1
|
Qiang X, Yao Y, Yin J, Da P, Mu Z, Shen K, Sun Y, Zhang Y, Li P, Li Z, Xi P, Yan CH. Activating La-O-Ni Bridge in Ordered Macroporous Interface for Electrochemical Urea Wastewater Purification. Angew Chem Int Ed Engl 2025; 64:e202424014. [PMID: 39998405 DOI: 10.1002/anie.202424014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
Electrochemical treatment of urea wastewater purification significantly aids in environmental protection, but it remains a considerable challenge in designing high performance anode urea oxidation electrocatalysts. Herein, we report a La-induced three-dimensional ordered macroporous (3DOM) NiO heterostructure to improve Ni sites electron density for urea electrooxidation by activating the La-O-Ni bridge. This material demonstrated exceptional performance in a membrane electrode assembly (MEA) device, characterized by a low cell voltage (1.49 V @ 80 °C) and 280 h stability test at 1 A cm-2 current density (25 °C) and displayed promising efficiency in urea wastewater purification. Permeation experiments revealed the crucial role of 3DOM morphological in facilitating mass transfer processes. A high valence nickel mechanism (HNM) on the La-O-Ni bridge during catalysis was proposed, based on various in situ characterizations and theoretical calculations. Experimentally, in situ Raman and UV-vis spectra demonstrated that Ni active species Niδ+ (δ≥3) promote urea oxidation kinetics, while in situ ATR-IR proved strong adsorption of C=O with Ni sites and the enhancement of urea N-H bonds cleavage, supporting the HNM. This work enables us to underscore the critical importance of La-O-Ni electron bridge with 3DOM architectures and promising contributions to urea wastewater purification.
Collapse
Affiliation(s)
- Xiaoyue Qiang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Yaxiong Yao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Zhaori Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Kaier Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yuanmiao Sun
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, China
| | - Yunxiang Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Peiqiong Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Zhenglong Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University. The University of Hong Kong Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Moezzi SA, Rastgar S, Faghani M, Ghiasvand Z, Javanshir Khoei A. Optimization of carbon membrane performance in reverse osmosis systems for reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. CHEMOSPHERE 2025; 376:144304. [PMID: 40090114 DOI: 10.1016/j.chemosphere.2025.144304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
This study investigates the performance of various types of carbon membranes in reverse osmosis systems aimed at reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. As sustainable aquaculture practices become increasingly essential, effective treatment solutions are needed to mitigate pollution from nutrient-rich effluents. The research highlights several carbon membranes types, including carbon molecular sieves, activated carbon membranes, carbon nanotube membranes, and graphene oxide membranes, all of which demonstrate exceptional filtration capabilities due to their unique structural properties. Findings reveal that these carbon membranes can achieve removal efficiencies exceeding 90 % for critical pollutants, thereby significantly improving water quality and supporting environmental sustainability. The study also explores the development of hybrid membranes and nanocomposites, which enhance performance by combining the strengths of different materials, allowing for customized solutions tailored to the specific requirements of aquaculture wastewater treatment. Additionally, operational parameters such as pH, temperature, and feed water characteristics are crucial for maximizing membrane efficiency. The integration of real-time monitoring technologies is proposed to enable prompt adjustments to treatment processes, thereby improving system performance and reliability. Overall, this research emphasizes the importance of interdisciplinary collaboration among researchers and industry stakeholders to drive innovation in advanced filtration technologies. The findings underscore the substantial potential of carbon membranes in tackling the pressing water quality challenges faced by the aquaculture sector, ultimately contributing to the sustainability of aquatic ecosystems and ensuring compliance with environmental standards for future generations.
Collapse
Affiliation(s)
- Sayyed Ali Moezzi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Monireh Faghani
- Water Science and Engineering-Irrigation and Drainage, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Zahra Ghiasvand
- Faculty of Agriculture, Department of Animal Sciences and Aquaculture, Dalhousie University, Halifax, Canada
| | - Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
3
|
Yang Y, Liu H, Bai Y, Xia T, Hao J, Shi W. Highly Efficient and Stable Bifunctional Co 3Ni 6S 8 for Electrocatalytic Oxidation of Benzyl Alcohol and Facilitation of Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412734. [PMID: 40285742 DOI: 10.1002/smll.202412734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The electrocatalytic oxidation of benzyl alcohol (BAOR) is crucial for promoting green industrial oxidation processes and enhancing the yield and productivity of high-value chemicals. However, there are challenges in this field, such as difficult oxidation steps in alkaline electrolytes, slow reaction kinetics, and difficulty in preserving the activity of catalysts during long-term catalytic reactions. Addressing these issues and achieving synergistic reactions to improve energy utilization by combining hydrogen evolution with enhanced catalyst activity and stability warrants focused investigation. Herein, the study reports a Co3Ni6S8-based catalyst, Co0.33Ni0.67S1-10c, which can achieve the oxidation of benzyl alcohol (BA) in alkaline solution for over 350 h, with a conversion rate of BA exceeding 90% and a Faraday efficiency of benzoic acid (BAA) exceeding 99%. The hydrogen production capacity of Co0.33Ni0.67S1-10c is also evaluated in both three-electrode and dual-electrode systems. In the three-electrode system, the hydrogen evolution rate is enhanced by a factor of 9.59 compared to the absence of BA, while in the dual-electrode system, the rate is increased by a factor of 7.85. This work presents a highly efficient and durable catalyst for the oxidation of BA and its synergistic integration with hydrogen production.
Collapse
Affiliation(s)
- Yingchen Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ye Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tixuan Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jinhui Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
4
|
Yu D, Jiang Q, Zhu H, Chen Y, Xu L, Ma H, Pu S. Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives. WATER RESEARCH 2025; 274:123149. [PMID: 39854779 DOI: 10.1016/j.watres.2025.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H⁎) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity. It reveals the affinity characteristics of chlorinated hydrocarbon pollutants, the active dechlorination sites, and the roles of substituent groups. It also comprehensively discusses the current progress on electrochemical reductive dechlorination using metal, carbon-based, and 3D electrode catalysts, with an emphasis on the design and optimization of electrode materials and the impact of catalyst microstructure regulation on dechlorination performance. It delves into the current application status of coupling electrochemical reduction technology with biodegradation and electrochemical circulating well technology for the remediation of groundwater contaminated by chlorinated hydrocarbons. The paper discusses practical application challenges such as electron transfer, electrode corrosion, water chemistry environment, and aquifer heterogeneity. Finally, considerations are presented from the perspectives of environmental impact and sustainable application, along with a summary and analysis of potential future research directions and technological prospects.
Collapse
Affiliation(s)
- Dong Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Qing Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Ying Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Lanxin Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| |
Collapse
|
5
|
Zhang S, Zhong D, Gan Y, Ma W, Sun Z, Ma J. Enhanced electro-fenton degradation of tetracycline pharmaceutical wastewater by N-doped carbon modified titanium membrane aeration: Formation of highly selective singlet oxygen. ENVIRONMENTAL RESEARCH 2025; 271:121050. [PMID: 39914707 DOI: 10.1016/j.envres.2025.121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Singlet oxygen (1O2), the lowest excited electronic state of molecular oxygen, plays an important role in advanced oxidation, but how to directionally enhance the generation of 1O2 is a challenge. In this study,we use membrane aeration electrode modified by carbon-nitrogen for the first time to enhance the generation of 1O2 in the EF (Electro-Fenton) system. The carbon-nitrogen supported tubular titanium membrane (TTM@CN) aeration electrode was prepared by a simple dopamine-loaded one-step sintering method. A membrane aeration EF system was designed with TTM@CN as cathode and netted ruthenium-iridium titanium electrode as anode, and the output of 1O2 was greatly improved. The results of quenching experiments show that the main way of singlet oxygen production is 3O2 → H2O2 → 1O2. In addition, the results of density functional theory (DFT) show that the empty orbital of C above Fermi level in heterojunction is obviously filled, and the density of states tends to shift to the depth of valence band. The system with metal Ti as carrier can quickly transfer electrons to the layer of C, which makes the states density of C increase significantly near Fermi level. It can reduce 3O2 to H2O2 more quickly, and H2O2 can be further converted to 1O2. The system showed excellent degradation performance in a wide pH range (1-12) and excellent stability in 20 cycle experiments, which provided a reference significance for promoting the development of sustainable EF technology.
Collapse
Affiliation(s)
- Shaobo Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Harbin Institute of Technology, National Engineer Research Center of Urban Water Resources, Harbin 150090, PR China
| | - Yulin Gan
- Harbin Institute of Technology, National Engineer Research Center of Urban Water Resources, Harbin 150090, PR China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Harbin Institute of Technology, National Engineer Research Center of Urban Water Resources, Harbin 150090, PR China.
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
6
|
Yang K, He Z. Integrating oxidation and reduction processes in electrochemical wastewater treatment for contaminant removal with byproduct control. WATER RESEARCH 2025; 282:123632. [PMID: 40300238 DOI: 10.1016/j.watres.2025.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 04/11/2025] [Indexed: 05/01/2025]
Abstract
Electrochemical technologies offer a promising approach for recalcitrant contaminants removal, but toxic halogenated byproducts from the treatment pose a critical challenge. Herein, an integrated electrochemical oxidation (EO) and reduction (ER) process was developed for both contaminant removal and byproduct control. The anodic EO achieved > 90 % contaminant removal and generated > 0.6 μM THM4 and > 0.8 μM HAA5 when treating a saline wastewater. A trace amount of Br- led to the production of reactive bromine species and the brominated byproducts. Carbonates made EO more compound-specific by scavenging halogen radicals to CO3•- and reduced the THM4 and HAA5 formation by 16 % and 31 %, respectively. The cathodic ER removed > 80 % of THM4 and > 50 % of HAA5 through direct reduction and H*-mediated indirect reduction pathways with the final concentrations of ∼ 0.1 μM THM4 and ∼ 0.4 μM HAA5. HAAs could achieve complete dehalogenation via ER and form the non-halogenated products. Throughout the treatment of the integrated process, phenolic contaminant was completely removed by the anodic EO with the kobs > 0.045 min-1, and the formed halogenated byproducts were subsequently removed by the cathodic ER to meet the national and global standards, with a total energy consumption of ∼ 4.5 kWh m-3. The results of this study would encourage the further exploration of enhanced electrochemical wastewater treatment with minimized byproduct residues.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
7
|
Chambial P, Thakur N, Kushawaha J, Kumar R. Per- and polyfluoroalkyl substances in environment and potential health impacts: Sources, remediation treatment and management, policy guidelines, destructive technologies, and techno-economic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178803. [PMID: 40020591 DOI: 10.1016/j.scitotenv.2025.178803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl Substances (PFAS), also known as forever chemicals and ubiquitous persistence, pose significant public health challenges due to their potential toxicity, particularly in drinking water and soil contamination. However, PFAS occurrence and their concentrations in different environmental matrices vary globally, but factors influencing trends, transport, fate, toxicity, and interactions with co-contaminants remain largely unexplored. Therefore, this review critically examines the state-of-the-art worldwide PFAS sources, distribution, and pathways, and evaluates how PFASs are processed in wastewater treatment, generally, which causes severe problems with the quality and safety of drinking water. Importantly, the review also underscores health issues due to PFAS consumption and recent research trends on developing effective treatment strategies to manage PFAS contamination. Potential effects of PFAS were linked to urban land use and the proportion of wastewater effluent in streamflow. Besides, major emphasis was provided on challenges for conventional treatment, destructive technologies, environmental accumulation, precursor transformation, and cost-investment related to PFAS removal technologies. To combat PFAS contamination, this review proposes a framework that promotes the comprehensive identification of prevalent compounds, with a focus on their eradication through knowledge-based and targeted analysis. Additionally, it explores the ongoing debate surrounding PFAS laws and legal frameworks, offering ideas for enhancing contamination management. Lastly, this review provides a strategic plan for improving response and preparedness, serving as a foundation for addressing future environmental challenges and informing health risk assessments.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Mandi, Himachal Pradesh 175001, India.
| | - Jyoti Kushawaha
- Department of Environmental Studies, Ramanujan College, University of Delhi, New Delhi 110019, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
8
|
Zhang S, Yu M, Zou X, Du S, Xu X, Lu H, Wu D. Rerouting charge transfer for pharmaceutical wastewater electrochemical treatment via interfacial cocatalyst modification. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137012. [PMID: 39742862 DOI: 10.1016/j.jhazmat.2024.137012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Electrochemical oxidation stands as a pivotal technology for refractory wastewater treatment. However, the high cost and low elemental abundance of commercial electrodes limit its widespread application. This work tries to address this by introducing a charge-transfer rerouting strategy via cocatalyst modification using earth-abundant elements. Here, we uncover the role of the cocatalyst in enhancing electrode performance. The in-situ reconstructed cocatalyst induces a substantial rerouting of the charge transfer pathway, facilitating the mass/charge transfer of organics while concurrently suppressing the oxygen evolution side reaction. The Ti-Fe2O3 electrode, loaded with the cocatalyst PbO2, exhibits both high current efficiency (∼45.4 %) and low energy requirement (∼31.8 kW h kg-1 COD), surpassing other reported electrodes and displaying great versatility in various scenarios with good stability and reusability. Moreover, this charge-transfer rerouting strategy holds promise for synergy with other methodologies, such as nanostructure engineering and molecular imprinting, to further enhance the reactivity and selectivity of electrocatalysts in environment and energy-related domains.
Collapse
Affiliation(s)
- Shuchi Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Department of Materials Science & Engineering, National University of Singapore, Singapore
| | - Mengwen Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xixuan Zou
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Shuwen Du
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xinhua Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Huijie Lu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, China.
| | - Donglei Wu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Pan J, Xu C, Jin J, Chen N, Pan B. Amorphous Pd nanoparticles inside ethylenediamine-based nanocomposite for high N 2-selectivity of nitrate reduction. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137090. [PMID: 39756325 DOI: 10.1016/j.jhazmat.2025.137090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Catalytic reduction of nitrate to dinitrogen (N2) by noble metals stands as a feasible and promising manner to address the biological and environmental issues associated with nitrate pollution; however, nitrate reduction under single noble-metal catalyzation remains substantially stuck because of the low adsorption enthalpy of noble metal toward nitrate. Tailoring the formation (crystal structure and particle size) of catalytical metal particles, coupled with a more direct electron donating pattern, provides a potential solution for the main challenge in reduction efficiency and selectivity. In this study, we assembled a Pd-based nanocomposite (Pda@EC) by subtly regulating the embedded Pd nanoparticles inside a porous substrate self-sufficient in electron donator (i.e., ethylenediamine group, EDA). Without any provision of reductant, the resultant single-metal catalyst demonstrated excellent nitrate catalytic reduction with over 95 % of N2 reduction selectivity within very broad pH range (3-11), whereas its unregulated counterpart (crystal Pd nanocomposite, Pdc@EC) is incapable of efficient nitrate reduction under otherwise identical conditions. The activated hydrogen (H*), which was exclusively yielded under the catalyzation of the amorphous Pd nanoparticles for the electron donating EDA, was confirmed as the primary active species, and the high N2 selectivity is attributed to the cooperation between EDA and Pd nanoparticles. More promisingly, the exhausted Pda@EC is amenable to effective regeneration with mild NaOH (elution) and NaBH4 (restoration) treatment. This work provides an effective strategy for selectively reducing nitrate under monometallic catalyzation by subtly regulating the crystal structure of Pd nanoparticles in endogenous electron-donating environment.
Collapse
Affiliation(s)
- Junyin Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenqi Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiahui Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
10
|
Xiao H, Jiang B, Zhang Z, Zhu C, Chen J, Wang Y, Dong Y, Hao Y, Liu Y, Li Y, Xiao X, He G, Zhou Y, Luo X. New insight of electrogenerated H 2O 2 into oxychlorides inhibition and decontamination promotion: From radical to nonradical pathway during anodic oxidation of high Cl --laden wastewater process. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136948. [PMID: 39721481 DOI: 10.1016/j.jhazmat.2024.136948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Anodic oxidation (AO) has been extensively hailed as a robust and promising technology for pollutant degradation, but the parasitic formation of oxychlorides (ClOx-) would induce a seriously over-evaluated electrochemical COD removal performance and dramatical biotoxicity increasement of the AO-treated Cl--laden effluents. Herein, we shed new light on the roles of H2O2 high-efficiently electrogenerated in three-dimensional (3D) reactor in inhibiting ClOx- production and promoting pollutant degradation, which has been overlooked in previous literature. Total yield of ClOx- in phenol simulated wastewater containing 30 mM Cl- was dropped from 25 mM and 24.3 mM to only 0.26 mM and 0.23 mM within 120 min after treating by 3D H2O2-involing systems with Ti/Ru-IrO2 and BDD anode, respectively. Meanwhile, the COD removal of 3D Ti/Ru-IrO2-based system was increased by 57 % (85 % removal at 0.011 kWh g-1 COD), comparable to that of 3D BDD-based system (90 % removal at 0.008 kWh g-1 COD), the energy consumption of which were far less than those of conventional 2D and 3D electro-Fenton systems (0.08-0.2 kWh g-1 COD). During degradation process of Cl--bearing phenol by 3D AO-H2O2 systems, the anodically produced species (Cl•, Cl2•-, ClO-) were rapidly quenched by the in-situ electrogenerated H2O2 and then successfully transformed into 1O2. The radical pathway of reaction between H2O2 and Cl•/Cl2•- had a more obviously thermodynamical advantage (∆G = 11.5 kJ mol-1) than nonradical pathway between H2O2 and ClO- (∆G = 171 kJ mol-1) based on DFT analysis. And the steady-state concentration of 1O2 was 8.8 × 10-9 M and 4.2 × 10-10 M in 3D Ti/Ru-IrO2 and BDD-based system, respectively, which collectively took responsibility for the termination of ClOx- production and promotion of organic pollutant degradation. This work provides a technical feasibility in the practical utilization of AO technology to wastewater treatment without toxic oxychloride by-products.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Zhitong Zhang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Chenxi Zhu
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Jing Chen
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yinghong Wang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yinghao Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yongjie Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xiaoyu Xiao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Genhe He
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yanbo Zhou
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Xubiao Luo
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
11
|
Lai W, Yang X, Hua Z, Wang A, He D, Wei Z, Yang M, Fang J. Differentiating reactive chlorine species for micropollutant abatement in chloride containing water by electrochemical oxidation process. WATER RESEARCH 2025; 271:122984. [PMID: 39718170 DOI: 10.1016/j.watres.2024.122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 12/25/2024]
Abstract
Electrochemical oxidation process (EOP) is promising for micropollutant degradation in water treatment, where chloride ions (Cl-) are inevitable in aqueous systems, leading to the EOP/Cl- system. The oxidation of Cl- at anodes generates reactive chlorine species (RCS), including heterogeneous chlorine species (Clhetero), homogeneous free available chlorine (FAC), chlorine dioxide (ClO2), and chlorine radicals (CRs). This study developed a method to differentiate various RCS responsible for the removal of carbamazepine in EOP/Cl- using the RuO2/IrO2-Ti anode. Compared to EOP, the formation of RCS significantly enhanced the degradation of carbamazepine in EOP/Cl-, primarily through heterogeneous Clhetero, homogeneous molecular chlorine (Cl2), and CRs. The relative contribution of specific RCS to carbamazepine degradation significantly varied at different pHs, Cl- concentrations, and current densities. As pH increased from 5.3 to 10.0 with 10 mM Cl-, the relative contributions of Clhetero and CRs decreased, while Clhetero dominated carbamazepine degradation at pH 7.0 and 10.0. Cl2 was the dominant species for carbamazepine degradation at pH 5.3, while its role significantly decreased at higher pHs. The increase of Cl- concentrations enhanced the relative contributions of Clhetero, Cl2, and CRs at pH 5.3 and 18 mA/cm2. The rise of current density from 18 to 39 mA/cm2 significantly promoted the relative contributions of Clhetero and CRs at pH 7.0 and 10 mM Cl-. This study elucidated the specific roles of reactive species for micropollutant degradation in EOP/Cl-, highlighting the significance of heterogeneous Clhetero and homogeneous CRs and Cl2.
Collapse
Affiliation(s)
- Weikang Lai
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xin Yang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Anna Wang
- Guangdong Environmental Protection Research Institute Co., Ltd., Guangzhou 510080, PR China
| | - Dequan He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhipeng Wei
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ming Yang
- HFI Huafu International, Guangzhou 510641, PR China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China; Institute of Sun Yat-Sen University in Shenzhen, PR China.
| |
Collapse
|
12
|
Li S, Zhang L, Zhong S, Zhu J, Wei Z. Ternary micro-electrolysis filter media for efficient PFOA removal in water: synthesis, characterization, and performance study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:609-625. [PMID: 40087969 DOI: 10.2166/wst.2025.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/06/2025] [Indexed: 03/17/2025]
Abstract
This study reports the preparation of granular ternary micro-electrolysis materials and their effectiveness in removing the emerging contaminant PFOA. Al/nZVI/C@F granules were synthesized using a liquid-phase reduction method combined with high-temperature calcination. By comparing the removal of methylene blue dye by granules, the optimum preparation conditions were determined as follows: Fe:C = 5:1, fly ash = 50%, calcination temperature = 800 °C, and holding time = 1 h. Static batch experiments revealed that under optimal conditions (PFOA concentration = 25 mg/L, solid-liquid ratio = 30 g/L, pH = 3, reaction temperature = 15 °C), Al/nZVI/C@F achieved a PFOA removal rate of 97.83%. The removal efficiency of Al/nZVI/C@F (93.90%) was significantly higher than that of commercial iron-carbon (12.75%). After 45 days of dynamic column experiments, the removal efficiency of nZVI/C@F and Al/nZVI/C@F for PFOA (50 mg/L) remained above 60%, demonstrating strong practical application potential. Further adsorption-desorption experiments revealed that nZVI/C@F and Al/nZVI/C@F primarily removed 50 mg/L PFOA through adsorption. For a lower PFOA concentration of 0.5 mg/L, the defluorination rates were 53.2% for nZVI/C@F and 68.9% for Al/nZVI/C@F. High-performance liquid chromatography-tandem mass spectrometry was used to analyze the intermediates formed during PFOA removal, leading to a proposed degradation pathway.
Collapse
Affiliation(s)
- Shuilian Li
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Geological Resources and Environmental Testing Laboratory, Pengzhou, Sichuan 611930, China
| | - Lishan Zhang
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, Guangxi 541001, China E-mail:
| | - Shan Zhong
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, Guangxi 541001, China
| | - Jiayan Zhu
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, Guangxi 541001, China
| | - Zengxian Wei
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, Guangxi 541001, China
| |
Collapse
|
13
|
Singh R, Sinha A. A critical review of recent advancements in the photocatalysis process, mechanism, and degradation pathways for the removal of phthalates from the contaminated water matrix. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124663. [PMID: 40020358 DOI: 10.1016/j.jenvman.2025.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Phthalates, a sort of plasticizer, are widely utilized in various consumer products and pose significant environmental and health risks due to their persistence and potential toxicity. This review explores the occurrence, sources, environmental impact, and remediation strategies for phthalates. Various remediation techniques have been investigated to address phthalate contamination. Among these, photocatalysis, an advanced oxidation process (AOP), has emerged as a viable approach due to its ability to mineralize organic contaminants into innocuous byproducts. The review discusses the recent advancements in photocatalytic processes, the underlying mechanisms, and degradation pathways for phthalate removal. The mechanism of photocatalytic degradation includes the generation of reactive oxygen species like hydroxyl radicals (OH•) and superoxide radicals (O2-•) and their role in breaking down phthalate molecules. It also highlights recent advancements in photocatalytic materials, such as metal-doped semiconductors and composite materials, which enhance the removal efficiency. The review concludes by emphasizing the need for integrated approaches to achieve effective and sustainable phthalate remediation. Future research should focus on developing efficient and cost-effective photocatalytic materials, optimizing reactor design, and scaling up photocatalytic processes for practical applications. The review also highlights the challenges and limitations of photocatalytic processes, including low quantum efficiency, catalyst deactivation, and mass transfer limitations. Potential areas of study are put forward to address these challenges and further advance the application of photocatalysis for phthalate removal. This review intends to help the development of efficient photocatalytic technologies for the remediation of phthalate-contaminated water by providing a complete overview of the present state of the art.
Collapse
Affiliation(s)
- Ravindra Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
14
|
Abd FH, Abbar AH. Treatment of hospital wastewater by anodic oxidation using a new approach made by combining rotation with pulsed electric current on Cu-SnO 2-Sb 2O 5 rotating cylinder anode. Heliyon 2025; 11:e42069. [PMID: 39897935 PMCID: PMC11787683 DOI: 10.1016/j.heliyon.2025.e42069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
A high-efficiency, low-cost Cu-SnO2-Sb2O5 anode was prepared using a novel approach that combines the effects of rotation with pulsed current. The effects of operating variables such as rotation speed (50-250 rpm), pulsed current density (5-20 mA/cm2), and electrodepostion time (30-60 min) on the morphology and activity of Cu-SnO2-Sb2O5 anode were investigated. The structure of Cu-SnO2-Sb2O5 anode was examined by SEM, EDS, and XRD techniques. The results showed that using higher rotation speed combined with pulsed current gave better properties of Cu-SnO2-Sb2O5 anode in terms of higher oxidation activity and longer service life time. The optimum conditions for preparing Cu-SnO2-Sb2O5 anode were a pulsed current density of 10 mA/cm2, rotation speed of 250 rpm, and deposition time of 60 min. The prepared anode has the ability to remove methylene blue (MB) with an efficiency of 99.7 %. It has an excellent service life of 30 h. Additionally, the prepared anode has the potential to remove COD from hospital wastewater with 85 % efficiency by applying a current density of 10 mA/cm2 for 120 min at an initial pH of 3 where an energy consumption of 2.85 kWh/kg was claimed. The novel approach of combining rotation with pulsed electric current in preparing Cu-SnO2-Sb2O5 anode offers enhanced methylene blue degradation efficiency and extended anode life, demonstrating potential for industrial-scale hospital wastewater treatment.
Collapse
Affiliation(s)
- Falah H. Abd
- Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 10071, Iraq
| | - Ali H. Abbar
- Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 10071, Iraq
| |
Collapse
|
15
|
Liu F, Chen W, Wang T, Zhang J, Yang D, Dai Y, Liu G, Zhou J, Wang S, Guan X. Efficient Electrosynthesis of Valuable para-Benzoquinone from Aqueous Phenol on NiRu Hybrid Catalysts. Angew Chem Int Ed Engl 2025; 64:e202415438. [PMID: 39425631 DOI: 10.1002/anie.202415438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Electrocatalytic oxidation of aqueous phenol to para-benzoquinone (p-BQ) offers a sustainable approach for both pollutant abatement and value-added chemicals production. However, achieving high phenol conversion and p-BQ yield under neutral conditions remains challenging. Herein, we report a Ni(OH)2-supported Ru nanoparticles (NiRu) hybrid electrocatalyst, which exhibits a superior phenol conversion of 96.5 % and an excellent p-BQ yield of 83.4 % at pH 7.0, significantly outperforming previously reported electrocatalysts. This exceptional performance benefits from the triple synergistic modulation of the NiRu catalyst, including enhanced phenol adsorption, increased p-BQ desorption, and suppressed oxygen evolution. By coupling a flow electrolyzer with an extraction-distillation separation unit, the simultaneous phenol removal and p-BQ recovery are realized. Additionally, the developed electrocatalytic system with the NiRu/C anode displays good stability, favorable energy consumption, and reduced greenhouse gas emissions for phenol-containing wastewater treatment, demonstrating its potential for practical applications. This work offers a promising strategy for achieving low-carbon emissions in phenol wastewater treatment.
Collapse
Affiliation(s)
- Fuqiang Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| | - Wei Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Tong Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| | - Juchao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| | - Deyong Yang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yinhao Dai
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| | - Guizi Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| | - Jian Zhou
- State Key Laboratory of Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
16
|
Farissi S, Akhilghosh KA, Muthukumar A, Muthuchamy M. Combining photocatalytic and electrocatalytic oxidation for dibutyl phthalate degradation: the influence of carbon-coated titanium anode and metal oxide catalysts. ENVIRONMENTAL TECHNOLOGY 2025; 46:494-508. [PMID: 38820597 DOI: 10.1080/09593330.2024.2360747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Plasticisers, such as dibutyl phthalate (DBP), are contaminants of emerging concern (CEC) that are toxic to living things and the environment. Unlike hydrophilic pollutants, DBP shows the characteristics of hydrophilic and hydrophobic nature which makes its degradation or removal difficult using conventional treatment technologies. The current study explored the potential of photocatalysis followed by electrocatalytic oxidation (PC + EC) using vanadium pentoxide (V2O5) and carbon-coated titanium (C/Ti) anode for the removal of 75 mg L-1 DBP from water. The structural stability and changes in the functional groups after treatment of the catalyst were determined using powder XRD and FTIR studies that found the catalyst structure to be stable. Optimization studies showed that UV-A (315-400 nm) irradiation source, 112 mA cm-2 current density, 50 mg L-1 catalyst dosage, 360 min PC, 210 min EC at pH 3 and 20 mM sodium sulphate managed to degrade 99.5% of DBP with 97% COD and 87.7% TOC removal. Compared to electrocatalytic oxidation (EC), PC + EC showed 40% higher TOC removal. Reusability studies found the reduction of 45% for COD removal after four treatment cycles with V2O5, while the anode material showed no considerable decrease in its degradation efficiency. High-resolution mass spectrometry (HRMS) studies established that complete degradation was preceded by the oxidation of DBP to phthalic anhydride and phthalic acid responsible for the increase in TOC during the initial treatment period. Overall, this study lays out insights for the application of photo-electrocatlytic oxidation for the removal of ubiquitous poorly soluble water pollutants such as phthalates.
Collapse
Affiliation(s)
- Salman Farissi
- Department of Environmental Science, Central University of Kerala, Kasaragod, India
| | | | - Anbazhagi Muthukumar
- Department of Environmental Science, Central University of Kerala, Kasaragod, India
| | | |
Collapse
|
17
|
Shi J, Hu Y, Li S, Xiao W, Yang Y, Ji J. Electro-Conductive Modification of Polyvinylidene Fluoride Membrane for Electrified Wastewater Treatment: Optimization and Antifouling Performance. MEMBRANES 2024; 15:1. [PMID: 39852242 PMCID: PMC11767159 DOI: 10.3390/membranes15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Electro-conductive membranes coupled with a low-voltage electric field can enhance pollutant removal and mitigate membrane fouling, demonstrating significant potential for electrified wastewater treatment. However, efficient fabrication of conductive membranes poses challenges. An in situ oxidative polymerization approach was applied to prepare PVDF-based conductive membranes (PVDF-CMs) and response surface methodology (RSM) was adopted to optimize modification conditions enhancing membrane performance. The anti-fouling property of the conductive membranes was analyzed using model pollutants. The results indicate that when the concentrations of the pyrrole, BVIMBF4, and FeCl3·6H2O are 0.9 mol/L, 4.8 mmol, and 0.8 mol/L, respectively, the electrical resistance of the PVDF-CM is 93 Ω/sq with the water contact angle of 31°, demonstrating good conductivity and hydrophilicity. Batch membrane filtration experiments coupled with negative voltage indicated that when an external voltage of 2.0 V is applied, membrane fouling rates for the conductive membrane filtering BSA and SA solutions are reduced by 17.7% and 17.2%, respectively, compared to the control (0 V). When an external voltage of 0.5 V is applied, the membrane fouling rate for the conductive membrane filtering HA solution is reduced by 72.6%. This study provides a valuable reference for the efficient preparation of conductive membranes for cost-effective wastewater treatment.
Collapse
Affiliation(s)
- Jinzhuo Shi
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yisong Hu
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Songhua Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Wenqian Xiao
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yuan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Jiayuan Ji
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
18
|
Hu E, Ye Y, Wang B, Cheng H. Unique role of Mn(II) in enhancing electro-oxidation of organic pollutants on anodes with low oxygen evolution potential at low current density. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136332. [PMID: 39486322 DOI: 10.1016/j.jhazmat.2024.136332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
This study systematically explored the role of Mn(II) in the removal of 4-chlorophenol (4-CP) by electro-oxidation (EO) employing anodes with low oxygen evolution potential (OEP), i.e., Ti/RuO2-IrO2, Ti/Pt, and Ti/Ti4O7, as well as anodes with high OEP, namely, Ti/PbO2, Ti/SnO2, and boron-doped diamond (Si/BDD). Mn(II) significantly promoted 4-CP removal on the anodes with low OEP at fairly low current density (0.04 to 1 mA/cm2), but had minimal to negative impact on those with high OEP. Cyclic voltammetry and X-ray photoelectron spectra revealed that Mn(II) was oxidized to Mn(III), then to Mn(IV) on the anodes with low OEP, whereas its was oxidized directly to Mn(IV) on those with high OEP. Deposition of manganese oxide on the anodes with low OEP suppressed oxygen evolution reaction (OER) in EO process, but enhanced OER on those with high OEP. Quenching and spectral results consistently indicated that Mn(III) and Mn(IV) were the primary species responsible for enhancing 4-CP removal on the anodes with low OEP. These findings provide mechanistic insights into the redox transformation of Mn(II) in EO and the theoretical basis for a novel strategy to boost pollutant degradation in EO systems using low OEP anodes through coupling with the redox chemistry of manganese.
Collapse
Affiliation(s)
- Erdan Hu
- College of Environment, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang, Province Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuhua Ye
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Adeola AO, Paramo L, Fuoco G, Naccache R. Emerging hazardous chemicals and biological pollutants in Canadian aquatic systems and remediation approaches: A comprehensive status report. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176267. [PMID: 39278485 DOI: 10.1016/j.scitotenv.2024.176267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Emerging contaminants can be natural or synthetic materials, as well as materials of a chemical, or biological origin; these materials are typically not controlled or monitored in the environment. Canada is home to nearly 7 % of the world's renewable water supply and a wide range of different kinds of water systems, including the Great Lake, rivers, canals, gulfs, and estuaries. Although the majority of these pollutants are present in trace amounts (μg/L - ng/L concentrations), several studies have reported their detrimental impact on both human health and the biota. In Canadian aquatic environments, concentrations of pharmaceuticals (as high as 115 μg/L), pesticides (as high as 1.95 μg/L), bioavailable heavy metals like dissolved mercury (as high as 135 ng/L), and hydrocarbon/crude oil spills (as high as 4.5 million liters) have been documented. Biological threats such as genetic materials of the contagious SARS-CoV-2 virus have been reported in the provinces of Québec, Ontario, Saskatchewan and Manitoba provinces, as well as in the Nunavut territory, with a need for more holistic research. These toxins and emerging pollutants are associated with nefarious short and long-term health effects, with the potential for bioaccumulation in the environment. Hence, this Canadian-focused report provides the footprints for water and environmental sustainability, in light of this emerging threat to the environment and society. Several remediation pathways/tools that have been explored by Canadian researchers, existing challenges and prospects are also discussed. The review concludes with preventive measures and strategies for managing the inventory of emerging contaminants in the environment.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Luis Paramo
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Gianluca Fuoco
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
20
|
Yánez D, Espinoza LC, Vargas I, Romero J, Aguirre MJ, Arce R, Quijada-Maldonado E, Abejon R. Treated greywater as a novel water resource: The perspective of greywater treatment for reuse from a bibliometric analysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:3076-3110. [PMID: 39673320 DOI: 10.2166/wst.2024.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
The current global water crisis has prompted research into technologies that can reuse different water resources to mitigate water scarcity. The use of treated greywater can be proposed to provide additional water resources. By reusing this water in different applications, this water crisis can be mitigated at the local scale. This study presents a bibliometric analysis to assess the state of the art of greywater treatment and its reuse technologies. This analysis is based on the scientific literature published until 2023 in Scopus regarding greywater treatment and 1,024 documents were found. The results showed a clear exponential increase in the accumulated number of publications in this topic, which was spurred during the mid-1990s. The most prolific country was the United States, while China, the other typical scientific superpower in most fields, occupied the sixth position in the ranking. Environmental Sciences was the knowledge subject with more documents, followed by Engineering and Chemical Engineering. The bibliometric study was complemented using SciMAT to create bibliometric networks that represent the dynamic evolution of the themes. The most important themes were identified, among which three key points stand out: greywater characterization, technologies for greywater treatment, and water management, including the reuse of treated greywater.
Collapse
Affiliation(s)
- Diana Yánez
- Laboratory of Separation Processes Intensification (SPI), Department of Chemical and Bioprocess Engineering, University of Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile; Grupo de Inocuidad y Valorización de Recursos para la Agroindustria (INVAGRO), Universidad Nacional de Chimborazo (UNACH), Facultad de Ingeniería, Av. Antonio José de Sucre Km 1 1/2, EC060108 Riobamba, Ecuador
| | - Lidia Carolina Espinoza
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Escuela de Ingeniería en Medio Ambiente y Sustentabilidad, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Granaderos 1303, Providencia, Santiago, Chile; Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Ignacio Vargas
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, University of Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, University of Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - María Jesús Aguirre
- Laboratory of Materials Science, Departament of Chemistry of the Materials, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170022, Chile; Millennium Institute on Green Ammonia as Energy Vector (MIGA), Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Roxana Arce
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile; Millennium Institute on Green Ammonia as Energy Vector (MIGA), Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Esteban Quijada-Maldonado
- Laboratory of Separation Processes Intensification (SPI), Department of Chemical and Bioprocess Engineering, University of Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejon
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, University of Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile E-mail:
| |
Collapse
|
21
|
Olvera-Vargas H, Trellu C, Nidheesh PV, Mousset E, Ganiyu SO, Martínez-Huitle CA, Zhou M, Oturan MA. Challenges and opportunities for large-scale applications of the electro-Fenton process. WATER RESEARCH 2024; 266:122430. [PMID: 39278119 DOI: 10.1016/j.watres.2024.122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
As an electrochemical advanced oxidation process, the electro-Fenton (EF) process has gained significant importance in the treatment of wastewater and persistent organic pollutants in recent years. As recently reported in a bibliometric analysis, the number of scientific publications on EF have increased exponentially since 2002, reaching nearly 500 articles published in 2022 (Deng et al., 2022). The influence of the main operating parameters has been thoroughly investigated for optimization purposes, such as type of electrode materials, reactor design, current density, and type and concentration of catalyst. Even though most of the studies have been conducted at a laboratory scale, focusing on fundamental aspects and their applications to degrade specific pollutants and treat real wastewater, important large-scale attempts have also been made. This review presents and discusses the most recent advances of the EF process with special emphasis on the aspects more closely related to future implementations at the large scale, such as applications to treat real effluents (industrial and municipal wastewaters) and soil remediation, development of large-scale reactors, costs and effectiveness evaluation, and life cycle assessment. Opportunities and perspectives related to the heterogeneous EF process for real applications are also discussed. This review article aims to be a critical and exhaustive overview of the most recent developments for large-scale applications, which seeks to arouse the interest of a large scientific community and boost the development of EF systems in real environments.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Morelos 62580, Mexico.
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| | | | - Emmanuel Mousset
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000 La Roche-sur-Yon, France
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB, T6G 2W2, Canada
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN 59078-970, Brazil
| | - Minghua Zhou
- Nankai University, College of Environmental Science and Engineering, Tianjin 300350, China
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| |
Collapse
|
22
|
De Carluccio M, Isidro J, Fernández-Cascán J, Saez C, Rodrigo MA, Rizzo L. Combination of electro-oxidation and biological processes for lindane landfill leachate treatment: simultaneous degradation of contaminants and biological reduction of electro-generated chloride-derived by-products. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135765. [PMID: 39259987 DOI: 10.1016/j.jhazmat.2024.135765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Real lindane landfill leachate (HCH-LL) is characterised by high chlorinated organic compounds concentrations (primarily hexachlorocyclohexane (HCH) isomers and degradation products generated during more than 40 years of ageing), posing environmental and human health risks. In this work, the co-treatment of real HCH-LL (pre-treated via electro-oxidation (EO)) and urban wastewater using an activated sludge process operated in an anoxic/oxic sequencing batch (A/O-SBR) mode was investigated. EO tests were conducted employing either a boron-doped diamond (BDD) anode or a dimensionally stable anode (DSA), resulting in effective HCH isomers removal (>93 % after 20 Ah/L). Chloride-derived by-products (CDBPs) such as free chlorine (up to 828 mg Cl2/L), chlorate (up to 972 mg/L) (formed with EO (DSA)) and perchlorate (up to 1830 mg/L) (with EO (BDD)) persisted after the treatment. EO (DSA) resulted in inhibitory effects (up to 100 % respiration inhibition) on the biological process. Conversely, EO (BDD) negligibly affected biological respiration (up to 20 % less than without pre-treatment), while perchlorate bio-reduction by A/O-SBR was poor (28 %). Acetate addition in pre-treated HCH-LL for perchlorate bio-reduction allowed to achieve simultaneous contaminants removal (> 99 %) and CDBPs reduction (up to 100 %). Biodegradation and bio-adsorption tests without pre-treatment showed partial HCH isomers removal (about 40 %) and poor bio-adsorption.
Collapse
Affiliation(s)
- Marco De Carluccio
- Water Science and Technology group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy
| | - Julia Isidro
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla - La Mancha, Ciudad Real 13071, Spain
| | - Jesús Fernández-Cascán
- Department of Agriculture, Livestock and Environment, Government of Aragon, Plaza San Pedro Nolasco, nº 7, Zaragoza 50001, Spain
| | - Cristina Saez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla - La Mancha, Ciudad Real 13071, Spain
| | - Manuel Andrés Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla - La Mancha, Ciudad Real 13071, Spain.
| | - Luigi Rizzo
- Water Science and Technology group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy.
| |
Collapse
|
23
|
Liu S, Jassby D, Mandler D, Schäfer AI. Differentiation of adsorption and degradation in steroid hormone micropollutants removal using electrochemical carbon nanotube membrane. Nat Commun 2024; 15:9524. [PMID: 39496594 PMCID: PMC11535516 DOI: 10.1038/s41467-024-52730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/20/2024] [Indexed: 11/06/2024] Open
Abstract
The growing concern over micropollutants in aquatic ecosystems motivates the development of electrochemical membrane reactors (EMRs) as a sustainable water treatment solution. Nevertheless, the intricate interplay among adsorption/desorption, electrochemical reactions, and byproduct formation within EMR complicates the understanding of their mechanisms. Herein, the degradation of micropollutants using an EMR equipped with carbon nanotube membrane are investigated, employing isotope-labeled steroid hormone micropollutant. The integration of high-performance liquid chromatography with a flow scintillator analyzer and liquid scintillation counting techniques allows to differentiate hormone removal by concurrent adsorption and degradation. Pre-adsorption of hormone is found not to limit its subsequent degradation, attributed to the rapid adsorption kinetics and effective mass transfer of EMR. This analytical approach facilitates determining the limiting factors affecting the hormone degradation under variable conditions. Increasing the voltage from 0.6 to 1.2 V causes the degradation dynamics to transition from being controlled by electron transfer rates to an adsorption-rate-limited regime. These findings unravels some underlying mechanisms of EMR, providing valuable insights for designing electrochemical strategies for micropollutant control.
Collapse
Affiliation(s)
- Siqi Liu
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
24
|
Yang Y, Yan Z, Luo X, Cao J, Zheng W, Feng C. Inhibition of inorganic chlorinated byproducts formation during electrooxidation treatment of saline phenolic wastewater via synergistic cathodic generation of H 2O 2. CHEMOSPHERE 2024; 367:143542. [PMID: 39424159 DOI: 10.1016/j.chemosphere.2024.143542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The electrochemical treatment of saline wastewater is prone to the formation of inorganic chlorinated byproducts, being a significant challenge for this technology. In this study, we introduce an electrooxidation system utilizing a self-supporting nitrogen-doped carbon-based cathode embedded in carbon cloth (N@C-CC), designed to generate H₂O₂. This system aims to rapidly neutralize free chlorine produced at the anode, a precursor to inorganic chlorinated byproducts, thereby reducing their formation. Our results demonstrate that using the N@C-CC cathode in saline wastewater treatment yielded considerably lower concentrations of ClO₃⁻ and ClO₄⁻ (0.08 mM and 0.024 mM, respectively), which were only 20.5% and 22.7% of the levels produced using a Pt cathode without H₂O₂ generation. Moreover, the presence of cathodically generated H₂O₂ that quenches free chlorine did not significantly impact the degradation performance of phenol. Electron paramagnetic resonance tests and quenching experiments indicated that 1O₂ was primarily responsible for phenol removal. Validation with real wastewater demonstrated reductions of 68.6% and 56.3% in ClO3- and ClO4- concentrations, respectively, while effectively removing other pollutants. This study thus offers a compelling method for mitigating the formation of inorganic chlorinated byproducts during the electrooxidation of saline wastewater.
Collapse
Affiliation(s)
- Yizhuo Yang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhang Yan
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350000, China
| | - Xin Luo
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianxin Cao
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
25
|
de Aguiar Pedott V, Della Rocca DG, Weschenfelder SE, Mazur LP, Gomez Gonzalez SY, Andrade CJD, Moreira RFPM. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122638. [PMID: 39342833 DOI: 10.1016/j.jenvman.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The oil industry is facing substantial environmental challenges, especially in managing waste streams such as Oilfield Produced Water (OPW), which represents a significant component of the industrial ecological footprint. Conventional treatment methods often fail to effectively remove dissolved oils and grease compounds, leading to operational difficulties and incomplete remediation. Electrochemical oxidation (EO) has emerged as a promising alternative due to its operational simplicity and ability to degrade pollutants directly and indirectly, which has already been applied in treating several effluents containing organic compounds. The application of EO treatment for OPW is still in an initial stage, due to the intricate nature of this matrix and scattered information about it. This study provides a technological overview of EO technology for OPW treatment, from laboratory scale to the development of large-scale prototypes, identifying design and process parameters that can potentially permit high efficiency, applicability, and commercial deployment. Research in this domain has demonstrated notable rates of removal of recalcitrant pollutants (>90%), utilizing active and non-active electrodes. Electro-generated active species, primarily from chloride, play a pivotal role in the oxidation of organic compounds. However, the highly saline conditions in OPW hinder the complete mineralization of these organics, which can be improved by using non-active anodes and lower salinity levels. The performance of electrodes greatly influences the efficiency and effectiveness of OPW treatment. Various factors must be considered when selecting the electrode material, such as its conductivity, stability, surface area, corrosion resistance, and cost. Additionally, the specific contaminants present in the OPW, and their electrochemical reactivity must be considered to ensure optimal treatment outcomes. Balancing these considerations can be challenging, but it is crucial for achieving successful OPW treatment. Active electrode materials exhibit a high affinity for chloride molecules, generating more active species than non-active materials, which exhibit more significant degradation potential due to the production of hydroxyl radicals. Regarding scale-up, key challenges include low current efficiency, the formation of by-products, electrode deactivation, and limitations in mass transfer. To address these issues, enhanced mass transfer rates and appropriate residence times can be achieved using flow-through mesh anodes and moderate current densities, which have proven to be the optimal configuration for this process.
Collapse
Affiliation(s)
- Victor de Aguiar Pedott
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Gier Della Rocca
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luciana Prazeres Mazur
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sergio Yesid Gomez Gonzalez
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristiano José de Andrade
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Regina F P M Moreira
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
26
|
Tedesco GC, Soares BL, Fagnani E, Cristale J, Joll CA, Henry DJ. Photoelectrocatalytic degradation of organophosphate esters using tio 2 electrodes produced from 3d-printed ti substrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63910-63925. [PMID: 39514079 DOI: 10.1007/s11356-024-35465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
3D printed electrode substrates with novel geometries may significantly improve the efficacy of photoelectrocatalysis for degradation of recalcitrant pollutants such as organophosphate flame retardants (OPFRs). However, the 3D printed substrates often have an irregular topology that can lead to a less uniform arrangement of nanotubes following anodisation. This study investigated the effect of polishing 3D-printed Ti substrates prior to anodisation to form TiO2 nanotube array electrodes, and their subsequent applicability for photoelectrocatalytic treatment of OPFRs in water matrices. Polished and non-polished electrodes exhibited differences in morphology in terms of average roughness, (0.38 and 3.10 µm, respectively), leading to more uniform TiO2 nanotubes of the former. Water contact angle measurements revealed the non-polished electrode was super-hydrophilic and the polished electrode hydrophilic (water contact angles of 6.4˚ and 16.1˚, respectively). Despite these differences, the polished and non-polished electrodes exhibited very similar electrochemical responses. In fact, the purity and electrical conductivity of water matrices affected the photoelectrocatalytic performance more than the electrode morphology. The purified water (PW) matrix facilitated the highest degradation/removal of OPFRs, compared to tap water matrices. In particular, individual OPFR degradation levels in PW were 74% ± 9, 37% ± 10, 33% ± 9, 31% ± 11 and 3% ± 5 for triphenyl phosphate, tris(butyl) phosphate, tris(isobutyl) phosphate, tris(2-butoxyethyl) phosphate and tris(2-chloroisopropyl) phosphate, respectively. The removal of OPFRs was relative to their reactivity to hydroxyl radicals, which was higher for the aryl then alkyl straight-chain and then chlorinated compounds. This study reveals that polishing of electrode substrates is not required for the preparation of effective photoelectrocatalytic reactors to treat recalcitrant pollutants (e.g. OPFRs), Importantly, future development of novel high-profile 3D printed electrode will not be hindered by the requirement to polish the substrates prior to anodisation.
Collapse
Affiliation(s)
- Gustavo C Tedesco
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Perth, WA, 6150, Australia
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
| | - Belisa L Soares
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
| | - Enelton Fagnani
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
| | - Joyce Cristale
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas E Agrícolas (CPQBA), Divisão de Química Analítica, Universidade Estadual de Campinas (UNICAMP), Alexandre Cazellato, Paulínia, SP, 99913148-218, Brazil
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - David J Henry
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
27
|
Rekik H, Pichon L, Teymoorian T, Arab H, Sauvé S, El Khakani MA, Drogui P. Efficient electro-oxidation-based degradation of per- and polyfluoroalkyl (PFAS) persistent pollutants by using plasma torch synthesized pure-Magnéli phase-Ti 4O 7 anodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122929. [PMID: 39427626 DOI: 10.1016/j.jenvman.2024.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Pure Magnéli-phase Ti4O7 were prepared by means of a Plasma Torch (PT) coating method and integrated into an advanced electro-catalytic oxidation (AEO) process in order to degrade perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) persistent pollutants present in waters. The X-ray diffraction analysis confirmed the polycrystalline nature of the pure Magnéli phase PT-Ti4O7 coatings (∼100 μm thick)). The Raman spectra of the PT-Ti4O7 coatings also exhibited the two characteristic peaks (at 138 and 183 cm-1) of the PT-Ti4O7 Magnéli phase. Scanning electron microscopy revealed the nanostructured hierarchical morphology of the PT-Ti4O7 thus conferring them high surface area. The PT-Ti4O7 anodes are shown to achieve higher degradation efficiencies towards PFOA and PFOS in comparison with the conventional boron-doped diamond anodes. By investigating several AEO parameters (including current density, treatment time, nature of the anode material), we were able to optimise the AEO process. Thus, for both PFOA and PFOS (at an initial concentration of 500 ppb in synthetic wastewaters), degradation efficiencies as high as 96.6% and 99.7% were achieved, respectively, with a current density of 20 mA/cm2, a treatment time of 120 min and PT-Ti4O7 mesh-type anodes. PFOA and PFOS can be degraded by both direct anodic electrochemical oxidation (•OH radicals) and indirect electrochemical oxidation via mediators, such as persulphate acid (H2S2O8) generated by sulphate anodic oxidation. The degradation of both compounds followed pseudo-first-order kinetics. The reaction rate constant (k) for PFOS removal was 4.63 × 10-2 min-1, whereas 2.76 × 10-2 min-1 was recorded for PFOA removal. Subsequently, we have used the above optimal AEO operating conditions to treat real wastewater effluents (containing 17 types of PFAS molecules with a total content of 8500 ppb) and achieved a degradation rate of 39.1%-87.4% for eight of the 17 PFAS compounds. The degradation rate was found to be dependent on the chemical structure and chain length of each PFOA/PFOS component.
Collapse
Affiliation(s)
- Hela Rekik
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Loick Pichon
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, J3X 1P7, QC, Canada
| | - Termeh Teymoorian
- Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Hamed Arab
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Sébastien Sauvé
- Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, J3X 1P7, QC, Canada.
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
28
|
Mousset E, Adnan FH, Ruffet A, Moretti P, Cédat B. Influence of interelectrode distances in electrocoagulation: is there any possibility and advantages to operate at micro-distances with low-conductivity effluents? CHEMOSPHERE 2024; 368:143794. [PMID: 39580092 DOI: 10.1016/j.chemosphere.2024.143794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
It has been proposed for the first time to investigate the possibility to implement micro-inter-electrode distances in electrocoagulation (EC) in order to improve both the treatment and energy efficiencies compared to conventional EC cells with centimetric distances. The study has been performed in a microfluidic monopolar flow-by filter-press cell for the treatment of simulated and real low-conductivity (0.5-1 mS cm-1) laundry wastewaters. The influences of interelectrode distance (delec) (100-10,000 μm), applied current density (japp) (10-200 mA cm-2), and types of anode materials (iron, aluminium and stainless steel) have been studied. The removal of representative organic pollutant (i.e., paracetamol at 15 mg L-1) as well as of total organic carbon (TOC) content (312 mg-C L-1) from actual wastewater was noticed, including at micro-distances. Optimal treatment capacities were obtained with delec of 0.5 mm (57% TOC removed), 3 mm (58% TOC removed) and 10 mm (41% TOC removed) and with japp of 70 mA cm-2, 40 mA cm-2 and 20 mA cm-2 respectively, using stainless steel anode. It led to reduced energy requirement at micro-distances (16 kWh g-TOC-1 at 500 μm) compared to millimetric gap (19 kWh g-TOC-1 at 3 mm, 40 kWh g-TOC-1 at 10 mm). Contrastingly, more sludge was generated with micrometric distance (172 g-sludge g-TOC-1 at 500 μm) compared to larger gaps (95 g-sludge g-TOC-1 at 3 mm, 87 g-sludge g-TOC-1 at 10 mm) due to higher optimal japp at low distances. The efficiency was maximal with an aluminium electrode, but this anode remained inapplicable with micro-distances using the current reactor design, given the high sludge production between the cathode and anode.
Collapse
Affiliation(s)
- Emmanuel Mousset
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France; Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000, La Roche-sur-Yon, France.
| | | | - Aurélien Ruffet
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France; Treewater, 61 Rue de la République, 62009, Lyon, France
| | - Paul Moretti
- Treewater, 61 Rue de la République, 62009, Lyon, France
| | - Bruno Cédat
- Treewater, 61 Rue de la République, 62009, Lyon, France
| |
Collapse
|
29
|
Chen X, Xia Y, Yang Y, Xu Y, Jia X, N Zare R, Wang F. Microdroplet-Mediated Multiphase Cycling in a Cloud of Water Drives Chemoselective Electrolysis. J Am Chem Soc 2024; 146:29742-29750. [PMID: 39429220 DOI: 10.1021/jacs.4c11224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Electrification of water in clouds leads to fascinating redox reactions on Earth. However, little is known about cloud electrochemistry, except for lightning, a natural hazard that is nearly impossible to harness. We report a controllable electrochemistry that can be enabled in microclouds by fast phase switching of water between the microdroplet, vapor, and bulk phase. Due to the size-dependent charge transfer between droplets during atomization, this process generates an alternating voltage arising from the self-electrification and discharging of microdroplets, vapor, and bulk phase by electron and ion transfer. We show that the microclouds with alternating voltage cause 1,2-dichloroethane (ClH2C-CH2Cl) to be converted to vinyl chloride (H2C═CHCl) at ∼80% selectivity. These findings highlight the importance of controlled cloud electrochemistry in accelerating the removal of volatile organic compounds and treating contaminated water. We suggest that this work opens an avenue for harnessing cloud electrochemistry to solve challenging chemoselectivity problems in aqueous reactions of environmental and industrial importance.
Collapse
Affiliation(s)
- Xuke Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Yifan Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Yunpeng Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiuquan Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
30
|
Yang W, Chen T, Jia H, Li J, Liu B. Preparation and Electrochemical Applications of Magnéli Phase Titanium Suboxides: A Review. Chemistry 2024; 30:e202402188. [PMID: 39149925 DOI: 10.1002/chem.202402188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Magnéli phase titanium suboxides (M-TSOs) belong to a type of sub-stoichiometric titanium oxides based on the crystal structure of rutile TiO2. They possess a unique shear structure, granting them exceptional electrical conductivity and corrosion resistance. These two advantages are crucial for electrode materials in electrochemistry, hence the significant interest from numerous researchers. However, the preparation of M-TSOs is uneconomic due to high temperature reduction and other complex synthesis process, thus limiting their practical application in electrochemical fields. This review delves into the crystal structure, properties, and synthesis methods of M-TSOs, and touches on their applications as electrocatalysts in wastewater treatment and electrochemical water splitting. Furthermore, it highlights the research challenges and potential future research directions in M-TSOs.
Collapse
Affiliation(s)
- Wenduo Yang
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Tongxiang Chen
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Hanze Jia
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Jing Li
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Baodan Liu
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| |
Collapse
|
31
|
Razzaq U, Nguyen TB, Saleem MU, Le VR, Chen CW, Bui XT, Dong CD. Recent progress in electro-Fenton technology for the remediation of pharmaceutical compounds in aqueous environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174253. [PMID: 38936713 DOI: 10.1016/j.scitotenv.2024.174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.
Collapse
Affiliation(s)
- Uzma Razzaq
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Muhammad Usman Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; Department of Environmental Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Van-Re Le
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
32
|
Xiao Q, Yang Z, Li W, Wei B, Guo H, Yu S, Gan Q, Liu W, Tang CY. Iron Nanoparticles-Confined Graphene Oxide Membranes Coupled with Sulfite-Based Advanced Reduction Processes for Highly Efficient and Stable Removal of Bromate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18009-18019. [PMID: 39329389 DOI: 10.1021/acs.est.4c04392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Advanced reduction processes (ARPs) are promising for pollutant removal in drinking water treatment. In this study, we demonstrated highly efficient reduction of bromate, a harmful disinfection byproduct, by coupling ARPs with an iron nanoparticles-intercalated graphene oxide (GO@FeNPs) catalytic membrane. In the presence of 1.0 mM sulfite (S(IV)), the GO@FeNPs membrane/S(IV) system achieved nearly complete removal of 80 μg/L bromate in 3 min. The first-order reaction rate constant for bromate removal in this system was 420 ± 42 min-1, up to 5 orders of magnitude faster than previously reported ARPs. The GO@FeNPs catalytic membrane may offer potential advantages of nanoconfinement and facilitated electron shuttling in addition to the high surface area of the fine FeNPs, leading to the remarkable ARP performance. The GO@FeNPs membrane showed excellent stability, maintaining >97.0% bromate removal over 20 cycles of repeated runs. The membrane can also be applied for fast catalytic reduction of other oxyanions, showing >98.0% removal of nitrate and chlorate. This work may present a viable option for utilizing high-performance reductive catalytic membranes for water decontamination.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Bo Wei
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Wenyu Liu
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| |
Collapse
|
33
|
Huang W, Liu S, Zhang T, Wu H, Pu S. Bibliometric analysis and systematic review of electrochemical methods for environmental remediation. J Environ Sci (China) 2024; 144:113-136. [PMID: 38802224 DOI: 10.1016/j.jes.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 05/29/2024]
Abstract
Electrochemical methods are increasingly favored for remediating polluted environments due to their environmental compatibility and reagent-saving features. However, a comprehensive understanding of recent progress, mechanisms, and trends in these methods is currently lacking. Web of Science (WoS) databases were utilized for searching the primary data to understand the knowledge structure and research trends of publications on electrochemical methods and to unveil certain hotspots and future trends of electrochemical methods research. The original data were sampled from 9080 publications in those databases with the search deadline of June 1st, 2022. CiteSpace and VOSviewer software facilitated data visualization and analysis of document quantities, source journals, institutions, authors, and keywords. We discussed principles, influencing factors, and progress related to seven major electrochemical methods. Notably, publications on this subject have experienced significant growth since 2007. The most frequently-investigated areas in electrochemical methods included novel materials development, heavy metal remediation, organic pollutant degradation, and removal mechanism identification. "Advanced oxidation process" and "Nanocomposite" are currently trending topics. The major remediation mechanisms are adsorption, oxidation, and reduction. The efficiency of electrochemical systems is influenced by material properties, system configuration, electron transfer efficiency, and power density. Electro-Fenton exhibits significant advantages in achieving synergistic effects of anodic oxidation and electro-adsorption among the seven techniques. Future research should prioritize the improvement of electron transfer efficiency, the optimization of electrode materials, the exploration of emerging technology coupling, and the reduction in system operation and maintenance costs.
Collapse
Affiliation(s)
- Wenbin Huang
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China.
| | - Tao Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China
| | - Hao Wu
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
34
|
Seid MG, Chae SH, Lee C, Cho K, Hong SW. Nitrosamine formation driven by electrochemical chlorination of urine-containing source waters: Effects of operational conditions. WATER RESEARCH 2024; 263:122190. [PMID: 39106622 DOI: 10.1016/j.watres.2024.122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
We investigated the formation of nitrosamines from urine during electrochemical chlorination (EC) using dimensionally stable anodes. Short-term electrolysis (< 1 h) of urine at 25 mA cm-2 generated seven nitrosamines (0.1-7.4 µg L-1), where N-nitrosodimethylamine, N-nitrosomethylethylamine, and N-nitrosodiethylamine were predominant with concentrations ranging from 1.2 to 7.4 µg L-1. Mechanistic studies showed that the formation kinetics of nitrosamines was influenced by urine aging and composition, with fresh urine generating the highest levels (0.9-5.8 µg L-1) compared with aged, centrifuged, or filtered urine (0.2-4.1 µg L-1). Concurrently, studies on urine pretreatment through filtration and centrifugation underscored the significance of nitrogenous metabolites (such as protein-like products and urinary amino acids) and particle-associated humic fractions in nitrosamine formation during EC of urine. This finding was confirmed through chromatographic and spectroscopic studies utilizing LCOCD, Raman spectra, and 3DEEM fluorescence spectra. Parametric studies demonstrated that the ultimate [nitrosamines] increased at a pH range of 4.5-6.2, and with increasing [bromide], [ammonium], and current density. Conversely, sulfate and carbonate ions inhibited nitrosamine formation. Moreover, the implications of EC in urine-containing source waters were evaluated. The results indicate that regardless of the urine source (individual volunteers, septic tank, swimming pool, untreated municipal wastewater), high levels of nitrosamines (0.1-17.6 µg L-1) were generated, surpassing the potable reuse guideline of 10 ng L-1. Overall, this study provides insights to elucidate the mechanisms underlying nitrosamine formation and optimize the operating conditions. Such insights facilitate suppressing the generation of nitrosamine byproducts during electrochemical treatment of urine-containing wastewater.
Collapse
Affiliation(s)
- Mingizem Gashaw Seid
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus, Incheon 21983, Republic of Korea.
| | - Seok Won Hong
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
35
|
Wang S, Wang C, Feng C, Zheng W, Dong H, Guan X. Electrochemically producing high-valent iron-oxo species for phenolics-laden high chloride wastewater pretreatment. WATER RESEARCH 2024; 261:122068. [PMID: 39003879 DOI: 10.1016/j.watres.2024.122068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have shown great promise for treating industrial wastewater contaminated with phenolic compounds. However, the presence of chloride in the wastewater leads to the production of undesirable chlorinated organic and inorganic byproducts, limiting the application of EAOPs. To address this challenge, we investigated the potential of incorporating Fe(II) and Fe(III) into the EAOPs with a boron-doped diamond (BDD) anode under near-neutral conditions. Our findings revealed that both Fe(II) and Fe(III) facilitated the generation of high-valent iron-oxo species (Fe(IV) and Fe(V)) in the anodic compartment, thereby reducing the oxidation contribution of reactive chlorine species. Remarkably, the addition of 1000 μM Fe(II) under high chloride conditions resulted in over a 2.8-fold increase in the oxidation rate of 50 μM phenolic contaminants at pH 6.5. Furthermore, 1000 μM Fe(II) contributed to a reduction of more than 66% in the formation of chlorinated byproducts, consequently enhancing the biodegradability of the treated water. Additionally, transitioning from batch mode to continuous flow mode further amplified the positive effects of Fe(II) on the EAOPs. Overall, this study presents a modified electrochemical approach that simultaneously enhanced the degradation of phenolic contaminants and improved the biodegradability of wastewater with high chloride concentrations.
Collapse
Affiliation(s)
- Shuchang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Chengjin Wang
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6, Canada
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hongyu Dong
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
36
|
Kamenická B, Kuchtová G. Critical review on electrooxidation and chemical reduction of azo dyes: Economic approach. CHEMOSPHERE 2024; 363:142799. [PMID: 38986779 DOI: 10.1016/j.chemosphere.2024.142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Effective degradation technologies have been extensively investigated and used to remove azo dyes from wastewater for decades. However, no review dealing with both electrooxidation and chemical reduction of azo dyes from an economic and, therefore, application-relevant perspective has been found in the current literature. A novelty of this review article consists not only in the brief summarization and comparison of both methods but mainly in the evaluation of their economic side. Based on the literature survey of the last 15 years, the costs of treatment approaches published in individual research articles have been summarized, and the missing data have been calculated. A broad spectrum of advanced electrode materials and catalysts have been developed and tested for the treatment, specifically aiming to enhance the degradation performance. An outline of the global prices of electrode materials, reducing agents, and basic chemicals is involved. All additional costs are described in depth in this review. The advantages and disadvantages of respective methods are discussed. It was revealed that effective and cheap treatment approaches can be found even in advanced degradation methods. Based on the collected data, electrooxidation methods offer, on average, 30 times cheaper treatment of aqueous solutions. Concerning chemical reduction, only ZVI provided high removal of azo dyes at prices <100 $ per kg of azo dye. The factors affecting total prices should also be considered. Therefore, the basic diagram of the decision-making process is proposed. In the conclusion, challenges, future perspectives, and critical findings are described.
Collapse
Affiliation(s)
- Barbora Kamenická
- Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Gabriela Kuchtová
- Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
37
|
Duan Y, Sedlak DL. Electrochemical Hydrogen Peroxide Generation and Activation Using a Dual-Cathode Flow-Through Treatment System: Enhanced Selectivity for Contaminant Removal by Electrostatic Repulsion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14042-14051. [PMID: 39042582 PMCID: PMC11308524 DOI: 10.1021/acs.est.4c05481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
To oxidize trace concentrations of organic contaminants under conditions relevant to surface- and groundwater, air-diffusion cathodes were coupled to stainless-steel cathodes that convert atmospheric O2 into hydrogen peroxide (H2O2), which then was activated to produce hydroxyl radicals (·OH). By separating H2O2 generation from its activation and employing a flow-through electrode consisting of stainless-steel fibers, the two processes could be operated efficiently in a manner that overcame mass-transfer limitations for O2, H2O2, and trace organic contaminants. The flexibility resulting from separate control of the two processes made it possible to avoid both the accumulation of excess H2O2 and the energy losses that take place after H2O2 has been depleted. The decrease in treatment efficacy occurring in the presence of natural organic matter was substantially lower than that typically observed in homogeneous advanced oxidation processes. Experiments conducted with ionized and neutral compounds indicated that electrostatic repulsion prevented negatively charged ·OH scavengers from interfering with the oxidation of neutral contaminants. Energy consumption by the dual-cathode system was lower than values reported for other technologies intended for small-scale drinking water treatment systems. The coordinated operation of these two cathodes has the potential to provide a practical, inexpensive way for point-of-use drinking water treatment.
Collapse
Affiliation(s)
- Yanghua Duan
- Department of Civil &
Environmental Engineering, University of
California, Berkeley, Berkeley, California 94720, United States
| | - David L. Sedlak
- Department of Civil &
Environmental Engineering, University of
California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
38
|
Wu L, Garg S, Dai Y, Lv S, Wang Y, Waite TD. Pilot-scale electrochemical advanced oxidation (EAOP) system for the treatment of Ni-EDTA-containing wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134840. [PMID: 38865923 DOI: 10.1016/j.jhazmat.2024.134840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Electrochemical advanced oxidation processes (EAOP) have shown great potential for the abatement of complexed heavy metals, such as metal-EDTA complexes, in recent studies. While removal of metal-EDTA complexes has been extensively examined in bench-scale reactors, much less attention has been given to the efficacy of this process at larger scale. In this study, we utilize a 72 L pilot-scale continuous flow system comprised of six serpentine flow channels and 90 pairs of flow-through electrodes for the degradation of Ni-EDTA complexes and removal of Ni from solution. The influence of a range of key operating parameters including flow rate, current density and initial Ni-EDTA concentration on rate and extent of Ni-EDTA degradation and Ni removal were examined. Our results showed that at a feed flow rate of 36 L h-1, current density of 5 mA cm-2 and initial Ni-EDTA concentration of 1 mM, the pilot-scale system achieved 74 % total Ni removal, 78 % total EDTA removal and 40 % TOC removal with energy consumption of 13.6 kWh m-3 order-1 and energy efficiency of 7.9 g kWh-1 for total Ni removal. A mechanistically-based kinetic model, which was developed in our previous bench-scale study, provides a satisfactory description of the experimental results obtained in the pilot-scale unit. Long term operation of the pilot-scale unit resulted in corrosion of PbO2 anode along with inorganic scaling as well as organic fouling on the PbO2 surface resulting in an obvious decline in Ni-EDTA degradation. Overall, the results of this study suggest that large scale anodic oxidation of wastewaters containing metal-organic complexes is an effective means of degrading organic ligands thereby enabling removal of the metal at the cathode. However, additional efforts are required to enhance the durability of the anode material and reduce material costs and energy consumption.
Collapse
Affiliation(s)
- Lei Wu
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ying Dai
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China
| | - Shunzhi Lv
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China
| | - Yuan Wang
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
39
|
Periyasamy S, Farissi S, Rayaroth MP, Kannan M, Nambi IM, Liu D. Electrochemical oxidation of Florfenicol in aqueous solution with mixed metal oxide electrode: Operational factors, reaction by-products and toxicity evaluation. CHEMOSPHERE 2024; 362:142665. [PMID: 38906192 DOI: 10.1016/j.chemosphere.2024.142665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Veterinary antibiotics have become an emerging pollutant in water and wastewater sources due to excess usage, toxicity and resistance to traditional water and wastewater treatment. The present study explored the degradation of a model antibiotic- Florfenicol (FF) using electrochemical oxidation (EO) with Ti-RuO2/IrO2 anode. The anode material was characterized using SEM-EDS studies expressing stable structure and optimal interaction of the neighboring metal oxides with each other. The EDS results showed the presence of Ru, Ir, Ti, O and C elements with 6.44%, 2.57%, 9.61%, 52.74% and 28.64% atomic weight percentages, respectively. Optimization studies revealed pH 5, 30 mA cm-2 current density and 0.05 M Na2SO4 for 5 mg L-1 FF achieved 90% TOC removal within 360 min treatment time. The degradation followed pseudo-first order kinetics. LC-Q-TOF-MS studies revealed six predominant byproducts illustrating hydroxylation, deflourination, and dechlorination to be the major degradation mechanisms during the electrochemical oxidation of FF. Ion chromatography studies revealed an increase in Cl-, F- and NO3- ions as treatment time progressed with Cl- decreasing after the initial phase of the treatment. Toxicity studies using Zebrafish (Danio rerio) embryo showed the treated sample to be toxic inducing developmental disorders such as pericardial edema, yolk sac edema, spinal curvature and tail malformation at 96 h post fertilization (hpf). Compared to control, delayed hatching and coagulation were observed in treated embryos. Overall, this study sets the stage for understanding the effect of mixed metal oxide (MMO) anodes on the degradation of veterinary antibiotic-polluted water and wastewater sources using electrochemical oxidation.
Collapse
Affiliation(s)
- Selvendiran Periyasamy
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Salman Farissi
- Department of Environmental Science, Central University of Kerala, Kasaragod, Kerala, India
| | - Manoj P Rayaroth
- Department of Life Sciences, School of Science, GITAM (Deemed to be) University, Visakhapatnam-530045, India
| | - Maharajan Kannan
- Department of Zoology, University of Allahabad, Prayagraj-211002, India
| | - Indumathi M Nambi
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India
| | - Dezhao Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
40
|
Zhou T, Wang M, Zeng H, Min R, Wang J, Zhang G. Application of physicochemical techniques to the removal of ammonia nitrogen from water: a systematic review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:344. [PMID: 39073643 DOI: 10.1007/s10653-024-02129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Ammonia nitrogen is a common pollutant in water and soil, known for its biological toxicity and complex removal process. Traditional biological methods for removing ammonia nitrogen are often inefficient, especially under varying temperature conditions. This study reviews physicochemical techniques for the treatment and recovery of ammonia nitrogen from water. Key methods analyzed include ion exchange, adsorption, membrane separation, struvite precipitation, and advanced oxidation processes (AOPs). Findings indicate that these methods not only remove ammonia nitrogen but also allow for nitrogen recovery. Ion exchange, adsorption, and membrane separation are effective in separating ammonia nitrogen, while AOPs generate reactive species for efficient degradation. Struvite precipitation offers dual benefits of removal and resource recovery. Despite their advantages, these methods face challenges such as secondary pollution and high energy consumption. This paper highlights the development principles, current challenges, and future prospects of physicochemical techniques, emphasizing the need for integrated approaches to enhance ammonia nitrogen removal efficiency.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Miao Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Honglin Zeng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jinyi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
41
|
Xi M, Wu Y, Li J, Wang H, Qin Y, Wang C, Hu L, Gu W, Zhu C. Pre-Adsorbed H-Mediated Electrochemiluminescence. NANO LETTERS 2024; 24:8809-8817. [PMID: 39008523 DOI: 10.1021/acs.nanolett.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In conventional electrochemiluminescence (ECL) systems, the presence of the competitive cathodic hydrogen evolution reaction (HER) in aqueous electrolytes is typically considered to be a side reaction, leading to a reduced ECL efficiency and stability due to H2 generation and aggregation at the electrode surface. However, the significant role of adsorbed hydrogen (H*) as a key intermediate, formed during the Volmer reaction in the HER process, has been largely overlooked. In this study, employing the luminol-H2O2 system as a model, we for the first time demonstrate a novel H*-mediated coreactant activation mechanism, which remarkably enhances the ECL intensity. H* facilitates cleavage of the O-O bond in H2O2, selectively generating highly reactive hydroxyl radicals for efficient ECL reactions. Experimental investigations and theoretical calculations demonstrate that this H*-mediated mechanism achieves superior coreactant activation compared to the conventional direct electron transfer pathway, which unveils a new pathway for coreactant activation in the ECL systems.
Collapse
Affiliation(s)
- Mengzhen Xi
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jingshuai Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hengjia Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Canglong Wang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
42
|
Zheng W, Luo X, Fu H, Duan W, Zhu S, Yang X, Feng C. Trace Br - Inhibits Halogenated Byproduct Formation in Saline Wastewater Electrochemical Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12212-12224. [PMID: 38916044 DOI: 10.1021/acs.est.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The electrochemical technology provides a practical and viable solution to the global water scarcity issue, but it has an inherent challenge of generating toxic halogenated byproducts in treatment of saline wastewater. Our study reveals an unexpected discovery: the presence of a trace amount of Br- not only enhanced the electrochemical oxidation of organic compounds with electron-rich groups but also significantly reduced the formation of halogenated byproducts. For example, in the presence of 20 μM Br-, the oxidation rate of phenol increased from 0.156 to 0.563 min-1, and the concentration of total organic halogen decreased from 59.2 to 8.6 μM. Through probe experiments, direct electron transfer and HO• were ruled out as major contributors; transient absorption spectroscopy (TAS) and computational kinetic models revealed that trace Br- triggers a shift in the dominant reactive species from Cl2•- to Br2•-, which plays a key role in pollutant removal. Both TAS and electron paramagnetic resonance identified signals unique to the phenoxyl and carbon-centered radicals in the Br2•--dominated system, indicating distinct reaction mechanisms compared to those involving Cl2•-. Kinetic isotope experiments and density functional theory calculations confirmed that the interaction between Br2•- and phenolic pollutants follows a hydrogen atom abstraction pathway, whereas Cl2•- predominantly engages pollutants through radical adduct formation. These insights significantly enhance our understanding of bromine radical-involved oxidation processes and have crucial implications for optimizing electrochemical treatment systems for saline wastewater.
Collapse
Affiliation(s)
- Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xin Luo
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hengyi Fu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
43
|
Patel RVP, Raval H. Comparative assessment of treatment technologies for minimizing reverse osmosis concentrate volume for industrial applications: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:314-343. [PMID: 39007322 DOI: 10.2166/wst.2024.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/09/2024] [Indexed: 07/16/2024]
Abstract
Desalination of seawater, brackish water, and reclaimed water is becoming increasingly prevalent worldwide to supplement and diversify fresh water supplies. However, particularly for industrial wastewater, the need for environment-friendly and economically viable alternatives for concentrate management is the major impediment to deploying large-scale desalination. This review covers various strategies and technologies for managing reverse osmosis concentrate (ROC) and also includes their disposal, treatment, and potential applications. Developing energy-efficient, economical, and ecologically sound ROC management systems is essential if desalination and wastewater treatment are being implemented for a sustainable water future, particularly for industrial wastewater. The limitations and benefits of various concentrate management strategies are examined in this review. Moreover, it explores the potential of innovative technologies in reducing concentrate volume, enhancing water recovery, eliminating organic pollutants, and extracting valuable resources. This review critically discusses concentrate management approaches and technologies, including disposal, treatment, and reuse, including new technologies for reducing concentrate volume, boosting water recovery, eliminating organic contaminants, recovering valuable commodities, and minimizing energy consumption.
Collapse
Affiliation(s)
- Raj Vardhan Prasad Patel
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hiren Raval
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India E-mail:
| |
Collapse
|
44
|
Wang Q, Zhang G, Zhang C, Xu F, Zhang Y, Fu W, Liu J, Li J. Enhanced Mineralization of Organic Pollutants through Atomic Hydrogen-Mediated Alternative Transformation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11185-11192. [PMID: 38869092 DOI: 10.1021/acs.est.4c02545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Electrocatalytic hydrogen atom-hydroxyl radical (H*-·OH) redox system is a promising approach for contaminant removal and mineralization. However, its working mechanism, especially the effect of H*, remains unclear, hindering its practical application. Herein, we constructed an electrochemical reactor equipped with our self-made Pd-loaded Ti/TiO2 nanotube cathode and a commercial boron-doped diamond anode. After fulfilling the electrode characterization and free radical detection, we employed coumarin and 7-azido-4-methylcoumarin as probes to confirm the participation of H* in the transformation of organic compounds. A comprehensive study on the degradation kinetics, reaction, and mineralization mechanisms using benzoic acid (BA) and 4-chlorophenol (4-CP) as model compounds was further conducted. The rate constants and total organic carbon removal of BA and 4-CP in the redox system increased compared with those of the individual oxidation and reduction processes. Theoretical calculations demonstrate that H* opens up alternative pathways for BA and 4-CP ring cleavage, forming quinones as reactive intermediates. Furthermore, H* facilitates the mineralization of the typical intermediates, maleic acid and fumaric acid, through C=C bond addition and H-abstraction from the 1,1-diol structure. The presence of H* provides alternative pathways for pollutant transformation, consequently reducing the treatment duration.
Collapse
Affiliation(s)
- Qiancheng Wang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Zhang
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Fu Xu
- Suzhou Suwater Environment Science Technology Co., LTD., Suzhou 215011, China
| | - Yixiang Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenjie Fu
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Jianyun Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jinghong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Shi L, Leng C, Zhou Y, Yuan Y, Liu L, Li F, Wang H. A review of electrooxidation systems treatment of poly-fluoroalkyl substances (PFAS): electrooxidation degradation mechanisms and electrode materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42593-42613. [PMID: 38900403 DOI: 10.1007/s11356-024-34014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The prevalence of polyfluoroalkyls and perfluoroalkyls (PFAS) represents a significant challenge, and various treatment techniques have been employed with considerable success to eliminate PFAS from water, with the ultimate goal of ensuring safe disposal of wastewater. This paper first describes the most promising electrochemical oxidation (EO) technology and then analyses its basic principles. In addition, this paper reviews and discusses the current state of research and development in the field of electrode materials and electrochemical reactors. Furthermore, the influence of electrode materials and electrolyte types on the deterioration process is also investigated. The importance of electrode materials in ethylene oxide has been widely recognised, and therefore, the focus of current research is mainly on the development of innovative electrode materials, the design of superior electrode structures, and the improvement of efficient electrode preparation methods. In order to improve the degradation efficiency of PFOS in electrochemical systems, it is essential to study the oxidation mechanism of PFOS in the presence of ethylene oxide. Furthermore, the factors influencing the efficacy of PFAS treatment, including current density, energy consumption, initial concentration, and other parameters, are clearly delineated. In conclusion, this study offers a comprehensive overview of the potential for integrating EO technology with other water treatment technologies. The continuous development of electrode materials and the integration of other water treatment processes present a promising future for the widespread application of ethylene oxide technology.
Collapse
Affiliation(s)
- Lifeng Shi
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Chunpeng Leng
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China
| | - Yunlong Zhou
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yue Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Lin Liu
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Fuping Li
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China
| | - Hao Wang
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China.
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China.
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China.
| |
Collapse
|
46
|
Hübner U, Spahr S, Lutze H, Wieland A, Rüting S, Gernjak W, Wenk J. Advanced oxidation processes for water and wastewater treatment - Guidance for systematic future research. Heliyon 2024; 10:e30402. [PMID: 38726145 PMCID: PMC11079112 DOI: 10.1016/j.heliyon.2024.e30402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Advanced oxidation processes (AOPs) are a growing research field with a large variety of different process variants and materials being tested at laboratory scale. However, despite extensive research in recent years and decades, many variants have not been transitioned to pilot- and full-scale operation. One major concern are the inconsistent experimental approaches applied across different studies that impede identification, comparison, and upscaling of the most promising AOPs. The aim of this tutorial review is to streamline future studies on the development of new solutions and materials for advanced oxidation by providing guidance for comparable and scalable oxidation experiments. We discuss recent developments in catalytic, ozone-based, radiation-driven, and other AOPs, and outline future perspectives and research needs. Since standardized experimental procedures are not available for most AOPs, we propose basic rules and key parameters for lab-scale evaluation of new AOPs including selection of suitable probe compounds and scavengers for the measurement of (major) reactive species. A two-phase approach to assess new AOP concepts is proposed, consisting of (i) basic research and proof-of-concept (technology readiness levels (TRL) 1-3), followed by (ii) process development in the intended water matrix including a cost comparison with an established process, applying comparable and scalable parameters such as UV fluence or ozone consumption (TRL 3-5). Subsequent demonstration of the new process (TRL 6-7) is briefly discussed, too. Finally, we highlight important research tools for a thorough mechanistic process evaluation and risk assessment including screening for transformation products that should be based on chemical logic and combined with complementary tools (mass balance, chemical calculations).
Collapse
Affiliation(s)
- Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Stephanie Spahr
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Holger Lutze
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| | - Arne Wieland
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Steffen Rüting
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Jannis Wenk
- University of Bath, Department of Chemical Engineering and Water Innovation & Research Centre (WIRC@Bath), Bath, BA2 7AY, United Kingdom
| |
Collapse
|
47
|
Mandal RR, Bashir Z, Mandal JR, Raj D. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:502. [PMID: 38700594 DOI: 10.1007/s10661-024-12680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Jyoti Ranjan Mandal
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
48
|
Yan Z, Chen X, Chang H, Pang H, Fan G, Xu K, Liang H, Qu F. Feasibility of replacing proton exchange membranes with pressure-driven membranes in membrane electrochemical reactors for high salinity organic wastewater treatment. WATER RESEARCH 2024; 254:121340. [PMID: 38428235 DOI: 10.1016/j.watres.2024.121340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Membrane electrochemical reactor (MER) shows superiority to electrochemical oxidation (EO) in high salinity organic wastewater (HSOW) treatment, but requirement of proton exchange membranes (PEM) increases investment and maintenance cost. In this work, the feasibility of using low-cost pressure-driven membranes as the separation membrane in MER system was systematically investigated. Commonly used pressure-driven membranes, including loose membranes such as microfiltration (MF) and ultrafiltration (UF), as well as dense membranes like nanofiltration (NF) and reverse osmosis (RO), were employed in the study. When tested in a contamination-free solution, MF and UF exhibited superior electrochemical performance compared to PEM, with comparable pH regulation capabilities in the short term. When foulant (humic acid, Ca2+ and Mg2+) presented in the feed, UF saved the most energy (43 %) compared to PEM with similar removal rate of UV254 (∼85 %). In practical applications of MER for treating nanofiltration concentrate (NC) of landfill leachate, UF saved 27 % energy compared to PEM per cycle with the least Ca2+ and Mg2+ retention in membrane and none obvious organics permeation. For fouled RO and PEM with ion transport impediment, water splitting was exacerbated, which decreased the percentage of oxidation for organics. Overall, replacing of PEM with UF significantly reduce the costs associated with both the investment and operation of MER, which is expected to broaden the practical application for treating HSOW.
Collapse
Affiliation(s)
- Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Xiaolei Chen
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fujian 350108, China.
| | - Kaiqin Xu
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
49
|
Chen R, Tian T, Jin R, Liu Z, Fu W, Ji Q, Zhou J. Treating reverse osmosis brine of petrochemical wastewater using preparative vertical-flow electrophoresis (PVFE) with multi-objective optimization by response surface method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31123-31134. [PMID: 38627346 DOI: 10.1007/s11356-024-33323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 10/27/2024]
Abstract
Electrochemical desalination is an effective method for recovering salts from reverse osmosis (RO) brine. However, traditional technologies like bipolar membrane technology often face challenges related to membrane blockage. To overcome this issue, a preparative vertical-flow electrophoresis (PVFE) system was used for the first time to treat RO brine of petrochemical wastewater. In order to optimize the PVFE operation and maximize acids and bases production while minimizing energy consumption, the response surface method was employed. The independent variables selected were the electric field intensity (E) and flow rate (v), while the dependent variables were the acid-base concentration and energy consumption (EC) for acid-base production. Using the central composite design methodology, the operation parameters were optimized to be E = 154.311 V/m and v = 0.83 mL/min. Under these conditions, the base concentrations of the produced bases and acids reached 3183.06 and 2231.63 mg/L, respectively. The corresponding base EC and acid EC were calculated to be 12.57 and 11.62 kW·h/kg. In terms of the acid-base concentration and energy consumption during the PVFE process, the electric field intensity was found to have a greater influence than the flow rate. These findings provide a practical and targeted solution for recycling waste salt resources from RO brine.
Collapse
Affiliation(s)
- Rongbo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ze Liu
- Hengli Petrochemical (Dalian) Chemical Co., LTD, Dalian, 116318, China
| | - Wang Fu
- Hengli Petrochemical (Dalian) Chemical Co., LTD, Dalian, 116318, China
| | - Qiuyan Ji
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
50
|
Wang J, Duan X, Ren Y. Efficient electrochemical degradation of ceftazidime by Ti 3+ self-doping TiO 2 nanotube-based Sb-SnO 2 nanoflowers as an intermediate layer on a modified PbO 2 electrode. CHEMOSPHERE 2024; 356:141853. [PMID: 38582161 DOI: 10.1016/j.chemosphere.2024.141853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Ceftazidime (CAZ) is an emerging organic pollutant with a long-lasting presence in the environment. Although some PbO2 materials exhibit degradation capabilities, inefficient electron transport in the substrate layer and the problem of electrode stability still limit their use. Here, an interfacial design in which TiO2 nanotube arrays generate Ti3+ self-doping oxide substrate layers and highly active 3D Sb-SnO2 nanoflowers-like interlayers was used to prepare PbO2 anodes for efficient degradation of CAZ. Interestingly, after implementing Ti3+ self-doping in the PbO2 anode base layer and introducing 3D nanoflowers-like structures, the capacity for •OH generation increased significantly. The modified electrode exhibited 5-fold greater •OH generation capacity compared to the unmodified electrode, and a 2.7-fold longer accelerated electrode lifetime. The results indicate that interfacial engineering of the base and intermediate layers of the electrodes can improve the electron transfer efficiency, promote the formation of •OH, and extend the anode lifetime of the activated CAZ system.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Faculty of Frontier Science and Technology, Ningxia University, Yinchuan, 750021, PR China
| | - Xiaoxiao Duan
- Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Faculty of Frontier Science and Technology, Ningxia University, Yinchuan, 750021, PR China.
| | - Yongsheng Ren
- Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Faculty of Frontier Science and Technology, Ningxia University, Yinchuan, 750021, PR China.
| |
Collapse
|