1
|
He Y, Yun H, Peng L, Wang W, Xu T, Zhang W, Li X. Synthetic microbial community maintains the functional stability of aerobic denitrification under environmental disturbances: Insight into the mechanism of interspecific division of labor. WATER RESEARCH 2025; 277:123270. [PMID: 40020349 DOI: 10.1016/j.watres.2025.123270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
Understanding how synthetic microbial community (SMC) respond to environmental disturbances is the key to realizing SMC engineering applications. Here, dibutyl phthalate (DBP) and levofloxacin (LOFX) were used as environmental disturbances to study their effects on the aerobic denitrification functional stability of SMC composed of Pseudomonas aeruginosa N2 (PA), Acinetobacter baumannii N1(AC) and Aeromonas hydrophila (AH). The results showed that aerobic denitrification efficiency could be maintained at about 93 % under DBP or LOFX disturbance, and interspecific communication was mainly carried out through N-butyryl-L-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-L-homoserine lactone (3OC12-HSL), correspondingly. DBP and LOFX induced the acceleration of tricarboxylic acid (TCA) cycle, which facilitated the energy flux and extracellular polymeric substances (EPS) production, thereby allowing SMC to adapt to disturbances. Under DBP disturbance, DBP stimulated phenazine-1-carboxylic acid production to accelerate electron transfer from the quinone pool to complex III, resulting in an increase in electron transfer activity. Up-regulation of complex I, complex III and heme synthesis genes under LOFX disturbance led to enhanced denitrification enzymes expression and electron transfer efficiency. SMC re-regulated different metabolic pathways to build metabolic networks to maintain normal metabolic activity under different disturbances. Overall, SMC maintained functional stability through the labor division in modulation of interspecific communication, formation of defensive barriers, promotion of energy flux, directional transfer of electron flux, and reconstruction of metabolic networks. DBP stimulated AH and PA to occupy functional dominance, while LOFX induced AC and PA to play a major role. The understanding of the stability mechanism under different environmental disturbances provides valuable guidance for stability maintenance and engineering applications of SMC.
Collapse
Affiliation(s)
- Yue He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, China.
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, China
| | - Ting Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, China
| | - Wenjie Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Wang Y, Zhao J, Bian J, Li R, Xu S, Liu R, Li YY, Liu H, Qu J. Hydrolytic Dehalogenation of Toxic Haloacetic Acids via Carbon Metabolism Regulation during Microbial Denitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40434012 DOI: 10.1021/acs.est.5c04881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Microbial denitrification is essential in the nitrogen cycle to enhance the quality of the reclaimed water. In addition to nitrogen removal, it has the potential to control trace pollutants. However, the fates of toxic disinfection byproducts (DBPs) on denitrification remain unelucidated. The current study focused on Paracoccus denitrificans (P. denitrificans) to investigate the response mechanisms of denitrifying microorganisms to HAAs, one of the main categories of DBPs. Upon exposure to 20 μM monoiodoacetic acid (MIAA), the number of extracellular reactive oxygen species in P. denitrificans increased to 2.7 times at 16 h. Concurrently, the specific nitrate reduction rate dropped by 9.3% and the specific growth rate declined by 26.7%, leading to the slowdown of the denitrification process. Nevertheless, P. denitrificans increased the activity of the tricarboxylic acid cycle and electron transport for sustainable denitrification under MIAA stress. Microbial hydrolytic dehalogenation contributed to over 70.0% MIAA removal, and it led to the release of iodine ions. MIAA was detoxified and concerted into low-molecular-weight organic acids, which then participated in carbon metabolism. The removal efficiency of different toxic HAAs was also compared to evaluate the adaptiveness of the DBP control. This research highlighted the interactions between denitrifying microorganisms and DBPs, providing new insights into the ecological safety protection of high-quality reclaimed water.
Collapse
Affiliation(s)
- Yuting Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiyong Bian
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rui Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Yang T, Gong X, Xu A, Wang B, Huang Z, Wang C, Gao D. Integrated evaluation for advanced removal of nitrate using novel solid carbon biochar/corncob/PHBV composite: Insight into electron transfer and metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138549. [PMID: 40359745 DOI: 10.1016/j.jhazmat.2025.138549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
This study developed a novel Biochar/Corncob/PHBV (BCP) composite material, integrating the electron transfer capability of biochar, the cost-effectiveness of corncob, and the sustained carbon release performance of PHBV. The BCP system achieved a maximum nitrate removal efficiency of 97.3 %, significantly outperforming the single PHBV system (91.05 %), while effectively reducing nitrous oxide and other greenhouse gas emissions. It also demonstrated stable carbon release and enhanced electron transfer capabilities, contributing to a more sustainable denitrification process. The physical and chemical characterization of BCP confirmed that its superior performance is attributed to the uniformly distributed functional groups (e.g., CO and -COOH) on the surface and its porous structure, which facilitated electron transfer and microbial adhesion. Metagenomic and microbial analyses further revealed that BCP enriched functional genera such as Cellulomonas and Chryseobacterium and significantly increased the abundance of key functional genes related to nitrate reduction (e.g., NaR and NiR), enhancing organic matter decomposition and microbial nitrogen transformation. Beyond improving nitrate removal efficiency compared to PHBV, the BCP material offers practical engineering value by addressing carbon source limitations in long-term wastewater treatment applications. Its enhanced electron transfer and microbial enrichment suggest strong potential for application in constructed wetlands, biofilters, and other decentralized wastewater treatment systems. The study demonstrates that the BCP composite is not only a viable alternative to traditional PHBV but also a cost-effective and environmentally friendly material with broad applicability in nitrogen pollution control.
Collapse
Affiliation(s)
- Tianfu Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Boyuan Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zheng Huang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chuchu Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
4
|
Niu J, Liu Y, Chao C, Wu Y, Wang Q, Zhao Y. Regulation of microcurrent on carbon and nitrogen metabolism in denitrification under low carbon-to-nitrogen ratio: Optimizing carbon flux distribution. BIORESOURCE TECHNOLOGY 2025; 432:132668. [PMID: 40368312 DOI: 10.1016/j.biortech.2025.132668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Synergy of autotrophic and heterotrophic denitrification can achieve low-carbon and high-efficient nitrogen removal. However, it remains unclear how microcurrent-driven hydrogen autotrophic denitrification regulates carbon flux distribution (nitrogen reduction, poly-β-hydroxyalkanoate (PHA) storage, and cell growth) in heterotrophic denitrification. This work compared biofilm reactor with biofilm electrode reactor under different carbon-to-nitrogen (C/N) ratios (10 - 3). At C/N ratio of 3, microcurrent accelerated nitrate reduction rate by 0.35 mg/(L·min) and reduced nitrite accumulation by 10.29 mg/L, thus decreasing nitrogen reduction proportion by 11.21%. Meanwhile, PHA storage and cell growth proportions increased by 0.03% and 11.18%, respectively. PHA was initially synthesized and subsequently utilized for nicotinamide adenine dinucleotide and energy production, while cell growth preferentially utilized limited carbon sources to maintain system stability. Increased abundance of hydrogen autotrophic denitrifiers, heterotrophic denitrifiers, and PHA storage bacteria confirmed optimization of microcurrent on carbon flux distribution. These findings advanced the understanding of microcurrent regulation on carbon flux.
Collapse
Affiliation(s)
- Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chunfang Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Xu A, Gao D, Wu WM, Gong X, Liang H. Enhanced denitrification using iron modified biochar under low carbon source condition: Modulating community assembly, allocating carbon metabolism and facilitating electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125354. [PMID: 40222078 DOI: 10.1016/j.jenvman.2025.125354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Biochar can modulate microbial community structure to enhance denitrification but the activity is still restricted by the availability of electron transfer (ETS) under metabolic imbalance conditions. Here we developed iron (Ⅲ) modified biochar (FeBC) to substantially mitigate this electron limitation, enhance ETS and accelerate denitrification reaction via intracellular metabolism and community interaction. The results demonstrated that FeBC could significantly improve the denitrification performance, the nitrate removal rate was significantly increased by 30 % at C/N ratio of 3 (W/W) with little nitrite and nitrous oxide accumulation, attributing to the enhanced activities of the ETS and denitrifying reductases and complex microbial interactions via increased abundance of microorganisms involved in carbon and nitrogen transformations. Biochemical quantification and electrochemical analysis, revealed that FeBC activated the acceleration of the ETS process. Comparative metagenome analyses indicated that upregulating key enzymes in the tricarboxylic acid cycle was the potential respiratory enzyme associated with FeBC-mediated ETS. NADH/NAD+ circulation stimulate the startup of carbon metabolism. This energy-linked mechanism could provide ATP for denitrification. This study revealed the functional roles of FeBC in mediating ETS and regulating the bacterial community to achieve enhanced denitrification.
Collapse
Affiliation(s)
- Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305-4020, USA
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
6
|
Xie P, Xu XJ, Zhang Q, Hou YY, Fan KL, Zhang RC, Chen C, Wang AJ, Lee DJ, Ren NQ. Potent and Selective Inhibition of Sulfate-Reducing Bacteria by Neutral Red. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6115-6125. [PMID: 39972257 DOI: 10.1021/acs.est.4c09915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sulfate-reducing bacteria (SRB) are anaerobic microorganisms that use sulfate as a terminal electron acceptor for the oxidation of organic compounds or H2. These organisms can cause a serious problem in, for example, the offshore oil industry, due to the production of sulfide. Thus, it is of fundamental and practical importance to identify potent and selective inhibitors of SRB. In this study, neutral red was identified as a previously unrecognized selective inhibitor of SRB, with several orders of magnitude higher potency than most commonly used industrial biocides and inorganic oxyanions. Neutral red remained a potent inhibitor of SRB growth under fermentative conditions and was tolerated by nitrate-reducing bacteria. After 30 days of exposure to 14.2 μM neutral red, the sulfidogenesis activity of SRB-enriched biomass was reduced by 98.3%, and the abundance of SRB populations declined from 25.5% to 0.76%. Transcriptomic analysis revealed that the inhibition of the central sulfate reduction pathway was implicated in the mechanism of neutral red toxicity against SRB growth. Furthermore, downregulation of two electron transport complexes (QmoABC and DsrMKJOP), ATP synthase, as well as cytoplasmic/periplasmic hydrogenase suggested the collapse of the proton gradient. These findings have implications for environmental control of SRB and may enhance economic benefits in industrial operations.
Collapse
Affiliation(s)
- Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan-Yuan Hou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Kai-Li Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Ruo-Chen Zhang
- School of Civil and Transportation and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| |
Collapse
|
7
|
Jiang BN, Zhang YY, Wang Y, Liu HQ, Zhang ZY, Yang YJ, Song HL. Microbial biomass stoichiometry and proportion of Fe organic complexes separately shape the heterogeneity of mixotrophic denitrification and net N 2O sinks in iron-carbon amended ecological ditch. WATER RESEARCH 2025; 272:122945. [PMID: 39674145 DOI: 10.1016/j.watres.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Coupling of iron-carbon can form a mixotrophic denitrification and is regarded as a promising solution for purifying nitrate-rich agricultural runoff. However, its prevalence and efficacy of the synergistic augmentation of nitrogen elimination and net N2O sinks remain crucial knowledge gaps in ecological ditches (eco-ditches). Here, we investigated the underlying variability mechanisms by implementing sponge iron (sFe)-coupled Iris hexagonus (IH)- or Myriophyllum aquaticum (MA)-derived biochar produced via microwave-assisted (MW) pyrolysis and conventional pyrolysis. Surprisingly, unamened eco-ditch became net N2O sink while exhibiting a significant increase in total nitrogen (TN) removal rate of 319 % (P < 0.001) compared to soil ditch. The integration of MW pyrolyzed IH-derived biochar with sFe to amend eco-ditch achieved synchronous enhancement in net N2O sinks (P < 0.01) and TN removal rate (P < 0.001), whereas the remaining amended eco-ditches that significantly intensified TN removal performance, were N2O emitters. Such heterogeneity primarily depends on Fe organic complexes (Fep) / the total reactive Fe oxides (Fed) ratio, rather than the prevailing nosZ gene, underscoring that low density metastable reactive iron plays a more important role than biological reactions during the mixotrophic denitrification process. As such, iron oxides are not necessarily a bottleneck for denitrification and contribute to N2O sinks. Conversely, microbial biomass C:(C + N), together with nirK and nosZ genes, mainly explain the TN removal heterogeneity of sFe-biochar eco-ditch. This study revisits the discrepant resilience of iron-carbon coupling to N abatement and N2O sink-induced cooling and has significant practical implications for better understanding the cascading effects of mixotrophic denitrification driven by iron-carbon interactions.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Ying-Ying Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Yan Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Hai-Qin Liu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China.
| | - Yi-Jing Yang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, , PR China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
8
|
Wang Y, Wang Z, Wang K, Liang Z, Wang Q, Ding F, Lu Y, Su C. Insight into the evolution of phosphorous conversion, microbial community and functional gene expression during anaerobic co-digestion of food waste and excess sludge with spicy substances exposure. CHEMOSPHERE 2025; 371:144053. [PMID: 39743152 DOI: 10.1016/j.chemosphere.2024.144053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Garlic and chili are widely used as food flavoring agents in food cooking, therefore might be accumulated in large amounts in food waste (FW). The effects of garlic and chili on the dissolution, hydrolysis, acidification and methanation in an anaerobic co-digestion system were investigated during the combined co-digestion of FW and excess sludge (ES). Additionally, the transformation of phosphorus form and microbial metabolism changes during the process were analyzed. The results showed the addition of garlic and chili promoted the release of protein in the soluble chemical oxygen demand. Secondly, the addition of garlic and chili up-regulated the relative abundances of key coding genes pstS, pstA, pstB and pstC. The relative abundances of the pstS and pstC genes increased by 0.0113% and 0.0021%, respectively, when 10 g garlic was added compared with no garlic. Furthermore, with respect to phosphorus conversion, the addition of garlic inhibited the conversion of solid phosphorus to gaseous phosphorus, whereas the addition of chili had the opposite effect. Meanwhile, garlic and chili inhibited the expression of key coding genes in phosphofructokinase. This work provides new insights into the phosphorus conversion and microbial metabolism in the process of anaerobic co-digestion of FW and ES under the influence of spicy substances.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Kaiyi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhu Liang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Qing Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Fengxiu Ding
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
9
|
Zhang Y, Lu J, Zhang XZ, Zhang ZZ, Jin RC. PHA Microplastic Aging Decreases N 2O Sink Capacity: Released γ-Butyrolactone Decouples Denitrifying Electron Transfer and Oxidative Phosphorylation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1298-1307. [PMID: 39780534 DOI: 10.1021/acs.est.4c07717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Bacterial denitrification is a main pathway for soil N2O sinks, which is crucial for assessing and controlling N2O emissions. Biobased polyhydroxyalkanoate (PHA) microplastic particles (MPs) degrade slowly in conventional environments, remaining inert for extended periods. However, the impacts of PHA microplastic aging on the bacterial N2O sink capacity before degradation remain poorly understood. Here, the soil model strain Paracoccus denitrificans was exposed to 0.05-0.5% (w/w) virgin and aged PHA MPs. Although no significant changes in the molecular weights were observed, aged PHA MPs hindered cell growth and N2O reduction rates, leading to a surge in N2O emissions. 1H NMR spectroscopy and UPLC-QTOF-MS analysis identified γ-butyrolactone as the key component released from aged PHA MPs. Metabolic verifications at the cellular level confirmed its inhibition on the N2O sink and ATP synthesis. The γ-butyrolactone that protonated and hydrolyzed spontaneously in the periplasm would compete for protons with ATPase and destroy the coupling between denitrifying electron transfer and oxidative phosphorylation. Consequently, energy-deficient cells reduced the electron supply for N2O reduction, which did not contribute to energy conservation. This work unveils a novel mechanism by which PHA microplastic aging impairs the bacterial N2O sink and highlights the need to consider environmental risks posed by biobased microplastic aging.
Collapse
Affiliation(s)
- Yu Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Jing Lu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Zheng Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Zheng-Zhe Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
10
|
Wang Y, Tian L, Zheng J, Tan Y, Li Y, Wei L, Zhang F, Zhu L. Enhancing nitrogen removal in low C/N wastewater with recycled sludge-derived biochar: A sustainable solution. WATER RESEARCH 2024; 267:122551. [PMID: 39369509 DOI: 10.1016/j.watres.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Denitrification is an important biological process in wastewater treatment plants (WWTPs). However, a low carbon-to-nitrogen (C/N) ratio limits the availability of organic carbon, potentially reducing denitrification efficiency. This study investigates the impact of sludge-derived biochar on the nitrogen removal of activated sludge for low C/N ratio municipal wastewater. Sludge-based biochar was characterized by its physicochemical properties, revealing that biochar prepared at 400 °C exhibited the highest specific surface area and the most favorable surface functional groups for electron transfer. The results from batch tests showed that adding 4 g/L of biochar dosage enhanced denitrification rates and total nitrogen (TN) removal efficiency the most. Sequencing batch reactors (SBRs) experiments further confirmed that biochar dosgae improved the removal efficiencies of COD, NH4+-N, and TN, achieving stable values of 97.2 ± 1.2 %, 99.2 ± 0.6 %, and 83.8 ± 2.4 %, respectively. Metabolic and electrochemical analyses revealed that biochar addition enhanced the activity of denitrification enzymes, increasing the ammonia oxidation rate by 12.9 ± 0.7 %, nitrite oxidation rate by 14.7 ± 1.2 %, nitrate reduction rate by 36.9 ± 1.5 %, and nitrite reduction rate by 16.4 ± 0.8 %. The relative abundance of denitrification functional genes (amoA, nirS, nirK, narG, nosZ) increased, and the activities of the corresponding enzymes (AMO, NXR, NAP, NIR) rose by 23±6 %, 53±5 %, 260±15 %, and 55±7 %, respectively. This increase in enzyme activity suggested enhanced denitrification processes, which was further supported by the 60.1 ± 3.7 % increase in electron transfer system activity (ETSA), indicating that biochar acted as an electron shuttle. This study proposes a potential sustainable approach for sludge recycling and enhanced wastewater nitrogen removal under low C/N conditions.
Collapse
Affiliation(s)
- Yinglin Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luling Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yixiao Tan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lecheng Wei
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Zhang
- School of Chemistry and Physics, Queensland University of Technology, George Street, Brisbane, QLD 4000, Australia
| | - Liang Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
11
|
Liu X, Liu X, Gao S. The electrochemical mechanism of biochar for mediating the product ratio of N 2O/(N 2O + N 2) in the denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175566. [PMID: 39153632 DOI: 10.1016/j.scitotenv.2024.175566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The biochar electrochemical properties and surface functional groups significantly impact N2O production and reduction during denitrification process. However, its effects on N2O emissions during the denitrification process and its electrochemical mechanisms remain unclear. The study examined the impact of pristine and oxidized biochar combined with two types of nitrogen fertilizers on the N2O/(N2O + N2) ratio and N2O emissions in an incubation experiment with seven treatments: (1) CK (no application of chemical fertilizer); (2) N1 (applying (NH4)2SO4); (3) N1B ((NH4)2SO4 + pristine biochar); (4) N1BO ((NH4)2SO4 + oxidized biochar); (5) N2 (applying KNO3); (6) N2B (KNO3 + pristine biochar); (7) N2BO (KNO3 + oxidized biochar). The study found that in comparison with applying nitrogen fertilizer alone, combining pristine biochar decreased soil N2O concentration by 7.1 %-85.8 %, while combining oxidized biochar increased it by 15.7 %-125.6 %. Applying pristine biochar reduced N2O/(N2O + N2) ratio by 10.4 %-86.2 %, whereas applying oxidized biochar increased it by 12.9 %-121.6 %. The application of pristine biochar increased the nosZ gene abundance and decreased the (nirS + nirK)/nosZ ratio, which contributed to reducing N2O to N2. Compared with oxidized biochar, the oxygen-containing functional groups of pristine biochar decreased by 46.6 %, and it possessed a higher specific surface area (23.01 m2 g-1) and electrical conductivity (0.003 mS cm-1). The correlation analysis showed that DOC and inorganic nitrogen were the key environmental factors affecting N2O emissions. Additionally, the electrical conductivity, specific capacitance, and oxygen-containing functional groups of the biochar were identified as the main factors driving N2O emissions. The SEM analysis suggested that the indirect influence of biochar electrochemical properties on N2O emissions was greater than its direct influence. Our work provides fresh perspectives on reducing soil N2O emissions and establishes a theoretical foundation for the subsequent preparation of biochar materials with enhanced N2O reduction capabilities.
Collapse
Affiliation(s)
- Xiaowan Liu
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingren Liu
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shangjie Gao
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Tang Y, Khan E, Tsang DCW. Waste Nitrogen Upcycling to Amino Acids during Anaerobic Fermentation on Biochar: An Active Strategy for Regulating Metabolic Reducing Power. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20060-20072. [PMID: 39485020 DOI: 10.1021/acs.est.4c08890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This study proposes a novel strategy that utilizes biochar (BC) during anaerobic fermentation (AF) to generate amino acids (AAs) toward nitrogen upcycling. The BC, pyrolyzed at 800 °C (BC800) to enhance graphite structures and electron-accepting sites, effectively addresses issues related to biosynthetic reducing power nicotinamide adenine dinucleotide phosphate insufficiency by altering cellular conditions and alleviates feedback inhibition through the immobilization of end products. This process establishes unique microbial signaling and energy networks, with Escherichia coli becoming dominant in the biofilm. The conversion rate of ammonia-N to AAs-N within the biofilm reached 67.4% in BC800-AF, which was significantly higher compared to the levels in other AF reactors with BC pyrolyzed at 600 and 400 °C (45.9 and 22.5%, respectively), as well as a control AF reactor (<5%). Furthermore, in BC800-AF, the aromatic AAs (Aro-AAs) were as high as 70.8% of the AAs within the biofilm. The activities of key enzymes for Aro-AAs biosynthesis uniquely positively correlated with the electron-accepting capacity on BC800 (R2 ≥ 0.95). These findings hold promise for transforming existing AF reactors into factories that produce BC-based AAs, providing a more sustainable fertilizing agent than chemical fertilizers.
Collapse
Affiliation(s)
- Yanfei Tang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Hong Kong, China
| |
Collapse
|
13
|
Zhao Y, Yuan X, Du Z, Niu J, Song J, Zhai S, Liu Y, Nuramkhaan M. New insights into N 2O emission and electron competition under different chemical oxygen demand to nitrogen ratios in a biofilm system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175265. [PMID: 39102953 DOI: 10.1016/j.scitotenv.2024.175265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Nitrous oxide (N2O) is a greenhouse gas that could accumulate during the heterotrophic denitrification process. In this study, the effects of different chemical oxygen demand to nitrogen ratio (COD/N) on N2O production and electron competition was investigated. The electron competition was intensified with the decrease of electron supply, and Nos had the best electron competition ability. The model simulation results indicated that the degradation of NOx-Ns was a combination of diffusion and biological degradation. As reaction proceeding, N2O could accumulate inside biofilm. A thinner biofilm and a longer hydraulic retention time (HRT) might be an effective way to control N2O emission. The application of mathematical model is an opportunity to gain deep understanding of substrate degradation and electron competition inside biofilm.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Yuan
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Zihan Du
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China; Hebei Construction & Investment Group Rong Carbon Asset Management CO., LTD, 18F, Building 3, Hongrui Building, No. 6 Yuguang Street, Qiaoxi District, Shijiazhuang City, Hebei 050000, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Siyuan Zhai
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Marjangul Nuramkhaan
- Laboratory of Microbiology, Institute of Biology, Mongolian Academy of Sciences, Peace avenue-54b, Ulaanbaatar, Mongolia
| |
Collapse
|
14
|
Kong Z, Wang H, Wang H, Man S, Yan Q. Magnetite-mediated shifts in denitrifying consortia in bioelectrochemical system: Insights into species selection and metabolic dynamics. WATER RESEARCH 2024; 262:122132. [PMID: 39053208 DOI: 10.1016/j.watres.2024.122132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Conductive materials, such as magnetite, are recognized for their ability to enhance electron transfer and stimulate microbial metabolic activities. This study aimed to elucidate the metabolic potential and species interactions of dominant microbial species within complex communities influenced by magnetite. It indicated that the optimal dosage of magnetite at 4.5 mg/cm², would significantly improve denitrification efficiency and then reduce the time for removing 50 mg/L nitrate by 24.33 %. This enhancement was attributed to the reduced charge transfer resistance and the promoted formation of extracellular polymeric substances (EPS) facilitated by magnetite. Metagenomic analysis revealed that magnetite addition mitigated the competition among truncated denitrifiers for downstream nitrogen species, diminished the contribution of bacteria with complete nitrogen metabolism pathways to denitrification, and fostered a transition towards co-denitrification through interspecies cooperation, consequently leading to decreased nitrite accumulation and increased tolerance to nitrate shock loads. Furthermore, an in-depth study on a key species, Geobacter anodireducens JN93 within the bioelectrochemical system revealed that while magnetite with varying Fe(II) and Fe(III) ratios improved denitrification performance, the metabolic potential of Geobacter sp. varied for different nitrogen metabolism pathways. Collectively, this research provides insights into the microecological effects of magnetite on denitrifying consortia by shifting interspecific interactions via enhanced electron transfer.
Collapse
Affiliation(s)
- Ziang Kong
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - He Wang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Han Wang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| | - Shuaishuai Man
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Qun Yan
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| |
Collapse
|
15
|
Vasseghian Y, Nadagouda MM, Aminabhavi TM. Biochar-enhanced bioremediation of eutrophic waters impacted by algal blooms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122044. [PMID: 39096732 DOI: 10.1016/j.jenvman.2024.122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
The permanent problem of formation of algal blooms in water polluted with nitrogen and phosphorus is one of the formidable environmental problems. Biochar has the potential to solve the issues related to eutrophication due to its special structure and ability to absorb the nutrients. Biochar's exceptional nutrient absorption capacity allows it to absorb excess nutrients, causing the algae to use fewer nutrients. This review deals with effective performance of biochar in reducing the effects caused by algal blooms and improving the environmental conditions. Besides, an analysis of the issues involved addresses the origins and consequences of nitrogen and phosphorus pollution, and the formation of algal blooms is also reviewed. It then delves deeply into biochar, explaining its properties, production methods, and their uses in environmental contexts. The review emphasizes that biochar can be effective in dealing with many challenges associated with environments affected by algal blooms, specifically focusing on the positive effects of biochar and algae to examine their roles in controlling algae growth. Finally, the review emphasizes new achievements and innovative ideas to foster sustainable aquatic ecosystems. The discussions emphasize the central role of biochar in managing nutrient-rich waters and algal blooms.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taiwan.
| | - Megha M Nadagouda
- University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45221, USA
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul, 02841, Republic of Korea; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
16
|
Shi HT, Zeng QY, Feng XC, Xiao ZJ, Jiang CY, Wang WQ, Zhang X, Wang HC, Guo WQ, Ren NQ. How denitrifiers defense ciprofloxacin: Insights from intracellular and extracellular stress response. WATER RESEARCH 2024; 259:121851. [PMID: 38851110 DOI: 10.1016/j.watres.2024.121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Overuse of antibiotics has led to their existence in nitrogen-containing water. The impacts of antibiotics on bio-denitrification and the metabolic response of denitrifiers to antibiotics are unclear. We systematically analyzed the effect of ciprofloxacin (CIP) on bio-denitrification and found that 5 mg/L CIP greatly inhibited denitrification with a model denitrifier (Paracoccus denitrificans). Nitrate reduction decreased by 32.89 % and nitrous oxide emission increased by 75.53 %. The balance analysis of carbon and nitrogen metabolism during denitrification showed that CIP exposure blocked electron transfer and reduced the flow of substrate metabolism used for denitrification. Proteomics results showed that CIP exposure induced denitrifiers to use the pentose phosphate pathway more for substrate metabolism. This caused a substrate preference to generate NADPH to prevent cellular damage rather than NADH for denitrification. Notably, despite denitrifiers having antioxidant defenses, they could not completely prevent oxidative damage caused by CIP exposure. The effect of CIP exposure on denitrifiers after removal of extracellular polymeric substances (EPS) demonstrated that EPS around denitrifiers formed a barrier against CIP. Fluorescence and infrared spectroscopy revealed that the binding effect of proteins in EPS to CIP prevented damage. This study shows that denitrifiers resist antibiotic stress through different intracellular and extracellular defense strategies.
Collapse
Affiliation(s)
- Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Qin-Yao Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Chen-Yi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Wen-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| |
Collapse
|
17
|
Li P, Li Q, Lu H, Fu Z, Zhou J, Sun C, Wang X. Effect of sludge humic acid-derived nano-biochars on anaerobic degradation of sulfamethoxazole by Shewanella oneidensis MR-1. ENVIRONMENTAL RESEARCH 2024; 251:118655. [PMID: 38479717 DOI: 10.1016/j.envres.2024.118655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Some nano-biochars (nano-BCs) as electron mediators could enter into cells to directly promote intracellular electron transfer and cell activities. However, little information was available on the effect of nano-BCs on SMX degradation. In this study, nano-BCs were prepared using sludge-derived humic acid (SHA) and their effects on SMX degradation by Shewanella oneidensis MR-1 were investigated. Results showed that nano-BCs (Carbon dots, CDs, <10 nm) synthesized using SHA performed a better accelerating effect than that of the nano-BCs with a larger size (10-100 nm), which could be attributed to the better electron transfer abilities of CDs. The degradation rate of 10 mg/L SMX in the presence of 100 mg/L CDs was significantly increased by 84.6% compared to that without CDs. Further analysis showed that CDs could not only be combined with extracellular Fe(III) to accelerate its reduction, but also participate in the reduction of 4-aminobenzenesulphonic acid as an intermediate metabolite of SMX via coupling with extracellular Fe(III) reduction. Meanwhile, CDs could enter cells to directly participate in intracellular electron transfer, resulting in 32.2% and 25.2% increases of electron transfer system activity and ATP level, respectively. Moreover, the activities of SMX-degrading enzymes located in periplasm and cytoplasm were increased by around 2.2-fold in the presence of CDs. These results provide an insight into the accelerating effect of nano-BCs with the size of <10 nm on SMX degradation and an approach for SHA utilization.
Collapse
Affiliation(s)
- Peiwen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chenghao Sun
- SINOPEC (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd, Dalian, 116045, China.
| | - Xuehai Wang
- SINOPEC (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd, Dalian, 116045, China
| |
Collapse
|
18
|
Han Y, Li W, Gao Y, Cai T, Wang J, Liu Z, Yin J, Lu X, Zhen G. Biogas upgrading and membrane anti-fouling mechanisms in electrochemical anaerobic membrane bioreactor (EC-AnMBR): Focusing on spatio-temporal distribution of metabolic functionality of microorganisms. WATER RESEARCH 2024; 256:121557. [PMID: 38581982 DOI: 10.1016/j.watres.2024.121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Electrochemical anaerobic membrane bioreactor (EC-AnMBR) by integrating a composite anodic membrane (CAM), represents an effective method for promoting methanogenic performance and mitigating membrane fouling. However, the development and formation of electroactive biofilm on CAM, and the spatio-temporal distribution of key functional microorganisms, especially the degradation mechanism of organic pollutants in metabolic pathways were not well documented. In this work, two AnMBR systems (EC-AnMBR and traditional AnMBR) were constructed and operated to identify the role of CAM in metabolic pathway on biogas upgrading and mitigation of membrane fouling. The methane yield of EC-AnMBR at HRT of 20 days was 217.1 ± 25.6 mL-CH4/g COD, about 32.1 % higher compared to the traditional AnMBR. The 16S rRNA analysis revealed that the EC-AnMBR significantly promoted the growth of hydrolysis bacteria (Lactobacillus and SJA-15) and methanogenic archaea (Methanosaeta and Methanobacterium). Metagenomic analysis revealed that the EC-AnMBR promotes the upregulation of functional genes involved in carbohydrate metabolism (gap and kor) and methane metabolism (mtr, mcr, and hdr), improving the degradation of soluble microbial products (SMPs)/extracellular polymeric substances (EPS) on the CAM and enhancing the methanogens activity on the cathode. Moreover, CAM biofilm exhibits heterogeneity in the degradation of organic pollutants along its vertical depth. The bacteria with high hydrolyzing ability accumulated in the upper part, driving the feedstock degradation for higher starch, sucrose and galactose metabolism. A three-dimensional mesh-like cake structure with larger pores was formed as a biofilter in the middle and lower part of CAM, where the electroactive Geobacter sulfurreducens had high capabilities to directly store and transfer electrons for the degradation of organic pollutants. This outcome will further contribute to the comprehension of the metabolic mechanisms of CAM module on membrane fouling control and organic solid waste treatment and disposal.
Collapse
Affiliation(s)
- Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Jian Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663N. Zhongshan Rd., Shanghai 200062, PR China.
| |
Collapse
|
19
|
Oral B, Coşgun A, Günay ME, Yıldırım R. Machine learning-based exploration of biochar for environmental management and remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121162. [PMID: 38749129 DOI: 10.1016/j.jenvman.2024.121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Biochar has a wide range of applications, including environmental management, such as preventing soil and water pollution, removing heavy metals from water sources, and reducing air pollution. However, there are several challenges associated with the usage of biochar for these purposes, resulting in an abundance of experimental data in the literature. Accordingly, the purpose of this study is to examine the use of machine learning in biochar processes with an eye toward the potential of biochar in environmental remediation. First, recent developments in biochar utilization for the environment are summarized. Then, a bibliometric analysis is carried out to illustrate the major trends (demonstrating that the top three keywords are heavy metal, wastewater, and adsorption) and construct a comprehensive perspective for future studies. This is followed by a detailed review of machine learning applications, which reveals that adsorption efficiency and capacity are the primary utilization targets in biochar utilization. Finally, a comprehensive perspective is provided for the future. It is then concluded that machine learning can help to detect hidden patterns and make accurate predictions for determining the combination of variables that results in the desired properties which can be later used for decision-making, resource allocation, and environmental management.
Collapse
Affiliation(s)
- Burcu Oral
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey
| | - Ahmet Coşgun
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey
| | - M Erdem Günay
- Department of Energy Systems Engineering, Istanbul Bilgi University, 34060, Eyupsultan, Istanbul, Turkey.
| | - Ramazan Yıldırım
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
20
|
Ma WJ, Zhang HM, Ma ZS, You XJ, Wei XY, Li Y, Tian Y. Meta-analyzing the mechanism of pyrogenic biochar strengthens nitrogen removal performance in sulfur-driven autotrophic denitrification system: Evidence from metatranscriptomics. WATER RESEARCH 2024; 253:121296. [PMID: 38367378 DOI: 10.1016/j.watres.2024.121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Sulfur-driven autotrophic denitrification (SAD) exhibits significant benefits in treating low carbon/nitrogen wastewater. This study presents an eco-friendly, cost-effective, and highly efficient method for enhancing nitrogen removal performance. The addition of biochar prepared at 300 °C (BC300) notably increased nitrogen removal efficiency by 31.60 %. BC300 concurrently enhanced electron production, the activities of the electron transfer system, and electron acceptors. With BC300, the ratio of NADH/NAD+ rose 2.00±0.11 times compared to without biochar, and the expression of NAD(P)H dehydrogenase genes was markedly up-regulated. In the electron transfer system, BC300 improved the electroactivity of extracellular polymeric substances and the activities of NADH dehydrogenase and complex III in intracellular electron transfer. Subsequently, electrons were directed into denitrification enzymes, where the nar, nir, nor, and nos related genes were highly expressed with BC300 addition. Significantly, BC300 activated the Clp and quorum sensing systems, positively influencing numerous gene expressions and microbial communication. Furthermore, the O%, H%, molar O/C, and aromaticity index in biochar were identified as crucial bioavailable parameters for enhancing nitrogen removal in the SAD process. This study not only confirms the application potential of biochar in SAD, but also advances our comprehension of its underlying mechanisms.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Han-Min Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China.
| | - Zi-Shang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Xiu-Jia You
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Xin-Yue Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Yue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
21
|
Rajput P, Kumar P, Priya AK, Kumari S, Shiade SRG, Rajput VD, Fathi A, Pradhan A, Sarfraz R, Sushkova S, Mandzhieva S, Minkina T, Soldatov A, Wong MH, Rensing C. Nanomaterials and biochar mediated remediation of emerging contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170064. [PMID: 38242481 DOI: 10.1016/j.scitotenv.2024.170064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal. It provides a novel technique enabling the secure and sustainable removal of various ECs, including persistent organic compounds, microplastics, phthalate, etc. This extensive review presents a critical perspective on the current advancements and potential outcomes of nano-enhanced remediation techniques such as photocatalysis, nano-sensing, nano-enhanced sorbents, bio/phyto-remediation, which are applied to clean-up the natural environment. In addition, when dealing with residual contaminants, special attention is paid to both health and environmental implications; therefore, an evaluation of the long-term sustainability of nano-enhanced remediation methods has been considered. The integrated mechanical approaches were thoroughly discussed and presented in graphical forms. Thus, the critical evaluation of the integrated use of most emerging remediation technologies will open a new dimension in environmental safety and clean-up program.
Collapse
Affiliation(s)
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamil Nadu, India
| | | | | | | | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Rubab Sarfraz
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don 344006, Russia; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
22
|
He Y, Yun H, Peng L, Ji J, Wang W, Li X. Deciphering the potential role of quorum quenching in efficient aerobic denitrification driven by a synthetic microbial community. WATER RESEARCH 2024; 251:121162. [PMID: 38277828 DOI: 10.1016/j.watres.2024.121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Low efficiency is one of the main challenges for the application of aerobic denitrification technology in wastewater treatment. To improve denitrification efficiency, a synthetic microbial community (SMC) composed of denitrifiers Acinetobacter baumannii N1 (AC), Pseudomonas aeruginosa N2 (PA) and Aeromonas hydrophila (AH) were constructed. The nitrate (NO3--N) reduction efficiency of the SMC reached 97 % with little nitrite (NO2--N) accumulation, compared to the single-culture systems and co-culture systems. In the SMC, AH proved to mainly contribute to NO3--N reduction with the assistance of AC, while PA exerted NO2--N reduction. AC and AH secreted N-hexanoyl-DL-homoserine lactone (C6-HSL) to promote the electron transfer from the quinone pool to nitrate reductase. The declined N-(3-oxododecanoyl)-L-homoserine lactone (3OC12-HSL), resulting from quorum quenching (QQ) by AH, stimulated the excretion of pyocyanin, which could improve the electron transfer from complex III to downstream denitrifying enzymes for NO2--N reduction. In addition, C6-HSL mainly secreted by PA led to the up-regulation of TCA cycle-related genes and provided sufficient energy (such as NADH and ATP) for aerobic denitrification. In conclusion, members of the SMC achieved efficient denitrification through the interactions between QQ, electron transfer, and energy metabolism induced by N-acyl-homoserine lactones (AHLs). This study provided a theoretical basis for the engineering application of synthetic microbiome to remove nitrate wastewater.
Collapse
Affiliation(s)
- Yue He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China.
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China.
| |
Collapse
|
23
|
Li Q, Lu H, Tian T, Fu Z, Dai Y, Li P, Zhou J. Insights into the Acceleration Mechanism of Intracellular N and Fe Co-doped Carbon Dots on Anaerobic Denitrification Using Proteomics and Metabolomics Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2393-2403. [PMID: 38268063 DOI: 10.1021/acs.est.3c08625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Bulk carbon-based materials can enhance anaerobic biodenitrification when they are present in extracellular matrices. However, little information is available on the effect of nitrogen and iron co-doped carbon dots (N, Fe-CDs) with sizes below 10 nm on this process. This work demonstrated that Fe-NX formed in N, Fe-CDs and their low surface potentials facilitated electron transfer. N, Fe-CDs exhibited good biocompatibility and were effectively absorbed by Pseudomonas stutzeri ATCC 17588. Intracellular N, Fe-CDs played a dominant role in enhancing anaerobic denitrification. During this process, the nitrate removal rate was significantly increased by 40.60% at 11 h with little nitrite and N2O accumulation, which was attributed to the enhanced activities of the electron transport system and various denitrifying reductases. Based on proteomics and metabolomic analysis, N, Fe-CDs effectively regulated carbon/nitrogen/sulfur metabolism to induce more electron generation, less nitrite/N2O accumulation, and higher levels of nitrogen removal. This work reveals the mechanism by which N, Fe-CDs enhance anaerobic denitrification and broaden their potential application in nitrogen removal.
Collapse
Affiliation(s)
- Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peiwen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Zhang X, Gu L, Gui D, Xu B, Li R, Chen X, Sha Z, Pan X. Suitable biochar application practices simultaneously alleviate N 2O and NH 3 emissions from arable soils: A meta-analysis study. ENVIRONMENTAL RESEARCH 2024; 242:117750. [PMID: 38029822 DOI: 10.1016/j.envres.2023.117750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Nitrogen (N) fertilization profoundly improves crop agronomic yield but triggers reactive N (Nr) loss into the environment. Nitrous (N2O) and ammonia (NH3) emissions are the main Nr species that affect climate change and eco-environmental health. Biochar is considered a promising soil amendment, and its efficacy on individual Nr gas emission reduction has been widely reported. However, the interactions and trade-offs between these two Nr species after biochar addition have not been comprehensively analysed. The influencing factors, such as biochar characteristics, environmental conditions, and management measures, remain uncertain. Therefore, 35 publications (145 paired observations) were selected for a meta-analysis to explore the simultaneous mitigation potential of biochar on N2O and NH3 emissions after its application on arable soil. The results showed that biochar application significantly reduced N2O emission by 7.09% while having no significant effect on NH3 volatilisation. Using biochar with a low pH, moderate BET, or pyrolyzed under moderate temperatures could jointly mitigate N2O and NH3 emissions. Additionally, applying biochar to soils with moderate soil organic carbon, high soil total nitrogen, or low cation exchange capacity showed similar responses. The machine-learning model suggested that biochar pH is a dominating moderator of its efficacy in mitigating N2O and NH3 emissions simultaneously. The findings of this study have major implications for biochar application management and aid the further realisation of the multifunctionality of biochar application in agriculture, which could boost agronomic production while lowering environmental costs.
Collapse
Affiliation(s)
- Xiayan Zhang
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lipeng Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Dongyang Gui
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bing Xu
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Rui Li
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xian Chen
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhipeng Sha
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
25
|
Dong B, Lu J, Liu Y, Zhang R, Xing B. A multi-omics approach to unravelling the coupling mechanism of nitrogen metabolism and phenanthrene biodegradation in soil amended with biochar. ENVIRONMENT INTERNATIONAL 2024; 183:108435. [PMID: 38217902 DOI: 10.1016/j.envint.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/13/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
The presence of polycyclic aromatic hydrocarbons (PAHs) in soil negatively affects the environment and the degradation of these contaminants is influenced by nitrogen metabolism. However, the mechanisms underlying the interrelationships between the functional genes involved in nitrogen metabolism and phenanthrene (PHE) biodegradation, as well as the effects of biochar on these mechanisms, require further study. Therefore, this study utilised metabolomic and metagenomic analysis to investigate primary nitrogen processes, associated functional soil enzymes and functional genes, and differential soil metabolites in PHE-contaminated soil with and without biochar amendment over a 45-day incubation period. Results showed that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification were the dominant nitrogen metabolism processes in PHE-contaminated soil. The addition of biochar enhanced nitrogen modules, exhibiting discernible temporal fluctuations in denitrification and DNRA proportions. Co-occurrence networks and correlation heatmap analysis revealed potential interactions among functional genes and enzymes responsible for PHE biodegradation and nitrogen metabolism. Notably, enzymes associated with denitrification and DNRA displayed significant positive correlation with enzymes involved in downstream phenanthrene degradation. Of particular interest was stronger correlation observed with the addition of biochar. However, biochar amendment inhibited the 9-phenanthrol degradation pathway, resulting in elevated levels of glutathione (GSH) in response to environmental stress. These findings provide new insights into the interactions between nitrogen metabolism and PHE biodegradation in soil and highlight the dual effects of biochar on these processes.
Collapse
Affiliation(s)
- Biya Dong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuexian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruili Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
26
|
Wu Y, Zhao Y, Jia X, Liu Y, Niu J. Phosphomolybdic acid enhancing hexavalent chromium bio-reduction in long-term operation: Optimal dosage and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167328. [PMID: 37751836 DOI: 10.1016/j.scitotenv.2023.167328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The bio-reduction of Cr(VI) is regarded as a feasible and safe strategy to treat Cr pollution. The optimal concentration of phosphomolybdic acid (PMo12) for Cr(VI) reduction and the catalytic mechanism of electron behavior (electron production, electron transport and electron consumption) were revealed in denitrifying biofilm systems. The results showed that 0.1 mM PMo12 could achieve 92.5 % removal efficiency of 90 mg/L Cr(VI), which was 47.7 % higher than that of PMo12-free system, and improve the extracellular fixation capacity of Cr(III). The activity of peroxidase (POD) was significantly promoted by PMo12 to repair oxidative stress damage caused by Cr(VI) reduction. Additionally, analysis of electron behavior demonstrated that PMo12 could enhance key indicators of electron production, transport and consumption. This led to rapid activation of the electron pathway inhibited by Cr(VI), enabling simultaneous efficient nitrogen removal and Cr(VI) reduction in the biofilm system. This discovery will provide an efficient technique for Cr-containing wastewater treatment.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
27
|
Dou Q, Zhang L, Dong T, Song Z, Fan X, Peng Y, Wang X, Yang J. Degradation properties of fulvic acid and its microbially driven mechanism from a partial nitritation bioreactor through multi-spectral and bioinformatic analysis. J Environ Sci (China) 2024; 135:318-331. [PMID: 37778807 DOI: 10.1016/j.jes.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 10/03/2023]
Abstract
This study employed multispectral techniques to evaluate fulvic acid (FA) compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation (PN) process. Results showed that FA removal efficiency (FRE) decreased from 90.22 to 23.11% when FA concentrations in the reactor were increased from 0 to 162.30 mg/L, and that molecular size, degree of aromatization and humification of the effluent FA macromolecules all increased after treatment. Microbial population analysis indicated that the proliferation of the Comamonas, OLB12 and Thauera exhibit high FA utilization capacity in lower concentrations (<50.59 mg/L), promoting the degradation and removal of macromolecular FA. In addition, the sustained increase in external FA may decrease the abundance of above functional microorganisms, resulting in a rapid drop in FRE. Furthermore, from the genetic perspective, the elevated FA levels restricted carbohydrate (ko00620, ko00010 and ko00020) and nitrogen (HAO, AMO, NIR and NOR) metabolism-related pathways, thereby impeding FA removal and total nitrogen loss associated with N2O emissions.
Collapse
Affiliation(s)
- Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zixuan Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xuepeng Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Department of Chemistry and Biology, Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Jiachun Yang
- Environmental Protection Development Group Co., Ltd., Shandong 250101, China
| |
Collapse
|
28
|
Zhang Y, Bao J, Du J, Mao Q, Cheng B. Comprehensive metagenomic and enzyme activity analysis reveals the inhibitory effects and potential toxic mechanism of tetracycline on denitrification in groundwater. WATER RESEARCH 2023; 247:120803. [PMID: 37922638 DOI: 10.1016/j.watres.2023.120803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The widespread use of tetracycline (TC) inevitably leads to its increasing emission into groundwater. However, the potential risks of TC to denitrification in groundwater remain unclear. In this study, the effects of TC on denitrification in groundwater were systematically investigated at both the protein and gene levels from the electron behavior aspect for the first time. The results showed that increasing TC from 0 to 10 µg·L-1 decreased the nitrate removal rate from 0.41 to 0.26 mg·L-1·h-1 while enhancing the residual nitrite concentration from 0.52 mg·L-1 to 50.60 mg·L-1 at the end of the experiment. From a macroscopic view, 10 µg·L-1 TC significantly inhibited microbial growth and altered microbial community structure and function in groundwater, which induced the degeneration of denitrification. From the electron behavior aspect (the electron production, electron transport and electron consumption processes), 10 µg·L-1 TC decreased the concentration of electron donors (nicotinamide adenine dinucleotide, NADH), electron transport system activity, and denitrifying enzyme activities at the protein level. At the gene level, 10 µg·L-1 TC restricted the replication of genes related to carbon metabolism, the electron transport system and denitrification. Moreover, discrepant inhibitory effects of TC on individual denitrification steps, which led to the accumulation of nitrite, were observed in this study. These results provide the information that is necessary for evaluating the potential environmental risk of antibiotics on groundwater denitrification and bring more attention to their effects on geochemical nitrogen cycles.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jianguo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
29
|
Zhao Y, Hou X, Wang L, Wang L, Yao B, Li Y. Fe-loaded biochar thin-layer capping for the remediation of sediment polluted with nitrate and bisphenol A: Insight into interdomain microbial interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122478. [PMID: 37678739 DOI: 10.1016/j.envpol.2023.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
The information on the collaborative removal of nitrate and trace organic contaminants in the thin-layer capping system covered with Fe-loaded biochar (FeBC) is limited. The community changes of bacteria, archaea and fungi, and their co-occurrence patterns during the remediation processes are also unknown. In this study, the optimized biochar (BC) and FeBC were selected as the capping materials in a batch experiment for the remediation of overlying water and sediment polluted with nitrate and bisphenol A (BPA). The community structure and metabolic activities of bacteria, archaea and fungi were investigated. During the incubation (28 d), the nitrate in overlying water decreased from 29.6 to 11.0 mg L-1 in the FeBC group, 2.9 and 1.8 times higher than the removal efficiencies in Control and BC group. The nitrate in the sediment declined from 5.03 to 0.75 mg kg-1 in the FeBC group, 1.3 and 1.1 times higher than those in Control and BC group. The BPA content in the overlying water in BC group and FeBC group maintained below 0.4 mg L-1 during incubation, signally lower than in the Control group. After capping with FeBC, a series of species in bacteria, archaea and fungi could collaboratively contribute to the removal of nitrate and BPA. In the FeBC group, more metabolism pathways related to nitrogen metabolism (KO00910) and Bisphenol degradation (KO00363) were generated. The co-occurrence network analysis manifested a more intense interaction within bacteria communities than archaea and fungi. Proteobacteria, Firmicutes, Actinobacteria in bacteria, and Crenarchaeota in archaea are verified keystone species in co-occurrence network construction. The information demonstrated the improved pollutant attenuation by optimizing biochar properties, improving microbial diversity and upgrading microbial metabolic activities. Our results are of significance in providing theoretical guidance on the remediation of sediments polluted with nitrate and trace organic contaminants.
Collapse
Affiliation(s)
- Yiheng Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Bian Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| |
Collapse
|
30
|
Shi H, Feng X, Xiao Z, Jiang C, Wang W, Zhang X, Xu Y, Wang C, Guo W, Ren N. How β-Cyclodextrin-Functionalized Biochar Enhanced Biodenitrification in Low C/N Conditions via Regulating Substrate Metabolism and Electron Utilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37463333 DOI: 10.1021/acs.est.3c02482] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Biodenitrification plays a vital role in the remediation of nitrogen-contaminated water. However, influent with a low C/N ratio limits the efficiency of denitrification and causes the accumulation/emission of noxious intermediates. In this study, β-cyclodextrin-functionalized biochar (BC@β-CD) was synthesized and applied to promote the denitrification performance of Paracoccus denitrificans when the C/N was only 4, accompanied by increased nitrate reduction efficiency and lower nitrite accumulation and nitrous oxide emission. Transcriptomic and enzymatic activity analyses showed BC@β-CD enhanced glucose degradation by promoting the activities of glycolysis (EMP), the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle. Notably, BC@β-CD drove a great generation of electron donors by stimulating the TCA cycle, causing a greater supply of substrate metabolism to denitrification. Meanwhile, the promotional effect of BC@β-CD on oxidative phosphorylation accelerates electron transfer and ATP synthesis. Moreover, the presence of BC@β-CD increased the intracellular iron level, causing further improved electron utilization in denitrification. BC@β-CD helped to remove metabolites and induced positive feedback on the metabolism of P. denitrificans. Collectively, these effects elevated the glucose utilization for supporting denitrification from 36.37% to 51.19%. This study reveals the great potential of BC@β-CD for enhancing denitrification under low C/N conditions and illustrates a potential application approach for β-CD in wastewater bioremediation.
Collapse
Affiliation(s)
- Hongtao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Zijie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Chenyi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Wenqian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Yujie Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Caipeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
31
|
Shrestha RK, Jacinthe PA, Lal R, Lorenz K, Singh MP, Demyan SM, Ren W, Lindsey LE. Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:769-798. [PMID: 36905388 DOI: 10.1002/jeq2.20475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/28/2023] [Indexed: 05/06/2023]
Abstract
Biochar is one of the few nature-based technologies with potential to help achieve net-zero emissions agriculture. Such an outcome would involve the mitigation of greenhouse gas (GHG) emission from agroecosystems and optimization of soil organic carbon sequestration. Interest in biochar application is heightened by its several co-benefits. Several reviews summarized past investigations on biochar, but these reviews mostly included laboratory, greenhouse, and mesocosm experiments. A synthesis of field studies is lacking, especially from a climate change mitigation standpoint. Our objectives are to (1) synthesize advances in field-based studies that have examined the GHG mitigation capacity of soil application of biochar and (2) identify limitations of the technology and research priorities. Field studies, published before 2022, were reviewed. Biochar has variable effects on GHG emissions, ranging from decrease, increase, to no change. Across studies, biochar reduced emissions of nitrous oxide (N2 O) by 18% and methane (CH4 ) by 3% but increased carbon dioxide (CO2 ) by 1.9%. When biochar was combined with N-fertilizer, it reduced CO2 , CH4 , and N2 O emissions in 61%, 64%, and 84% of the observations, and biochar plus other amendments reduced emissions in 78%, 92%, and 85% of the observations, respectively. Biochar has shown potential to reduce GHG emissions from soils, but long-term studies are needed to address discrepancies in emissions and identify best practices (rate, depth, and frequency) of biochar application to agricultural soils.
Collapse
Affiliation(s)
- Raj K Shrestha
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| | - Pierre-Andre Jacinthe
- Department of Earth Sciences, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, Ohio, USA
| | - Klaus Lorenz
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, Ohio, USA
| | - Maninder P Singh
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Scott M Demyan
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Wei Ren
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Laura E Lindsey
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
32
|
Guo F, Luo Y, Nie W, Xiong Z, Yang X, Yan J, Liu T, Chen M, Chen Y. Biochar boosts nitrate removal in constructed wetlands for secondary effluent treatment: Linking nitrate removal to the metabolic pathway of denitrification and biochar properties. BIORESOURCE TECHNOLOGY 2023; 379:129000. [PMID: 37011852 DOI: 10.1016/j.biortech.2023.129000] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Constructed wetlands (CWs) amended with biochar have attracted much attention for nitrate removal treating secondary effluent. However, little is acknowledged about the linkage among the nitrate removal performance, microbial metabolic pathway of nitrate, and biochar properties. Herein, biochars pyrolyzed under 300 °C, 500 °C, and 700 °C (BC300, BC500, and BC700, respectively) were used in CWs to reveal the relationship. Results showed that CWs amended with BC300 (59.73%), BC500 (53.27%), and BC700 (49.07%) achieved higher nitrogen removal efficiency, compared with the control (39.51%). Metagenomic analysis showed that biochars could enrich the genes, which encoded key enzymes (adenosine triphosphate production, and electrons generation, transportation, and consumption) involved in carbon and nitrate metabolism. Further, biochar pyrolyzed under lower temperature, with higher oxygen content, molar O/C ratio, and the electron donating capacity, in CWs could obtain higher nitrate removal efficiency. Overall, this research offers new understandings for the promotion of denitrification in CWs amended with biochar.
Collapse
Affiliation(s)
- Fucheng Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Wenbo Nie
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zichun Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiangyu Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Tao Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mengli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
33
|
Shi M, Song C, Xie L, Zhang G, Wei Z. Role in aromatic metabolites biodegradation and adverse implication of denitrifying microbiota in kitchen waste composting. ENVIRONMENTAL MICROBIOME 2023; 18:44. [PMID: 37254173 DOI: 10.1186/s40793-023-00496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Understanding the functional diversity, composition, and dynamics of microbiome is critical for quality in composting. Denitrifying microbiota, possessing multiple metabolic pathways simultaneously. Denitrification-based biodegradation of aromatic metabolites has been widely applied in the bioremediation of sediments. However, role in biodegradation of denitrifying microbiota in kitchen waste composting remain unclear. In this study, microbiome and metabolome were used to comprehensively decipher the relationship of denitrifying microbiota and aromatic metabolites, and its implication in kitchen waste (KW) composting. RESULTS This study was investigated by adjusting moisture content 60% as control test (CK), 70% as denitrification test (DE). In addition, one tests referred as DE + C, which received 10% of biochar to amend denitrification. Results indicated the quantities of denitrification genes narG were 1.22 × 108 copies/g in DE at the 55th day, which were significantly higher than that in CK and DE + C (P < 0.05). Similarly, the abundance of nirK gene also significantly increased in DE (P < 0.05). The relative abundance of denitrification-related microbes in DE was higher than that in CK, DE + C could weaken their abundance. Metabolomics results demonstrated that metabolites were downgraded in aromatic amino acid and catechin metabolic pathways in DE, which were identified as precursors to synthesis key product fulvic acid. The concentrations of fulvic acid dramatically decreased 21.05 mg/g in DE comparison with CK. Biochar addition alleviated the biodegradation of aromatic metabolites and reduced the utilization of fulvic acid. Integrative analyses of metabolomics and microbiome suggested that the microbiota involved in nitrite reduction pathway was vital for the biodegradation aromatic metabolites. Mantel test verified that NO3--N, moisture content, eta, environmental factors were important drivers behind the changes in the denitrifying microbiota biodegradation function. CONCLUSION The data confirm the biodegradation function of denitrifying microbiota led to the loss of core product fulvic acid in KW composting, which highlighted the adverse role and implication of denitrification for composting humification. Control of denitrification with biochar was recommended to improve composting quality.
Collapse
Affiliation(s)
- Mingzi Shi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
- College of Life Science, Henan Agricultural University, Zhengzhou, 450000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
34
|
Dang Q, Zhao X, Xi B, Zhang C, He L. The key role of denitrification and dissimilatory nitrate reduction in nitrogen pollution along vertical landfill profiles from metagenomic perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118300. [PMID: 37263034 DOI: 10.1016/j.jenvman.2023.118300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Landfill are persistent sources of nitrogen (N) pollution even in the decades after closure. However, the biological pathways of N-pollution, particularly N2O and NH4+, at different landfill depths have received little attention. In this study, metagenomic analysis was conducted on landfill refuse from vertical reservoir profiles in two closed landfills named XT and MT. NH4+ concentrations were found to be higher in deeper layers of MT, while greater potential for N2O emissions occurred in XT and the shallow layers of MT. Furthermore, the community structure and function of N-metabolizing microbes were more strongly defined by landfill depth than landfill type. Denitrification, involving abundant nirK and norB genes, was identified as the major pathway for N2O production in both XT and MT-shallow, while dissimilatory nitrate reduction with abundant nirBD genes was identified as the major pathway for NH4+ accumulation. Microbes of norB-type and nirBD-type were positively affected by NO3- in XT, whereas negatively affected by contents of organic material and moisture in MT-shallow. The mechanism by which nitrogen fixation, with abundant nifH genes, contributes to NH4+ accumulation in MT-deep should be further elucidated. These findings can provide a theoretical basis for governing scientific N-pollution control strategies throughout the entire landfill process.
Collapse
Affiliation(s)
- Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
35
|
Zhao Y, Hussain A, Liu Y, Yang Z, Zhao T, Bamanu B, Su D. Electrospinning micro-nanofibers immobilized aerobic denitrifying bacteria for efficient nitrogen removal in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118230. [PMID: 37247550 DOI: 10.1016/j.jenvman.2023.118230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
Electrospinning micro-nanofibers with exceptional physicochemical properties and biocompatibility are becoming popular in the medical field. These features indicate its potential application as microbial immobilized carriers in wastewater treatment. Here, aerobic denitrifying bacteria were immobilized on micro-nanofibers, which were prepared using different concentrations of polyacrylonitrile (PAN) solution (8%, 12% and 15%). The results of diameter distribution, specific surface area and average pore diameter indicated that 15% PAN micro-nanofibers with tighter surface structure were not suitable as microbial carriers. The bacterial load results showed that the cell density (OD600) and total protein of 12% PAN micro-nanofibers were 107.14% and 106.28% higher than those of 8% PAN micro-nanofibers. Subsequently, the 12% PAN micro-nanofibers were selected for aerobic denitrification under the different C/N ratios (1.5-10), and stable performance was obtained. Bacterial community analysis further manifested that the micro-nanofibers effectively immobilized bacteria and enriched bacterial structure under the high C/N ratios. Therefore, the feasibility of micro-nanofibers as microbial carriers was confirmed. This work was of great significance for promoting the application of electrospinning for microbial immobilization in wastewater treatment.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Zhengwu Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong Su
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
36
|
Zhang G, Hao Q, Ma R, Luo S, Chen K, Liang Z, Jiang C. Biochar and hematite amendments suppress emission of CH 4 and NO 2 in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162451. [PMID: 36863587 DOI: 10.1016/j.scitotenv.2023.162451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Constructed wetlands (CWs) are considered a widely used cost-effective technology for pollutant removal. However, greenhouse gas emissions are a non-negligible problem in CWs. In this study, four laboratory-scale CWs were established to evaluate the effects of gravel (CWB), hematite (CWFe), biochar (CWC), and hematite + biochar (CWFe-C) as substrates on pollutants removal, greenhouse gas emissions, and associated microbial characteristics. The results showed that the biochar-amended CWs (CWC and CWFe-C) enhanced the removal efficiency of pollutants, with 92.53 % and 93.66 % of COD and 65.73 % and 64.41 % of TN removal, respectively. Both single and combined inputs of biochar and hematite significantly reduced CH4 and N2O fluxes, with the lowest average of CH4 flux obtained in CWC (5.99 ± 0.78 mg CH4 m-2 h-1) and the least N2O flux in CWFe-C (287.57 ± 44.84 μg N2O m-2 h-1). The substantial reduction of global warming potentials (GWP) was obtained in the applications of CWC (80.25 %) and CWFe-C (79.5 %) in biochar-amended CWs. The presence of biochar and hematite mitigated CH4 and N2O emissions by modifying microbial communities with higher ratios of pmoA/mcrA and nosZ genes abundances, as well as increasing the abundance of denitrifying bacteria (Dechloromona, Thauera and Azospira). This study demonstrated that biochar and the combined use of biochar and hematite could be the potential candidates as functional substrates for the efficient removal of pollutants and simultaneously reducing GWP emissions in the constructed wetlands.
Collapse
Affiliation(s)
- Guosheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Rongzhen Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shixu Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Keqin Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhenghao Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
37
|
Liu S, Yin M, Sun L, Jiao Y, Zheng Y, Yan L. Iron-loaded sludge biochar alleviates the inhibitory effect of tetracycline on anammox bacteria: Performance and mechanism. CHEMOSPHERE 2023; 333:138987. [PMID: 37209845 DOI: 10.1016/j.chemosphere.2023.138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The anaerobic ammonia oxidation (anammox) process is sensitive to environmental pollutants, such as antibiotics. In this study, the harmful effect of tetracycline (TC) on the performance of an anammox reactor and the mitigation of TC inhibition by iron-loaded sludge biochar (Fe-BC) were studied by analyzing extracellular polymeric substances (EPS), microbial community structure and functional genes. The total inorganic nitrogen (TIN) removal rate of the TC reactor was reduced by 5.86% compared to that of the control group, while that of the TC + Fe-BC reactor improved by 10.19% compared to that of the TC reactor. Adding Fe-BC increased the activity of anammox sludge by promoting the secretion of EPS (including protein, humic acids and c-Cyts). The results of the enzymolysis experiment showed that protein can improve the activity of anammox sludge, while the ability of polysaccharide to improve the activity of anammox was related to the treated enzymes. In addition, Fe-BC alleviated the inhibitory effect of TC by mediating the anammox electron transfer process. Furthermore, Fe-BC increased the absolute abundance of hdh and hzsB by 2.77 and 1.18 times compared to the TC reactor and improved the relative abundance of Candidatus Brocadia in the absence of TC. The addition of Fe-BC is an effective way to alleviate the inhibitory effect of TC on the anammox process.
Collapse
Affiliation(s)
- Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Luoting Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
38
|
Mao Q, Bao J, Du J, He T, Zhang Y, Cheng B. Biochar enhanced the stability and microbial metabolic activity of aerobic denitrification system under long-term oxytetracycline stress. BIORESOURCE TECHNOLOGY 2023; 382:129188. [PMID: 37196743 DOI: 10.1016/j.biortech.2023.129188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Reactors were established to study the feasibility of the direct addition of modified biochar to alleviate the long-term stress of oxytetracycline (OTC) on aerobic denitrification (AD) and improve the stability of the system. The results showed that OTC stimulated at μg/L, and inhibited at mg/L. The higher the concentration of OTC, the longer the system was affected. The addition of biochar, without immobilization, improved the tolerance of community, alleviated the irreversible inhibition effect of OTC, and maintained a high denitrification efficiency. Overall, the main mechanisms of AD enhancement by biochar under OTC stress were: enhancing the bacteria metabolic activity, strengthening sludge structure and substrate transport, and improving the community stability and diversity. This study confirmed that direct addition of biochar could effectively alleviate the negative effect of antibiotics on the microorganisms, strengthen the AD, which provided a new idea to broaden the application of AD technology in livestock wastewater.
Collapse
Affiliation(s)
- Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jianguo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ting He
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
39
|
Pan Y, Fu YY, Zhou K, Tian T, Li YS, Yu HQ. Microbial mixotrophic denitrification using iron(II) as an assisted electron donor. WATER RESEARCH X 2023; 19:100176. [PMID: 37020531 PMCID: PMC10068250 DOI: 10.1016/j.wroa.2023.100176] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Mixotrophic denitrification processes have a great potential in nitrogen removal in biological wastewater treatment processes. However, so far, few studies have focused on the mixotrophic denitrification system using Fe(II) as an exclusively assisted electron donors and the underlying mechanisms in such a process remain unclear. Furthermore, the mechanisms by which microorganisms cover carbon, nitrogen, phosphorus and iron in an iron-assisted mixotrophic system remain unrevealed. In this work, we explore the feasibility of using Fe(II) as an assisted electron donor for enhancing simultaneous nitrogen and phosphorus removal via long-term reactor operation and batch tests. The results show that Fe(II) could provide electrons for efficient nitrate reduction and that biological reactions played a predominant role in these systems. In these systems Thermomonas, a strain of nitrate-reduction Fe(II)-oxidation bacterium, was enriched and accounted for a maximum abundance of 60.2%. These findings indicate a great potential of the Fe(II)-assisted mixotrophic denitrification system for practical use as an efficient simultaneous nitrogen and phosphorus removal process.
Collapse
Affiliation(s)
- Yuan Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230026, China
| | - Ying-Ying Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ke Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu-Sheng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
40
|
Jiang G, Liu Y, Liu X, Shen Y, Zhang A, Li Z. Enhanced efficiency and mechanism of low-temperature biochar on simultaneous removal of nitrogen and phosphorus by combined heterotrophic nitrification-aerobic denitrification bacteria. BIORESOURCE TECHNOLOGY 2023; 373:128720. [PMID: 36774989 DOI: 10.1016/j.biortech.2023.128720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, three strains of heterotrophic nitrification-aerobic denitrification (HN-AD) capable of simultaneously removing phosphorus were isolated from activated sludge, and low-temperature coconut shell biochar was prepared. The metabolic effects of combined HN-AD bacteria on the total nitrogen (TN) and total phosphorus (TP) were investigated, and the enhanced efficiency and mechanism of low-temperature biochar on the combined bacteria were also explored. The results indicated that the combined bacteria could adapt to environmental impacts and multiple nitrogen sources. The low-temperature biochar containing more aliphatic carbon and oxygen-containing functional groups enhanced the metabolic activity of combined HN-AD bacteria and accelerated the electron transfer process during nitrogen and phosphorus degradation. The removal efficiencies of TN and TP increased by 68% and 88%, respectively, in the treatment of actual sewage by biochar attached with combined bacteria. The findings form a basis for the engineering utilization of HN-AD and are of great practical significance.
Collapse
Affiliation(s)
- Ge Jiang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China.
| | - Xingshe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yuan Shen
- Yishuiyuan Biotechnology (Xi'an) Co., Ltd., Xi'an 710018, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| |
Collapse
|
41
|
Yin Y, Zhang Q, Peng H. Retrospect and prospect of aerobic biodegradation of aniline: Overcome existing bottlenecks and follow future trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117133. [PMID: 36584469 DOI: 10.1016/j.jenvman.2022.117133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Aniline is a highly bio-toxic industrial product, even at low concentrations, whose related wastewater has been flowing out worldwide on a large scale along with human production. As a green technology, aerobic biological treatment has been widely applied in industrial wastewater and exhibited various characteristics in the field of aniline wastewater. Meanwhile, this technology has shown its potential of synchronous nitrogen removal, but it still consumes energy badly. In the face of resource scarcity, this review comprehensively discusses the existing research in aerobic biodegradation of aniline wastewater to find out the developmental dawn of aerobic biological treatment. Primarily, it put forward the evolution history details of aniline biodegradation from pure culture to mixed culture and then to simultaneous nitrogen removal. On this basis, it presented the existing challenges to further expand the application of aerobic biotechnology, including the confusions of aniline metabolic mechanism, the development of co-degradation of multiple pollutants and the lack of practical experience of bioreactor operation for aniline and nitrogen removal. Additionally, the prospects of the technological shift to meet the needs of an energy-conserving society was described according to existing experiences and feasibility. Including but not limiting to the development of multifunctional bacteria, the reduction of greenhouse gases and the combination of green technologies.
Collapse
Affiliation(s)
- Yixin Yin
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Haojin Peng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
42
|
Feng F, Liu Z, Tang X, Wu X, Qu C, How SW, Wu D, Xiao R, Tang CJ, Lin Z, Chai L, Chen GH. Dosing with pyrite significantly increases anammox performance: Its role in the electron transfer enhancement and the functions of the Fe-N-S cycle. WATER RESEARCH 2023; 229:119393. [PMID: 36442270 DOI: 10.1016/j.watres.2022.119393] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic ammonium oxidation (anammox) represents an energy-efficient process for biological nitrogen removal from ammonium-rich wastewater. However, there are mechanistic issues unsolved regarding the low microbial electron transfer and undesired accumulation of nitrate in treated water, limiting its widespread engineering applications. We found that the addition of pyrite (1 g L-1 reactor), an earth-abundant iron-bearing sulfide mineral, to the anammox system significantly improved the nitrogen removal rate by 52% in long-term operation at a high substrate shock loading (3.86 kg N m-3 d-1). Two lines of evidence were presented to unravel the underlying mechanisms of the pyrite-induced enhancement. Physiochemical evidence indicated that an increase of cytochromes c and Fe-S protein was responsible for the accelerated electron transfer among metabolic enzymes. Multi-omics evidence showed that the depletion of nitrate was attributed to the Fe-N-S cycle driven by nitrate-dependent Fe(II) oxidation and S-based denitrification. This study deepens our understanding of the roles of electron transfer and the Fe-N-S cycle in anammox systems, providing a fundamental basis for the development of mediators in the anammox process for practical implications.
Collapse
Affiliation(s)
- Fan Feng
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zhigong Liu
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Xi Tang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Xing Wu
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Caiyan Qu
- Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, and Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent 9000, Belgium
| | - Seow Wah How
- Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, and Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent 9000, Belgium
| | - Di Wu
- Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, and Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent 9000, Belgium
| | - Ruiyang Xiao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Chong-Jian Tang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Zhang Lin
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Liyuan Chai
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
43
|
Wang X, Zhao Y, Yao G, Lin Z, Xu L, Jiang Y, Jin Z, Shan S, Ping L. Responses of aquatic vegetables to biochar amended soil and water environments: a critical review. RSC Adv 2023; 13:4407-4421. [PMID: 36760305 PMCID: PMC9891097 DOI: 10.1039/d2ra04847g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher requirements of their soil and water environments. Unfortunately, the soil and water environment often face many problems such as nutrient imbalance, excessive fertilization, and pollution. Therefore, a new cost-effective and eco-friendly solution for addressing the above issues is urgently required. Biochars, one type of pyrolysis product obtained from agricultural and forestry waste, show great potential in reducing fertilizer application, upgrading soil quality and remediating pollution. Application of biochars in aquatic vegetable cultivation would not only improve the yield and quality, but also reduce its edible risk. Biochars can improve the soil micro-environment, soil microorganism and soil enzyme activities. Furthermore, biochars can remediate the heavy metal pollution, organic pollution and nitrogen and phosphorus non-point source pollution in the water and soil environments of aquatic vegetables, which promotes the state of cultivation conditions and thereby improves the yield and quality of aquatic vegetables. However, the harmful substances such as heavy metals, PAHs, etc. derived from biochars can cause environmental risks, which should be seriously considered. In this review, the application of biochars in aquatic vegetable cultivation is briefly summarized. The changes of soil physicochemical and biological properties, the effects of biochars in remediating water and soil environmental pollution and the impacts of biochars on the yield and quality of aquatic vegetables are also discussed. This review will provide a comprehensive overview of the research progress on the effects of biochars on soil and water environments for aquatic vegetable cultivation.
Collapse
Affiliation(s)
- Xiangjun Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Yaming Zhao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Guangwei Yao
- Kaihua Agricultural and Rural BureauQuzhouZhejiang Province324399PR China
| | - Zhizhong Lin
- Kaihua Agricultural and Rural BureauQuzhouZhejiang Province324399PR China
| | - Laiyuan Xu
- Kaihua Agricultural and Rural BureauQuzhouZhejiang Province324399PR China
| | - Yunli Jiang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Zewen Jin
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Lifeng Ping
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| |
Collapse
|
44
|
Wang X, Xin J, Yuan M, Zhao F, Wang L. Coupled microscale zero valent iron-autotrophic hydrogen bacteria dechlorination system is not always superior to its standalone counterparts: A sustainable remediation perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159364. [PMID: 36228794 DOI: 10.1016/j.scitotenv.2022.159364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The coupling of microscale zero-valent iron with autotrophic hydrogen bacteria (mZVI-AHB) are often believed to show greater potential than the single abiotic or biotic systems in remediating chlorinated aliphatic hydrocarbon-contaminated groundwater. However, our understanding of the remediation performance of this system under real field conditions, especially by incorporating the concept of sustainable remediation, remains limited. In this study, the performances of the mZVI, H2-AHB, and mZVI-AHB systems in dechlorinating groundwater containing complex electron acceptors were compared by evaluating their removal efficiency (RE), reaction products, and electron efficiency (EE), using trichloroethylene (TCE) as the target contaminant and NO3- and SO42- as the coexisting natural electron acceptors. Ultimately, which of these systems had TCE removal superiority was dependent on the coexisting electron acceptor. mZVI-AHB and mZVI resulted in more complete dechlorination, whereas H2-AHB exhibited higher N2 selectivity in reducing NO3-. Regardless of the coexisting electron acceptor, the mZVI-alone system showed the highest EE. Finally, the sustainability concerns and applicability of the three systems were evaluated on the basis of their TCE RE, complete dechlorination ratio, N2 selectivity, EE, and cost, which were integrated into a comparison of overall benefits. Our findings provide comprehensive and insightful information on the factors that determine remediation scheme selection in real practice.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Litao Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
45
|
Su C, Zhou X, Lu P, Dai X, Chen Z, Liang B, Tian Y, Chen M. Role of coke media strategy in an adsorption-biological coupling technology for wastewater treatment performance, microbial community, and metabolic pathways features. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13469-13482. [PMID: 36131174 DOI: 10.1007/s11356-022-23090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
With the increase of wastewater discharge, the requirement of wastewater treatment technology is gradually increased. How to treat wastewater economically, while making the treatment process short, easy to manage and low running cost, is the focus of attention. Adsorption-biological coupling technology could make adsorption and biodegradation complement each other, which has coupled accumulation effect. In this study, with coke as the adsorbent, the efficiency of the adsorption-biological coupling reactor on the treatment of total phosphorus (TP), chemical oxygen demand (COD), and ammonia nitrogen (NH3-N) in domestic wastewater under different influent modes was investigated. Meanwhile, microbial community and metabolic pathways analysis of the reactor were carried out. Results showed that when the influent modes of the coupling reactor was once a day and the daily sewage treatment capacity was 2 L, the treatment efficiency of TP, COD, and NH3-N was the best. The removal rate of TP and NH3-N was 87.96% and 96.14%, respectively. The dominant phylum was Proteobacteria (39.84-44.49%), and the dominant genus was Sphingomonas (4.27-7.16%), and Gemmatimonas (1.27-3.58%). According to the metagenomic analysis, carbon metabolism process was evenly distributed in U (upper), M (middle), and L (lower) layers of the coupling reactor. Phosphate metabolism was mainly in the U layer at first, then in the M and L layers gradually. Carbon metabolism and phosphate metabolism provided sufficient energy for microbial degradation of pollutants. Nitrogen removal in the reactor mainly happened in the S and Z layers by nitrification (M00528) and denitrification (M00529), respectively.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China.
- University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, People's Republic of China.
| | - Xibing Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Pingping Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Xiaoyun Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Zhuxin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Bocai Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Yihao Tian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| |
Collapse
|
46
|
Wu M, Zhang Z, Zhang X, Dong L, Liu C, Chen Y. Propionibacterium freudenreichii-Assisted Approach Reduces N 2O Emission and Improves Denitrification via Promoting Substrate Uptake and Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16895-16906. [PMID: 36366772 DOI: 10.1021/acs.est.2c05674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
N2O emission is often encountered during biodenitrification. In this paper, a new approach of using microorganisms to promote substrate uptake and metabolism to reduce denitrification intermediate accumulation was reported. With the introduction of Propionibacterium freudenreichii to a biodenitrification system, N2O and nitrite accumulation was, respectively, decreased by 74 and 60% and the denitrification efficiency was increased by 150% at the time of 24 h with P. freudenreichii/groundwater denitrifier of 1/5 (OD600). Propionate, produced by P. freudenreichii, only accelerated nitrate removal and was not the main reason for the decreased intermediate accumulation. The proteomic and enzyme analyses revealed that P. freudenreichii stimulated biofilm formation by upregulating proteins involved in porin forming, putrescine biosynthesis, spermidine/putrescine transport, and quorum sensing and upregulated transport proteins, which facilitated the uptake of the carbon source, nitrate, and Fe and Mo (the required catalytic sites of denitrification enzymes). Further investigation revealed that P. freudenreichii activated the methylmalonyl-CoA pathway in the denitrifier and promoted it to synthesize heme/heme d1, the groups of denitrification enzymes and electron transfer proteins, which upregulated the expression of denitrifying enzyme proteins and enhanced the ratio of NosZ to NorB, resulting in the increase of generation, transfer, and consumption of electrons in biodenitrification. Therefore, a significant reduction in the denitrification intermediate accumulation and an improvement in the denitrification efficiency were observed.
Collapse
Affiliation(s)
- Meirou Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhiqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Road, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
47
|
Li T, Li W, Chai X, Dai X, Wu B. PHA stimulated denitrification through regulation of preferential cofactor provision and intracellular carbon metabolism at different dissolved oxygen levels by Pseudomonas stutzeri. CHEMOSPHERE 2022; 309:136641. [PMID: 36183891 DOI: 10.1016/j.chemosphere.2022.136641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Denitrification, a typical biological process mediated by complex environmental factors, i.e., carbon sources and dissolved oxygen (DO), has attracted great attention due to its contribution to the control of eutrophication and the biochemical cycling of nitrogen. However, the effects of carbon source on electron distribution and enzyme expression for enhanced denitrification under competition of electron acceptors (DO and nitrate) remain unclear. Here, we profile the carbon metabolic pathway of polyhydroxybutyrate (PHB) and glucose (Glu) at high and low DO levels (50% and 10% saturated DO, respectively). It was found that PHB enhanced the growth of Pseudomonas stutzeri (model denitrifying bacterium) and improved the specific nitrogen removal rate (SNRR) at all DO levels. The functional proteins had a better affinity for the cofactor nicotinamide-adenine dinucleotide (NADH) than for nicotinamide adenine dinucleotide phosphate (NADPH); thus, more electrons were involved in nitrogen reduction and intracellular PHB production in the PHB groups than in the Glu groups. Furthermore, the expression difference of enzymes in glucose and PHB metabolism was demonstrated by metaproteomic and target protein analysis, implying that PHB-driven intracellular carbon accumulation could optimize the intracellular electron allocation and correspondingly promote nitrogen metabolism. Our work integrated the mechanisms of intracellular carbon metabolism with preferences for electron transfer pathways in denitrification, providing a new perspective on how the selective parameters regulated microbial functions involved in denitrification.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenxuan Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01 T-Lab Building, 117411, Singapore
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
48
|
Zhang S, Su J, Ali A, Huang T, Sun Y, Ren Y. Hydrophilic spongy biochar crosslinked with starch and polyvinyl alcohol biocarrier for nitrate, phosphorus, and cadmium removal in low carbon wastewater: Enhanced performance mechanism and detoxification. BIORESOURCE TECHNOLOGY 2022; 362:127875. [PMID: 36049713 DOI: 10.1016/j.biortech.2022.127875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This study aims to develop a functional biocarrier with hydrophilic spongy biochar crosslinked with starch and polyvinyl alcohol (WSB/starch-PVA) for simultaneous removal of NO3--N, total phosphorus (TP) and Cd2+ in low carbon wastewater. Results showed that the WSB/starch-PVA bioreactor achieved the maximum NO3--N removal efficiency in subphase 1.2 with 98.07 % (3.64 mg L-1h-1) versus control (75.30 %, 2.81 mg L-1h-1), and removed 54.84 % and 73.97 % of TP and Cd2+. Material characterization suggested that functional groups (related to C, N and O) on biocarrier and biofilm, and biogenic co-precipitation facilitated TP and Cd2+ removal. The WSB made the biocarrier pores larger and regular, and decreased fluorescent soluble microbial products. The predicted metagenome further suggested that central citrate cycle, oxidative phosphorylation of bio-community, and NO3--N removal were enhanced. Functions for microbial induced co-precipitation, Cd2+ transport/efflux, antioxidants, and enhanced biofilm formation favored the NO3--N/TP removal and Cd2+ detoxification.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
49
|
Hu L, Wang Z, He J, Lv S, Zhou B, Hrynsphan D, Savitskaya T, Chen J. Co-culturing fungus Penicillium citrinum and strain Citrobacter freundii improved nitrate removal and carbon utilization by promoting glyceride metabolism. BIORESOURCE TECHNOLOGY 2022; 360:127563. [PMID: 35788386 DOI: 10.1016/j.biortech.2022.127563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Exploring the interaction between denitrifying microbial species is significant for improving denitrification performance. In this study, the effects of co-culturing fungus Penicillium citrinum and strain Citrobacter freundii on denitrification were investigated. Results showed that the maximum nitrate removal and carbon utilization in co-culture were 68.0 and 14.1 mg·L-1·d-1, respectively. The total adenosine triphosphatase activity was increased to 9.87 U‧mg-1 protein in co-culture, and nicotinamide adenine dinucleotide production was 1.7-2.3 times that of monoculture, attributing to increased carbon utilization. Further metabolomics and membrane permeability assay revealed that co-culture increased the metabolism of glycerides, thereby enhancing the membrane permeability of strain Citrobacter freundii and promoting the transmembrane transport of nitrate and glucose, which boosted nitrate reductase activity and nicotinamide adenine dinucleotide production in turn. In summary, co-culturing promoted carbon utilization and enhanced substrate removal efficiency through the metabolism of glycerides, which provided a strategy to enhance denitrification performance in wastewater treatment.
Collapse
Affiliation(s)
- Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiamei He
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sini Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bin Zhou
- Zhejiang Envrionmental Monitoring Engineering Co., Ltd, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
50
|
Deng S, An Q, Ran B, Yang Z, Xu B, Zhao B, Li Z. Efficient remediation of Mn 2+ and NH 4+-N in co-contaminated water and soil by Acinetobacter sp. AL-6 synergized with grapefruit peel biochar: Performance and mechanism. WATER RESEARCH 2022; 223:118962. [PMID: 35970107 DOI: 10.1016/j.watres.2022.118962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Electrolysis manganese slag produced in industrial manganese production causes massive leachate containing heavy metal Mn2+ and inorganic NH4+-N, which causes serious hazard to the water body and soil. A cost-effective alternative to address the multiple pollution is urgently needed. This study investigated the synergy of grapefruit peel biochar (BC) and strain AL-6 to remediate Mn2+ and NH4+-N in sequencing batch bioreactor (SBR) and soil column. The results showed that, in SBR, under the condition of C/N 5, temperature 30°C, BC and strain AL-6 showed fabulous performance to remove Mn2+ (99.3%) and NH4+-N (97.7%). The coexisting ions Mg2+ and Ca2+ had no effects on the removal of Mn2+ and COD, however, 23.3% removal efficiency of NH4+-N was curtailed. Characterization found that the presence of MnCO3 confirmed the adsorption of Mn2+ by functional groups action, and gas chromatography indicated that BC and strain AL-6 promoted the reduction of N2O and organic carbon. In addition, BC and strain AL-6 helped to immobilize 799.41 mg L-1 of Mn2+ and 320 mg L-1 of NH4+-N after 45 d in the soil column. And the determination of TOC, CEC, pH, Eh, soil enzymatic activity (catalase and urease), and microbial diversity and abundance confirmed that BC and strain AL-6 increased the soil fertility and bioavailability of pollutants. Totally, BC and strain AL-6 possess great potential to remediate Mn2+ and NH4+-N pollution in water and soil.
Collapse
Affiliation(s)
- Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China.
| | - Binbin Ran
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zihao Yang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Bohan Xu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|