1
|
Dean LE, Wang H, Li X, Fitzjerrells RL, Valenzuela AE, Neier K, LaSalle JM, Mangalam A, Lein PJ, Lehmler HJ. Identification of polychlorinated biphenyls (PCBs) and PCB metabolites associated with changes in the gut microbiome of female mice exposed to an environmental PCB mixture. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137688. [PMID: 40020572 PMCID: PMC12002644 DOI: 10.1016/j.jhazmat.2025.137688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Polychlorinated biphenyls (PCBs) are neurotoxic hazardous materials that may cause toxicity via the gut-liver-brain axis. This study investigated PCB × microbiome interactions in adult female mice exposed orally to an environmental PCB mixture. Female mice (6-week-old) were exposed daily for 7 weeks to peanut butter containing 0, 0.1, 1, or 6 mg/kg/day of PCBs. Twenty hours after the final exposure, the cecal content was collected to characterize the microbiome composition and predicted function. PCB and its metabolites in feces were analyzed using gas chromatography-tandem mass spectrometry (GC-MS/MS), while cecal content was assessed with liquid chromatography-high resolution mass spectrometry (LC-HRMS). PCB exposure influenced the abundance of microbial taxa and predicted functions within the cecal content. Complex PCB and metabolite mixtures were detected in the gastrointestinal tract. Network analysis revealed associations between specific parent PCBs and metabolites with changes in the abundance of bacteria in the gastrointestinal tract. These findings demonstrate that individual PCBs and their metabolites significantly influence the abundance of specific bacteria in the gastrointestinal tract following oral PCB exposure. These findings inform further research targeting the microbiome to attenuate the adverse health outcomes of PCB exposure.
Collapse
Affiliation(s)
- Laura E Dean
- Department of Occupational and Environmental Health, University of Iowa, Iowa, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa, IA 52242, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa, IA 52242, USA
| | - Rachel L Fitzjerrells
- Interdisciplinary Graduate Program in Informatics, University of Iowa, Iowa, IA 52242, USA; College of Dentistry, University of Iowa, Iowa, IA 52242, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
| | | | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
2
|
Behan-Bush RM, Schrodt MV, Kilburg E, Liszewski JN, Bitterlich LM, English K, Klingelhutz AJ, Ankrum JA. Polychlorinated biphenyls induce immunometabolic switch of antiinflammatory macrophages toward an inflammatory phenotype. PNAS NEXUS 2025; 4:pgaf100. [PMID: 40191133 PMCID: PMC11969150 DOI: 10.1093/pnasnexus/pgaf100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025]
Abstract
Polychlorinated biphenyls (PCBs) are a group of environmental toxicants associated with increased risk of diabetes, obesity, and metabolic syndrome. These metabolic disorders are characterized by systemic and local inflammation within adipose tissue, the primary site of PCB accumulation. These inflammatory changes arise when resident adipose tissue macrophages undergo phenotypic plasticity-switching from an antiinflammatory to an inflammatory phenotype. Thus, we sought to assess whether PCB exposure drives macrophage phenotypic switching. We investigated how human monocyte-derived macrophages polarized toward an M1, M2a, or M2c phenotype were impacted by exposure to Aroclor 1254, a PCB mixture found at high levels in school air. We showed that PCB exposure not only exacerbates the inflammatory phenotype of M1 macrophages but also shifts both M2a and M2c cells toward a more inflammatory phototype in both a dose- and time-dependent manner. Additionally, we show that PCB exposure leads to significant metabolic changes. M2 macrophages exposed to PCBs exhibit increased reliance on aerobic glycolysis and reduced capacity for fatty acid and amino acid oxidation-both indicators of an inflammatory macrophage phenotype. Collectively, these results demonstrate that PCBs promote immunometabolic macrophage plasticity toward a more M1-like phenotype, thereby suggesting that PCBs exacerbate metabolic diseases by altering the inflammatory environment in adipose tissue.
Collapse
Affiliation(s)
- Riley M Behan-Bush
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Michael V Schrodt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth Kilburg
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Jesse N Liszewski
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Laura M Bitterlich
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland W23 F2H6
- Department of Biology, Maynooth University, Maynooth, Ireland W23 F2H6
| | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland W23 F2H6
- Department of Biology, Maynooth University, Maynooth, Ireland W23 F2H6
| | - Aloysius J Klingelhutz
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Chen J, Ke X, Zhou Z, Ye W, Liu H, Zhang W, Liu X. An Ag-nanoplate decorated cavity-nanorod array SERS substrate for trace detection of PCB-77. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2161-2170. [PMID: 39957686 DOI: 10.1039/d5ay00025d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
We report the fabrication of a substrate with cavity-nanorods and decorated with Ag-nanoplates (C-NR@Ag). The cavities on the substrate are formed by metal assistant chemical etching, and the Ag-nanoplates in the cavities by galvanic cell deposition enhance the SERS performance effectively. Analytes in solution are adsorbed on Ag-nanoplates and located in hot spots, which enhance the SERS performance effectively. The enhancement factor of the Ag-nanoplates decorated on nanorod cavities is calculated to be 3.6 × 106, which is about 3 fold higher than that on the nanorods. The C-NR@Ag substrate is able to detect polychlorinated biphenyls (PCBs) with the lower limit of detection at 1.0 × 10-12 M. Additionally, due to the semi-volatile nature of PCB-77, the lower limit of detection of the C-NR@Ag substrate for PCB-77 was 1.0 × 10-11 M by the non-contact collection method. These results present a novel approach towards enhancing SERS performance and facilitating the rapid detection of PCB-77.
Collapse
Affiliation(s)
- Jinran Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing Jiaotong University, Chongqing, 400074, P. R. China
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Xiurui Ke
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Zhou Zhou
- The University of Manchester, Department of Materials, Oxford Road, Manchester M13 9PL, UK
| | - Wenqi Ye
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, P. R. China.
| |
Collapse
|
4
|
Richtwerte für Polychlorierte Biphenyle (PCB) in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2025; 68:201-218. [PMID: 39806213 DOI: 10.1007/s00103-024-04000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
5
|
Hashmi MZ, Shoukat A, Pongpiachan S, Kavil YN, Alelyani SS, Alkasbi MM, Hussien M, Niloy MTA. Polychlorinated biphenyls induced toxicities upon cell lines and stem cells: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:56. [PMID: 39853600 DOI: 10.1007/s10653-025-02362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants emitted during e-waste activities. Upon release into the environment, PCBs can pose harmful effects to the humans and environment. The present review focused on the effects of PCBs on cell proliferation, apoptosis, functional and developmental toxicity and potential possible molecular mechanisms upon cells and stem cells. The review also highlights the effects of low- and high-chlorinated, and dioxin and non-dioxin PCBs. The review suggested that high chlorinated and dioxin like PCBs at higher concentrations posed more toxic effects to cells and stem cells. PCBs at higher levels induced hepatotoxicity, carcinogenicity, reproductive toxicity, neurotoxicity and lung cell toxicity. PCBs triggered reactive oxygen species which actives mitogen activated pathways, nuclear factor and cytochrome pathway for cell proliferation and apoptosis. Further, review highlights PCBs induced toxicity in stem cells with the focus on developmental and functional toxicity. The review could be useful to understand the PCBs toxicities and mechanisms and will guide to policy makers to design policies for e-waste pollutant.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Anaela Shoukat
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Renewable Environment Company for Environmental Consulting (REC), 21589, Jeddah, Saudi Arabia
| | - Saeed Saad Alelyani
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Renewable Environment Company for Environmental Consulting (REC), 21589, Jeddah, Saudi Arabia
| | - Mohammed M Alkasbi
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, 100, Muscat, Sultanate of Oman
| | - Mohamed Hussien
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Md Toushik Ahmed Niloy
- School of Planning, Design and Construction, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
6
|
Gourronc FA, Bullert AJ, Helm-Kwasny BK, Adamcakova-Dodd A, Wang H, Jing X, Li X, Thorne PS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Exposure to PCB52 (2,2',5,5'-tetrachlorobiphenyl) blunts induction of the gene for uncoupling protein 1 (UCP1) in white adipose. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104612. [PMID: 39674530 PMCID: PMC11717591 DOI: 10.1016/j.etap.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Polychlorinated biphenyls (PCBs) are linked to cancer, learning disabilities, liver and cardiovascular disease, and diabetes. Older schools often contain high levels of PCBs, and inhalation is a major source of exposure. Technical PCB mixtures, called Aroclors, and individual dioxin-like PCBs impair adipocyte function, which can lead to type II diabetes. To determine how PCB52, a non-dioxin like PCB congener found in school air, affects adipose, adolescent male and female rats were exposed to PCB52 by nose-only inhibition for 4 h per day for 28 consecutive days. Transcriptomic analysis of white adipose revealed sex-specific differences in gene expression between PCB52- and sham-exposed males and females. Exposed females showed mitochondrial gene changes, including downregulation of the thermogenic uncoupling gene, Ucp1. Human preadipocytes/adipocytes exposed to PCB52 or its main metabolite, 4-OH-PCB52, also showed reduced norepinephrine-induced UCP1 expression. These findings suggest that PCB52 inhalation disrupts thermogenesis in adipose tissue, potentially contributing to metabolic syndrome.
Collapse
Affiliation(s)
- Francoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Amanda J Bullert
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | | | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Xuefang Jing
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
7
|
Dean LE, Wang H, Bullert AJ, Wang H, Adamcakova-Dodd A, Mangalam AK, Thorne PS, Ankrum JA, Klingelhutz AJ, Lehmler HJ. Inhalation of 2,2',5,5'-tetrachlorobiphenyl (PCB52) causes changes to the gut microbiome throughout the gastrointestinal tract. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135999. [PMID: 39369679 DOI: 10.1016/j.jhazmat.2024.135999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Polychlorinated biphenyls (PCBs), such as PCB52, are hazardous environmental contaminants present in indoor and outdoor environments. Oral PCB exposure affects the colon microbiome; however, it is unknown if inhalation of PCBs alters the intestinal microbiome. We hypothesize that sub-acute inhalation of PCB52 affects microbial communities depending on the location in the (GI) gastrointestinal tract and the local profiles of PCB52 and its metabolites present in the GI tract following mucociliary clearance and biliary or intestinal excretion. Sprague-Dawley rats were exposed via nose-only inhalation 4 h per day, 7 days per week, for 4 weeks to either filtered air or PCB52. After 28 days, differences in the microbiome and levels of PCB52 and its metabolites were characterized throughout the GI tract. PCB52 inhalation altered taxa abundances and predicted functions altered throughout the gut, with most alterations occurring in the large intestine. PCB52 and metabolite levels varied across the GI tract, resulting in differing PCB × microbiome networks. Thus, the presence of different levels of PCB52 and its metabolites in different parts of the GI tract has varying effects on the composition and predicted function of microbial communities. Future studies need to investigate whether these changes lead to adverse outcomes.
Collapse
Affiliation(s)
- Laura E Dean
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States.
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States.
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States.
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States.
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States.
| | | | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States.
| | - James A Ankrum
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
8
|
Haque E, Adamcakova-Dodd A, Jing X, Wang H, Jarmusch AK, Thorne PS. Multi-omics inhalation toxicity assessment of urban soil dusts contaminated by multiple legacy sources of lead (Pb). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136120. [PMID: 39405708 PMCID: PMC11698073 DOI: 10.1016/j.jhazmat.2024.136120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
Although animal studies have evaluated lead (Pb) toxicity, they are limited to soluble forms, such as Pb-acetate, which do not reflect the range found in the exposome. Recent studies on Pb speciation of residential soils in urban areas revealed that the initial Pb sources are not persistent and are extensively repartitioned into adsorbed forms of Pb rather than insoluble phosphates. We investigated the inhalation and neurological toxicity of dusts generated from a surficial soil sample collected from a residential site with an exposomic mixture of various Pb species, both adsorbed phases (Fe and Mn oxide, humate bound Pb) and mineral phases (Pb hydroxycarbonate, pyromorphite, galena). Mice inhaled East Chicago dust (ECD) generated from a composite soil sample for 4 h/day, 7 days/week, for 4 weeks. Mice were necropsied immediately, 1, 14 and 30 days post exposure to evaluate both toxicity and recovery. Exposure to ECD caused changes in memory and spatial learning in the Morris Water Maze test. RNAseq analysis of the hippocampus region revealed multiple differentially expressed genes and impacts on pathways involved in ion channel complexes, and neuron-to-neuron synapse. Metabolomics analysis of plasma highlighted significant alterations in metabolic processes immediately after exposure that resolved after 14 days of rest.
Collapse
Affiliation(s)
- Ezazul Haque
- Human Toxicology Program, Graduate College, University of Iowa, Iowa City, Iowa, USA; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Alan K Jarmusch
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Peter S Thorne
- Human Toxicology Program, Graduate College, University of Iowa, Iowa City, Iowa, USA; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
9
|
Bullert AJ, Wang H, Linahon MJ, Chimenti MS, Adamcakova-Dodd A, Li X, Dailey ME, Klingelhutz AJ, Ankrum JA, Stevens HE, Thorne PS, Lehmler HJ. Effects of 28-day nose-only inhalation of PCB52 (2,2',5,5'-Tetrachlorobiphenyl) on the brain transcriptome. Toxicology 2024; 509:153965. [PMID: 39369937 PMCID: PMC11588532 DOI: 10.1016/j.tox.2024.153965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
A semi-volatile polychlorinated biphenyl (PCB) congener, PCB52, is present in the indoor air of schools; however, the effects of inhaled PCB52 on the brain have not been investigated. This study exposed male Sprague-Dawley rats at 39 days of age and female rats at 42 days of age to PCB52 for 4 hours per day over 28 consecutive days through nose-only inhalation. Neurobehavioral tests were conducted during the last 5 days of exposure. The total estimated PCB52 exposures after 28 days were 1080±20 µg/kg BW for male rats and 1140±10 µg/kg BW for female rats. PCB52 and its metabolites were detected by gas chromatography-tandem mass spectrometry in the brain, lung, and serum, with the lung showing the highest concentrations. PCB52 levels were higher in the brains of females than males. Males showed increased exploratory behavior compared to controls, whereas females exhibited decreased exploratory behavior compared to controls in the same tests. PCB52 exposure did not impact locomotor activity or working memory. Gene expression and pathway analysis in the striatum and cerebellum suggest that PCB52 inhalation causes mitochondrial dysfunction. No significant differences were observed by immunohistochemical evaluation in the density and percent area of total cells, astrocytes, or microglia in the striatum and cerebellar cortex. Our results indicate multilevel effects of inhaled PCB52 on the rat brain, from gene expression to behavioral effects.
Collapse
Affiliation(s)
- Amanda J Bullert
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Morgan J Linahon
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, The University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael E Dailey
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Biology, The University of Iowa, Iowa City, IA, USA
| | | | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Li S, Shen Y, Gao M, Song H, Ge Z, Zhang Q, Xu J, Wang Y, Sun H. Machine Learning Models for Predicting Bioavailability of Traditional and Emerging Aromatic Contaminants in Plant Roots. TOXICS 2024; 12:737. [PMID: 39453157 PMCID: PMC11511036 DOI: 10.3390/toxics12100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
To predict the behavior of aromatic contaminants (ACs) in complex soil-plant systems, this study developed machine learning (ML) models to estimate the root concentration factor (RCF) of both traditional (e.g., polycyclic aromatic hydrocarbons, polychlorinated biphenyls) and emerging ACs (e.g., phthalate acid esters, aryl organophosphate esters). Four ML algorithms were employed, trained on a unified RCF dataset comprising 878 data points, covering 6 features of soil-plant cultivation systems and 98 molecular descriptors of 55 chemicals, including 29 emerging ACs. The gradient-boosted regression tree (GBRT) model demonstrated strong predictive performance, with a coefficient of determination (R2) of 0.75, a mean absolute error (MAE) of 0.11, and a root mean square error (RMSE) of 0.22, as validated by five-fold cross-validation. Multiple explanatory analyses highlighted the significance of soil organic matter (SOM), plant protein and lipid content, exposure time, and molecular descriptors related to electronegativity distribution pattern (GATS8e) and double-ring structure (fr_bicyclic). An increase in SOM was found to decrease the overall RCF, while other variables showed strong correlations within specific ranges. This GBRT model provides an important tool for assessing the environmental behaviors of ACs in soil-plant systems, thereby supporting further investigations into their ecological and human exposure risks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; (S.L.); (Y.S.); (M.G.); (H.S.); (Z.G.); (Q.Z.); (J.X.)
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; (S.L.); (Y.S.); (M.G.); (H.S.); (Z.G.); (Q.Z.); (J.X.)
| |
Collapse
|
11
|
Helm-Kwasny BK, Bullert A, Wang H, Chimenti MS, Adamcakova-Dodd A, Jing X, Li X, Meyerholz DK, Thorne PS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Upregulation of fatty acid synthesis genes in the livers of adolescent female rats caused by inhalation exposure to PCB52 (2,2',5,5'-Tetrachlorobiphenyl). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104520. [PMID: 39067718 PMCID: PMC11377153 DOI: 10.1016/j.etap.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Elevated airborne PCB levels in older schools are concerning due to their health impacts, including cancer, metabolic dysfunction-associated steatotic liver disease (MASLD), cardiovascular issues, neurodevelopmental diseases, and diabetes. During a four-week inhalation exposure to PCB52, an air pollutant commonly found in school environments, adolescent rats exhibited notable presence of PCB52 and its hydroxylated forms in their livers, alongside changes in gene expression. Female rats exhibited more pronounced changes in gene expression compared to males, particularly in fatty acid synthesis genes regulated by the transcription factor SREBP1. In vitro studies with human liver cells showed that the hydroxylated metabolite of PCB52, 4-OH-PCB52, but not the parent compound, upregulated genes involved in fatty acid biosynthesis similar to in vivo exposure. These findings highlight the sex-specific effects of PCB52 exposure on livers, particularly in females, suggesting a potential pathway for increased MASLD susceptibility.
Collapse
Affiliation(s)
| | - Amanda Bullert
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, The University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Bullert A, Li X, Gautam B, Wang H, Adamcakova-Dodd A, Wang K, Thorne PS, Lehmler HJ. Distribution of 2,2',5,5'-Tetrachlorobiphenyl (PCB52) Metabolites in Adolescent Rats after Acute Nose-Only Inhalation Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6105-6116. [PMID: 38547313 PMCID: PMC11008251 DOI: 10.1021/acs.est.3c09527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
Inhalation of PCB-contaminated air is increasingly recognized as a route for PCB exposure. Because limited information about the disposition of PCBs following inhalation exposure is available, this study investigated the disposition of 2,2',5,5'-tetrachlorobiphenyl (PCB52) and its metabolites in rats following acute, nose-only inhalation of PCB52. Male and female Sprague-Dawley rats (50-58 days of age, 210 ± 27 g; n = 6) were exposed for 4 h by inhalation to approximately 14 or 23 μg/kg body weight of PCB52 using a nose-only exposure system. Sham animals (n = 6) were exposed to filtered lab air. Based on gas chromatography-tandem mass spectrometry (GC-MS/MS), PCB52 was present in adipose, brain, intestinal content, lung, liver, and serum. 2,2',5,5'-Tetrachlorobiphenyl-4-ol (4-OH-PCB52) and one unknown monohydroxylated metabolite were detected in these compartments except for the brain. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis identified several metabolites, including sulfated, methoxylated, and dechlorinated PCB52 metabolites. These metabolites were primarily found in the liver (7 metabolites), lung (9 metabolites), and serum (9 metabolites) due to the short exposure time. These results demonstrate for the first time that complex mixtures of sulfated, methoxylated, and dechlorinated PCB52 metabolites are formed in adolescent rats following PCB52 inhalation, laying the groundwork for future animal studies of the adverse effects of inhaled PCB52.
Collapse
Affiliation(s)
- Amanda
J. Bullert
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, The University
of Iowa, Iowa City, Iowa 52242, United States
| | - Xueshu Li
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Binita Gautam
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hui Wang
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Andrea Adamcakova-Dodd
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kai Wang
- Department
of Biostatistics, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Peter S. Thorne
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, The University
of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, The University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
13
|
Wang H, Bullert AJ, Li X, Stevens H, Klingelhutz AJ, Ankrum JA, Adamcakova-Dodd A, Thorne PS, Lehmler HJ. Use of a polymeric implant system to assess the neurotoxicity of subacute exposure to 2,2',5,5'-tetrachlorobiphenyl-4-ol, a human metabolite of PCB 52, in male adolescent rats. Toxicology 2023; 500:153677. [PMID: 37995827 PMCID: PMC10757425 DOI: 10.1016/j.tox.2023.153677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that ubiquitously exist in the environment. PCB exposure has been linked to cancer and multi-system toxicity, including endocrine disruption, immune inhibition, and reproductive and neurotoxicity. 2,2',5,5'-Tetrachlorobiphenyl (PCB 52) is one of the most frequently detected congeners in the environment and human blood. The hydroxylated metabolites of PCB 52 may also be neurotoxic, especially for children whose brains are still developing. However, it is challenging to discern the contribution of these metabolites to PCB neurotoxicity because the metabolism of PCB is species-dependent. In this study, we evaluated the subacute neurotoxicity of a human-relevant metabolite, 2,2',5,5'-tetrachlorobiphenyl-4-ol (4-52), on male adolescent Sprague Dawley rats, via a novel polymeric implant drug delivery system grafted subcutaneously, at total loading concentrations ranging from 0%, 1%, 5%, and 10% of the implant (w/w) for 28 days. Y-maze, hole board test, open field test, and elevated plus maze were performed on exposure days 24-28 to assess their locomotor activity, and exploratory and anxiety-like behavior. 4-52 and other possible hydroxylated metabolites in serum and vital tissues were quantified using gas chromatography with tandem mass spectrometry (GC-MS/MS). Our results demonstrate the sustained release of 4-52 from the polymeric implants into the systemic circulation in serum and tissues. Dihydroxylated and dechlorinated metabolites were detected in serum and tissues, depending on the dose and tissue type. No statistically significant changes were observed in the neurobehavioral tasks across all exposure groups. The results demonstrate that subcutaneous polymeric implants provide a straightforward method to expose rats to phenolic PCB metabolites to study neurotoxic outcomes, e.g., in memory, anxiety, and exploratory behaviors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Hanna Stevens
- Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Department of Psychiatry, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA
| | | | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, the University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
14
|
Deen L, Clark A, Hougaard KS, Petersen KU, Frederiksen M, Wise LA, Wesselink AK, Meyer HW, Bonde JP, Tøttenborg SS. Exposure to airborne polychlorinated biphenyls and type 2 diabetes in a Danish cohort. ENVIRONMENTAL RESEARCH 2023; 237:117000. [PMID: 37634693 DOI: 10.1016/j.envres.2023.117000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/17/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Previous research indicates an association between higher-chlorinated polychlorinated biphenyls (PCBs) and type 2 diabetes (T2D). However, less is known about the extent to which PCB exposure in indoor air, composed primarily of lower-chlorinated PCBs, affects T2D risk. We assessed the association between indoor air exposure to PCBs in residential buildings and T2D incidence. METHODS The register-based 'Health Effects of PCBs in Indoor Air' (HESPAIR) cohort comprises 51,921 Danish residents of two residential areas with apartments built with and without PCB-containing materials (reference apartments). We assessed exposure status by combining register-based information on relocation history with extrapolated values of exposure based on PCB-measurements in indoor air from subsets of the apartments. T2D cases were identified in the Danish registers during 1977-2018. We estimated adjusted hazard ratios (HR) and 95% confidence intervals (CI) using Cox regression analyses with time-varying exposure. RESULTS We identified 2737 incident T2D cases during the follow-up. Exposure to ≥3300 ng/m3 PCB × year (3rd tertile of PCByear) was associated with higher risk of T2D (HR 1.15, 95% CI 1.02-1.30) compared with exposure to <300 ng/m3 PCB × year (reference). However, among individuals with lower cumulated PCByear, the risk was similar to residents with exposure <300 ng/m3 PCB × year (300-899 ng/m3 PCB × year: HR 0.98, 95% CI 0.87-1.11; 900-3299 ng/m3 PCB × year: HR 0.96, 95% CI 0.83-1.10). DISCUSSION We observed a marginally higher risk of T2D, but there was no evidence of an exposure-response relationship. The results should be interpreted with caution until confirmed in other independent studies of PCB exposure in indoor air.
Collapse
Affiliation(s)
- Laura Deen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark; Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | | - Karin Sørig Hougaard
- Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Denmark; National Research Centre for the Working Environment, Denmark
| | - Kajsa Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark
| | | | - Lauren A Wise
- Department of Epidemiology, School of Public Health, Boston University, United States
| | - Amelia K Wesselink
- Department of Epidemiology, School of Public Health, Boston University, United States
| | - Harald William Meyer
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark; Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Denmark; Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
15
|
Jin Q, Fan Y, Lu Y, Zhan Y, Sun J, Tao D, He Y. Liquid crystal monomers in ventilation and air conditioning dust: Indoor characteristics, sources analysis and toxicity assessment. ENVIRONMENT INTERNATIONAL 2023; 180:108212. [PMID: 37738697 DOI: 10.1016/j.envint.2023.108212] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Indoor dust contaminated with liquid crystal monomers (LCMs) released from various commercial liquid crystal display (LCD) screens may pose environmental health risks to humans. This study aimed to investigate the occurrence of 64 LCMs in ventilation and air conditioning filters (VACF) dust, characterize their composition profiles, potential sources, and associations with indoor characteristics, and assess their in vitro toxicity using the human lung bronchial epithelial cells (BEAS-2B). A total of 31 LCMs with concentrations (ΣLCMs) ranging from 43.7 ng/g to 448 ng/g were detected in the collected VACF dust. Additional analysis revealed the potential interactions between indoor environmental conditions and human exposure risks associated with the detected LCMs in VACF dust. The service area and working time of the ventilation and air conditioning system, and the number of indoor LCD screens were positively correlated with the fluorinated ΣLCMs in VACF dust (r = 0.355 ∼ 0.511, p < 0.05), while the associations with the non-fluorinated ΣLCMs were not found (p > 0.05), suggesting different environmental behavior and fates of fluorinated and non-fluorinated LCMs in the indoor environment. Four main indoor sources of LCMs (i.e., computer (37.1%), television (28.3%), Brand A smartphone (21.2%) and Brand S smartphone (13.4%)) were identified by positive matrix factorization-multiple linear regression (PMF-MLR). Exposure to 14 relatively frequently detected LCMs, individually and in the mixture, induced significant oxidative stress in BEAS-2B cells. Among them, non-fluorinated LCMs, specifically 3cH2B and MeP3bcH, caused dominant decreased cell viability. This study provides new insights into the indoor LCMs pollution and the associated potential health risks due to the daily use of electronic devices.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yinzheng Fan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yuting Zhan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
16
|
Hua JX, Marek RF, Hornbuckle KC. Polyurethane Foam Emission Samplers to Identify Sources of Airborne Polychlorinated Biphenyls from Glass-Block Windows and Other Room Surfaces in a Vermont School. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14310-14318. [PMID: 37713326 PMCID: PMC10537452 DOI: 10.1021/acs.est.3c05195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
We hypothesized that emissions of polychlorinated biphenyls (PCBs) from Aroclor mixtures present in building materials explain their concentrations in school air. Here, we report a study of airborne concentrations and gas-phase emissions in three elementary school rooms constructed in 1958. We collected airborne PCBs using polyurethane foam passive air samplers (PUF-PAS, n = 6) and PCB emissions from building materials using polyurethane foam passive emission samplers (PUF-PES, n = 17) placed over flat surfaces in school rooms, including vinyl tile floors, carpets, painted bricks, painted drywall, and glass-block windows. We analyzed all 209 congeners represented in 173 chromatographic separations and found that the congener distribution in PUF-PES strongly resembled the predicted diffusive release of gas-phase PCBs from a solid material containing Aroclor 1254. Concentrations of airborne total PCBs ranged from 38 to 180 ng m-3, a range confirmed by an independent laboratory in the same school. These levels exceed action levels for all aged children set by the State of Vermont and exceed guidance levels set by the U.S. EPA for children under age 3. Emissions of PCBs from the glass-block windows (30,000 ng m-2 d-1) greatly exceeded those of all other surfaces, which ranged from 35 to 2700 ng m-2 d-1. This study illustrates the benefit of the direct measurement of PCB emissions to identify the most important building remediation needed to reduce airborne PCB concentrations in schools.
Collapse
Affiliation(s)
- Jason
B. X. Hua
- Department of Civil and Environmental
Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Rachel F. Marek
- Department of Civil and Environmental
Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Department of Civil and Environmental
Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
17
|
Liu C, Hou HS. Physical exercise and persistent organic pollutants. Heliyon 2023; 9:e19661. [PMID: 37809764 PMCID: PMC10558913 DOI: 10.1016/j.heliyon.2023.e19661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Exposure to the legacy and emerging persistent organic pollutants (POPs) incessantly has become an important threat to individual health, which is closely related to neurodevelopment, endocrine and cardiovascular homeostasis. Exercise, on the other hand, has been consistently shown to improve physical fitness. Whereas associations between traditional air pollutants, exercise and lung function have been thoroughly reviewed, reviews on associations between persistent organic pollutants and exercise are scarce. Hence, a literature review focused on exercise, exposure to POPs, and health risk assessment was performed for studies published from 2004 to 2022. The purpose of this review is to provide an overview of exposure pathways and levels of POPs during exercise, as well as the impact of exercise on health concerns attributable to the redistribution, metabolism, and excretion of POPs in vivo. Therein lies a broader array of exercise benefits, including insulin sensitizing, mitochondrial DNA repair, lipid metabolism and intestinal microecological balance. Physical exercise is conducive to reduce POPs body burden and resistant to health hazards of POPs generally. Besides, individual lipid metabolism condition is a critical factor in evaluating potential link in exercise, POPs and health effects.
Collapse
Affiliation(s)
- Chang Liu
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| | - Hui sheng Hou
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| |
Collapse
|
18
|
Gourronc FA, Chimenti MS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Hydroxylation markedly alters how the polychlorinated biphenyl (PCB) congener, PCB52, affects gene expression in human preadipocytes. Toxicol In Vitro 2023; 89:105568. [PMID: 36804509 PMCID: PMC10081964 DOI: 10.1016/j.tiv.2023.105568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) accumulate in adipose tissue and are linked to obesity and diabetes. The congener, PCB52 (2,2',5,5'-tetrachorobiphenyl), is found at high levels in school air. Hydroxylation of PCB52 to 4-OH-PCB52 (4-hydroxy-2,2',5,5'-tetrachorobiphenyl) may increase its toxicity. To understand PCB52's role in causing adipose dysfunction, we exposed human preadipocytes to PCB52 or 4-OH-PCB52 across a time course and assessed transcript changes using RNAseq. 4-OH-PCB52 caused considerably more changes in the number of differentially expressed genes as compared to PCB52. Both PCB52 and 4-OH-PCB52 upregulated transcript levels of the sulfotransferase SULT1E1 at early time points, but cytochrome P450 genes were generally not affected. A set of genes known to be transcriptionally regulated by PPARα were consistently downregulated by PCB52 at all time points. In contrast, 4-OH-PCB52 affected a variety of pathways, including those involving cytokine responses, hormone responses, focal adhesion, Hippo, and Wnt signaling. Sets of genes known to be transcriptionally regulated by IL17A or parathyroid hormone (PTH) were found to be consistently downregulated by 4-OH-PCB52. Most of the genes affected by PCB52 and 4-OH-PCB52 were different and, of those that were the same, many were changed in an opposite direction. These studies provide insight into how PCB52 or its metabolites may cause adipose dysfunction to cause disease.
Collapse
Affiliation(s)
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States.
| |
Collapse
|
19
|
Behan-Bush R, Liszewski JN, Schrodt MV, Vats B, Li X, Lehmler HJ, Klingelhutz AJ, Ankrum JA. Toxicity Impacts on Human Adipose Mesenchymal Stem/Stromal Cells Acutely Exposed to Aroclor and Non-Aroclor Mixtures of Polychlorinated Biphenyl. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1731-1742. [PMID: 36651682 PMCID: PMC9893815 DOI: 10.1021/acs.est.2c07281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Polychlorinated biphenyl (PCB) accumulates in adipose where it may impact the growth and function of cells within the tissue. This is particularly concerning during adolescence when adipocytes expand rapidly. Herein, we sought to understand how exposure to PCB mixtures found in U.S. schools affects human adipose mesenchymal stem/stromal cell (MSC) health and function. We investigated how exposure to Aroclor 1016 and Aroclor 1254, as well as a newly characterized non-Aroclor mixture that resembles the PCB profile found in cabinets, Cabinet Mixture, affects adipose MSC growth, viability, and function in vitro. We found that exposure to all three mixtures resulted in two distinct types of toxicity. At PCB concentrations >20 μM, the majority of MSCs die, while at 1-10 μM, MSCs remained viable but display numerous alterations to their phenotype. At these sublethal concentrations, the MSC rate of expansion slowed and morphology changed. Further assessment revealed that PCB-exposed MSCs had impaired adipogenesis and a modest decrease in immunosuppressive capabilities. Thus, exposure to PCB mixtures found in schools negatively impacts the health and function of adipose MSCs. This work has implications for human health due to MSCs' role in supporting the growth and maintenance of adipose tissue.
Collapse
Affiliation(s)
- Riley
M. Behan-Bush
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jesse N. Liszewski
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| | - Michael V. Schrodt
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| | - Bhavya Vats
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Xueshu Li
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Aloysius J. Klingelhutz
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Microbiology and Immunology, University
of Iowa, Iowa City, Iowa 52242, United States
| | - James A. Ankrum
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
20
|
Shi J, Huang L, Sanganyado E, Mo J, Zhao H, Xiang L, Wong MH, Liu W. Spatial distribution and ecological risks of polychlorinated biphenyls in a river basin affected by traditional and emerging electronic waste recycling in South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114010. [PMID: 36030683 DOI: 10.1016/j.ecoenv.2022.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
With development of e-waste related legislation in China, formal recycling activities are designated in some areas while informal ones are illegally transferred to emerging areas to avoid supervision. However, the resulting environmental impact and ecological risks are not clear. Here, we investigated the discharge of polychlorinated biphenyls (PCBs) to soil and aquatic environments by e-waste recycling activities in the Lian River Basin, China. The study area included a designated industrial park in the traditional e-waste recycling area (Guiyu, known as the world's largest e-waste center), several emerging informal recycling zones, and their surrounding areas and coastal area. A total of 27 PCBs were analyzed, and the highest concentration was found in an emerging site for soil (354 ng g-1) and in a traditional site for sediment (1350 ng g--1) respectively. The pollution levels were significantly higher in both the traditional and emerging recycling areas than in their respective upstream countryside areas (p = 0.0356 and 0.0179, respectively). Source analysis revealed that the traditional and emerging areas had similar PCB sources mainly associated with three PCB technical mixtures manufactured in Japan (KC600) and the USA (Aroclor 1260 and Aroclor 1262). The PCB pollution in their downstream areas including the coastal area was evidently affected by the formal and informal recycling activities through river runoff. The ecological risk assessments showed that PCBs in soils and sediments in the Lian River Basin could cause adverse ecotoxicological consequences to humans and aquatic organisms.
Collapse
Affiliation(s)
- Jingchun Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Linlin Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of China
| | - Hongzhi Zhao
- College of Environmental Science & Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong, Special Administrative Region of China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, Special Administrative Region of China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
21
|
Transcriptome sequencing of 3,3',4,4',5-Pentachlorobiphenyl (PCB126)-treated human preadipocytes demonstrates progressive changes in pathways associated with inflammation and diabetes. Toxicol In Vitro 2022; 83:105396. [PMID: 35618242 DOI: 10.1016/j.tiv.2022.105396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that accumulate in adipose tissue and have been associated with cardiometabolic disease. We have previously demonstrated that exposure of human preadipocytes to the dioxin-like PCB126 disrupts adipogenesis via the aryl hydrocarbon receptor (AhR). To further understand how PCB126 disrupts adipose tissue cells, we performed RNAseq analysis of PCB126-treated human preadipocytes over a 3-day time course. The most significant predicted upstream regulator affected by PCB126 exposure at the early time point of 9 h was the AhR. Progressive changes occurred in the number and magnitude of transcript levels of genes associated with inflammation, most closely fitting the pathways of cytokine-cytokine-receptor signaling and the AGE-RAGE diabetic complications pathway. Transcript levels of genes involved in the IL-17A, IL-1β, MAP kinase, and NF-κB signaling pathways were increasingly dysregulated by PCB126 over time. Our results illustrate the progressive time-dependent nature of transcriptional changes caused by toxicants such as PCB126, point to important pathways affected by PCB126 exposure, and provide a rich dataset for further studies to address how PCB126 and other AhR agonists disrupt preadipocyte function. These findings have implications for understanding how dioxin-like PCBs and other dioxin-like compounds are involved in the development of obesity and diabetes.
Collapse
|
22
|
Assaggaf H, Yoo C, Lucchini RG, Black SM, Hamed M, Minshawi F, Felty Q. Polychlorinated Biphenyls and Pulmonary Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4705. [PMID: 35457576 PMCID: PMC9029704 DOI: 10.3390/ijerph19084705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that were banned because of their potential carcinogenicity. Population studies have shown that PCBs are associated with lung toxicity and hypertension. The objective of this study was to evaluate whether higher exposure to PCB congeners is associated with the risk of pulmonary hypertension. Serum levels of PCBs in 284 subjects with combined risk factors for pulmonary arterial hypertension (PAH) were compared to 4210 subjects with no risk for PAH using the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2004. The major findings from this study include significantly higher PCB levels in PAH subjects compared to non-PAH subjects; for example, the geometric mean (GM) of PCB74 was 15.91 (ng/g) (14.45-17.53) vs. 11.48 (ng/g) (10.84-12.16), respectively. Serum levels of PCB congeners showed an increasing trend in the age group 20-59 years as PCB180 GM was 19.45 (ng/g) in PAH vs. 12.75 (ng/g) in the control. A higher body burden of PCB153 followed by PCB138, PCB180, and PCB118 was observed. Estimated age, race, BMI, and gender-adjusted ORs for PCB congener levels in subjects with the combined risk factors for PAH compared to controls was significant; for example, PCB99 (OR: 1.5 (CI: 1.49-1.50). In summary, these findings indicate that exposure, as well as body burden estimated based on lipid adjustment of PCBs, were higher in people with risk factors for PAH, and PCB congeners accumulated with age. These findings should be interpreted with caution because of the use of cross-sectional self-reported data and a small sample size of subjects with combined risk factors for pulmonary arterial hypertension. Nonetheless, our finding emphasizes a need for a comprehensive environmental molecular epidemiologic study to determine the potential role of environmental exposures to PCBs in the development of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (F.M.)
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA;
| | - Roberto G. Lucchini
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA;
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Steven M. Black
- FIU-Center for Translational Science, Port St. Lucie, FL 34987, USA;
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (F.M.)
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
23
|
Casey A, Bush B, Carpenter DO. PCBs in indoor air and human blood in Pittsfield, Massachusetts. CHEMOSPHERE 2022; 293:133551. [PMID: 35033515 DOI: 10.1016/j.chemosphere.2022.133551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Concentrations of polychlorinated biphenyls (PCBs) and three chlorinated pesticides were determined in serum from 21 residents of Pittsfield, MA and in the basement, living room and outdoor air of the 10 homes in which they lived. Median serum PCB levels were 4.2 ng/g, which are at least four times the average level in the US population, and consisted primarily of more highly chlorinated, persistent congeners. This reflects contamination with PCBs coming from the local General Electric facility. Median basement air concentration was 20.3 ng/m3, while the median living room air was 11.4 ng/m3 and median outdoor air concentration was 3.0 ng/m3. The PCB congeners detected in air were primarily low chlorinated (four and fewer) congeners, reflecting the greater volatility of PCBs with fewer chlorines. The congener pattern between basement and living room air showed a 95% correlation, while correlation with outdoor air was much less. While the congener pattern in air is very different from that of the PCB products used in Pittsfield (Aroclors 1254 and 1260), low chlorinated PCBs are detected in the vapor phase after air is blown across the commercial mixtures. The human serum samples did not show detectible levels of many of the congeners seen in the basement air samples, reflecting rapid metabolism of lower chlorinated PCBs by the human body. However, with continuous inhalation of indoor air, especially in the living room, the exposure to these non-persistent congeners may still have adverse health effects. Cellular studies of some of these non-persistent, low chlorinated congeners indicate that they are neurotoxic, mutagenic and cytotoxic. These results demonstrate the importance of consideration of inhalation of PCBs as a route of exposure, especially in indoor sites, and suggest that monitoring serum PCB concentration may not always provide a good measurement of exposure, especially to congeners that are relatively rapidly metabolized but have significant toxicity.
Collapse
Affiliation(s)
- Ann Casey
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA
| | - Brian Bush
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA.
| |
Collapse
|
24
|
Wang H, Adamcakova-Dodd A, Lehmler HJ, Hornbuckle KC, Thorne PS. Toxicity Assessment of 91-Day Repeated Inhalation Exposure to an Indoor School Air Mixture of PCBs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1780-1790. [PMID: 34994547 PMCID: PMC9122270 DOI: 10.1021/acs.est.1c05084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
School indoor air contaminated with polychlorinated biphenyls (PCBs) released from older building materials and paint pigments may pose health risks to children, as well as teachers and staff, by inhalation of PCBs. The health effects of long-term inhalation exposure to PCBs are poorly understood. We conducted a comprehensive toxicity assessment of 91-day repeated inhalation exposure to a lab-generated mixture of PCBs designed to emulate indoor school air, combining transcriptomics, metabolomics, and neurobehavioral outcomes. Female Sprague-Dawley rats were exposed to school air mixture (SAM+) at a concentration of 45.5 ± 5.9 μg/m3 ∑209PCB or filtered air 4 h/day, 6 days/week for 13 weeks using nose-only exposure systems. The congener-specific PCB body burden was quantified in major tissues using GC-MS/MS. The generated SAM+ vapor recapitulated the target school air profile with a similarity coefficient, cos θ of 0.91. PCB inhalation yielded 875-9930 ng/g ∑209PCBlipid weight levels in tissues in the following ascending order: brain < liver < lung < serum < adipose tissue. We observed that PCB exposure impaired memory, induced anxiety-like behavior, significantly reduced white blood cell counts, mildly disrupted metabolomics in plasma, and influenced transcription processes in the brain with 274 upregulated and 58 downregulated genes. With relatively high exposure and tissue loading, evidence of toxicity from half the end points tested was seen in the rats.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
25
|
Bannavti MK, Jahnke JC, Marek RF, Just CL, Hornbuckle KC. Room-to-Room Variability of Airborne Polychlorinated Biphenyls in Schools and the Application of Air Sampling for Targeted Source Evaluation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9460-9468. [PMID: 34033460 PMCID: PMC8427462 DOI: 10.1021/acs.est.0c08149] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Airborne polychlorinated biphenyl (PCB) concentrations are higher indoors than outdoors due to their historical use in building materials and their presence in modern paints and surface treatments. For some populations, including school children, PCB levels indoors result in inhalation exposures that may be greater than or equivalent to exposure through diet. In a school, PCB exposure may come from multiple sources. We hypothesized that there are both Aroclor and non-Aroclor sources within a single school and that PCB concentration and congener profiles differ among rooms within a single building. To evaluate this hypothesis and to identify potential localized sources, we measured airborne PCBs in nine rooms in a school. We found that schoolroom concentrations exceed outdoor air concentrations. Schoolroom concentrations and congener profiles also varied from one room to another. The concentrations were highest in the math room (35.75 ng m-3 ± 8.08) and lowest in the practice gym (1.54 ng m-3 ± 0.35). Rooms in the oldest wing of the building, originally constructed between 1920 and 1970, had the highest concentrations. The congener distribution patterns indicate historic use of Aroclor 1254 as well as modern sources of non-Aroclor congeners associated with paint pigments and surface coatings. Our findings suggest this noninvasive source identification method presents an opportunity for targeted source testing for more cost-effective prioritization of materials remediation in schools.
Collapse
Affiliation(s)
| | | | - Rachel F. Marek
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa USA 52242
| | - Craig L. Just
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa USA 52242
| | - Keri C. Hornbuckle
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa USA 52242
| |
Collapse
|
26
|
Jeong S, Lee JH, Ha JH, Kim J, Kim I, Bae S. An Exploratory Study of the Relationships Between Diesel Engine Exhaust Particle Inhalation, Pulmonary Inflammation and Anxious Behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031166. [PMID: 33525689 PMCID: PMC7908540 DOI: 10.3390/ijerph18031166] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recent technical developments brought negative side effects such as air pollution and large-scale fires, increasingly exposing people to diesel engine exhaust particles (DEP). Testing how DEP inhalation triggers pathophysiology in animal models could be useful in determining how it affects humans. To this end, the aim of this study was to investigate the effects of pulmonary exposure to DEP for seven consecutive days in experimental male C5BL6/N mice. Twenty-four C5BL6/N mice were treated with one of the three test materials: distilled water for control, a low DEP exposure (5 mg/kg), or a high DEP exposure (15 mg/kg). Exposure to DEP induced decreased body weight; however, it gradually increased pulmonary weight in a DEP-dose-dependent manner. DEP exposure significantly elevated soot accumulation in the lungs, with the alteration of pulmonary homeostasis. It also elevated infiltrated immune cells, thus significantly increasing inflammatory cytokine mRNA and protein production in the lungs and broncho-alveolar lavage fluid, respectively. Pulmonary DEP exposure also altered behavioral responses in the open field test (OFT). Low exposure elevated moving distance and speed, while significantly decreasing the number of trials to enter the central zone. Different concentrations of DEP resulted in different behavioral changes; however, while anxiety levels increased, their degree was independent of DEP concentrations. Results suggest that DEP exposure may possess pro-inflammatory responses in the lungs and trigger anxiety.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea;
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Jong-Hwa Lee
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Jung-Heun Ha
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (J.-H.H.); (I.K.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Jinhee Kim
- Drug Information Platform Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Inyong Kim
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (J.-H.H.); (I.K.)
| | - Sungryong Bae
- Department of Fire Protection and Disaster Management, Chosun University, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-6637
| |
Collapse
|