wild fish and clearly shows that emerging TDtBPP, IPDP, and BPDP could play an equally important role as traditional OPEs in contribution of OPE pollution in wild fish samples.
Collapse
Affiliation(s)
- Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ruifeng Bi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
47
|
Zhang Q, Li X, Wang Y, Zhang C, Cheng Z, Zhao L, Li X, Sun Z, Zhang J, Yao Y, Wang L, Li W, Sun H. Occurrence of novel organophosphate esters derived from organophosphite antioxidants in an e-waste dismantling area: Associations between hand wipes and dust. ENVIRONMENT INTERNATIONAL 2021; 157:106860. [PMID: 34500363 DOI: 10.1016/j.envint.2021.106860] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Electronic waste (e-waste) is a well-known source of plastic additives in the environment. However, the e-waste-related occupational exposure to organophosphite antioxidants (OPAs) and the relevant oxidation products-novel organophosphate esters (NOPEs)-via different pathways is still unknown. In this study, six OPAs and three NOPEs were measured in 116 dust and 43 hand-wipe samples from an e-waste dismantling area in Central China. The median concentrations of ΣOPAs and ΣNOPEs were 188 and 13,900 ng·g-1 in workshop dust and 5,250 ng·m-2 and 53,600 ng·m-2 on workers' hands, respectively. The increasing concentrations of dust in the form of triphenyl phosphate (TPHP) (p < 0.01) and tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) (p < 0.05) were strongly associated with the corresponding concentration on workers' hands. Furthermore, men had significantly lower levels of NOPEs on their hands than did women (p < 0.01). Moreover, the hand wipe levels of AO168 = O (41,600 ng·m-2) was significantly higher than that of the typical OPE (TPHP, 7370 ng·m-2), and the hand-to-mouth contact (ΣOPAs, 9.48 ng·kg bw-1·day-1; ΣNOPEs, 109 ng·kg bw-1·day-1) was a more significant and integrated pathway than dust ingestion (ΣOPAs, 0.10 ng·kg bw-1·day-1; ΣNOPEs, 5.01 ng·kg bw-1·day-1) of e-waste related occupational exposure to these "new" chemicals.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuejiao Li
- College of Environmental and Resource Sciences, Shanxi University, Shanxi 030006, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhaoyang Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wei Li
- College of Environmental and Resource Sciences, Shanxi University, Shanxi 030006, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
48
|
Gong X, Zhang W, Zhang S, Wang Y, Zhang X, Lu Y, Sun H, Wang L. Organophosphite Antioxidants in Mulch Films Are Important Sources of Organophosphate Pollutants in Farmlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7398-7406. [PMID: 33754709 DOI: 10.1021/acs.est.0c08741] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organophosphite antioxidants (OPAs) are important auxiliary antioxidants used in plastic polymers and can be oxidized to organophosphate esters (OPEs) during production and processing. In this work, the occurrence of OPAs and OPEs in farmlands with or without mulch film applications was investigated. Six OPAs and five OPEs were detected, with the median concentrations of 2.66 ng/g (∑6OPAs) and 100 ng/g (∑5OPEs) in the film-mulching soil and 1.16 ng/g (∑6OPAs) and 47.9 ng/g (∑5OPEs) in the nonfilm-mulching soil, respectively. The oxidative derivative of AO168 (tris (2,4-di-tert-butylphenyl) phosphite), a typical OPA, AO168═O (tris (2,4-di-tert-butylphenyl) phosphate) was frequently detected in farmlands at the concentrations of 0-731 ng/g, which is much higher than that of the commercial OPEs (0-12.1 ng/g). This suggests that the oxidation derivatives of OPAs (OPAs═O) might be important OPE contaminants in soils. Mulch films could be their important source. According to the simulation migration experiment, the emission risk ranges of AO168 and AO168═O from mulch films to soils in China were estimated to be 3.96-87.6 and 10.5-95.3 tons/year, respectively, which were much higher than those of OPEs from sewage sludge applications. Simulation experiments also demonstrated that oxidation was the major pathway for OPAs in soils. OPAs with small substituent groups could be potential sources for organophosphate diesters. For the first time, the serious pollution of OPAs and OPAs═O in soils has been reported, and mulch films have been identified as their potential source.
Collapse
Affiliation(s)
- Xinying Gong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenjun Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
49
|
Ye L, Meng W, Huang J, Li J, Su G. Establishment of a Target, Suspect, and Functional Group-Dependent Screening Strategy for Organophosphate Esters (OPEs): "Into the Unknown" of OPEs in the Sediment of Taihu Lake, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5836-5847. [PMID: 33891400 DOI: 10.1021/acs.est.0c07825] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Current environmental monitoring studies are generally confined to several target organophosphate esters (OPEs), and there is a lack of strategies for comprehensively screening all potential OPEs in environmental samples. Here, an effective and accurate strategy was developed for the target, suspect, and functional group-dependent screening of OPEs by the use of ultrahigh-performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS), and this strategy was applied for the analysis of n = 74 sediment samples (including 23 surface sediment samples and 51 sediment core samples) collected from Taihu Lake (eastern China) in 2019. In these analyzed samples, we successfully identified n = 35 OPEs, and 23 of them were reported in this region for the first time. In addition, this strategy also presented other interesting findings, i.e., (1) OPE concentrations decreased with increasing distance from the coast of the lake; (2) the newly identified 3-hydroxyphenyl diphenyl phosphate (meta-OH-TPHP) was not statistically significantly correlated with triphenyl phosphate (TPHP; r = 0.02494, p = 0.9101) but with resorcinol bis(diphenyl phosphate) (RDP) (r = 0.9271, p < 0.0001) and three other OPEs; and (3) the summed concentrations of aryl OPEs (∑arylOPEs) in sediment core samples exhibited significantly increasing trends as the depth decreased. Collectively, this study provided an effective strategy that was successfully applied for comprehensive screening of OPEs in the sediments of Taihu Lake, and this strategy could have promising potential to be extended to other environmental matrices or samples.
Collapse
Affiliation(s)
- Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Weikun Meng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
50
|
Liu R, Mabury SA. Printing ink related chemicals, including synthetic phenolic antioxidants, organophosphite antioxidants, and photoinitiators, in printing paper products and implications for human exposure. ENVIRONMENT INTERNATIONAL 2021; 149:106412. [PMID: 33548846 DOI: 10.1016/j.envint.2021.106412] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Although synthetic antioxidants (AOs) and photoinitiators (PIs) are known to be used in printing inks, there are little data on residual concentrations in printing paper products. In the present study, twenty-five PIs, ten AOs, and six transformation products were analyzed in two types of printing paper products, magazines and paperboard food packaging materials, both of which are unavoidable everyday products in our life. Nine AOs and six transformation products can be detected in food packaging materials with total concentrations (geometric mean, GM) of 1.16 × 104 ng/dm2. Twenty-two PIs were detected in food packaging materials with total concentrations (GM) of 1.76 × 104 ng/dm2. These chemicals were also detected in magazines, albeit at low concentrations (GM of AOs: 466 ng/dm2, GM of PIs: 1.17 × 103 ng/dm2). Magazine front covers were found to have much higher concentrations of the target compounds than magazine inside pages. Tris(2,4-di-tert-butylphenyl) phosphate (AO168O), 2,6-di-tert-butyl-4-methylphenol (BHT), bisphenol A (BPA), and benzophenone (BP) were among the predominant chemicals in those printing paper products. Preliminary calculations suggest that dermal exposure to AOs (GM: 6.25 ng/day) and PIs (GM: 17.0 ng/day) via contact with printing paper products is a minor exposure pathway compared to food intake/dust ingestion and is exceedingly unlikely to cause adverse health effects.
Collapse
Affiliation(s)
- Runzeng Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada.
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| |
Collapse
|