1
|
Wang Y, Yang C, Shi Q, Zhang L, Liu H, You J, Zhang R, Sun A, Song S, Zhang Z, Shi X. Co-exposure to enrofloxacin and atrazine enhances the hepatotoxicity in Larimichthys crocea by targeting the hypothalamic-pituitary-thyroid and gut-liver axes. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137548. [PMID: 39952136 DOI: 10.1016/j.jhazmat.2025.137548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Enrofloxacin (ENR) and atrazine (ATZ) are common co-contaminants in marine environments. Although the immunosuppressive effects of ENR and the endocrine-disrupting properties of ATZ are well established, the combined effects of these pollutants on hepatotoxicity, particularly concerning the regulation of the hypothalamic-pituitary-thyroid (HPT) and gut-liver axes, remain poorly understood. In this study, Larimichthys crocea was exposed to ENR and ATZ at environmentally relevant concentrations, individually and in combination, to investigate the hepatotoxicity. Liver cell swelling, necrosis, oxidative stress, and elevated liver injury markers were observed, indicating hepatic damage, with co-exposure exacerbating liver injury. Decreased levels of thyrotropin-releasing hormone and thyroid-stimulating hormone, increased triiodothyronine and thyroxine, and altered expression of HPT axis-related genes demonstrated enhanced disruption of the HPT axis under co-exposure, which was strongly associated with oxidative stress and liver dysfunction. Molecular docking confirmed that ENR and ATZ inhibited thyroid hormone binding to target proteins, likely provoking the enhanced hepatotoxicity. Additionally, ATZ significantly intensified the intestinal bacterial disturbances induced by ENR, further aggravating hepatotoxicity through the gut-liver axis. This study is the first to reveal the increased risk associated with ENR and ATZ co-exposure, highlighting the need for attention to such co-contaminants.
Collapse
Affiliation(s)
- Yinan Wang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenxue Yang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Qiangqiang Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Liuquan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hao Liu
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jinjie You
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Aili Sun
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zeming Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xizhi Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Bai Z, Zhang D, Zhang S, Li T, Wang G, Xu X, Pan X, Zhong Q, Zhou W, Pu Y, Jia Y. Integrating multi-omics and biomarkers to reveal the stress mechanisms of high fluoride on earthworms. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138706. [PMID: 40413976 DOI: 10.1016/j.jhazmat.2025.138706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Excessive fluorine accumulation poses a significant threat to soil ecology and even human health, yet its impact on soil fauna, especially earthworms, remains poorly understood. This study employed multi-omics and biomarkers to investigate high fluorine-induced biochemical changes that cause tissue damages in Eisenia fetida. The results demonstrated that earthworms exhibited obvious damage with fluorine addition exceeding 200 mg kg-1, with stress levels escalating as fluorine contents increased. Further analysis of the underlying mechanisms revealed that fluorine could upregulate genes encoding mitochondrial respiratory chain complexes I-III and downregulate those for IV-V, leading to reactive oxygen species (ROS) accumulation despite antioxidant system activation. The resulting ROS interfered with deoxyribonucleoside triphosphate synthesis, prompting homologous recombination as the main DNA repair mechanism. Additionally, fluorine-induced ROS also attacked and disrupted protein and lipid related metabolisms ultimately causing oxidative damages. These cumulative oxidative damages from high fluorine contents subsequently triggered autophagy or apoptosis, resulting in tissue ulceration and epithelial exfoliation. Therefore, high fluorine could threaten earthworms by inducing ROS accumulation and subsequent biomolecule damages.
Collapse
Affiliation(s)
- Zhiqiang Bai
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Daixi Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China.
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Xiaomei Pan
- Chengdu Agricultural College, Wenjiang 611130, PR China
| | - Qinmei Zhong
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| |
Collapse
|
3
|
Zhao J, Duan G, Chang J, Wang H, Zhu D, Li J, Zhu Y. Co-exposure to cyazofamid and polymyxin E: Variations in microbial community and antibiotic resistance in the soil-animal-plant system. ENVIRONMENTAL RESEARCH 2025; 273:121160. [PMID: 39986419 DOI: 10.1016/j.envres.2025.121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Human activity is accelerating the emergence of fungal pathogens, prompting substantial efforts to discover novel fungicides. Meanwhile, the runoff and spray drift from agricultural fields adversely affect aquatic and terrestrial nontarget organisms. However, few studies have examined the effects of co-contamination by agrochemical fungicides and pharmaceutical antibiotics on microorganisms and antibiotic resistance genes (ARGs) in the soil-animal-plant system. To further explore the mechanisms, an investigation was conducted into the individual and combined effects of a widely used fungicide (cyazofamid, CZF) and a last-resort antibiotic (colistin, polymyxin E, PME) in the soil-earthworm-tomato system. This study revealed that CZF and PME co-contamination exerted synergistic toxicity, significantly reducing earthworm survival and inhibiting tomato growth. This study found that the structure of microbial communities was more severely disturbed by the fungicide CZF than by the antibiotic PME, with the most severe impact being that of CZF + PME co-contamination. Fungicides and antibiotics had significantly distinct effects on bacterial functional pathways: CZF and CZF + PME treatments enhanced compound degradation, whereas PME treatments promoted biological nitrogen cycling. Moreover, co-contamination significantly increased the abundance of insertional and plasmid-associated genes and number of total ARGs in bulk and rhizosphere soil. In addition, the relationships between bacterial communities and the antibiotic resistome were investigated. The analysis revealed that Gram-positive bacteria (Sporosarcina, Bacillus, and Rhodococcus) capable of resistance and degradation, as well as the genes MexB (multidrug) and aadA2 (aminoglycoside) were enriched. Taken together, interactions between co-pollutants can significantly increase toxicity levels and the risk of ARG proliferation. The findings provide new insights into the potential impacts of co-contamination in complex real-life environments, such as soil-animal-plant systems.
Collapse
Affiliation(s)
- Jun Zhao
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guilan Duan
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Chang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huili Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dong Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguan Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
4
|
Zhang ZM, Liu H, Zuo HL, Wang YN, Sun AL, Chen J, Shi XZ. Unraveling the toxic trio: Combined effects of thifluzamide, enrofloxacin, and microplastics on Mytilus coruscus. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138441. [PMID: 40311431 DOI: 10.1016/j.jhazmat.2025.138441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The presence of pesticides, antibiotics, and microplastics in aquatic environments poses a significant threat because of their persistence and potential harm to aquatic life and human health. However, few studies have explored their combined effects on bioaccumulation and toxicity in edible bivalves. This study examined the bioaccumulation and toxicological impacts of thifluzamide (TF) and enrofloxacin (ENR) on oxidative stress, neurotoxicity, detoxification, and metabolism in Mytilus coruscus after 4 weeks of exposure at the environmental level. The findings indicated that coexposure to TF and ENR or the presence of microplastic polystyrene (PS) increased TF and ENR accumulation in mussels and caused oxidative damage, as evidenced by elevated catalase and glutathione transferase activities and increased malondialdehyde (MDA) levels. Notably, compared with single exposures, coexposure to PS+TF, PS+ENR, or TF+ENR generally increased the MDA content, reduced acetylcholinesterase activity, and increased detoxification gene expression. Metabolomic analysis revealed that TF, ENR, and PS, either alone or combined, significantly disrupted multiple metabolic pathways by altering levels of glycerophospholipids, eicosanoids, amino acids, and nucleotides. Coexposure particularly worsened glycerophospholipid and arachidonic acid metabolism disturbances. These results suggest that combined exposure to TF, ENR or PS exacerbated the ecotoxicological effects of TF and ENR on M. coruscus. Taken together, the results of the present study could enhance our understanding of the environmental effects resulting from multipollutant interactions and their potential risks to seafood security.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hao Liu
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hong-Lin Zuo
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yi-Nan Wang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ai-Li Sun
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xi-Zhi Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
5
|
Weng Y, Bai X, Kang M, Ji Y, Wang H, Liu Y. Detoxification Strategy of Titanium Oxide Nanoparticles Driving Endogenous Molecules Metabolism to Modulate Atrazine Conversion in Lactuca sativa L. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6440-6451. [PMID: 40127405 DOI: 10.1021/acs.est.4c12333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nanoparticles (NPs) exhibit the potential to enhance plant tolerance to organic pollutant stress, but how they drive endogenous molecules to detoxify contaminants remains to be further investigated. This study clarified the modulatory mechanisms by which foliar or root application of biosynthesized titanium oxide NPs (g-nTiO2) alleviated atrazine (ATZ) toxicity to Lactuca sativa L. Compared with the ATZ-alone group, 10 mg/L g-nTiO2 intensified light-harvesting, photoelectron transfer, and reduced oxidative damage, thereby improving growth and inducing metabolic reprogramming. Specifically, g-nTiO2 activated pathways related to energy supply and defense detoxification, while stabilizing membrane lipid and nitrogen metabolism. Furthermore, the modulation of biomarkers involved in balancing cellular homeostasis and stimulating growth by g-nTiO2 ultimately boosted lettuce resistance to ATZ and physiological performance. Molecular docking analysis revealed that g-nTiO2 enhanced the Phase II metabolism of ATZ by glutathione and amino acids through increasing detoxification enzyme activities by 23-44%, which confirmed the driving role of NPs in alleviating ATZ phytotoxicity to lettuce. Collectively, these findings provide a prospective nanoenabled strategy for mitigating crop sensitivity to pesticide residues for safe and sustainable agricultural production.
Collapse
Affiliation(s)
- Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yetong Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haoke Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
6
|
Lv H, Mu B, Xu H, Li X, Yao X, Wang Q, Yang H, Ding J, Wang J. Do emerging alternatives pose similar soil ecological risks as traditional plasticizers? A multi-faceted analysis using earthworms as a case study. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137298. [PMID: 39847925 DOI: 10.1016/j.jhazmat.2025.137298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
The extensive application of plasticizers has led to significant environmental issues. This study focused on the ecotoxic effects on earthworms of the traditional plasticizer di(2-ethylhexyl) phthalate (DEHP) and non-phthalate plasticizers di(ethylhexyl) terephthalate (DEHT) and acetyltributyl citrate (ATBC). At an environmentally relevant concentration (50 mg/kg), significant accumulation of ROS was observed in earthworms, with a trend of DEHP > DEHT > ATBC, inducing oxidative stress and lipid peroxidation. DEHP, DEHT, and ATBC impaired the energy metabolism in earthworms, as evidenced by a sharp reduction in ATP content ranging from 43.2 % to 75.8 %, which was attributed to the disruption of glycolysis and the TCA cycle. Concurrently, the numbers of cocoons and juvenile earthworms decreased by 23.3 %-76.7 % and 24.2 %-75.8 %, respectively, indicating a significant decline in reproductive capacity. Using qPCR, AlphaFold2, and molecular docking techniques, this study is the first to report that because of their similar molecular structures, the alternatives to DEHP exhibit estrogen-like effects in earthworms, which may be a key mechanism of reproductive toxicity. These results provide valuable references and profound insights for the development of novel plasticizer alternatives and the assessment of their impact on soil ecosystems.
Collapse
Affiliation(s)
- Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Baoyan Mu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Haixia Xu
- Dongying Ecological Environment Monitoring Centre, Dongying Ecological Environment Bureau, Dongying, Shandong 257000, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huiyan Yang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jia Ding
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
7
|
Tao Z, Zhou Q, Liu X, Mo F, Hou Z, Zheng T, Ouyang S. Functional Modification of Ferroferric Oxide Nanoparticle Regulates the Uptake, Oxidative Stress, Tissue Damage, and Metabolic Profiles in Eisenia fetida. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5946-5959. [PMID: 40106728 DOI: 10.1021/acs.est.4c11949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Ferroferric oxide nanoparticles (Fe3O4 NPs) are widely utilized as nanoenabled agrochemicals and soil remediation agents, with functional modification significantly enhancing their stability and biocompatibility. However, excessive use of Fe3O4 NPs may pose unassessed ecological risks in soils, particularly concerning the regulatory role of two most common surface modifiers as polyvinylpyrrolidone (PVP) and citric acid (CA) which influence the interactions of NPs with soil organisms and potential toxicity. This study evaluated the nanotoxic effects of bare Fe3O4 NPs (B-Fe3O4 NPs), CA-Fe3O4 NPs, and PVP-Fe3O4 NPs on Eisenia fetida in soil ecosystems. After 7 days of exposure, the B-, CA- and PVP-Fe3O4 NPs decreased the weight of the earthworms, caused oxidative stress and tissue damage. Functional Fe3O4 NPs showed increased accumulation in earthworms while alleviating oxidative stress and homeostatic imbalance by accelerating the activation of related enzymes. Moreover, hyperspectral and pathological observations indicated that CA and PVP modifications effectively alleviated tissue damage caused by Fe3O4 NPs via an improvement in NP biocompatibility, dispersion and stability evidenced by the levels of inositol metabolites, which has been upregulated more significantly by B-Fe3O4 NPs. Significant metabolic disturbances were observed, indicating that functional modifications forced earthworms to adjust amino acid metabolism and consume more energy to detoxify and repair damage. This work supplements the toxic assessment of Fe3O4 NPs and provides crucial insights for optimizing the safety of NPs through functionalization.
Collapse
Affiliation(s)
- Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueju Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zelin Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Deng S, Li S, Liu D, Deng Q. Multi-residue analysis of four aminoglycoside antibiotic pesticides in plant agricultural products. Food Chem 2025; 464:141677. [PMID: 39437529 DOI: 10.1016/j.foodchem.2024.141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Simplified and effective pretreatment methods combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination of four aminoglycoside antibiotic pesticides kasugamycin, validamycin, streptomycin sulfate and zhongshengmycin in high starchy content matrix (rice), high water and high acidic content matrix (citrus) and high water content matrix (melon) were established. Single-factor and central composite design (CCD) experiments were employed to optimize the pretreatment conditions, resulting in the optimal factor combinations and achieving scientifically accurate outcomes. Validation results proved satisfactory, with all four target compounds exhibiting correlation coefficients (r) exceeding 0.99 within the linear range in three matrices. The recoveries were 81.5-102.2 %, and both inter-day and intra-day relative standard deviations (RSDs) were below 10.7 %. The limits of detection (LODs) were 0.1-4.0 μg/kg, with limits of quantitation (LOQs) consistently at 50 μg/kg. Furthermore, the methods were applied to potato, grape, and cucumber matrices to further validate their applicability.
Collapse
Affiliation(s)
- Sirui Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China.
| | - Shuhui Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China.
| | - Dan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China.
| | - Qianqian Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China.
| |
Collapse
|
9
|
Zhang L, Shen W, Fang Z, Liu L, Jia R, Liang J, Liu B. Multigenerational effects of cultivating transgenic maize straw on earthworms: A combined laboratory and field experiment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117873. [PMID: 39933233 DOI: 10.1016/j.ecoenv.2025.117873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
The cultivation of genetically modified (GM) maize has aroused notable public concern related to the potential risks to soil fauna caused by the release of foreign proteins. In this study, the potential effects of cultivating the GM maize variety DBN9936, which exhibits the expression of the Cry1Ab and EPSPS proteins, on earthworms (Eisenia fetida) were evaluated under laboratory and field conditions. No significant differences in the survival, body weight, cocoon production, or hatching of earthworms fed GM or non-GM DBN318 maize were detected after three consecutive generations in a laboratory test. The enzymatic activity assay results revealed no significant differences in superoxide dismutase (SOD) or catalase (CAT) enzyme activity between the GM and non-GM maize varieties. Furthermore, exogenous Cry1Ab and EPSPS proteins were undetectable in the gut tissues of earthworms raised with GM maize straw. GM maize cultivation imposed no adverse effects on the species composition or density of soil earthworms in the two consecutive years during the field test, and the soil earthworm species, total number of earthworms and density of each earthworm species did not significantly differ between the GM maize and non-GM maize lines. On the basis of our findings, we concluded that the cultivation of the GM maize variety DBN9936 does not pose a risk to earthworms.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory on Biodiversity and Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wenjing Shen
- Key Laboratory on Biodiversity and Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhixiang Fang
- Key Laboratory on Biodiversity and Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Laipan Liu
- Key Laboratory on Biodiversity and Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruizong Jia
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya 571101, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China.
| | - Biao Liu
- Key Laboratory on Biodiversity and Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
10
|
Jiang W, Zhao Z, Zhao Q, He X, Chen H, Wu G, Zhang XX. Enantioselective Toxicity of Ibuprofen to Earthworms: Unraveling the Effect and Mechanism on Enhanced Toxicity of S-Ibuprofen Over R-Ibuprofen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:756-766. [PMID: 39707965 DOI: 10.1021/acs.est.4c08655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
With the global implementation of wastewater reuse, accurately assessing the soil ecological risk of chiral pollutants from wastewater necessitates a comprehensive understanding of their enantioselective toxicity to soil animals. Ibuprofen (IBU) is the most prevalent chiral pharmaceutical in municipal wastewater. However, its enantioselective toxicity toward soil animals and the underlying mechanism remain largely unknown. In this study, the toxicity of IBU enantiomers, S-IBU and R-IBU, to earthworms was evaluated at environmentally relevant concentrations (10 and 100 μg/L), simulating wastewater reuse for irrigation. The results demonstrated that IBU adversely affects the growth, reproduction, regeneration, defense systems, and metabolic processes of earthworms, with S-IBU exhibiting stronger toxic effects than R-IBU. The bioavailability assessment revealed that S-IBU was more readily absorbed by earthworms and converted to its enantiomer within earthworms than R-IBU. This is consistent with molecular docking results showing that S-IBU had stronger affinities for functional proteins associated with xenobiotic transport and transformation. The findings of this study highlight that S-IBU poses a higher risk than R-IBU to soil organisms under wastewater reuse scenarios and that the chirality of chemical pollutants in wastewater deserves more attention when implementing wastewater reuse. In addition, our study underscores that the differences in bioavailability and bioactivity may account for the enantioselective toxicity of chiral pollutants.
Collapse
Affiliation(s)
- Wenqi Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zeyu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qi Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| | - Haonan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Zhang L, Liu Y, Xu Y, Pei M, Yao M, Chen X, Cui Y, Han F, Lu Y, Zhang C, Wang Y, Gao P, Zhu L, Wang J. Fluxapyroxad induced toxicity of earthworms: Insights from multi-level experiments and molecular simulation studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135911. [PMID: 39305595 DOI: 10.1016/j.jhazmat.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
Fluxapyroxad, an emerging succinate dehydrogenase inhibitor fungicide, is widely used due to its excellent properties. Given its persistence in soil with a 50 % disappearance time of 183-1000 days, it is crucial to evaluate the long-term effects of low-dose fluxapyroxad on non-target soil organisms such as earthworms (Eisenia fetida). The present study investigated the impacts of fluxapyroxad (0.01, 0.1, and 1 mg kg-1) on Eisenia fetida over 56 days, focusing on oxidative stress, digestive and nervous system functions, and histopathological changes. We also explored the mechanisms of fluxapyroxad-enzyme interactions through molecular docking and dynamics simulations. Results demonstrated a significant dose-response relationship in the integrated biomarker response of 12 biochemical indices. Fluxapyroxad altered expression levels of functional genes and induced histopathological damage in earthworm epidermis and intestines. Molecular simulations revealed that fluxapyroxad is directly bound to active sites of critical enzymes, potentially disrupting their structure and function. Even at low doses, long-term fluxapyroxad exposure significantly impacted earthworm physiology, with effects becoming more pronounced over time. Our findings provide crucial insights into the chronic toxicity of fluxapyroxad and emphasize the importance of long-term, low-dose studies in pesticide risk assessment in soil. This research offers valuable guidance for the responsible management and application of fungicides.
Collapse
Affiliation(s)
- Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yao Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyuan Pei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyao Yao
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yifei Cui
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Fengyang Han
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yubo Lu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
12
|
Yan Y, Zhai J, Wang L, Wang X. Response and defense mechanisms of the earthworms Eisenia foetida to natural saline soil stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175480. [PMID: 39182779 DOI: 10.1016/j.scitotenv.2024.175480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Salinization of soil is a serious global environmental issue, particularly in agricultural lands. Saline farmland not only endangers grain production but also affects the survival of soil fauna. Earthworms, as soil ecosystem engineers, play a crucial role in maintaining soil health and enhancing global agricultural production. However, the response of earthworms to natural saline soil stress remains poorly understood. To explore this, we investigated the effects of natural saline soil from Dongying City, Shandong Province, China, on the growth, survival, reproduction, antioxidation, and defense-related gene expression of the earthworm Eisenia foetida. Our findings demonstrate that the growth rate, survival rate, and cocoon production of E. foetida decrease under exposure to natural saline soil in a dose-dependent manner. Elevated levels of DNA damage in coelomocytes and increased reactive oxygen species (ROS) were observed. Additionally, antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), increased under stress. The mRNA levels of Cyp450 and Hsp70 also rose in response to saline soil exposure. Furthermore, the activity of Na+/K+-ATPase and the expression of the osmotic sensor gene wnk-1 were elevated. In conclusion, our findings indicate that natural saline soil induces antioxidant and osmotic stress in earthworms E. foetida, highlighting the detrimental effects and defense mechanisms of soil fauna under such conditions.
Collapse
Affiliation(s)
- Yunxiu Yan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China
| | - Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China
| | - Lili Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China.
| |
Collapse
|
13
|
Liang Y, Liu X, Zhai W, Guo Q, Guo H, Lv S, Wang Z, Zhao F, Zheng L, Zhou Z, Liu D, Wang P. Agricultural film-derived microplastics elevate the potential risk of pesticides in soil ecosystem: The inhibited leaching by altering soil pore. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135210. [PMID: 39047559 DOI: 10.1016/j.jhazmat.2024.135210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The residue of mulch film is a crucial source of microplastics (MPs) in agricultural fields. The effects of mulch film-derived MPs on the environmental behavior of pesticides in agriculture remain unclear. In the present study, the effects of MPs of different sizes (5 mm, 1 mm, 30 µm, and 0.3 µm) at environmentally relevant concentrations on pesticide transport were evaluated, and the mechanism was explored with respect to adsorption and pore structure using fluorescence visualization, the extended Derjaguin-Landau-Verwey-Overbeek model, and microcomputed tomography. MPs were found to be retained in the soil due to size limitation, pore capture, and surface adhesion. The presence of mm-sized MPs (5 and 1 mm) at a concentration of 0.25 % inhibited the leaching behavior of atrazine, metolachlor, and tebuconazole. MPs did not significantly alter the pesticide adsorption ability of the soil. The reduced leaching originated from the impact of MPs on soil pore structure. Specifically, the porosity increased by 16.2-25.0 %, and the connectivity decreased by 34.5 %. These results demonstrate that mm-sized MPs inhibit pesticide leaching by obstructing the pores and altering the transport pathways, thereby potentially elevating environmental risks, particularly to the soil ecosystem.
Collapse
Affiliation(s)
- Yabo Liang
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Haoming Guo
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Shengchen Lv
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhixuan Wang
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Fanrong Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Li Zheng
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University. No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
14
|
Yao X, Lv H, Wang Q, Ding J, Kong W, Mu B, Dong C, Hu X, Sun H, Li X, Wang J. Novel Insights into Stereoselective Reproductive Toxicity Induced by Mefentrifluconazole in Earthworms ( Eisenia fetida): First Report of Estrogenic Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19304-19311. [PMID: 39013151 DOI: 10.1021/acs.jafc.4c04168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Widespread use of the new chiral triazole fungicide mefentrifluconazole (MFZ) poses a threat to soil organisms. Although triazole fungicides have been reported to induce reproductive disorders in vertebrates, significant research gaps remain regarding their impact on the reproductive health of soil invertebrates. Here, reproduction-related toxicity end points were explored in earthworms (Eisenia fetida) after exposure for 28 d to soil containing 4 mg/kg racemic MFZ, R-(-)-MFZ, and S-(+)-MFZ. The S-(+)-MFZ treatment resulted in a more pronounced reduction in the number of cocoons and juveniles compared to R-(-)-MFZ treatment, and the expression of annetocin gene was significantly downregulated following exposure to both enantiomers. This reproductive toxicity has been attributed to the disruption of ovarian steroidogenesis at the transcriptional level. Further studies revealed that MFZ enantiomers were able to activate the estrogen receptor (ER). Indirect evidence for this estrogenic effect is provided by the introduction of 17β-estradiol, which also induces reproductive disorders through ER activation.
Collapse
Affiliation(s)
- Xiangfeng Yao
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Huijuan Lv
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Qian Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jia Ding
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Weizheng Kong
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Baoyan Mu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Chang Dong
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xue Hu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Hongda Sun
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xianxu Li
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
15
|
Han S, Sun W, Sun X, Yue Y, Miao J, Dang X, Diao J, Teng M, Zhu W. Co-exposure to boscalid and amoxicillin inhibited the degradation of boscalid and aggravated the threat to the earthworm. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106022. [PMID: 39084781 DOI: 10.1016/j.pestbp.2024.106022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
The extensive application of pesticides and antibiotics in agricultural production makes it possible for them to coexist in farmland, and the interaction of the two pollutants can lead to changes in environmental behavior and toxicity, creating uncertainty risks to soil and soil organisms. In this study, we explored the environmental behavior and the effects of earthworms under co-exposure to amoxicillin and boscalid and further explored the accumulation and toxic effects on earthworms. The results showed that amoxicillin increased the adsorption of boscalid in soil and inhibited its degradation. In addition, we noticed that the co-exposure of amoxicillin and boscalid caused intestinal barrier damage, which increased the bioaccumulation of earthworms for boscalid and led to more severe oxidative stress and metabolic disorders in earthworms. In summary, our findings indicate that amoxicillin can increase the ecological risk of boscalid in the environment and imply that the encounter between antibiotics and pesticides in the environment can amplify the toxic effects of pesticides, which provides new insights into the ecological risks of antibiotics.
Collapse
Affiliation(s)
- Shihang Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiyan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinrui Dang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Qiao Z, Sun X, Fu M, Zhou S, Han Y, Zhao X, Gong K, Peng C, Zhang W, Liu F, Ye C, Yang J. Co-exposure of decabromodiphenyl ethane and cadmium increases toxicity to earthworms: Enrichment, oxidative stress, damage and molecular binding mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134684. [PMID: 38788581 DOI: 10.1016/j.jhazmat.2024.134684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The increase of electronic waste worldwide has resulted in the exacerbation of combined decabromodiphenyl ethane (DBDPE) and cadmium (Cd) pollution in soil, posing a serious threat to the safety of soil organisms. However, whether combined exposure increases toxicity remains unclear. Therefore, this study primarily investigated the toxic effects of DBDPE and Cd on earthworms at the individual, tissue, and cellular levels under single and combined exposure. The results showed that the combined exposure significantly increased the enrichment of Cd in earthworms by 50.32-90.42 %. The toxicity to earthworms increased with co-exposure, primarily resulting in enhanced oxidative stress, inhibition of growth and reproduction, intensified intestinal and epidermal damage, and amplified coelomocyte apoptosis. PLS-PM analysis revealed a significant and direct relationship between the accumulation of target pollutants in earthworms and oxidative stress, damage, as well as growth and reproduction of earthworms. Furthermore, IBR analysis indicated that SOD and POD were sensitive biomarkers in earthworms. Molecular docking elucidated that DBDPE and Cd induced oxidative stress responses in earthworms through the alteration of the conformation of the two enzymes. This study enhances understanding of the mechanisms behind the toxicity of combined pollution and provides important insights for assessing e-waste contaminated soils.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinlin Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Chunmei Ye
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
17
|
Liu X, Jia F, Lv L, Mao L, Chu T, Wang Y. Joint toxic mechanism of clothianidin and prochloraz in the earthworm (Eisenia fetida). CHEMOSPHERE 2024; 359:142250. [PMID: 38710415 DOI: 10.1016/j.chemosphere.2024.142250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Pesticides are typically present as combinations within soil ecosystems and have detrimental effects on untamed surroundings. However, the collective impacts and fundamental mechanisms of pesticides on soil living beings are currently inadequately assessed. In our current work, we evaluated the interactive consequences of clothianidin (CLO) and prochloraz (PRO) on earthworms (Eisenia fetida) using several toxicological tests, such as acute adverse effects, biocatalytic activity, and alterations in transcriptional activity. The findings revealed that CLO (with a 14-day LC50 value of 6.08 mg kg-1) exhibited greater toxicity compared to PRO (with a 14-day LC50 value of 79.41 mg kg-1). Moreover, the combinations of CLO and PRO had synergistic acute effects on E. fetida. Additionally, the activities of POD, CAT, and GST were significantly varied in most instances of single and mixed treatments when compared to the control. Surprisingly, the transcriptional levels of four genes (gst, sod, crt, and ann), related to oxidative load, metabolic detoxification systems, endoplasmic reticulum, and oxytocin neuropeptide, respectively, were also altered in response to single and mixture exposures, as compared to the control. Alterations in enzyme activity and gene transcriptional level could serve as early indicators for detecting co-exposure to pesticides. The findings of this research offered valuable holistic understanding regarding the toxicity of pesticide combinations on earthworms. Further research should be conducted to investigate the persistent effects of pesticide mixtures on terrestrial invertebrates in order to draw definitive conclusions about the associated risks.
Collapse
Affiliation(s)
- Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Fangzhao Jia
- Zunyi City Company Suiyang Branch, Guizhou Province Tobacco Company, Suiyang, 563300, Guizhou, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianfen Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
18
|
Chen L, Wu C, Jia F, Xu M, Liu X, Wang Y. Combined toxicity of abamectin and carbendazim on enzymatic and transcriptional levels in the soil-earthworm microcosm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44815-44827. [PMID: 38955968 DOI: 10.1007/s11356-024-34177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changxing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Fangzhao Jia
- Zunyi City Company Suiyang Branch, Guizhou Province Tobacco Company, Suiyang, 563300, Guizhou, China
| | - Mingfei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
19
|
Zhao Y, Li X, Xu G, Nan J. Multilevel investigation of the ecotoxicological effects of sewage sludge biochar on the earthworm Eisenia fetida. CHEMOSPHERE 2024; 360:142455. [PMID: 38810797 DOI: 10.1016/j.chemosphere.2024.142455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The ecological risks of sewage sludge biochar (SSB) after land use is still not truly reflected. Herein, the ecological risks of SSB prepared at different temperature were investigated using the earthworm E. fetida as a model organism from the perspectives of organismal, tissue, cellular, and molecular level. The findings revealed that the ecological risk associated with low-temperature SSB (SSB300) was more pronounced compared to medium- and high-temperature SSB (SSB500 and SSB700), and the ecological risk intensified with increasing SSB addition rates, as revealed by an increase in the integrated biomarker response v2 (IBRv2) value by 2.59-25.41 compared to those of SSB500 and SSB700. Among them, 10% SSB300 application caused significant oxidative stress and neurotoxicity in earthworms compared to CK (p < 0.001). The weight growth rate and cocoon production rate of earthworms were observed to decrease by 25.06% and 69.29%, respectively, while the mortality rate exhibited a significant increase of 33.34% following a 10% SSB300 application, as compared to the CK. Moreover, 10% SSB300 application also resulted in extensive stratum corneum injury and significant longitudinal muscle damage in earthworms, while also inducing severe collapse of intestinal epithelial cells and disruption of intestinal integrity. In addition, 10% SSB300 caused abnormal expression of earthworm detoxification and cocoon production genes (p < 0.001). These results may improve our understanding of the ecotoxicity of biochar, especially in the long term application, and contribute to providing the guidelines for applying biochar as a soil amendment.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
20
|
Harindintwali JD, He C, Wen X, Liu Y, Wang M, Fu Y, Xiang L, Jiang J, Jiang X, Wang F. A comparative evaluation of biochar and Paenarthrobacter sp. AT5 for reducing atrazine risks to soybeans and bacterial communities in black soil. ENVIRONMENTAL RESEARCH 2024; 252:119055. [PMID: 38710429 DOI: 10.1016/j.envres.2024.119055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Application of biochar and inoculation with specific microbial strains offer promising approaches for addressing atrazine contamination in agricultural soils. However, determining the optimal method necessitates a comprehensive understanding of their effects under similar conditions. This study aimed to evaluate the effectiveness of biochar and Paenarthrobacter sp. AT5, a bacterial strain known for its ability to degrade atrazine, in reducing atrazine-related risks to soybean crops and influencing bacterial communities. Both biochar and strain AT5 significantly improved atrazine degradation in both planted and unplanted soils, with the most substantial reduction observed in soils treated with strain AT5. Furthermore, bioaugmentation with strain AT5 outperformed biochar in enhancing soybean growth, photosynthetic pigments, and antioxidant defenses. While biochar promoted higher soil bacterial diversity compared to strain AT5, the latter selectively enriched specific bacterial populations. Additionally, soil inoculated with strain AT5 displayed a notable increase in the abundance of key genes associated with atrazine degradation (trzN, atzB, and atzC), surpassing the effects observed with biochar addition, thus highlighting its effectiveness in mitigating atrazine risks in soil.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyi Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Geographical Sciences, Nantong University, Nantong, 226001, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074, Aachen, Germany.
| |
Collapse
|
21
|
Harindintwali JD, Wen X, He C, Zhao M, Wang J, Dou Q, Xiang L, Fu Y, Alessi DS, Jiang X, Jiang J, Wang F. Synergistic mitigation of atrazine-induced oxidative stress on soybeans in black soil using biochar and Paenarthrobacter sp. AT5. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120951. [PMID: 38669877 DOI: 10.1016/j.jenvman.2024.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Atrazine, a widely used herbicide in modern agriculture, can lead to soil contamination and adverse effects on specific crops. To address this, we investigated the efficacy of biochar loaded with Paenarthrobacter sp. AT5 (an atrazine-degrading bacterial strain) in mitigating atrazine's impact on soybeans in black soil. Bacterially loaded biochar (BBC) significantly enhanced atrazine removal rates in both unplanted and planted soil systems. Moreover, BBC application improved soybean biomass, photosynthetic pigments, and antioxidant systems while mitigating alterations in metabolite pathways induced by atrazine exposure. These findings demonstrate the effectiveness of BBC in reducing atrazine-induced oxidative stress on soybeans in black soil, highlighting its potential for sustainable agriculture.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mingxu Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianhao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074, Aachen, Germany.
| |
Collapse
|
22
|
Zuo W, Zhao Y, Qi P, Zhang C, Zhao X, Wu S, An X, Liu X, Cheng X, Yu Y, Tang T. Current-use pesticides monitoring and ecological risk assessment in vegetable soils at the provincial scale. ENVIRONMENTAL RESEARCH 2024; 246:118023. [PMID: 38145733 DOI: 10.1016/j.envres.2023.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Pesticides represent one of the largest intentional inputs of potentially hazardous compounds into agricultural soils. However, as an important vegetable producing country, surveys on pesticide residues in soils of vegetable production areas are scarce in China. This study presented the occurrence, spatial distribution, correlation between vegetable types and pesticides, and ecological risk evaluation of 94 current-use pesticides in 184 soil samples from vegetable production areas of Zhejiang province (China). The ecological risks of pesticides to soil biota were evaluated with toxicity exposure ratios (TERs) and risk quotient (RQ). The pesticide concentrations varied largely from below the limit of quantification to 20703.06 μg/kg (chlorpyrifos). The situation of pesticide residues in Jiaxing is more serious than in other cities. Soils in the vegetable areas are highly diverse in pesticide combinations. Eisenia fetida suffered exposure risk from multiple pesticides. The risk posed by chlorpyrifos, which exhibited the highest RQs at all scenarios, was worrisome. Only a few pesticides accounted for the overall risk of a city, while the other pesticides make little or zero contribution. This work will guide the appropriate use of pesticides and manage soil ecological risks, achieving green agricultural production.
Collapse
Affiliation(s)
- Wei Zuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yijun Yu
- Zhejiang Cultivated Land Quality and Fertilizer Management Station, Hangzhou 310020, China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
23
|
Wu S, An X, Wang D, Cao C, Wang Q, Wang Y. Co-exposure to deltamethrin and cyazofamid: variations in enzyme activity and gene transcription in the earthworm (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29174-29184. [PMID: 38568309 DOI: 10.1007/s11356-024-33146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Pesticide formulations are typically applied as mixtures, and their synergistic effects can increase toxicity to the organisms in the environment. Despite pesticide mixtures being the leading cause of pesticide exposure incidents, little attention has been given to assessing their combined toxicity and interactions. This survey purposed to reveal the cumulative toxic effects of deltamethrin (DEL) and cyazofamid (CYA) on earthworms (Eisenia fetida) by examining multiple endpoints. Our findings revealed that the LC50 values of DEL for E. fetida, following 7- and 14-day exposures, ranged from 887.7 (728-1095) to 1552 (1226-2298) mg kg-1, while those of CYA ranged from 316.8 (246.2-489.4) to 483.2 (326.1-1202) mg kg-1. The combinations of DEL and CYA induced synergistic influences on the organisms. The contents of Cu/Zn-SOD and CarE showed significant variations when exposed to DEL, CYA, and their combinations compared to the untreated group. Furthermore, the mixture administration resulted in more pronounced alterations in the expression of five genes (hsp70, tctp, gst, mt, and crt) associated with cellular stress, carcinogenesis, detoxification, and endoplasmic reticulum compared to single exposures. In conclusion, our comprehensive findings provided detailed insights into the cumulative toxic effects of chemical mixtures across miscellaneous endpoints and concentration ranges. These results underscored the importance of considering mixture administration during ecological risk evaluations of chemicals.
Collapse
Affiliation(s)
- Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
24
|
Yin T, Zhang J, Liu C, Xue Y, Liu Z, Liu S, Guo L, Wang J, Xia X. Environmental-related doses of afidopyropen induced toxicity effects in earthworms (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116223. [PMID: 38493704 DOI: 10.1016/j.ecoenv.2024.116223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Afidopyropen has high activity against pests. However, it poses potential risks to the soil ecology after entering the environment. The toxicity of afidopyropen to earthworms (Eisenia fetida) was studied for the first time in this study. The results showed that afidopyropen had low level of acute toxicity to E. fetida. Under the stimulation of chronic toxicity, the increase of reactive oxygen species (ROS) level activated the antioxidant and detoxification system, which led to the increase of superoxide dismutase (SOD) and glutathione S-transferase (GST) activities. Lipid peroxidation and DNA damage were characterized by the increase of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents. Meanwhile, the functional genes SOD, CAT, GST, heat shock protein 70 (HSP70), transcriptionally controlled tumor protein (TCTP), and annetocin (ANN) played a synergistic role in antioxidant defense. However, the comprehensive toxicity of high concentration still increased on the 28th day. In addition, strong histopathological damage in the body wall and intestine was observed, accompanied by weight loss, which indicated that afidopyropen inhibited the growth of E. fetida. The molecular docking revealed that afidopyrene combined with the surface structure of SOD and GST proteins, which made SOD and GST become sensitive biomarkers reflecting the toxicity of afidopyropen to E. fetida. Summing up, afidopyropen destroys the homeostasis of E. fetida through chronic toxic. These results provide theoretical data for evaluating the environmental risk of afidopyropen to soil ecosystem.
Collapse
Affiliation(s)
- Tao Yin
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jingru Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Chang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Yannan Xue
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Zhenlong Liu
- Weifang Vocational College, Weifang 262737, PR China.
| | - Shuang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Longzhi Guo
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Shandong Province Higher Education Provincial Key Pesticide Toxicology and Application Technology Laboratory, Tai'an 271018, PR China.
| |
Collapse
|
25
|
Yao X, Liang C, Lv H, Liu W, Wang Q, Ding J, Li X, Wang J. Expanding the insight of ecological risk on the novel chiral pesticide mefentrifluconazole: Mechanism of enantioselective toxicity to earthworms (Eisenia fetida). JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133585. [PMID: 38271877 DOI: 10.1016/j.jhazmat.2024.133585] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Continued application of new chiral fungicide mefentrifluconazole (MFZ) increases its risk to soil ecosystem. However, the toxicity of MFZ enantiomers to soil fauna and whether stereoselectivity exists remains poorly elucidated. Based on multilevel toxicity endpoints and transcriptomics, we investigated the negative effects of racemic, R-(-)-, and S-(+)-MFZ on Eisenia fetida. After exposure to S-(+) configuration at 4 mg/kg for 28 day, its reactive oxygen species levels were elevated by 15.4% compared to R-(-) configuration, inducing enantiospecific oxidative stress and transcriptional aberrations. The S-(+) isomer induced more severe cell membrane damage and apoptosis than the R-(-) isomer, and notably, the selectivity of apoptosis is probably dominated by the mitochondrial pathway. Mechanistically, differential mitochondrial stress lies in: S-(+) isomer specifically up-regulated mitochondrial cellular component compared to R-(-) isomer and identified more serious mitochondrial fission. Furthermore, S-(+) conformation down-regulated biological processes associated with ATP synthesis and metabolism, with specific inhibition of mitochondrial respiratory electron transport chain complex I and IV activity resulting in more severe electron flow disturbances. These ultimately mediated enantioselective ontogenetic process disorders, which were supported at phenotypic (weight loss), genetic, and protein (reverse modulate TCTP and Sox2 expression) levels. Our findings offer an important reference for elucidating the enantioselective toxicological mechanism of MFZ in soil fauna.
Collapse
Affiliation(s)
- Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chunliu Liang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wenrong Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jia Ding
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
26
|
Zhao Y, Li X, Bao H, Nan J. Effects of biochar-derived dissolved organic matter on the gut microbiomes and metabolomics in earthworm Eisenia fetida. ENVIRONMENTAL RESEARCH 2024; 245:117932. [PMID: 38104913 DOI: 10.1016/j.envres.2023.117932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The ecological risks of biochar-derived dissolved organic matter (DOM) to soil invertebrates at different organismal levels remains limited. This study comprehensively explored the ecological risks of biochar-derived DOM on earthworm gut through assessments of enzyme activity response, histopathology, gut microbiomes, and metabolomics. Results demonstrated that DOM disturbed the digestive enzymes in earthworm, especially for 10% DOM300 groups. The integrated biomarker response v2 (IBRv2) indicated that the perturbation of earthworm digestive enzymes induced by DOM was both time-dependent and dose-dependent. Pathological observations revealed that 10% DOM300 damaged intestinal epithelium and digestive lumen of earthworms. The significant damage and injury to earthworms caused by DOM300 due to its higher concentrations of heavy metal ions and organic substrates (e.g., toluene, hexane, butanamide, and hexanamide) compared to DOM500 and DOM700. Analysis of 16S rRNA from the gut microbiota showed a significant decrease in genera (Verminephrobacter, Bacillus, and Microbacteriaceae) associated with inflammation, disease, and detoxification processes. Furthermore, 10% DOM300 caused the abnormality of metabolites, such as glutamate, fumaric acid, pyruvate, and citric acid, which were involved in energy metabolism, These findings contributed to improve our understanding of the toxic mechanism of biochar DOM from multiple perspectives.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Huanyu Bao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
27
|
Song J, Chen X, Li S, Tang H, Dong S, Wang M, Xu H. The environmental impact of mask-derived microplastics on soil ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169182. [PMID: 38092201 DOI: 10.1016/j.scitotenv.2023.169182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
During the COVID-19 pandemic, a significant increased number of masks were used and improperly disposed of. For example, the global monthly consumption of approximately 129 billion masks. Masks, composed of fibrous materials, can readily release microplastics, which may threaten various soil ecosystem components such as plants, animals, microbes, and soil properties. However, the specific effects of mask-derived microplastics on these components remain largely unexplored. Here, we investigated the effects of mask-derived microplastics (grouped by different concentrations: 0, 0.25, 0.5, and 1 % w/w) on soil physicochemical properties, microbial communities, growth performance of lettuce (Lactuca sativa L. var. ramosa Hort.) and earthworm (Eisenia fetida) under laboratory conditions for 80 days. Our findings suggest that mask-derived microplastics reduced soil bulk density while increasing the mean weight diameter of soil aggregates and modifying nutrient levels, including organic matter, potassium, nitrogen, and phosphorus. An increase in the abundance of denitrification bacteria (Rhodanobacteraceae) was also observed. Mask-derived microplastics were found to reduce lettuce germination, and a hormesis effect of low-concentration stimulation and high-concentration inhibition was observed on biomass, chlorophyll, and root activity. While the mortality of earthworms was not significantly affected by the mask-derived microplastics, but their growth was inhibited. Collectively, our results indicate that mask-derived microplastics can substantially impact soil properties, plant growth, and earthworm health, with potential implications for soil ecosystem functionality.
Collapse
Affiliation(s)
- Jianjincang Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shiyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba 623000, Sichuan, PR China
| | - Shunwen Dong
- Industrial Crop Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
28
|
Harindintwali JD, Dou Q, Wen X, Xiang L, Fu Y, Xia L, Jia Z, Jiang X, Jiang J, Wang F. Physiological and transcriptomic changes drive robust responses in Paenarthrobacter sp. AT5 to co-exposure of sulfamethoxazole and atrazine. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132795. [PMID: 37865076 DOI: 10.1016/j.jhazmat.2023.132795] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
Agricultural waterways are often contaminated with herbicide and antibiotic residues due to the widespread use of these chemicals in modern agriculture. The search for resistant bacterial strains that can adapt to and degrade these mixed contaminants is essential for effective in situ bioremediation. Herein, by integrating chemical and transcriptomic analyses, we shed light on mechanisms through which Paenarthrobacter sp. AT5, a well-known atrazine-degrading bacterial strain, can adapt to sulfamethoxazole (SMX) while degrading atrazine. When exposed to SMX and/or atrazine, strain AT5 increased the production of extracellular polymeric substances and reactive oxygen species, as well as the rate of activity of antioxidant enzymes. Atrazine and SMX, either alone or combined, increased the expression of genes involved in antioxidant responses, multidrug resistance, DNA repair, and membrane transport of lipopolysaccharides. Unlike atrazine alone, co-exposure with SMX reduced the expression of genes encoding enzymes involved in the lower part of the atrazine degradation pathway. Overall, these findings emphasize the complexity of bacterial adaptation to mixed herbicide and antibiotic residues and highlight the potential of strain AT5 in bioremediation efforts.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Xia
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich 52428, Germany; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074 Aachen, Germany.
| |
Collapse
|
29
|
Ma J, Ren W, Dai S, Wang H, Chen S, Song J, Jia J, Chen H, Tan C, Sui Y, Teng Y, Luo Y. Spatial distribution and ecological-health risks associated with herbicides in soils and crop kernels of the black soil region in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168439. [PMID: 37949128 DOI: 10.1016/j.scitotenv.2023.168439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Herbicides are vital inputs for food production; however, their associated risks and hazards are pressing concerns. In black soil, the cumulative toxic effects of compound herbicides and potential risks to humans are not yet fully understood. Thus, this study conducted a comprehensive investigation to assess herbicide residue characteristics and the associated ecological health risks in representative black soil regions where major food crops (maize, soybean, and rice) are cultivated. Findings revealed that the soil harbored a collective presence of 29 herbicides, exhibiting total concentrations ranging from 111.92 to 996.14 μg/kg dry weight (dw). This can be attributed to the extensive use of herbicides over the years and their long half-lives, which results in the accumulation of multiple herbicide residues in the soil. Similarly, the total herbicide levels in maize, soybean, and rice kernels were 1173-61,564, 1721-9342, and 3775-8094 ng/kg dw, respectively. Multiple herbicide residues at all monitored sites were attributed to continuous crop barriers in soybean fields and the adoption of soybean and maize crop rotations. Notably, herbicides pose ecological risks in the black soil region, exhibiting high-risk levels of 79 %, 24 %, and 14 % at the sites monitored for oxyfluorfen, clomazone, and butachlor, respectively. Carcinogenic atrazine exhibited low- and medium-risk levels in 34 % and 63 % of soil samples, respectively. These results can serve as a scientific basis for establishing herbicide residue thresholds in agricultural soils within black soil areas and for implementing effective control measures to prevent herbicide contamination in agricultural ecosystems.
Collapse
Affiliation(s)
- Jun Ma
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Materials and Chemistry, Tongren University, Tongren 554300, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shixiang Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hongzhe Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sensen Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiayin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junfeng Jia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hong Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changyin Tan
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, China
| | - Yueyu Sui
- Hailun Agro-ecosystem Experimental Station, Chinese Academy of Sciences, Hailun 152300, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land(Arable), Ministry of Natural Resources, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
30
|
Yang TN, Wang YX, Jian PA, Ma XY, Zhu SY, Li XN, Li JL. Exogenous Melatonin Alleviates Atrazine-Induced Glucose Metabolism Disorders in Mice Liver via Suppressing Endoplasmic Reticulum Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:742-751. [PMID: 38111124 DOI: 10.1021/acs.jafc.3c06441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Atrazine (ATZ) is a widely used herbicide that has toxic effects on animals. Melatonin (MLT) is a natural hormone with strong antioxidant properties. However, the effect of MLT on the glucose metabolism disorder caused by ATZ is still unclear. Mice were divided into four groups randomly and given 21 days of gavage: blank control group (Con), 5 mg/kg MLT group (MLT), 170 mg/kg ATZ group (ATZ), and 170 mg/kg ATZ and 5 mg/kg MLT group (ATZ + MLT). The results show that ATZ alters mRNA levels of metabolic enzymes related to glycogen synthesis and glycolysis and increased metabolites (glycogen, lactate, and pyruvate). ATZ causes abnormalities in glucose metabolism in mouse liver, interfering with glycemia regulation ability. MLT can regulate the endoplasmic reticulum to respond to disordered glucose metabolism in mice liver. This study suggested that MLT has the power to alleviate the ATZ-induced glycogen overdeposition and glycolytic deficit.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
31
|
Su X, Wang X, Zhou Z, Zeng X, Wu Q, Leung JYS. Can antimony contamination in soil undermine the ecological contributions of earthworms? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166305. [PMID: 37586541 DOI: 10.1016/j.scitotenv.2023.166305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/30/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
As antimony (Sb) has been increasingly used in manufacturing industries (e.g., alloy, polymer and electronics industries), Sb contamination in the soil environment becomes widely reported and has drawn growing attention due to the toxicity of Sb to living organisms. Whether soil-dwelling organisms can tolerate Sb toxicity and maintain their ecological functions remains poorly understood. Using a cosmopolitan, ecologically important earthworm species (Eisenia fetida) as an ideal model organism, we examine the effects of Sb on the physiological, molecular and behavioural responses of earthworms to different levels of Sb contamination in soil (0, 10, 50, 100, 250 and 500 mg/kg). We found that earthworms could tolerate heavy Sb contamination (100 mg/kg) by boosting their antioxidant defence (POD and GST) and immune systems (ACP) so that their body weight and survival rate were sustained (c.f. control). However, these systems were compromised under extreme Sb contamination (500 mg/kg), leading to mortality. As such, earthworms exhibited avoidance behaviour to escape from the Sb-contaminated soil, implying the loss of their ecological contributions to the environment (e.g., increase in soil aeration and maintenance of soil structure). By measuring various types of biomarkers along a concentration gradient, this study provides a mechanistic understanding of how earthworms resist or succumb to Sb toxicity. Since extreme Sb contamination in soil (>100 mg/kg) is rarely found in nature, we are optimistic that the health and performance of earthworms are not influenced by Sb in most circumstances, but regular monitoring of Sb in soil is recommended to ensure the integrity and functioning of soil environment. Further studies are recommended to evaluate the long-term impact of Sb in the soil ecosystem through bioaccumulation and trophic transfer among soil-dwelling organisms.
Collapse
Affiliation(s)
- Xiaotong Su
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta (Ministry of Education), School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Zhiqian Zhou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xuan Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta (Ministry of Education), School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta (Ministry of Education), School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jonathan Y S Leung
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
32
|
Li D, Zhang J, Liu X, Wang X, Li B, Du Z, Juhasz A, Wang J, Wang J, Zhu L. Are PFBS, PFHxS, and 6:2FTSA more friendly to the soil environment compared to PFOS? A new insight based on ecotoxicity study in soil invertebrates (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166689. [PMID: 37652386 DOI: 10.1016/j.scitotenv.2023.166689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
As alternatives to perfluorooctane sulfonate (PFOS) with shorter carbon chains or lower proportion of fluorine atoms, perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and 6:2 fluorotelomer sulfonic acid (6:2FTSA) have been detected in various environmental media. However, it is unclear whether the toxicity of these alternatives is lower than that of PFOS. Therefore, this study investigated the toxicity and differences in PFBS, PFHxS, 6:2FTSA, and PFOS (0.2 mg/kg) after 56 d of exposure using the common invertebrate Eisenia fetida in soil as the test organism. The results showed that although PFOS, PFBS, PFHxS, and 6:2FTSA induced oxidative stress and apoptosis in earthworms and led to developmental and reproductive toxicity in terms of comprehensive toxicity, PFHxS > PFOS > PFBS >6:2FTSA. To reveal the mechanisms underlying the differences in toxicity between the alternatives and PFOS, we conducted molecular docking and transcriptomic analyses. The results indicated that, unlike PFOS, PFBS, and PFHxS, 6:2FTSA did not cause significant changes in antioxidant enzyme activity at the molecular level. Furthermore, PFOS exposure caused disorder in the nervous and metabolic systems of earthworms, and PFHxS disrupted energy balance and triggered inflammatory responses, which may be important reasons for the higher toxicity of these compounds. In contrast, exposure to 6:2FTSA did not result in adverse transcriptomic effects, suggesting that 6:2FTSA exerted the least molecular-scale toxicity in earthworms. The results of this study provide new insights into the environmental safety of using PFBS, PFHxS, and 6:2FTSA as alternatives to PFOS.
Collapse
Affiliation(s)
- Dengtan Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Xiaowen Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
33
|
Zhao Y, Li X, Nan J. Systematic assessment of the ecotoxicological effects and mechanisms of biochar-derived dissolved organic matter (DOM) on the earthworm Eisenia fetida. ENVIRONMENTAL RESEARCH 2023; 236:116855. [PMID: 37567380 DOI: 10.1016/j.envres.2023.116855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Biochar-derived dissolved organic matter (DOM) contains toxic substances that are first released into the soil after biochar application. However, the ecological risks of biochar-derived DOM on soil invertebrate earthworms are unclear. Therefore, this study investigated the ecological risks and toxic mechanisms of sewage sludge biochar (SSB)-derived DOM on the earthworm Eisenia fetida (E. fetida) via microcosm experiments. DOM exposure induced earthworm death, growth inhibition, and cocoon decline. Moreover, DOM, especially the 10% DOM300 (derived from SSB prepared at 300 °C) treatments, disrupted the antioxidant defense response and lysosomal stability in earthworms. Integrated biomarker response v2 (IBRv2) analysis was performed to assess the comprehensive toxicity of DOM in E. fetida, and the results revealed that DOM300 might exert more hazardous effects on earthworms than DOM500 (prepared at 500 °C) and DOM700 (prepared at 700 °C), as revealed by increases in the IBRv2 value of 3.48-18.21. Transcriptome analysis revealed that 10% DOM300 exposure significantly disrupted carbohydrate and protein digestion and absorption and induced endocrine disorder. Interestingly, 10% DOM300 exposure also significantly downregulated the expression of genes involved in signaling pathways, e.g., the P13K-AKT, cGMP-PKG, and ErbB signaling pathways, which are related to cell growth, survival, and metabolism, suggesting that DOM300 might induce neurotoxicity in E. fetida. Altogether, these results may contribute to a better understanding of the toxicity and defense mechanisms of biochar-derived DOM on earthworms, especially during long-term applications, and thus provide guidelines for using biochar as a soil amendment.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
34
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
35
|
He F, Shi H, Liu R, Tian G, Qi Y, Wang T. Randomly-shaped nanoplastics induced stronger biotoxicity targeted to earthworm Eisenia fetida species: Differential effects and the underlying mechanisms of realistic and commercial polystyrene nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162854. [PMID: 36931517 DOI: 10.1016/j.scitotenv.2023.162854] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
Nanoplastics (NPs) are widely distributed in various environments, including soil, and have been known to adversely affect soil organisms. Currently, most of the obtained studies were principally focused on the ecological risks of commercial sphere-type microbeads (SNPs), while ignoring that they might be different from randomly-shaped nanoplastics (RNPs) in a real environment. Thus, this study was undertaken to probe the shape-dependent effects of NPs on the earthworm Eisenia fetida and the corresponding poisoning mechanisms, and discriminate the toxicity differences between SNPs and RNPs at the molecule, cell, tissue, and animal levels. The results showed SNPs and RNPs exhibited lethal effects to earthworms with the LC50 determined to be 27.42 g/kg and 21.69 g/kg, respectively after a 28-day exposure. SNPs and RNPs exposure can cause ROS-induced ROS release in worm, inducing oxidative stress through mitochondria-mediated pathway, leading to lipid peroxidation, DNA damage, and histopathological changes, thereby contributing to decreased stress resistance against exogenous stressors. To reduce ROS-mediated oxidative damage, the antioxidant defense system in E. fetida can be activated, which scavenges unwanted ROS. High doses of SNPs and RNPs inhibited the AChE activity in worms, causing excess acetylcholine accumulation in the synaptic space, which finally lead to neurotoxicity. Also, two kinds of NPs can induce the abnormal expression of genes relevant to oxidative stress, reproduction, growth, and tight junction protein in E. fetida, which ultimately contribute to various detrimental effects, tissue damage and dysfunction, reproductive and developmental toxicity. The results obtained from the Integrated Biological Response (IBR) suggested that long-term exposure to high-dose SNPs and RNPs can induce the stronger toxicity effects to E. fetida worms, and RNPs-induced toxicity can be different and stronger than that of SNPs. Our results provide insights for revealing the environmental effects posed by randomly-shaped NPs-contaminated soil, and are of importance for assessing the contribution of NPs with different physical characteristics to soil eco-safety.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
36
|
Ya Ma L, Lu Y, Cheng J, Wan Q, Ge J, Wang Y, Li Y, Feng F, Li M, Yu X. Functional characterization of rice (Oryza sativa) thioredoxins for detoxification and degradation of atrazine. Gene 2023:147540. [PMID: 37279861 DOI: 10.1016/j.gene.2023.147540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Thioredoxins (TRXs) are a group of antioxidant enzymes that play a critical role in plant growth and resistance to stress. However, the functional role and mechanism of rice TRXs in response to pesticides (e.g. atrazine, ATZ) stress remain largely unexplored. Here, 24 differentially expressed TRX genes (14 up and 10 down) of ATZ-exposed rice were identified through high-throughput RNA-sequencing analysis. Twenty-four TRX genes were unevenly mapped to 11 chromosomes and some of the genes were validated by quantitative RT-PCR. Bioinformatics analysis revealed that ATZ-responsive TRX genes contain multiple functional cis-elements and conserved domains. To demonstrate the functional role of the genes in ATZ degradation, one representative TRX gene LOC_Os07g08840 was transformed into yeast cells and observed significantly lower ATZ content compared to the control. Using LC-Q-TOF-MS/MS, five metabolites were characterized. One hydroxylation (HA) and two N-dealkylation products (DIA and DEA) were significantly increased in the medium with positive transformants. Our work indicated that TRX-coding genes here were responsible for ATZ degradation, suggesting that thioredoxins could be one of the vital strategies for pesticide degradation and detoxification in crops.
Collapse
Affiliation(s)
- Li Ya Ma
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Yingfei Lu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; College of Resources and Environment, Anhui Agricultural University, 230036, Hefei, China
| | - Jinjin Cheng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Qun Wan
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Jing Ge
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Ya Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Yong Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Fayun Feng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Mei Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Xiangyang Yu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China.
| |
Collapse
|
37
|
Zhang Y, Tan Z, Qin K, Liu C. Effect of Cd/Cu on the toxicity and stereoselective environmental behavior of dinotefuran in earthworms Eisenia foetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115022. [PMID: 37207576 DOI: 10.1016/j.ecoenv.2023.115022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Pesticides and heavy metals commonly coexist in soil. In this study, the influence of Cd and Cu on the toxicity of rac-dinotefuran and the enantioselective behavior of dinotefuran enantiomers in soil-earthworm microcosms were investigated. The acute toxic tests showed that S-dinotefuran has higher toxic than that of R-dinotefuran. The rac-dinotefuran and Cd has an antagonistic effect on earthworms, and the Cu and rac-dinotefuran has a synergistic effect. Earthworms maybe promoted the enantioselective behavior of dinotefuran in soil. Co-exposure to Cd or Cu inhibited the dissipation of dinotefuran enantiomers (S-dinotefuran and R-enantiomers), and slightly reduced the enantioselectivity in soil. The earthworms were found to be preferentially enriched with S-dinotefuran. However, Cd or Cu attenuated the accumulation of dinotefuran enantiomers in earthworms and decreased the enantioselectivity. The effect of Cd and Cu on the environmental behaviors of dinotefuran enantiomers were correlated positively with the dose of Cd/Cu. These results showed that Cd and Cu alter the environmental behaviors and the toxicity of dinotefuran enantiomers in soil-earthworm microcosms. Thus, the influence of coexistent heavy metals on the ecological risk assessment of chiral pesticides should be considered.
Collapse
Affiliation(s)
- Yirong Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Zhenchao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
38
|
Li X, Li M, Jiang N, Yao X, Wang Q, Lv H, Wang C, Wang J. Evaluation of soil ecological health after exposure to environmentally relevant doses of Di (2-ethylhexyl) phthalate: Insights from toxicological studies of earthworms at different ecological niches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121204. [PMID: 36754202 DOI: 10.1016/j.envpol.2023.121204] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
As one of the most critical soil faunas in agroecosystems, earthworms are significant in preserving soil ecological health. Di (2-ethylhexyl) phthalate (DEHP) is a major plasticizer and widely used in plastic products like agricultural films. However, it has become ubiquitous contaminant in agricultural soil and poses a potential threat to soil health. Although the awareness of the impacts of DEHP on soil ecology is increasing, its adverse effects on soil invertebrates, especially earthworms, are still not well developed. In this study, the ecotoxicological effects and underlying mechanisms of environmentally relevant doses DEHP on earthworms of different ecological niches were investigated at the individual, cytological, and biochemical levels, respectively. Results showed that the acute toxicity of DEHP to M. guillelmi was higher than E. foetida. DEHP induced reactive oxygen species (ROS) levels and further caused oxidative damage (including cellular DNA and lipid peroxidation damage) in both species, speculating that they may exhibit similar oxidative stress mechanisms. Furthermore, two earthworms presented the alleviated toxicity when re-cultured in uncontaminated circumstances, yet, the accumulated ROS in bodies could not be completely scavenged. Risk assessment indicated that the detrimental impacts of DEHP were more significant in the M. guillelmi than in E. foetida in whole experiments prides, and the biomarkers additionally showed a species-specific trend. Besides, molecular docking revealed that DEHP could bind to the active center of superoxide dismutase/catalase (SOD/CAT) by hydrogen bonding or hydrophobic interactions. Overall, this study will provide a novel insight for accurate contaminant risk assessment, and also highlight that the comprehensive biological effects of different species should be emphasized in soil ecological health diagnostics and environmental toxicology assays, as otherwise it may lead to underestimation or misestimation of the soil health risk of contaminants.
Collapse
Affiliation(s)
- Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Min'an Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China; College of Natural Resources and Environment, Northwest A&; F University, Yangling, 712000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Huijuan Lv
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Can Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
39
|
Liu C, Zhang X, Chen C, Yin Y, Zhao G, Chen Y. Physiological Responses of Methanosarcina barkeri under Ammonia Stress at the Molecular Level: The Unignorable Lipid Reprogramming. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3917-3929. [PMID: 36820857 DOI: 10.1021/acs.est.2c09631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acetotrophic methanogens' dysfunction in anaerobic digestion under ammonia pressure has been widely concerned. Lipids, the main cytomembrane structural biomolecules, normally play indispensable roles in guaranteeing cell functionality. However, no studies explored the effects of high ammonia on acetotrophic methanogens' lipids. Here, a high-throughput lipidomic interrogation deciphered lipid reprogramming in representative acetoclastic methanogen (Methanosarcina barkeri) upon high ammonia exposure. The results showed that high ammonia conspicuously reduced polyunsaturated lipids and longer-chain lipids, while accumulating lipids with shorter chains and/or more saturation. Also, the correlation network analysis visualized some sphingolipids as the most active participant in lipid-lipid communications, implying that the ammonia-induced enrichment in these sphingolipids triggered other lipid changes. In addition, we discovered the decreased integrity, elevated permeability, depolarization, and diminished fluidity of lipid-supported membranes under ammonia restraint, verifying the noxious ramifications of lipid abnormalities. Additional analysis revealed that high ammonia destabilized the structure of extracellular polymeric substances (EPSs) capable of protecting lipids, e.g., declining α-helix/(β-sheet + random coil) and 3-turn helix ratios. Furthermore, the abiotic impairment of critical EPS bonds, including C-OH, C═O-NH-, and S-S, and the biotic downregulation of functional proteins involved in transcription, translation, and EPS building blocks' supply were unraveled under ammonia stress and implied as the crucial mechanisms for EPS reshaping.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chuang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yue Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|