1
|
Li M, Han J, Muegge C, Zollinger T, Zhou LY, Monahan P, Wessel J, Kleinschmidt V, Moffatt S, Nan H. Age, inflammation, alkaline phosphatase, and coronary artery calcification in firefighters. BMC Cardiovasc Disord 2025; 25:309. [PMID: 40269684 PMCID: PMC12016472 DOI: 10.1186/s12872-025-04750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Firefighting involves exposure to hazardous conditions that may contribute to adverse long term health outcomes, including cardiovascular disease. While coronary artery disease (CAD) is a leading cause of morbidity among firefighters, the specific occupational contributions to Coronary Artery Calcification (CAC), a reliable predictor of CAD, are not well understood. METHODS We conducted a cross-sectional study involving 410 firefighters, aged 35-68, who underwent comprehensive health assessments, including CAC measurement using computed tomography. Multiple logistic regression models were built to examine the associations of demographic, lifestyle, and clinical variables with CAC score. RESULTS Our analysis revealed statistically significant associations between several clinical indicators and CAC score. Age (odds ratio (OR): 1.12; 95% confidence interval (95% CI): [1.05, 1.19]) and percentage of monocytes (OR: 1.29; 95% CI: [1.06, 1.58]) were positively correlated with higher CAC score, highlighting the role of inflammation in CAD among firefighters. Moreover, the enzyme alkaline phosphatase emerged as an independent predictor of CAC score (OR: 1.02; 95% CI: [1.01, 1.04]), suggesting a novel biomarker of cardiovascular risk in this population. CONCLUSION Our study identified several risk factors associated with increased CAC score in firefighters, including age, inflammation, and alkaline phosphatase. These findings underscore the importance of tailored health monitoring and interventions to mitigate CAD risk in firefighters, considering both general and occupation-specific risk factors. This study contributes to a better understanding of the occupational health challenges faced by firefighters and provides a foundation for future research and preventive strategies in this high-risk group.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Carolyn Muegge
- National Institute for Public Safety Health, Indianapolis, IN, USA
- College of Health Science, University of Indianapolis, Indianapolis, IN, USA
| | - Terrell Zollinger
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Laura Y Zhou
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Patrick Monahan
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jennifer Wessel
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Vanessa Kleinschmidt
- National Institute for Public Safety Health, Indianapolis, IN, USA
- Center for Global Health Equity, Indiana University, Indianapolis, IN, USA
| | - Steven Moffatt
- National Institute for Public Safety Health, Indianapolis, IN, USA
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Wang R, Cheng H, Bian Z. Global occurrence and environmental behavior of novel brominated flame retardants in soils: Current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136298. [PMID: 39476697 DOI: 10.1016/j.jhazmat.2024.136298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Since polybrominated diphenyl ethers (PBDEs) are on the list of regulated chemicals, novel brominated flame retardants (NBFRs) have been produced as alternatives and extensively used since the end of the 19th century. A comprehensive assessment of the environmental burden of NBFRs, which are emerging contaminants with bio-toxic and carcinogenic properties, is urgently needed. Given that soil is a major sink for organic pollutants, this study systematically reviewed global data on NBFRs in soil for the period of 1990-2024 via a bibliometric analysis of 70 publications from the Web of Science Core Collection, reaching the following achievements. (1) NBFRs in soils have been reported in 17 countries or regions worldwide, ranging from not detected to 8.46 × 104 ng/g dw, showing an increasing trend over time, with severe contamination in Asia and Australia. (2) NBFR concentrations varied significantly across land use types: manufacturing land > electronic waste disposal areas > urban soil > farmland > forest > remote areas. (3) NBFRs with log KOA > 10 tend to settle from the air into the soil, where they may be absorbed by plant roots and bioaccumulate in the food chain. (4) Organism dietary habits and metabolism, along with the hydrophobicity and molecular weight of NBFRs, contribute to bioaccumulation differences. (5) Successive reductive debromination is the primary degradation pathway for NBFRs, and microorganisms such as the white-rot fungus P. ostreatus show potential for remediating NBFR-contaminated soil. This review clarifies the pollution status of soil NBFRs and provides a solid reference to develop management policies. Future research should focus on studying the transport mechanisms of NBFRs between soil and other media, and assessing the cumulative effects of high trophic level organisms on NBFRs.
Collapse
Affiliation(s)
- Rui Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Peterson AK, Alexeeff SE, Ames JL, Feng J, Yoshida C, Avalos LA, Barrett ES, Bastain TM, Bennett DH, Buckley JP, Croen LA, Dunlop AL, Hedderson MM, Herbstman JB, Kannan K, Karagas MR, McEvoy CT, O'Connor TG, Romano ME, Sathyanarayana S, Schantz SL, Schmidt RJ, Starling AP, Trasande L, Woodruff TJ, Zhao Q, Zhu Y, Ferrara A. Gestational exposure to organophosphate ester flame retardants and risk of childhood obesity in the environmental influences on child health outcomes consortium. ENVIRONMENT INTERNATIONAL 2024; 193:109071. [PMID: 39437621 PMCID: PMC11702067 DOI: 10.1016/j.envint.2024.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Organophosphate esters (OPEs) are increasing in use as flame retardants and plasticizers and concerns have been raised given their endocrine-disrupting activities and possible obesogenic consequences. However, longitudinal studies on gestational OPE exposure and childhood obesity are scarce. This study examined whether OPE levels in maternal urine during pregnancy were associated with the risk of childhood obesity. METHODS OPEs were analyzed in pregnancy urine samples of 5,087 individuals from 14 studies contributing to the Environmental influences on Child Health Outcomes (ECHO) Cohort. BDCPP, DBUP/DIBP, and DPHP, detected in > 80 % of the samples, were modeled continuously and by tertiles; whereas BCPP, BBOEP, and BCETP, detected in 50-80 % of samples, were modeled categorically (not-detected, low, and high). Childhood obesity was defined by BMI z-score ≥ 95th percentile according to WHO (<2 years) and the CDC (≥2 years) metrics. Adjusted modified Poisson regression models assessed childhood obesity risk and the mixture effect was assessed using Bayesian kernel machine regression (BKMR). RESULTS BMI measurements were available for 3,827 children in infancy (0.5-1.9 years), 3,921 children in early childhood (2.0-4.9 years), and 2,541 children in mid-childhood (5.0-10.0 years). Obesity was present in 16-21 % of children across age groups. In mid-childhood DBUP/DIBP second and third versus first tertiles were associated with increased obesity risk (RR 1.14; 95 % CI: 1.02, 1.28; and RR 1.11; 95 % CI: 0.97, 1.27; respectively); whereas BDCPP second and third versus first tertiles reflected an inverse association with obesity risk (RR 0.85; 95 % CI: 0.80, 0.91 and RR 0.91; 95 % CI: 0.77, 1.07; respectively). No association with obesity risk was observed for DPHP, BCPP, BBOEP, and BCETP. Directions observed were consistent with those seen in BKMR models. CONCLUSIONS This study identified mixed associations between gestational OPE exposure and childhood obesity. Further investigation across a comprehensive range of OPE exposures is warranted.
Collapse
Affiliation(s)
- Alicia K Peterson
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States; Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States.
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Jennifer L Ames
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Juanran Feng
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Cathleen Yoshida
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Lyndsay A Avalos
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States; Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, United States
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, United States
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Monique M Hedderson
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States; Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Julie B Herbstman
- Columbia University Mailman School of Public Health, New York, NY, United States
| | | | | | - Cindy T McEvoy
- Department of Pediatrics, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, United States
| | - Thomas G O'Connor
- Departments of Psychiatry, Neuroscience, and Obstetrics and Gynecology, University of Rochester, Rochester, NY, United States
| | - Megan E Romano
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Sheela Sathyanarayana
- Department of Pediatrics and Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, United States
| | - Anne P Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Leonardo Trasande
- Department of Population Health, Department of Pediatrics, Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, United States
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States; Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States; Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| |
Collapse
|
4
|
Li X, Zhang L, Zhang X, Liu J, Shao B. Organophosphorus flame retardants in infant's diets from Beijing, China: Detection and risk assessment. CHEMOSPHERE 2024; 368:143784. [PMID: 39571944 DOI: 10.1016/j.chemosphere.2024.143784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
As a group of widely used flame retardants, organophosphate esters (OPEs) and their metabolites, organophosphate diesters (di-OPEs), have been widely detected in various environmental media and human samples. However, the information on dietary exposure to OPEs for lactating infants is still limited. Here, 38 OPEs and 10 di-OPEs were monitored in 110 infant formula samples and 122 breast milk samples collected in Beijing, China. 20 OPEs (median: 49.9 ng/g, 16.5-160 ng/g) and 6 di-OPEs (median: 20.6 ng/g, 12.4-30.5 ng/g) were detected with frequency above 50% in infant formula, while 5 OPEs (median: 6.66 ng/g, 0.0566-221 ng/g) and 3 di-OPEs (median: 18.8 ng/g, 1.39-591 ng/g) had detection frequency above 50% in breast milk samples. For lactating infants, the total estimated daily intake (EDI) of ∑20OPEs (850 ng/kg bw/day) from infant formula was comparable with that of ∑5OPEs (836 ng/kg bw/day) from breast feeding, while the EDI of ∑6di-OPEs (333 ng/kg bw/day) from infant formula was significantly lower than that of ∑3di-OPEs (2456 ng/kg bw/day) from breast feeding. In summary, the results highlighted the risks of OPEs exposure from breast feeding. Further studies are warranted to evaluate the developmental toxicity of direct exposure to di-OPEs.
Collapse
Affiliation(s)
- Xiaohui Li
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100091, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Lei Zhang
- NHG Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Xin Zhang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Jiaying Liu
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100091, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China.
| |
Collapse
|
5
|
Cardona B, Rodgers KM, Trowbridge J, Buren H, Rudel RA. Breast Cancer-Related Chemical Exposures in Firefighters. TOXICS 2024; 12:707. [PMID: 39453127 PMCID: PMC11511222 DOI: 10.3390/toxics12100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
To fill a research gap on firefighter exposures and breast cancer risk, and guide exposure reduction, we aimed to identify firefighter occupational exposures linked to breast cancer. We conducted a systematic search and review to identify firefighter chemical exposures and then identified the subset that was associated with breast cancer. To do this, we compared the firefighter exposures with chemicals that have been shown to increase breast cancer risk in epidemiological studies or increase mammary gland tumors in experimental toxicology studies. For each exposure, we assigned a strength of evidence for the association with firefighter occupation and for the association with breast cancer risk. We identified twelve chemicals or chemical groups that were both linked to breast cancer and were firefighter occupational exposures, including polycyclic aromatic hydrocarbons, volatile aromatics, per- and polyfluoroalkyl substances, persistent organohalogens, and halogenated organophosphate flame retardants. Many of these were found at elevated levels in firefighting environments and were statistically significantly higher in firefighters after firefighting or when compared to the general population. Common exposure sources included combustion byproducts, diesel fuel and exhaust, firefighting foams, and flame retardants. Our findings highlight breast-cancer-related chemical exposures in the firefighting profession to guide equitable worker's compensation policies and exposure reduction.
Collapse
Affiliation(s)
| | - Kathryn M. Rodgers
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jessica Trowbridge
- Department of Obstetrics Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Heather Buren
- United Fire Service Women, San Francisco, CA 94140, USA
| | | |
Collapse
|
6
|
Li SC, Xu H, Wang PF, Wang LM, Du YR, Guan YB, Han ZX, Zhang QB. The mechanism of interaction between tri-para-cresyl phosphate and human serum protein: A multispectroscopic and in-silico study. Chem Biol Interact 2024; 400:111144. [PMID: 39002877 DOI: 10.1016/j.cbi.2024.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Organophosphate flame retardants (OPFRs) pose the significant risks to the environment and human health and have become a serious public health issue. Tricresyl phosphates (TCPs), a group of aryl OPFRs, exhibit neurotoxicity and endocrine disrupting toxicity. However, the binding mechanisms between TCPs and human serum albumin (HSA) remain unknown. In this study, through fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy, molecular docking and molecular dynamics (MD), tri-para-cresyl phosphate (TpCP) was selected to explore potential interactions between HSA and TCPs. The results of the fluorescence spectroscopy demonstrated that a decrease in the fluorescence intensity of HSA and a blue shift were observed with the increasing concentrations of TpCP. The binding constant (Ka) was 2.575 × 104 L/mol, 4.701 × 104 L/mol, 5.684 × 104 L/mol and 9.482 × 104 L/mol at 293 K, 298 K, 303 K, and 310 K, respectively. The fluorescence process between HSA and TpCP involved a mix of static and dynamic quenching mechanism. The gibbs free energy (ΔG0) of HSA-TpCP system was -24.452 kJ/mol, -25.907 kJ/mol, -27.363 kJ/mol, and - 29.401 kJ/mol at 293 K, 298 K, 303 K, and 310 K, respectively, suggesting that the HSA-TpCP reaction was spontaneous. The enthalpy change (ΔH0) and thermodynamic entropy change (ΔS0) of the HSA-TpCP system were 60.83 kJ/mol and 291.08 J/(mol·>k), respectively, indicating that hydrophobic force was the major driving force in the HSA-TpCP complex. Furthermore, multispectral analysis also revealed that TpCP could alter the microenvironment of tryptophan residue and the secondary structure of HSA and bind with the active site I of HSA. Molecular docking and MD simulations confirmed that TpCP could spontaneously form a stable complex with HSA, which was consistent with the fluorescence experimental results. This study provides novel insights into the mechanisms of underlying the transportation and distribution of OPFRs in humans.
Collapse
Affiliation(s)
- Shang-Chun Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Han Xu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Peng-Fei Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Li-Mei Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China; People's Hospital of Chongqing Hechuan, Chongqing, 401519, China
| | - Yue-Rou Du
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yong-Bin Guan
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Zhi-Xia Han
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| | - Qing-Bi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Wang X, Dong S, Zhu Q, Wu X, Zhou W, Liao C, Jiang G. Nationwide Investigation on Organophosphate Flame Retardants in Tea from China: Migration from Packaging Materials and Implications for Global Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14786-14796. [PMID: 39106076 DOI: 10.1021/acs.est.4c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In this study, we measured 15 common organophosphate flame retardants (OPFRs) in six categories of tea samples across China. OPFRs were found in all the tea samples, with the total concentrations of OPFRs (∑OPFRs) at 3.44-432 ng/g [geometric mean (GM): 17.6 ng/g]. Triphenyl phosphate (TPhP) was the dominant OPFR, accounting for 39.0-76.2% of ∑OPFRs across all tea categories. The potential factors influencing the residual OPFRs in tea were thoroughly examined, including the agricultural environment, fermentation, and packaging of teas. Tea packaging materials (TPMs) were then identified as the primary sources of OPFRs in teas. The migration test revealed that OPFRs with lower molecular weights and log Kow values exhibited a higher propensity for facilitating the migration of OPFRs from TPMs to teas. The estimated daily intakes of OPFRs from teas were relatively higher for the general populations in Mauritania, Gambia, Togo, Morocco, and Senegal (3.18-9.79 ng/kg bw/day) than China (3.12 ng/kg bw/day). The health risks arising from OPFRs in Chinese teas were minor. This study established a baseline concentration and demonstrated the contamination sources of OPFRs in Chinese tea for the first time, with an emphasis on enhancing the hygiene standards for TPMs.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, and Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingyi Wu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Wenfeng Zhou
- College of Science, China Agricultural University, Beijing 100193, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Li Y, Dai Y, Luo X, Zhang L, Yuan J, Tan L. Biomonitoring urinary organophosphorus flame retardant metabolites by liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry and their association with oxidative stress. Anal Bioanal Chem 2024; 416:4543-4554. [PMID: 38877147 DOI: 10.1007/s00216-024-05393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Organophosphate flame retardants (OPFRs) are widely used as substitutes for traditional brominated flame retardants, necessitating a reliable and sensitive method for biomonitoring their urinary metabolites to assess human exposure. This study conducted biomonitoring of 10 metabolites of OPFRs in 152 adults and assessed their association with oxidative stress biomarkers 8-hydroxydeoxyguanosine and 8-hydroxyguanosine. Urinary metabolites of OPFRs were released via enzymatic deconjugation. The addition of sodium chloride to the urine samples increases the ionic strength, inducing a salting-out effect that reduces the solubility of these compounds, thereby facilitating their extraction with a mixture of ethyl acetate and acetonitrile. Then, the metabolites of OPFRs were quantified by ultra-high performance liquid chromatography-tandem mass spectrometry, and we validated the method for linear range, precision, matrix effect, and method detection limit. The detection limit of the metabolites of OPFRs ranged from 0.01 to 0.2 μg/L, and these metabolites were detected with high frequencies ranging from 25.0 to 98.68% in the urine samples. The concentration of bis (2-chloroethyl) phosphate was significantly higher in males than in females, with the geometric mean concentration of 0.88 μg/L for males and 0.53 μg/L for females, respectively. Spearman correlation analysis revealed weak but statistically significant positive correlations among the urinary metabolites. Bayesian kernel machine regression analysis showed a significant positive association between elevated urinary concentrations of metabolites of OPFRs and increased oxidative stress levels. Di-n-butyl phosphate was identified as the metabolite that significantly contributed to the elevated level of 8-hydroxyguanosine.
Collapse
Affiliation(s)
- Yongxian Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xinni Luo
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
- School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Yeshoua B, Romero Castillo H, Monaghan M, van Gerwen M. A Review of the Association between Exposure to Flame Retardants and Thyroid Function. Biomedicines 2024; 12:1365. [PMID: 38927574 PMCID: PMC11201907 DOI: 10.3390/biomedicines12061365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Flame retardants have been shown to cause widespread physiological effects, in particular on endocrine organs such as the thyroid. This review aims to provide an overview of the literature on the association between flame retardants and thyroid function within humans. A search in the National Library of Medicine and National Institutes of Health PubMed database through January 2024 yielded 61 studies that met the inclusion criteria. The most frequently analyzed flame retardants across all thyroid hormones were polybrominated diphenyl ethers (PBDEs), in particular BDE-47 and BDE-99. Ten studies demonstrated exclusively positive associations between flame retardants and thyroid stimulating hormone (TSH). Six studies demonstrated exclusively negative associations between flame retardants and TSH. Twelve studies demonstrated exclusively positive associations for total triiodothyronine (tT3) and total thyroxine (tT4). Five and eight studies demonstrated exclusively negative associations between flame retardants and these same thyroid hormones, respectively. The effect of flame retardants on thyroid hormones is heterogeneous; however, the long-term impact warrants further investigation. Vulnerable populations, including indigenous people, individuals working at e-waste sites, firefighters, and individuals within certain age groups, such as children and elderly, are especially critical to be informed of risk of exposure.
Collapse
Affiliation(s)
- Brandon Yeshoua
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.Y.); (H.R.C.); (M.M.)
| | - Horacio Romero Castillo
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.Y.); (H.R.C.); (M.M.)
| | - Mathilda Monaghan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.Y.); (H.R.C.); (M.M.)
| | - Maaike van Gerwen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (B.Y.); (H.R.C.); (M.M.)
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Estill CF, Mayer AC, Chen IC, Slone J, LaGuardia MJ, Jayatilaka N, Ospina M, Sjodin A, Calafat AM. Biomarkers of Organophosphate and Polybrominated Diphenyl Ether (PBDE) Flame Retardants of American Workers and Associations with Inhalation and Dermal Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8417-8431. [PMID: 38701378 PMCID: PMC11093711 DOI: 10.1021/acs.est.3c09342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.
Collapse
Affiliation(s)
| | - Alexander C. Mayer
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, 45226, USA
| | - I-Chen Chen
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, 45226, USA
| | | | - Mark J. LaGuardia
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA,23062, USA
| | - Nayana Jayatilaka
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Maria Ospina
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Andreas Sjodin
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| |
Collapse
|
11
|
Qadeer A, Mubeen S, Liu M, Bekele TG, Ohoro CR, Adeniji AO, Alraih AM, Ajmal Z, Alshammari AS, Al-Hadeethi Y, Archundia D, Yuan S, Jiang X, Wang S, Li X, Sauvé S. Global environmental and toxicological impacts of polybrominated diphenyl ethers versus organophosphate esters: A comparative analysis and regrettable substitution dilemma. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133543. [PMID: 38262318 DOI: 10.1016/j.jhazmat.2024.133543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sidra Mubeen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China; Faculty of Computer Science and Information Technology, Superior University Lahore, Pakistan
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR China
| | - Tadiyose Girma Bekele
- Department of Biology, Eastern Nazarene College, 23 East Elm Avenue, Quincy, MA 02170, USA
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North, West University, Potchefstroom 2520, South Africa
| | - Abiodun O Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, Lesotho
| | - Alhafez M Alraih
- Department of Chemistry, College of Science and Arts, Mohail Aseer, King Khalid University, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ahmad S Alshammari
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Denisse Archundia
- Instituto de Geología, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México 04510, Mexico
| | - Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal H2V 0B3, QC, Canada
| |
Collapse
|
12
|
Xie Z, Zhang X, Xie Y, Liu F, Sun B, Liu W, Wu J, Wu Y. Bioaccumulation and Potential Endocrine Disruption Risk of Legacy and Emerging Organophosphate Esters in Cetaceans from the Northern South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4368-4380. [PMID: 38386007 DOI: 10.1021/acs.est.3c09590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Despite the increasing health risks shown by the continuous detection of organophosphate esters (OPEs) in biota in recent years, information on the occurrence and potential risks of OPEs in marine mammals remains limited. This study conducted the first investigation into the body burdens and potential risks of 10 traditional OPEs (tOPEs) and five emerging OPEs (eOPEs) in 10 cetacean species (n = 84) from the northern South China Sea (NSCS) during 2005-2021. All OPEs, except for 2-ethylhexyl diphenyl phosphate (EHDPHP), were detected in these cetaceans, indicating their widespread occurrence in the NSCS. Although the levels of the ∑10tOPEs in humpback dolphins remained stable from 2005 to 2021, the concentrations of the ∑5eOPEs showed a significant increase, suggesting a growing demand for these new-generation OPEs in South China. Dolphins in proximity to urban regions generally exhibited higher OPE concentrations than those from rural areas, mirroring the environmental trends of OPEs occurring in this area. All OPE congeners, except for EHDPHP, in humpback dolphins exhibited a maternal transfer ratio >1, indicating that the dolphin placenta may not be an efficient barrier for OPEs. The observed significant correlations between levels of OPEs and hormones (triiodothyronine, thyroxine, and testosterone) in humpback dolphins indicated that OPE exposures might have endocrine disruption effects on the dolphin population.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Bin Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Wen Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
13
|
Guan X, Zhang G, Meng L, Liu M, Zhang L, Zhao C, Li Y, Zhang Q, Jiang G. Novel biomonitoring method for determining five classes of legacy and alternative flame retardants in human serum samples. J Environ Sci (China) 2023; 131:111-122. [PMID: 37225373 DOI: 10.1016/j.jes.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 05/26/2023]
Abstract
Flame retardants (FRs) are ubiquitous in environment and biota and may pose harm to human health. In recent years, concern regarding legacy and alternative FRs has been intensified due to their widespread production and increasing contamination in environmental and human matrices. In this study, we developed and validated a novel analytical method for simultaneous determination of legacy and alternative FRs, including polychlorinated naphthalenes (PCNs), short- and middle-chain chlorinated paraffins (SCCPs and MCCPs), novel brominated flame retardants (NBFRs), and organophosphate esters (OPEs) in human serum. Serum samples were prepared by liquid-liquid extraction using ethyl acetate, and purified with Oasis® HLB cartridge and Florisil-silica gel columns. Instrumental analyses were carried out using gas chromatography-triple quadrupole mass spectrometry, high-resolution gas chromatography coupled with high-resolution mass spectrometry, and gas chromatography coupled with quadrupole time-of-flight mass spectrometry, respectively. The proposed method was validated for linearity, sensitivity, precision, accuracy, and matrix effects. Method detection limits for NBFRs, OPEs, PCNs, SCCPs, and MCCPs were 4.6 × 10-4-8.6 × 10-2, 4.3 × 10-3-1.3, 1.1 × 10-5-1.0 × 10-4, 1.5, and 9.0 × 10-1 ng/mL, respectively. Matrix spike recoveries ranged from 73%-122%, 71%-124%, 75%-129%, 92%-126%, and 94%-126% for NBFRs, OPEs, PCNs, SCCPs, and MCCPs, respectively. The analytical method was applied for detection of real human serum. CPs were the dominant FRs in serum, indicating CPs were widely presented in human serum and should be pay more attention for their health risk.
Collapse
Affiliation(s)
- Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Gaoxin Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Chuxuan Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Ohayon JL, Rasanayagam S, Rudel RA, Patton S, Buren H, Stefani T, Trowbridge J, Clarity C, Brody JG, Morello-Frosch R. Translating community-based participatory research into broadscale sociopolitical change: insights from a coalition of women firefighters, scientists, and environmental health advocates. Environ Health 2023; 22:60. [PMID: 37649086 PMCID: PMC10466827 DOI: 10.1186/s12940-023-01005-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND We report on community-based participatory research (CBPR) initiated by women firefighters in order to share successful elements that can be instructive for other community-engaged research. This CBPR initiative, known as the Women Worker Biomonitoring Collaborative (WWBC) is the first we are aware of to investigate links between occupational exposures and health outcomes, including breast cancer, for a cohort of exclusively women firefighters. METHODS In order to be reflective of the experiences and knowledge of those most intimately involved, this article is co-authored by leaders of the research initiative. We collected leaders' input via recorded meeting sessions, emails, and a shared online document. We also conducted interviews (N = 10) with key research participants and community leaders to include additional perspectives. RESULTS Factors contributing to the initiative's success in enacting broadscale social change and advancing scientific knowledge include (1) forming a diverse coalition of impacted community leaders, labor unions, scientists, and advocacy organizations, (2) focusing on impacts at multiple scales of action and nurturing different, yet mutually supportive, goals among partners, (3) adopting innovative communication strategies for study participants, research partners, and the broader community, (4) cultivating a prevention-based ethos in the scientific research, including taking early action to reduce community exposures based on existing evidence of harm, and (5) emphasizing co-learning through all the study stages. Furthermore, we discuss external factors that contribute to success, including funding programs that elevate scientist-community-advocacy partnerships and allow flexibility to respond to emerging science-policy opportunities, as well as institutional structures responsive to worker concerns. CONCLUSIONS While WWBC shares characteristics with other successful CBPR partnerships, it also advances approaches that increase the ability for CBPR to translate into change at multiple levels. This includes incorporating partners with particular skills and resources beyond the traditional researcher-community partnerships that are the focus of much CBPR practice and scholarly attention, and designing studies so they support community action in the initial stages of research. Moreover, we emphasize external structural factors that can be critical for CBPR success. This demonstrates the importance of critically examining and advocating for institutional factors that better support this research.
Collapse
Affiliation(s)
| | - Sharima Rasanayagam
- California Breast Cancer Research Program, University of California, Office of the President, Oakland, CA, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Sharyle Patton
- Commonweal Biomonitoring Resource Center, Bolinas, CA, USA
| | | | - Tony Stefani
- San Francisco Firefighters Cancer Prevention Foundation, San Francisco, CA, USA
| | - Jessica Trowbridge
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Cassidy Clarity
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Julia Green Brody
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Rachel Morello-Frosch
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Cheng FJ, Wang CH, Pan HY, Chen CC, Huang WT, Li SH, Wang LJ, Wang CC, Lee WC, Tsai KF, Ou YC, Kung CT. Levels of organophosphate flame retardants and their metabolites among 391 volunteers in Taiwan: difference between adults and children. Front Public Health 2023; 11:1186561. [PMID: 37711251 PMCID: PMC10499440 DOI: 10.3389/fpubh.2023.1186561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Background Organophosphate flame retardants (OPFRs) are ubiquitous in the environment. The compositions and concentrations of different OPFRs metabolites vary in different environments depending on different human activities. The objective of the present study was to evaluate the exposure of different age groups to OPFRs in Taiwan. Methods Volunteers provided urine samples and responded to questionnaires including demographic factors, underlying disease, lifestyle information, and occupation from October 2021 to January 2022. OPFR measurements were performed using a Waters Acquity Ultra-Performance Liquid Chromatography system coupled with a Waters Xevo TQ-XS mass spectrometer. Results A total of 391 volunteers (74 children and 317 adults) were enrolled in this study. The concentrations (presented as μg/g creatinine) of bis(1,3-dichloro-2-propyl) phosphate (BDCPP, p = 0.029) and tri-n-butyl phosphate (TNBP, p = 0.008) were higher in the adult group, while the concentrations of bis-2-chloroethyl phosphate (BCEP, p = 0.024), diphenyl phosphate (DPHP, p < 0.001), tris(1,3-dichloro-2-propyl) phosphate (TDCPP, p = 0.009), and Tris(2-butoxyethyl) phosphate (TBEP, p = 0.007) were higher in the child group. Compared with school age children (>6 years), the concentration of di(2-n-butoxyethyl) phthalate (DBEP, 1.14 vs. 0.20 μg/g creatinine, p = 0.001), DPHP (1.23 vs. 0.54 μg/g creatinine, p = 0.036), TBEP (1.63 vs. 0.29 μg/g creatinine, p < 0.001), and the sum of OPFR metabolites (ΣOPFRs, 6.58 vs. 2.04 μg/g creatinine, p < 0.001) were statistically higher in preschool-aged children. After adjusting for confounding factors, pre-school age [odds ratio (OR): 4.579, 95% confidence interval (CI): 1.389-13.115] and current smoker (OR: 5.328, 95%CI: 1.858-14.955) were independently associated with the risk of ΣOPFRs higher than 90 percentile. Conclusion This study revealed the distribution of different OPFRs metabolites in children and adults. DBEP, DPHP, TBEP, and ΣOPFR were higher in preschool-aged children. Pre-school age and current smoking status were independent risk factors for ΣOPFRs higher than 90 percentile.
Collapse
Affiliation(s)
- Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Hwa Wang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Section of Neonatology, Pediatrics Department, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Everaert S, Schoeters G, Claes K, Raquez JM, Buffel B, Vanhaecke T, Moens J, Laitinen J, Van Larebeke N, Godderis L. Balancing Acute and Chronic Occupational Risks: The Use of Nitrile Butadiene Rubber Undergloves by Firefighters to Reduce Exposure to Toxic Contaminants. TOXICS 2023; 11:534. [PMID: 37368634 DOI: 10.3390/toxics11060534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Firefighters are exposed via multi-route exposure to a multitude of chemicals (PAHs, VOCs, flame retardants, dioxins, etc.) that may cause acute and long-term health effects. The dermal absorption of contaminants is a major contributor to the overall exposure and can be reduced by wearing appropriate personal protective equipment. As leather firefighters' gloves cannot be decontaminated regularly by wet cleaning, many Belgian firefighters wear supplementary undergloves made of nitrile butadiene rubber (NBR) to protect against the accumulation of toxicants. However, the safety of this practice has been questioned. In this commentary, the current practice and risks are outlined for the first time, assessed by an interdisciplinary working group of the Belgian Superior Health Council. As NBR sticks to the skin more at high temperatures, the contact time on removal will be prolonged, posing an additional risk for deeper burns. However, based on the physicochemical properties of NBR and the existing experience of firefighters and burn centers, it is estimated that such incidents occur relatively rarely in practice. On the other hand, the risk of repeated exposure to contaminated gloves if no undergloves are worn is unacceptable. Despite the slightly increased risk for deeper burns, it is concluded that wearing disposable NBR gloves under regular firefighters' gloves is an appropriate and effective preventive measure against toxic contamination. The nitrile butadiene rubber must always be fully covered to avoid any contact with the heat.
Collapse
Affiliation(s)
- Stijn Everaert
- Chemical Environmental Factors Group, Superior Health Council, 1060 Brussels, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, 2650 Antwerp, Belgium
| | - Karel Claes
- Burn Center & Department of Plastic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Jean-Marie Raquez
- Polymer and Composite Materials Department, University of Mons, 7000 Mons, Belgium
| | - Bart Buffel
- Department of Materials Engineering, KU Leuven, 8200 Bruges, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jonas Moens
- Belgian Poison Centre, 1120 Brussels, Belgium
| | - Juha Laitinen
- Pelastusopisto, Emergency Services Academy Finland, 70821 Kuopio, Finland
| | - Nicolas Van Larebeke
- Department of Radiotherapy and Experimental Cancerology, Ghent University, 9000 Ghent, Belgium
- Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Lode Godderis
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| |
Collapse
|
17
|
Hernandez-Castro I, Eckel SP, Howe CG, Niu Z, Kannan K, Robinson M, Foley HB, Grubbs B, Al-Marayati L, Lerner D, Lurvey N, Aung MT, Habre R, Dunton GF, Farzan SF, Breton CV, Bastain TM. Sex-specific effects of prenatal organophosphate ester (OPE) metabolite mixtures and adverse infant birth outcomes in the maternal and developmental risks from environmental and social stressors (MADRES) pregnancy cohort. ENVIRONMENTAL RESEARCH 2023; 226:115703. [PMID: 36934865 PMCID: PMC10101931 DOI: 10.1016/j.envres.2023.115703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are used as flame retardants and plasticizers in various consumer products. Limited prior research suggests sex-specific effects of prenatal OPE exposures on fetal development. We evaluated overall and sex-specific associations between prenatal OPE exposures and gestational age (GA) at birth and birthweight for gestational age (BW for GA) z-scores among the predominately low-income, Hispanic MADRES cohort. METHODS Nine OPE metabolite concentrations were measured in 421 maternal urine samples collected during a third trimester visit (GA = 31.5 ± 2.0 weeks). We examined associations between single urinary OPE metabolites and GA at birth and BW for GA z-scores using linear regression models and Generalized Additive Models (GAMs) and effects from OPE mixtures using Bayesian Kernel Machine Regression (BKMR). We also assessed sex-specific differences in single metabolite analyses by evaluating statistical interactions and stratifying by sex. RESULTS We did not find significant associations between individual OPE metabolites and birth outcomes in the full infant sample; however, we found that higher bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) was associated with earlier GA at birth among male infants (p = 0.04), and a nonlinear, inverted U-shape association between the sum of dibutyl phosphate and di-isobutyl phosphate (DNBP + DIBP) and GA at birth among female infants (p = 0.03). In mixtures analysis, higher OPE metabolite mixture exposures was associated with lower GA at birth, which was primarily driven by female infants. No associations were observed between OPE mixtures and BW for GA z-scores. CONCLUSION Higher BDCIPP and DNBP + DIBP concentrations were associated with earlier GA at birth among male and female infants, respectively. Higher exposure to OPE mixtures was associated with earlier GA at birth, particularly among female infants. However, we saw no associations between prenatal OPEs and BW for GA. Our results suggest sex-specific impacts of prenatal OPE exposures on GA at birth.
Collapse
Affiliation(s)
- Ixel Hernandez-Castro
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, New Hampshire, USA
| | - Zhongzheng Niu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Helen B Foley
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Genevieve F Dunton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Engelsman M, Banks APW, He C, Nilsson S, Blake D, Jayarthne A, Ishaq Z, Toms LML, Wang X. An Exploratory Analysis of Firefighter Reproduction through Survey Data and Biomonitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085472. [PMID: 37107753 PMCID: PMC10138572 DOI: 10.3390/ijerph20085472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Firefighters are occupationally exposed to chemicals that may affect fertility. To investigate this effect, firefighters were recruited to contribute blood, urine, breast milk or semen samples to (1) evaluate chemical concentrations and semen parameters against fertility standards and the general population; (2) assess correlations between chemical concentrations and demographics, fire exposure and reproductive history; and (3) consider how occupational exposures may affect reproduction. A total of 774 firefighters completed the online survey, and 97 firefighters produced 125 urine samples, 113 plasma samples, 46 breast milk samples and 23 semen samples. Blood, urine and breast milk samples were analysed for chemical concentrations (semivolatile organic compounds, volatile organic compounds, metals). Semen samples were analysed for quality (volume, count, motility, morphology). Firefighter semen parameters were below WHO reference values across multiple parameters. Self-reported rates of miscarriage were higher than the general population (22% vs. 12-15%) and in line with prior firefighter studies. Estimated daily intake for infants was above reference values for multiple chemicals in breast milk. More frequent fire incident exposure (more than once per fortnight), longer duration of employment (≥15 years) or not always using a breathing apparatus demonstrated significantly higher concentrations across a range of investigated chemicals. Findings of this study warrant further research surrounding the risk occupational exposure has on reproduction.
Collapse
Affiliation(s)
- Michelle Engelsman
- Fire and Rescue NSW, Greenacre, NSW 2190, Australia
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence:
| | - Andrew P. W. Banks
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chang He
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Ayomi Jayarthne
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zubaria Ishaq
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Leisa-Maree L. Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
19
|
Barros B, Oliveira M, Morais S. Biomonitoring of firefighting forces: a review on biomarkers of exposure to health-relevant pollutants released from fires. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:127-171. [PMID: 36748115 DOI: 10.1080/10937404.2023.2172119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Occupational exposure as a firefighter has recently been classified as a carcinogen to humans by International Agency for Research on Cancer (IARC). Biomonitoring has been increasingly used to characterize exposure of firefighting forces to contaminants. However, available data are dispersed and information on the most relevant and promising biomarkers in this context of firefighting is missing. This review presents a comprehensive summary and critical appraisal of existing biomarkers of exposure including volatile organic compounds such as polycyclic aromatic hydrocarbons, several other persistent other organic pollutants as well as heavy metals and metalloids detected in biological fluids of firefighters attending different fire scenarios. Urine was the most characterized matrix, followed by blood. Firefighters exhaled breath and saliva were poorly evaluated. Overall, biological levels of compounds were predominantly increased in firefighters after participation in firefighting activities. Biomonitoring studies combining different biomarkers of exposure and of effect are currently limited but exploratory findings are of high interest. However, biomonitoring still has some unresolved major limitations since reference or recommended values are not yet established for most biomarkers. In addition, half-lives values for most of the biomarkers have thus far not been defined, which significantly hampers the design of studies. These limitations need to be tackled urgently to improve risk assessment and support implementation of better more effective preventive strategies.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
20
|
Tang J, Ma S, Hu X, Lin M, Li G, Yu Y, An T. Handwipes as indicators to assess organophosphate flame retardants exposure and thyroid hormone effects in e-waste dismantlers. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130248. [PMID: 36327841 DOI: 10.1016/j.jhazmat.2022.130248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dermal exposure is increasingly recognized as an important pathway for organic pollutant exposure. However, data on dermal exposure are limited, particularly with respect to the health effects. This study evaluated association between organophosphorus flame retardants (OPFRs) in handwipes and internal body burden on workers and adult residents in an electronic waste (e-waste) dismantling area. The impact of dermal exposure to OPFRs on thyroid hormones (THs) served as a biomarker for early effects. Triphenyl phosphate (TPhP) was the most detected compound in handwipes, with median levels of 1180, 200, and 24.0 ng in people identified as e-waste bakers, e-waste dismantlers, and adult residents. Among e-waste dismantlers, TPhP levels in handwipes were positively correlated with paired serum TPhP and urinary diphenyl phosphate (DPhP) levels. In multiple linear regression models controlling for sex, age and smoking, TPhP levels in handwipes of e-waste dismantlers were significantly negatively correlated with three THs used to evaluate thyroid function: serum reverse 3,3',5-triiodo-L-thyronine (rT3), 3,3'-diiodo-L-thyronine (3,3'-T2), and 3,5-diiodo-L-thyronine (3,5-T2). These findings suggest that handwipes can act as non-invasive exposure indicators to assess body burden of dermal exposure to TPhP and health effects on THs of e-waste dismantlers. This study highlights importance of OPFR effect on human THs through dermal exposure.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
21
|
Zhu M, He L, Liu J, Long Y, Shentu J, Lu L, Shen D. Dynamic processes in conjunction with microbial response to unveil the attenuation mechanisms of tris (2-chloroethyl) phosphate (TCEP) in non-sanitary landfill soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120666. [PMID: 36403879 DOI: 10.1016/j.envpol.2022.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Although the environmental and health risks of chlorinated organophosphate esters (OPEs-Cl) have drawn much attention, its environmental behaviors have been insufficiently characterized. As a notable sink of this emerging contaminant, non-sanitary landfills, which may decompose/accumulate OPEs-Cl, is of particular concern. In the present study, the dynamic processes of the typical OPEs-Cl, tris(2-chloroethyl) phosphate (TCEP), in non-sanitary landfill soils were analyzed under anaerobic condition, and the microbial taxa involved in these processes were explored. Our results showed that TCEP could be simultaneously reduced by abiotic and biotic processes, as it was reduced by 73.9% and 65.5% over the 120-day experiment in landfill humus and subsoil, respectively. Notably, the degradation of TCEP was significantly (p < 0.05) enhanced under the stress of a high TCEP concentration (10 μg g-1), while its ecological consequences were found insignificant regarding the microbial diversity and community structure and the typical soil redox processes, including Fe(III)/SO42- reduction and methanogenesis, in both soils. The microbial diversity of subsoil was significantly lower, and acetate was an important factor in changing microbial communities in landfill soils. The microbes in the family Nocardioidaceae and genus Pseudomonas might contribute to in the degradation of TCEP in landfill humus and subsoil, respectively. The metabolism related to sulfur and sulfate respiration were significantly (p < 0.05) correlated with TCEP reduction, and Desulfosporosinus were found as a potentially functional microbial taxon in TCEP degradation in both soils. The results could advance our understanding of the environmental behavior of OPEs-Cl in landfill-like complex environments.
Collapse
Affiliation(s)
- Min Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou, 310012, PR China
| | - Lisha He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China
| | - Jiayi Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Li Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| |
Collapse
|
22
|
Siegel MR, Rocheleau CM, Hollerbach BS, Omari A, Jahnke SA, Almli LM, Olshan AF, National Birth Defects Prevention Study. Birth defects associated with paternal firefighting in the National Birth Defects Prevention Study. Am J Ind Med 2023; 66:30-40. [PMID: 36345775 PMCID: PMC9969860 DOI: 10.1002/ajim.23441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Few studies have evaluated birth defects among children of firefighters. We investigated associations between birth defects and paternal work as a firefighter compared to work in non-firefighting and police officer occupations. METHODS We analyzed 1997-2011 data from the multi-site case-control National Birth Defects Prevention Study. Cases included fetuses or infants with major structural birth defects and controls included a random sample of live-born infants without major birth defects. Mothers of infants self-reported information about parents' occupations held during pregnancy. We investigated associations between paternal firefighting and birth defect groups using logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Referent groups included families reporting fathers working non-firefighting and police officer jobs. RESULTS Occupational groups included 227 firefighters, 36,285 non-firefighters, and 433 police officers. Twenty-nine birth defects were analyzed. In adjusted analyses, fathers of children with total anomalous pulmonary venous return (TAPVR; OR = 3.1; 95% CI = 1.1-8.7), cleft palate (OR = 1.8; 95% CI = 1.0-3.3), cleft lip (OR = 2.2; 95% CI = 1.2-4.2), and transverse limb deficiency (OR = 2.2; 95% CI = 1.1-4.7) were more likely than fathers of controls to be firefighters, versus non-firefighters. In police-referent analyses, fathers of children with cleft palate were 2.4 times more likely to be firefighters than fathers of controls (95% CI = 1.1-5.4). CONCLUSIONS Paternal firefighting may be associated with an elevated risk of birth defects in offspring. Additional studies are warranted to replicate these findings. Further research may contribute to a greater understanding of the reproductive health of firefighters and their families for guiding workplace practices.
Collapse
Affiliation(s)
- Miriam R. Siegel
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and HealthCincinnatiOhioUSA
| | - Carissa M. Rocheleau
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and HealthCincinnatiOhioUSA
| | | | - Amel Omari
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and HealthCincinnatiOhioUSA
| | - Sara A. Jahnke
- Center for Fire, Rescue, and EMS Health ResearchNDRI‐USA, IncLeawoodKansasUSA
| | - Lynn M. Almli
- Division of Birth Defects and Infant DisordersNational Center on Birth Defects and Developmental Disabilities, CDCAtlantaGeorgiaUSA
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | |
Collapse
|
23
|
Liu M, Li A, Meng L, Zhang G, Guan X, Zhu J, Li Y, Zhang Q, Jiang G. Exposure to Novel Brominated Flame Retardants and Organophosphate Esters and Associations with Thyroid Cancer Risk: A Case-Control Study in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17825-17835. [PMID: 36468700 DOI: 10.1021/acs.est.2c04759] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel brominated flame retardant (NBFR) and organophosphate ester (OPE) exposure may engender adverse effects on human health. However, present epidemiological information regarding the effects of such exposure is limited and controversial. In this case-control study, 481 serum samples were collected from patients with thyroid cancer (n = 242) and healthy controls (n = 239) in Shandong Province, eastern China. The levels of NBFRs and OPEs, thyroid hormones, and serum lipid parameters were measured in all the participants. Pentabromotoluene, 2,3-dibromopropyl 2,4,6 tribromophenyl ether, decabromodiphenylethane (DBDPE), tris (2-chloroethyl) phosphate (TCEP), and triphenyl phosphate (TPP) were widely detected (detection frequency > 60%) in all the participants. A significantly high risk association was found between exposure of NBFRs and OPEs (namely 1,2,3,4,5-pentabromobenzene, DBDPE, tri-n-propyl phosphate, tri[(2R)-1-chloro-2-propyl] phosphate, tris (1,3-dichloro-2-propyl) phosphate, and tris (2-butoxyethyl) phosphate) and thyroid cancer in both males and females. In the females of the control group, TCEP levels exhibited a significantly positive association with thyroid-stimulating hormone and a negative association with triiodothyronine (T3), free triiodothyronine (FT3), and free thyroxine (FT4) levels. Weighted quantile sum regression evaluated the mixed effects of the compounds on thyroid hormones levels and thyroid cancer. As a result, TPP accounted for the majority of the T3, thyroxine, and FT3 amounts. Our results suggest that NBFR and OPE exposure contributes to alterations in thyroid function, thereby increasing thyroid cancer risk.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jiang Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310000, China
| |
Collapse
|
24
|
Samare-Najaf M, Samareh A, Namavar Jahromi B, Jamali N, Vakili S, Mohsenizadeh M, Clark CCT, Abbasi A, Khajehyar N. Female infertility caused by organophosphates: an insight into the latest biochemical and histomorphological findings. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Sina Vakili
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Cain C. T. Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Ali Abbasi
- Department of Biochemistry and Biophysics, Babol University of Medical Sciences, Babol, Iran
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| |
Collapse
|