1
|
Zhou Q, Liu L, Zhang J, Tian H, Guo H, Wang Z, Liang Y, He B, Hu L, Jiang G. Efficient extraction and analysis method for lead-containing nanoparticles in complex biological samples to eliminate "false" interferences by using SP-ICP-MS. Talanta 2025; 285:127372. [PMID: 39693865 DOI: 10.1016/j.talanta.2024.127372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Metal-containing nanoparticles (MNPs) ubiquitously exist in the environment and organisms, playing distinct roles in the fate and toxicity of metals. However, the extraction and analysis of the MNPs in biological samples is still a great challenge and the interferences of other metal species and complex matrices remains unclear. In this work, we established a method for efficient extraction and accurate analysis of MNPs in biological samples to eliminate the interference caused by metal ions and biological matrices based on the alkali extraction and single particle mode inductively coupled plasma mass spectrometry (SP-ICP-MS). Obvious interference signals of lead-containing nanoparticles (PbNPs) were found in various biological matrices (liver, brain, bile, intestine, stomach), causing false positive results or overestimation of PbNPs. Then, a novel strategy using EDTA and ultrasonic during the TMAH extraction process were proposed to successfully eliminate the interferences due to the strong and competitively binding of EDTA to Pb ions, which was identified as ionic signals in SP-ICP-MS and resulted in the elimination of interferences. Finally, this method was successfully applied for the extraction, characterization and quantification of PbNPs in different biological tissues collected near a power plant, revealing the occurrence of PbNPs in stomach, intestine and liver tissues and indicating their oral exposure and potential translocation. This method could be universally applied for the efficient extraction and accurate analysis of MNPs in biological samples and thus provided a reliable and powerful tool for the investigation of the occurrence, fate and toxicity of MNPs in environmental and organisms.
Collapse
Affiliation(s)
- Qinfei Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Junhui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haozhong Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhenhua Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Zhang K, Liu Q, Wang Y, Liu X, Zhou X, Yan B. Advances and Challenges in Tracking Interactions Between Plants and Metal-Based Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1939. [PMID: 39683327 DOI: 10.3390/nano14231939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Metal-based nanoparticles (MNPs) are increasingly prevalent in the environment due to both natural processes and human activities, leading to direct interactions with plants through soil, water, and air exposure that can have beneficial and detrimental effects on plant growth and health. Understanding the uptake, translocation, and transformation of MNPs in plants is crucial for assessing environmental risks and leveraging nanotechnology in agriculture. However, accurate analysis of MNPs in plant tissues poses significant challenges due to complex plant matrices and the dynamic nature of nanoparticles. This short review summarizes recent advances in analytical methods for determining MNP-plant interactions, focusing on pre-processing and quantitative nanoparticle analysis. It highlights the importance of selecting appropriate extraction and analytical techniques to preserve nanoparticle integrity and accurate quantification. Additionally, recent advances in mass spectrometry, microscopy, and other spectroscopic techniques that improve the characterization of MNPs within plant systems are discussed. Future perspectives highlight the need to develop real-time in situ monitoring techniques and sensitive tools for characterizing nanoparticle biotransformation.
Collapse
Affiliation(s)
- Kena Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266701, China
| | - Qingmeng Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yukun Wang
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xigui Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266701, China
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Zhou XX, Xiao Q, Zhang K, Gao Y, Zhang J, Fang L, Yan B, Li F. Quantitatively Tracking the Speciation and Dynamics of Selenium Nanoparticles in Rice Plants. Anal Chem 2024; 96:16937-16945. [PMID: 39361821 DOI: 10.1021/acs.analchem.4c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The uptake, translocation, and transformation of engineered nanoparticles (ENPs) in plants present significant challenges due to the lack of effective determination methods. This is especially true for selenium nanoparticles (SeNPs), which hold promise for Se-biofortified agriculture and exhibit dynamic behaviors within plant system. Herein, we proposed a novel approach that incorporates enzymic digestion and membrane filtration to selectively extract SeNPs and dissolved Se from plant tissues, employing rice (Oryza sativa) plant as a model. Subsequently, the SeNPs retained on the membrane were quantified using inductively coupled plasma mass spectrometry (ICPMS), while the dissolved Se in the filtrate, including selenite (Se(IV)), selenate (Se(VI)), and seleno amino acid, were analyzed by liquid chromatography coupled with ICPMS (LC-ICPMS). Recoveries of 83.5-91.4% for SeNPs and 73.6-99.4% for dissolved Se at a spiking level of 8 μg/g in quality control samples were obtained. With the established method, it was discovered that SeNPs taken up by rice leaves can transform into Se (IV) and organic Se, and all the Se species could be translocated downward, but only Se (IV) and SeNPs could be excreted through the roots. These findings provide valuable insights into the fate of SeNPs in plants and their related biological responses.
Collapse
Affiliation(s)
- Xiao-Xia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Quanzhi Xiao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Kena Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yan Gao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jie Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Hoque MA, Barrios Cossio J, Guzman MI. Photocatalysis of Adsorbed Catechol on Degussa P25 TiO 2 at the Air-Solid Interface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:17470-17482. [PMID: 39439881 PMCID: PMC11493058 DOI: 10.1021/acs.jpcc.4c05777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Semiconductor photocatalysis with commercial TiO2 (Degussa P25) has shown significant potential in water treatment of organic pollutants. However, the photoinduced reactions of adsorbed catechol, a phenolic air pollutant from biomass burning and combustion emissions, at the air-solid interface of TiO2 remain unexplored. Herein we examine the photocatalytic decay of catechol in the presence of water vapor, which acts as an electron acceptor. Experiments under variable cut-off wavelengths of irradiation (λcut-off ≥ 320, 400, and 515 nm) distinguish the mechanistic contribution of a ligand-to-metal charge-transfer (LMCT) complex of surface chemisorbed catechol on TiO2. The LMCT complex injects electrons into the conduction band of TiO2 from the highest occupied molecular orbital of catechol by visible light (≥2.11 eV) excitation. The deconvolution of diffuse reflectance UV-visible spectral bands from LMCT complexes of TiO2 with catechol, o-semiquinone radical, and quinone and the quantification of the evolving gaseous products follow a consecutive kinetic model. CO2(g) and CO(g) final oxidation products are monitored by gas chromatography and Fourier-transform infrared spectroscopy. The apparent quantum efficiency at variable λcut-off are determined for reactant loss (Φ- TiO2/catechol = 0.79 ± 0.19) and product growth ΦCO2 = 0.76 ± 0.08). Spectroscopic and electrochemical measurements reveal the energy band diagram for the LMCT of TiO2/catechol. Two photocatalytic mechanisms are analyzed based on chemical transformations and environmental relevance.
Collapse
Affiliation(s)
- Md Ariful Hoque
- Department of Chemistry, University
of Kentucky, Lexington, Kentucky 40506, United States
| | - Josiel Barrios Cossio
- Department of Chemistry, University
of Kentucky, Lexington, Kentucky 40506, United States
| | - Marcelo I. Guzman
- Department of Chemistry, University
of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
5
|
Wei L, Liu J, Jiang G. Nanoparticle-specific transformations dictate nanoparticle effects associated with plants and implications for nanotechnology use in agriculture. Nat Commun 2024; 15:7389. [PMID: 39191767 DOI: 10.1038/s41467-024-51741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Nanotechnology shows potential to promote sustainable and productive agriculture and address the growing population and food demand worldwide. However, the applications of nanotechnology are hindered by the lack of knowledge on nanoparticle (NP) transformations and the interactions between NPs and macromolecules within crops. In this Review, we discuss the beneficial and toxicity-relieving transformation products of NPs that provide agricultural benefits and the toxic and physiology-disturbing transformations that induce phytotoxicities. Based on knowledge related to the management of NP transformations and their long-term effects, we propose feasible design suggestions to attain nano-enabled efficient and sustainable agricultural applications.
Collapse
Affiliation(s)
- Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
6
|
Zhou Q, Li X, Zheng X, Zhang X, Jiang Y, Shen H. Metabolomics reveals the phytotoxicity mechanisms of foliar spinach exposed to bulk and nano sizes of PbCO 3. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133097. [PMID: 38113737 DOI: 10.1016/j.jhazmat.2023.133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
PbCO3 is an ancient raw material for Pb minerals and continues to pose potential risks to the environment and human health through mining and industrial processes. However, the specific effects of unintentional PbCO3 discharge on edible plants remain poorly understood. This study unravels how foliar application of PbCO3 induces phytotoxicity by potentially influencing leaf morphology, photosynthetic pigments, oxidative stress, and metabolic pathways related to energy regulation, cell damage, and antioxidant defense in Spinacia oleracea L. Additionally, it quantifies the resultant human health risks. Plants were foliarly exposed to PbCO3 nanoparticles (NPs) and bulk products (BPs), as well as Pb2+ at 0, 5, 10, 25, 50, and 100 mg·L-1 concentrations once a day for three weeks. The presence and localization of PbCO3 NPs inside the plant cells were confirmed by TEM-EDS analysis. The maximum accumulation of total Pb was recorded in the root (2947.77 mg·kg-1 DW for ion exposure), followed by the shoot (942.50 mg·kg-1 DW for NPs exposure). The results revealed that PbCO3 and Pb2+ exposure had size- and dose-dependent inhibitory effects on spinach length, biomass, and photosynthesis attributes, inducing impacts on the antioxidase activity of CAT, membrane permeability, and nutrient elements absorption and translocation. Pb2+ exhibited pronounced toxicity in morphology and chlorophyll; PbCO3 BP exposure accumulated the most lipid peroxidation products of MDA and H2O2; and PbCO3 NPs triggered the largest cell membrane damage. Furthermore, PbCO3 NPs at 10 and 100 mg·L-1 induced dose-dependent metabolic reprogramming in spinach leaves, disturbing the metabolic mechanisms related to amino acids, antioxidant defense, oxidative phosphorylation, fatty acid cycle, and the respiratory chain. The spinach showed a non-carcinogenic health risk hierarchy: Pb2+ > PbCO3 NPs > PbCO3 BPs, with children more vulnerable than adults. These findings enhance our understanding of PbCO3 particle effects on food security, emphasizing the need for further research to minimize their impact on human dietary health.
Collapse
Affiliation(s)
- Qishang Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Xueming Zheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yueheng Jiang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - He Shen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
7
|
Wang C, Chen L, Xu J, Zhang L, Yang X, Zhang X, Zhang C, Gao P, Zhu L. Environmental behaviors and toxic mechanisms of engineered nanomaterials in soil. ENVIRONMENTAL RESEARCH 2024; 242:117820. [PMID: 38048867 DOI: 10.1016/j.envres.2023.117820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Engineered nanomaterials (ENMs) are inevitably released into the environment with the exponential application of nanotechnology. Parts of ENMs eventually accumulate in the soil environment leading to potential adverse effects on soil ecology, crop production, and human health. Therefore, the safety application of ENMs on soil has been widely discussed in recent years. More detailed safety information and potential soil environmental risks are urgently needed. However, most of the studies on the environmental effects of metal-based ENMs have been limited to single-species experiments, ecosystem processes, or abiotic processes. The present review formulated the source and the behaviors of the ENMs in soil, and the potential effects of single and co-exposure ENMs on soil microorganisms, soil fauna, and plants were introduced. The toxicity mechanism of ENMs to soil organisms was also reviewed including oxidative stress, the release of toxic metal ions, and physical contact. Soil properties affect the transport, transformation, and toxicity of ENMs. Toxic mechanisms of ENMs include oxidative stress, ion release, and physical contact. Joint toxic effects occur through adsorption, photodegradation, and loading. Besides, future research should focus on the toxic effects of ENMs at the food chain levels, the effects of ENMs on plant whole-lifecycle, and the co-exposure and long-term toxicity effects. A fast and accurate toxicity evaluation system and model method are urgently needed to solve the current difficulties. It is of great significance for the sustainable development of ENMs to provide the theoretical basis for the ecological risk assessment and environmental management of ENMs.
Collapse
Affiliation(s)
- Chaoqi Wang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Le'an Chen
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
8
|
Sembada AA, Lenggoro IW. Transport of Nanoparticles into Plants and Their Detection Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:131. [PMID: 38251096 PMCID: PMC10819755 DOI: 10.3390/nano14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Nanoparticle transport into plants is an evolving field of research with diverse applications in agriculture and biotechnology. This article provides an overview of the challenges and prospects associated with the transport of nanoparticles in plants, focusing on delivery methods and the detection of nanoparticles within plant tissues. Passive and assisted delivery methods, including the use of roots and leaves as introduction sites, are discussed, along with their respective advantages and limitations. The barriers encountered in nanoparticle delivery to plants are highlighted, emphasizing the need for innovative approaches (e.g., the stem as a new recognition site) to optimize transport efficiency. In recent years, research efforts have intensified, leading to an evendeeper understanding of the intricate mechanisms governing the interaction of nanomaterials with plant tissues and cells. Investigations into the uptake pathways and translocation mechanisms within plants have revealed nuanced responses to different types of nanoparticles. Additionally, this article delves into the importance of detection methods for studying nanoparticle localization and quantification within plant tissues. Various techniques are presented as valuable tools for comprehensively understanding nanoparticle-plant interactions. The reliance on multiple detection methods for data validation is emphasized to enhance the reliability of the research findings. The future outlooks of this field are explored, including the potential use of alternative introduction sites, such as stems, and the continued development of nanoparticle formulations that improve adhesion and penetration. By addressing these challenges and fostering multidisciplinary research, the field of nanoparticle transport in plants is poised to make significant contributions to sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - I. Wuled Lenggoro
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
9
|
Skiba E, Pietrzak M, Michlewska S, Gruszka J, Malejko J, Godlewska-Żyłkiewicz B, Wolf WM. Photosynthesis governed by nanoparticulate titanium dioxide. The Pisum sativum L. case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122735. [PMID: 37848082 DOI: 10.1016/j.envpol.2023.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Wide availability of anthropogenic TiO2 nanoparticles facilitates their penetration into environment and prompts interactions with plants. They alter plants growth and change their nutritional status. In particular, metabolic processes are affected. In this work the effect of nanometric TiO2 on photosynthesis efficiency in green pea (Pisum sativum L.) was studied. Hydroponic cultivations with three Ti levels (10; 50 and 100 mg L-1) were applied. At all concentrations nanoparticles penetrated into plant tissues and were detected by the single particle ICP-MS/MS method. Nanoparticles altered the CO2 assimilation rate and gas exchange parameters (i.e. transpiration, stomatal conductance, sub-stomatal CO2 concentration). The most pronounced effects were observed for Ti 50 mg L-1 cultivation where photosynthesis efficiency, transpiration and stomatal conductance were increased by 14.69%, 4.58% and 8.92%, respectively. They were further confirmed by high maximum ribulose 1,5-bisphosphate carboxylation rate (27.40% increase), maximum electron transport rate (21.51% increase) and the lowest CO2 compensation point (45.19% decrease). Furthermore, concentrations of Cu, Mn, Zn, Fe, Mg, Ca, K and P were examined with the most pronounced changes observed for elements directly involved in photosynthesis (Cu, Zn, Mn, and Fe). The Cu concentrations in roots, stems and leaves for Ti 50 mg L-1 cultivation were below the control by 33.15%, 38.28% and 10.76%, respectively. The Zn content in analogous treatment and organs decreased by 30.24%, 26.69% and 13.35%. The Mn and Fe levels in leaves were increased by 72.22% and 50.32%, respectively. Our results indicated that plant defence mechanisms which restrain the water uptake have been overcome in pea by photocatalytic activity of nanoparticulate TiO2 which stimulated photosynthesis. On the contrary to the substantial stomatal conductance, the transpiration has been reduced because exceptional part of water flow was already consumed in chloroplasts and could not have been freed to the atmosphere.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland.
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| | - Sylwia Michlewska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Poland
| | - Jakub Gruszka
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Poland
| | - Julita Malejko
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Poland
| | | | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| |
Collapse
|
10
|
Ullah H, Zheng W, Sheng Y. Translocation of CdS nanoparticles in maize (Zea mays L.) plant and its effect on metabolic response. CHEMOSPHERE 2023; 343:140189. [PMID: 37716569 DOI: 10.1016/j.chemosphere.2023.140189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Cadmium sulfide nanomaterials are of great concern because of their potential toxicity and unavoidable releases due to multiple commercial applications of nanoparticles (NPs). Commercial NPs act as mediators of damage to plant cells and pose potential toxicity to plants and human health. In the current study, investigated the phytotoxicology, absorption, translocation, antioxidant enzyme activity, and metabolic profiles of maize (Zea mays L.) seedlings exposed to different hydroponic treatments for fifteen days. The different concentrations of CdS NPs (3, 15, 30, 50, and 100 mg/L), 0.3 mg/L Cd ions, and unexposed control were performed in treatments. The results indicated that CdS NPs could present phytotoxic effects on seed germination and root elongation. Compared to the control, the CdS NPs dramatically reduced the shoots and root biomass, as well as the shape of the roots. Transmission electron microscopy and energy-dispersive mapping confirmed that CdS NPs could penetrate the maize root epidermis and bioaccumulate in the shoots with high concentrations. According to metabolomics studies, exposure to CdS NPs and Cd ions would result in metabolic disruption. Based on the statistical analysis, 290 out of 336 metabolites (86.30%) were obviously inhibited. The findings of this study demonstrated possible risks of emerging potential toxic NPs, and the release of these NPs to environment is a serious concern for agricultural activities.
Collapse
Affiliation(s)
- Hameed Ullah
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang Zheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
11
|
Ghouri F, Shahid MJ, Liu J, Sun L, Riaz M, Imran M, Ali S, Liu X, Shahid MQ. The protective role of tetraploidy and nanoparticles in arsenic-stressed rice: Evidence from RNA sequencing, ultrastructural and physiological studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132019. [PMID: 37437486 DOI: 10.1016/j.jhazmat.2023.132019] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Genome doubling in plants induces physiological and molecular changes to withstand environmental stress. Diploid rice (D-2x) and its tetraploid (T-4x) plants were treated with 25 μM Arsenic (As) and 15 mg L-1 TiO2 nanoparticles (NPs), and results indicated decreased growth and photosynthetic activity with high accumulation of reactive oxygen species (ROS) due to the As-toxicity in rice lines, significantly in D-2x rice plants. The treatment of As-contaminated rice with TiO2 NPs resulted in increased root length (8.17%) and chlorophyll AB (13.28%) and decreased electrolyte leakage (21.76%) and H2O2 (17.65%) contents than its counterpart diploid rice. Moreover, TiO2 NPs improved the activity of peroxidase, catalase, glutathione, and superoxide dismutase and reduced lipid peroxidation due to lower ROS production in D-2x and T-4x under As toxicity. Transcriptome analysis revealed abrupt changes in the expression levels of key signaling heat shock proteins, tubulin, aquaporins, As, and metal transporters under As toxicity in T-4x and D-2x lines. The KEGG and GO studies highlighted the striking distinctions between rice lines under As-stress in glutathione metabolism, H2O2 catabolic process, MAPK signaling pathway, and carotenoid biosynthesis terms, revealing consistency between physiological and molecular results. Root cells from D-2x rice were significantly more distorted by As poisoning than those from 4x rice, and cell organelles, such as mitochondria and endoplasmic reticulum, were changed or deformed. These findings proved the superiority of tetraploid rice lines over their diploid counterpart in coping with As-stress.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
López-Mayán JJ, Álvarez-Fernández B, Peña-Vázquez E, Barciela-Alonso MC, Moreda-Piñeiro A, Maguire J, Mackey M, Quarato M, Pinheiro I, Espiña B, Rodríguez-Lorenzo L, Bermejo-Barrera P. Bioaccumulation of titanium dioxide nanoparticles in green (Ulva sp.) and red (Palmaria palmata) seaweed. Mikrochim Acta 2023; 190:287. [PMID: 37420086 PMCID: PMC10329078 DOI: 10.1007/s00604-023-05849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 07/09/2023]
Abstract
A bioaccumulation study in red (Palmaria palmata) and green (Ulva sp.) seaweed has been carried out after exposure to different concentrations of citrate-coated titanium dioxide nanoparticles (5 and 25 nm) for 28 days. The concentration of total titanium and the number and size of accumulated nanoparticles in the seaweeds has been determined throughout the study by inductively coupled plasma mass spectrometry (ICP-MS) and single particle-ICP-MS (SP-ICP-MS), respectively. Ammonia was used as a reaction gas to minimize the effect of the interferences in the 48Ti determination by ICP-MS. Titanium concentrations measured in Ulva sp. were higher than those found in Palmaria palmata for the same exposure conditions. The maximum concentration of titanium (61.96 ± 15.49 μg g-1) was found in Ulva sp. after 28 days of exposure to 1.0 mg L-1 of 5 nm TiO2NPs. The concentration and sizes of TiO2NPs determined by SP-ICP-MS in alkaline seaweed extracts were similar for both seaweeds exposed to 5 and 25 nm TiO2NPs, which indicates that probably the element is accumulated in Ulva sp. mainly as ionic titanium or nanoparticles smaller than the limit of detection in size (27 nm). The implementation of TiO2NPs in Ulva sp. was confirmed by electron microscopy (TEM/STEM) in combination with energy dispersive X-Ray analysis (EDX).
Collapse
Affiliation(s)
- Juan José López-Mayán
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Blanca Álvarez-Fernández
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Elena Peña-Vázquez
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Carmen Barciela-Alonso
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Julie Maguire
- Indigo Rock Marine Research, Gearhies, Bantry, Co. Cork, P75 AX07, Ireland
| | - Mick Mackey
- Indigo Rock Marine Research, Gearhies, Bantry, Co. Cork, P75 AX07, Ireland
| | - Monica Quarato
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Ivone Pinheiro
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Laura Rodríguez-Lorenzo
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Dong S, Jing X, Lin S, Lu K, Li W, Lu J, Li M, Gao S, Lu S, Zhou D, Chen C, Xing B, Mao L. Root Hair Apex is the Key Site for Symplastic Delivery of Graphene into Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12179-12189. [PMID: 35947795 DOI: 10.1021/acs.est.2c01926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Uptake kinetics and delivery mechanisms of nanoparticles (NPs) in crop plants need to be urgently understood for the application of nanotechnology in agriculture as delivery systems for eco-friendly nanoagrochemicals. Here, we investigated the uptake kinetics, translocation pathway, and key internalization process of graphene in wheat (Triticum aestivum L.) by applying three specific hydroponic cultivation methods (submerging, hanging, and split-root). Quantification results on the uptake of carbon-14 radiolabeled graphene in each tissue indicated that graphene could enter the root of wheat and further translocate to the shoot with a low delivery rate (<2%). Transmission electron microscopy (TEM) images showed that internalized graphene was transported to adjacent cells through the plasmodesmata, clearly indicating the symplastic pathway of graphene translocation. The key site for the introduction of graphene into root cells for translocation through the symplastic pathway is evidenced to be the apex of growing root hair, where the newly constructed primary cell wall is much thinner. The confirmation of uptake kinetics and delivery mechanisms is useful for the development of nanotechnology in sustainable agriculture, especially for graphene serving as the delivery vector for pesticides, genes, and sensors.
Collapse
Affiliation(s)
- Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xueping Jing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Sijie Lin
- College Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jiajun Lu
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Muzi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Jiang C, Liu S, Zhang T, Liu Q, Alvarez PJJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7426-7447. [PMID: 35584364 DOI: 10.1021/acs.est.1c08011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analysis and characterization of naturally occurring and engineered nanomaterials in the environment are critical for understanding their environmental behaviors and defining real exposure scenarios for environmental risk assessment. However, this is challenging primarily due to the low concentration, structural heterogeneity, and dynamic transformation of nanomaterials in complex environmental matrices. In this critical review, we first summarize sample pretreatment methods developed for separation and preconcentration of nanomaterials from environmental samples, including natural waters, wastewater, soils, sediments, and biological media. Then, we review the state-of-the-art microscopic, spectroscopic, mass spectrometric, electrochemical, and size-fractionation methods for determination of mass and number abundance, as well as the morphological, compositional, and structural properties of nanomaterials, with discussion on their advantages and limitations. Despite recent advances in detecting and characterizing nanomaterials in the environment, challenges remain to improve the analytical sensitivity and resolution and to expand the method applications. It is important to develop methods for simultaneous determination of multifaceted nanomaterial properties for in situ analysis and characterization of nanomaterials under dynamic environmental conditions and for detection of nanoscale contaminants of emerging concern (e.g., nanoplastics and biological nanoparticles), which will greatly facilitate the standardization of nanomaterial analysis and characterization methods for environmental samples.
Collapse
Affiliation(s)
- Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
15
|
Ceger P, Garcia-Reyero Vinas N, Allen D, Arnold E, Bloom R, Brennan JC, Clarke C, Eisenreich K, Fay K, Hamm J, Henry PFP, Horak K, Hunter W, Judkins D, Klein P, Kleinstreuer N, Koehrn K, LaLone CA, Laurenson JP, Leet JK, Lowit A, Lynn SG, Norberg-King T, Perkins EJ, Petersen EJ, Rattner BA, Sprankle CS, Steeger T, Warren JE, Winfield S, Odenkirchen E. Current ecotoxicity testing needs among selected U.S. federal agencies. Regul Toxicol Pharmacol 2022; 133:105195. [PMID: 35660046 PMCID: PMC9623878 DOI: 10.1016/j.yrtph.2022.105195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
U.S. regulatory and research agencies use ecotoxicity test data to assess the hazards associated with substances that may be released into the environment, including but not limited to industrial chemicals, pharmaceuticals, pesticides, food additives, and color additives. These data are used to conduct hazard assessments and evaluate potential risks to aquatic life (e.g., invertebrates, fish), birds, wildlife species, or the environment. To identify opportunities for regulatory uses of non-animal replacements for ecotoxicity tests, the needs and uses for data from tests utilizing animals must first be clarified. Accordingly, the objective of this review was to identify the ecotoxicity test data relied upon by U.S. federal agencies. The standards, test guidelines, guidance documents, and/or endpoints that are used to address each of the agencies' regulatory and research needs regarding ecotoxicity testing are described in the context of their application to decision-making. Testing and information use, needs, and/or requirements relevant to the regulatory or programmatic mandates of the agencies taking part in the Interagency Coordinating Committee on the Validation of Alternative Methods Ecotoxicology Workgroup are captured. This information will be useful for coordinating efforts to develop and implement alternative test methods to reduce, refine, or replace animal use in chemical safety evaluations.
Collapse
Affiliation(s)
- Patricia Ceger
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | | | - David Allen
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Elyssa Arnold
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Raanan Bloom
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Jennifer C Brennan
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Carol Clarke
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Karen Eisenreich
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Kellie Fay
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Jonathan Hamm
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Paula F P Henry
- U.S. Geological Survey, Eastern Ecological Science Center, 12100 Beech Forest Rd, Laurel, MD, 20708, USA.
| | - Katherine Horak
- U.S. Department of Agriculture, Wildlife Services National Wildlife Research Center, 4101 LaPorte Ave. Fort Collins, CO, 80521, USA.
| | - Wesley Hunter
- U.S. Food and Drug Administration, Center for Veterinary Medicine, HFV-161, 7500 Standish Place, Rockville, MD, 20855, USA.
| | - Donna Judkins
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Patrice Klein
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Nicole Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
| | - Kara Koehrn
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Carlie A LaLone
- U.S. Environmental Protection Agency, Office of Research and Development, 8101R, 6201 Congdon Blvd., Duluth, MN, 55804, USA.
| | - James P Laurenson
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Jessica K Leet
- U.S. Geological Survey, Columbia Environmental Research Center (CERC), Columbia, MO, 65201, USA.
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Scott G Lynn
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Teresa Norberg-King
- U.S. Environmental Protection Agency, Office of Research and Development, 8101R, 6201 Congdon Blvd., Duluth, MN, 55804, USA.
| | - Edward J Perkins
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Rd., Vicksburg, MS, 39180, USA.
| | - Elijah J Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 2089, USA.
| | - Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center, 10300 Baltimore Ave, BARC-EAST Bldg. 308, Beltsville, MD, 20705, USA.
| | - Catherine S Sprankle
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Thomas Steeger
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Jim E Warren
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Sarah Winfield
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, HFS-009, College Park, MD, 20740, USA.
| | - Edward Odenkirchen
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| |
Collapse
|
16
|
Mo F, Li H, Li Y, Ma C, Wang M, Li Z, Deng N, Zhang C, Xing B, Xu J, Li G, Wang L, Zheng Y, Yang Y. Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151380. [PMID: 34780825 DOI: 10.1016/j.scitotenv.2021.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
This present study investigated detoxification mechanisms of leguminous forage Trifolium pratense L. (red clover) seedlings upon exposure to Ag ions (Ag+) on an atomic level. Depressed plant growth (maximum inhibition rate: 46.57%) and significantly altered antioxidase/antioxidant substances levels (maximum inhibition rate: 65.45%/55.41%) revealed that the physiological metabolism was disturbed. Notable lesions were observed in both leaf and root cells at 588 μM Ag+ treatment. All differentially expressed genes (DEGs) were remarkably mapped to biological metabolism related pathways. Red clover seedlings were speculated to initially transform and immobilize Ag+ in the culture medium, then transporting and fixing them inside the cell, mainly as unreduced Ag+ bound to oxygen-, nitrogen-, sulfur-, chloride-containing biological molecules. A portion of Ag+ was reduced to Ag0 and aggregated to form crystalline argentiferous nanoparticles. Effective reducing agents such as alcohols, carboxylic acid, and etc, which are capable of coordinating heavy metals to reduce and stabilize them, were assumed to play a role in Ag+ reduction. The research results are of great value to understand the defense and tolerance mechanisms of red clover to Ag+ and explore the main existing forms of Ag+ in vivo and in vitro, which could indicate contamination condition in regional ecological environment such as mining area and its potential effects.
Collapse
Affiliation(s)
- Fan Mo
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Jianing Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Geng Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Lixin Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yaqin Zheng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
17
|
Laycock A, Clark NJ, Clough R, Smith R, Handy RD. Determination of metallic nanoparticles in biological samples by single particle ICP-MS: a systematic review from sample collection to analysis. ENVIRONMENTAL SCIENCE. NANO 2022; 9:420-453. [PMID: 35309016 PMCID: PMC8852815 DOI: 10.1039/d1en00680k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 05/04/2023]
Abstract
A systematic review of the use of single particle ICP-MS to analyse engineered nanomaterials (ENMs) in biological samples (plants, animals, body fluids) has highlighted that efforts have focused on a select few types of ENMs (e.g., Ag and TiO2) and there is a lack of information for some important tissues (e.g., reproductive organs, skin and fatty endocrine organs). The importance of sample storage is often overlooked but plays a critical role. Careful consideration of the ENM and matrix composition is required to select an appropriate protocol to liberate ENMs from a tissue whilst not promoting the transformation of them, or genesis of new particulates. A 'one size fits all' protocol, applicable to all possible types of ENM and biological matrices, does not seem practical. However, alkaline-based extractions would appear to show greater promise for wide applicability to animal tissues, although enzymatic approaches have a role, especially for plant tissues. There is a lack of consistency in metrics reported and how they are determined (e.g. size limit of detection, and proportions of recovery), making comparison between some studies more difficult. In order to establish standardised protocols for regulatory use, effort is needed to: develop certified reference materials, achieve international agree on nomenclature and the use of control samples, and to create a decision tree to help select the best sample preparation for the type of tissue matrix.
Collapse
Affiliation(s)
- Adam Laycock
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus Didcot OX11 0RQ UK
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth Drake Circus Plymouth PL4 8AA UK
| | - Robert Clough
- Analytical Research Facility, School of Geography, Earth and Environmental Sciences, University of Plymouth Plymouth PL4 8AA UK
| | - Rachel Smith
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus Didcot OX11 0RQ UK
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth Drake Circus Plymouth PL4 8AA UK
- Visiting Professor, Department of Nutrition, Cihan University-Erbil Kurdistan Region Iraq
| |
Collapse
|
18
|
Sun Y, Yang Y, Tou FY, Niu ZS, Guo XP, Liu C, Yan J, Wu JY, Xu M, Hou LJ, Liu M. Extraction and quantification of metal-containing nanoparticles in marine shellfish based on single particle inductively coupled plasma-mass spectrometry technique. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127383. [PMID: 34879574 DOI: 10.1016/j.jhazmat.2021.127383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 05/25/2023]
Abstract
Quantitative characterization of nanoparticles (NPs) in marine shellfish is critical to understanding the risks of bio-accumulation. Based on single particle (sp)ICP-MS and electron microscopy, a standardized protocol was developed to extract Ag, Au, and indigenous Ti-containing NPs from mussels. The optimal parameters are: dry sample extraction with tetramethylammonium hydroxide (TMAH), 5% (v/v) final concentration of TMAH, extraction at 25 ℃ for 12 h, and separation by centrifugation (3000 rpm for 5 min). The particle number recoveries of spiked Ag and Au NPs were 88 ± 0.9% and 95 ± 1.1%, respectively, while Ti-containing NPs had a particle number concentration of 8.2 × 106 particles/mg and an average size of 70 nm in tested mussels. Furthermore, titanium oxide NPs, including rutile, anatase, and Magnéli phases (TixO2x-1) were found ubiquitously in 10 shellfish based on the optimal method. The particle number concentrations and average sizes of the Ti-containing NPs were 2.1 × 106-8.4 × 106 particles/mg and 70-80 nm, respectively. These Ti-containing NPs, such as TiO2, accounted for about half of the Ti mass in shellfish, indicating that marine shellfish may be a significant sink for Ti-containing NPs.
Collapse
Affiliation(s)
- Yuan Sun
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China, Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Fei-Yun Tou
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuo-Shun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xing-Pan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chang Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia Yan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia-Yuan Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
19
|
Wang L, Yang D, Ma F, Wang G, You Y. Recent advances in responses of arbuscular mycorrhizal fungi - Plant symbiosis to engineered nanoparticles. CHEMOSPHERE 2022; 286:131644. [PMID: 34346335 DOI: 10.1016/j.chemosphere.2021.131644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The application of engineered nanomaterials (ENMs) is increasing in all walks of life, inevitably resulting in a high risk of ENMs entering the natural environment. Recent studies have demonstrated that phytoaccumulation of ENMs in the environment may be detrimental to plants to varying degrees. However, plants primarily assimilate ENMs through the roots, which are inevitably affected by rhizomicroorganisms. In this review, we focus on a group of common rhizomicroorganisms-arbuscular mycorrhizal fungi (AMF). These fungi contribute to ENMs immobilization and inhibition of phytoaccumulation, improvement of host plant growth and activation of systematic protection in response to excess ENMs stress. In present review, we summarize the biological responses of plants to ENMs and the modulatory mechanisms of AMF on the immobilization of ENMs in substrate-plant interfaces, and indirectly regulatory mechanisms of AMF on the deleterious effects of ENMs on host plants. In addition, the information of feedback of ENMs on mycorrhizal symbiosis and the prospects of future research on the fate and mechanism of phyto-toxicity of ENMs mediated by AMF in the environment are also addressed. In view of above, synergistic reaction of plants and AMF may prove to be a cost-effective and eco-friendly technology to bio-control potential ENMs contamination on a sustainable basis.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China.
| | - Dongguang Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Gen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Yongqiang You
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| |
Collapse
|
20
|
Akdemir H. Evaluation of transcription factor and aquaporin gene expressions in response to Al 2O 3 and ZnO nanoparticles during barley germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:466-476. [PMID: 34166973 DOI: 10.1016/j.plaphy.2021.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Aluminum oxide and zinc oxide nanoparticles (NPs) are two of the mostly produced engineered metal oxide NPs. Here, barley germination and root elongation as well as gene expressions of the selected aquaporins (HvTip1;1 and HvPip1;1) and transcription factors (HvERFs and HvNFX1) were investigated after exposure to Al2O3 and ZnO NPs for foreseeing the effect of NP exposure. ICP-MS analysis showed that the nanoparticles were taken up into root and leaves. Even the germination analysis and seedling establishment data indicate that the applied NPs do not have any observable inhibitory effects except on root length, the gene expression analysis revealed that these nanoparticle applications lead to a response at the molecular level. The gene expression profiling indicated that aquaporins and transcription factor genes were differentially regulated in leaves and roots in response to NPs treatments. The expressions of aquaporin genes were higher especially in leaves in compared to the control plants. Gradual decrease was obtained in roots by application of the increased levels of Al2O3 NPs. The effects of ZnO NPs on gene expression levels of barley TFs were dramatically more distinctive in comparison with that of Al2O3 NPs. The expression profiles of HvERFs and HvNFX1 transcription factors in response to the Al2O3 and ZnO NPs suggest that these selected TFs can play important roles in shaping abiotic stress tolerance in young barley roots and leaves. Outcomes of the study will allow us to predict complex stress response of barley in response to the nanoparticles.
Collapse
Affiliation(s)
- Hulya Akdemir
- Faculty of Science, Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
21
|
Wei WJ, Li L, Gao YP, Wang Q, Zhou YY, Liu X, Yang Y. Enzyme digestion combined with SP-ICP-MS analysis to characterize the bioaccumulation of gold nanoparticles by mustard and lettuce plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146038. [PMID: 33677305 DOI: 10.1016/j.scitotenv.2021.146038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Plants can absorb and accumulate engineered nanomaterials (ENMs) through water and soil, providing a potential way for nanoparticles to be enriched in humans through the food chain. In this paper, a combination of enzymatic digestion method and SP-ICP-MS analysis was used to quantitatively characterize the enriched AuNPs in mustard and lettuce plants. The results showed that Macerozyme R-10 enzyme can extract AuNPs from plants without obvious aggregation/dissolution. Both mustard and lettuce plants can absorb and enrich the complete AuNPs to the above-ground organs, and the particle number concentrations detected are 1.24 × 107 particles L-1 and 4.39 × 107 particles L-1, respectively. With different exposure level of AuNPs(0.5 mg L-1,), a particle number concentration of 2.32 × 107 particles L-1 was detected in the stems of lettuce plants, while the mustard failed to transport AuNPs to the above-ground organs. The transport efficiency of Au ions by plants is higher than that of AuNPs, and the plants have stronger bioavailability for ions.
Collapse
Affiliation(s)
- Wen-Jing Wei
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, PR China
| | - Lei Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, PR China
| | - Yu-Pei Gao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, PR China
| | - Qiang Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, PR China.
| | - Yao-Yu Zhou
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Xin Liu
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuan Yang
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
22
|
Effects of TiO 2 Nanoparticles Incorporation into Cells of Tomato Roots. NANOMATERIALS 2021; 11:nano11051127. [PMID: 33925353 PMCID: PMC8145037 DOI: 10.3390/nano11051127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
In this study, tomato plants were grown in vitro with and without incorporation of TiO2 nanoparticles in Murashige and Skoog (MS) growth medium. The aim of this study was to describe the morphological (area and roundness cell) and mechanical (Young’s Modulus) change in the different tissue of tomato root, epidermis (Ep), parenchyma (Pa), and vascular bundles (Vb), when the whole plant was exposed to TiO2 nanoparticles (TiO2 NPs). light microscopy (LM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), wavelength dispersive X-ray fluorescence (WDXRF) techniques were used to identify changes into the root cells when TiO2 NPs were incorporated. TiO2 NPs incorporation produces changes in the area, roundness, and Young’s Modulus of the tomato root. When tomato root is exposed to TiO2 NPs, the Ep and Vb area size decreases from 260.92 µm2 to 160.71 µm2 and, 103.08 µm2 to 52.13 µm2, respectively, compared with the control area, while in Pa tissue the area size was increased considerably from 337.72 mm2 to 892.96 mm2. Cellular roundness was evident in tomato root that was exposed to TiO2 NPs in the Ep (0.49 to 0.67), Pa (0.63 to 0.79), and Vb (0.76 to 0.71) area zones. Young’s Modulus in Pa zone showed a rigid mechanical behavior when tomato root is exposed to TiO2 NPs (0.48 to 4.98 MPa control and TiO2 NPs, respectively). Meanwhile, Ep and Vb were softer than the control sample (13.9 to 1.06 MPa and 6.37 to 4.41 MPa respectively). This means that the Pa zone was stiffer than Ep and Vb when the root is exposed to TiO2 NPs. Furthermore, TiO2 NPs were internalized in the root tissue of tomato, accumulating mainly in the cell wall and intercellular spaces, with a wide distribution throughout the tissue, as seen in TEM.
Collapse
|
23
|
Khan MA, Fugate M, Rogers DT, Sambi J, Littleton JM, Rankin SE, Knutson BL. Mechanism of Mesoporous Silica Nanoparticle Interaction with Hairy Root Cultures during Nanoharvesting of Biomolecules. Adv Biol (Weinh) 2021; 5:e2000173. [PMID: 33729698 DOI: 10.1002/adbi.202000173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/11/2021] [Indexed: 11/06/2022]
Abstract
Cellular uptake and expulsion mechanisms of engineered mesoporous silica nanoparticles (MSNPs) are important in their design for novel biomolecule isolation and delivery applications such as nanoharvesting, defined as using nanocarriers to transport and isolate valuable therapeutics (secondary metabolites) out of living plant organ cultures (e.g., hairy roots). Here, temperature-dependent MSNP uptake and recovery processes in hairy roots are examined as a function of surface chemistry. MSNP uptake into hairy roots and time-dependent expulsion are quantified using Ti content (present for biomolecule binding) and fluorescence spectroscopy of fluorescently tagged MSNPs, respectively. The results suggest that functionalization and surface charge (regulated by amine group attachment) play the biggest role in the effectiveness of uptake and recovery. Comparison of MSNP interactions with hairy roots at 4 and 23 °C shows that weakly charged MSNPs functionalized only with Ti are taken up and expelled by thermally activated mechanisms, while amine-modified positively charged particles are taken up and expelled mainly by direct penetration of cell walls. Amine-functionalized MSNPs move spontaneously in and out of plant cells by dynamic exchange with a residence time of 20 ± 5 min, suggesting promise as a biomolecule nanoharvesting platform for plant organ cultures.
Collapse
Affiliation(s)
- Md Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | - Madeleine Fugate
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | | | | | | | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| |
Collapse
|
24
|
Mittal D, Kaur G, Singh P, Yadav K, Ali SA. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.579954] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the current scenario, it is an urgent requirement to satisfy the nutritional demands of the rapidly growing global population. Using conventional farming, nearly one third of crops get damaged, mainly due to pest infestation, microbial attacks, natural disasters, poor soil quality, and lesser nutrient availability. More innovative technologies are immediately required to overcome these issues. In this regard, nanotechnology has contributed to the agrotechnological revolution that has imminent potential to reform the resilient agricultural system while promising food security. Therefore, nanoparticles are becoming a new-age material to transform modern agricultural practices. The variety of nanoparticle-based formulations, including nano-sized pesticides, herbicides, fungicides, fertilizers, and sensors, have been widely investigated for plant health management and soil improvement. In-depth understanding of plant and nanomaterial interactions opens new avenues toward improving crop practices through increased properties such as disease resistance, crop yield, and nutrient utilization. In this review, we highlight the critical points to address current nanotechnology-based agricultural research that could benefit productivity and food security in future.
Collapse
|
25
|
Cao W, Gong J, Zeng G, Song B, Zhang P, Li J, Fang S, Tang S, Qin L, Ye J, Cai Z. Abiotic mediation of common ions on the co-exposure of CeO 2 NPs with Sb (III) or Sb (V) to Glycine max (Linn.) Merrill. (Soybean): Impacts on uptake, accumulation and physiochemical characters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115594. [PMID: 33254729 DOI: 10.1016/j.envpol.2020.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
With the most active Sb mines, the "dominance" on Sb production of China lead to increasingly release and omnipresence of Sb in environment through mining activities as well as the life cycle of Sb-containing productions. The introduction of engineered nanoparticles (ENPs) accidentally or intentionally (such as NP-containing sludge as fertilizer) might increase the probability of co-exposed with Sb to plants. In this study, CeO2 NPs, one of the most widely used nanomaterials in industries with potential oxidizing or reducing properties, was selected and co-exposed with Sb (III) or Sb (V) to investigate their mutual effects on uptake, accumulation and physiological effects in soybeans. The results showed that CeO2 NPs increased the Sb (III) and Sb (V) concentrations in roots by 36.7% and 14.0% respectively, while Sb (III) and Sb (V) inhibited the concentration of Ce in roots by 97.1% and 86.9% respectively. In addition, the impacts of extra common ions (Mn2+, Cu2+, Fe3+ and Zn2+) on the fate of Ce and Sb in soybeans in co-exposure of CeO2 NPs with Sb were investigated as well. Mn2+ and Fe3+ increased the accumulations of Ce and Sb (III) in the co-exposure of CeO2 NPs with Sb (III), but reduced that in the co-exposure of CeO2 NPs with Sb (V). Notably, the addition of Cu2+ and Zn2+ consistently increased the uptake and accumulation of Ce and Sb in the co-exposure treatments. Moreover, the effects of Sb on the dissolved portion of CeO2 NPs in soybean roots were also investigated. This study provided a perspective that extra ingredient (mineral elements, organic element or other nutrients) might regulated the interactions in ENPs-heavy metals-plants system which need further explorations.
Collapse
Affiliation(s)
- Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Siqun Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jun Ye
- Hunan Qing Zhi Yuan Environmental Protection Technology Co., Ltd, Changsha, 410082, PR China
| | - Zhe Cai
- Hunan Qing Zhi Yuan Environmental Protection Technology Co., Ltd, Changsha, 410082, PR China
| |
Collapse
|
26
|
Laughton S, Laycock A, Bland G, von der Kammer F, Hofmann T, Casman EA, Lowry GV. Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. Anal Bioanal Chem 2020; 413:299-314. [PMID: 33123761 DOI: 10.1007/s00216-020-03014-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 11/28/2022]
Abstract
The detection and characterization of soluble metal nanoparticles in plant tissues are an analytical challenge, though a scientific necessity for regulating nano-enabled agrichemicals. The efficacy of two extraction methods to prepare plant samples for analysis by single particle ICP-MS, an analytical method enabling both size determination and quantification of nanoparticles (NP), was assessed. A standard enzyme-based extraction was compared to a newly developed methanol-based approach. Au, CuO, and ZnO NPs were extracted from three different plant leaf materials (lettuce, corn, and kale) selected for their agricultural relevance and differing characteristics. The enzyme-based approach was found to be unsuitable because of changes in the recovered NP size distribution of CuO NP. The MeOH-based extraction allowed reproducible extraction of the particle size distribution (PSD) without major alteration caused by the extraction. The type of leaf tissue did not significantly affect the recovered PSD. Total metal losses during the extraction process were largely due to the filtration step prior to analysis by spICP-MS, though this did not significantly affect PSD recovery. The methanol extraction worked with the three different NPs and plants tested and is suitable for studying the fate of labile metal-based nano-enabled agrichemicals.
Collapse
Affiliation(s)
- Stephanie Laughton
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam Laycock
- Department of Environmental Geosciences, University of Vienna, 1090, Vienna, Austria
| | - Garret Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Frank von der Kammer
- Department of Environmental Geosciences, University of Vienna, 1090, Vienna, Austria
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, 1090, Vienna, Austria
| | - Elizabeth A Casman
- Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA. .,Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
27
|
Liu L, Yin Y, Hu L, He B, Shi J, Jiang G. Revisiting the forms of trace elements in biogeochemical cycling: Analytical needs and challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Sung LP, Chung YF, Goodwin DG, Petersen EJ, Hsueh HC, Stutzman P, Nguyen T, Thomas T. Selection of an Optimal Abrasion Wheel Type for Nano-Coating Wear Studies under Wet or Dry Abrasion Conditions. NANOMATERIALS 2020; 10:nano10081445. [PMID: 32722058 PMCID: PMC7466352 DOI: 10.3390/nano10081445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Nanocoatings have numerous potential applications in the indoor environment, such as flooring finishes with increased scratch- and wear-resistance. However, given concerns about the potential environmental and human health effects of nanomaterials, it is necessary to develop standardized methods to quantify nanomaterial release during use of these products. One key choice for mechanical wear studies is the abrasion wheel. Potential limitations of different wheels include the release of fragments from the wheel during abrasion, wearing of the wheel from the abrasion process, or not releasing a sufficient number of particles for accurate quantitative analysis. In this study, we evaluated five different wheels, including a typically used silicon oxide-based commercial wheel and four wheels fabricated at the National Institute of Standards and Technology (NIST), for their application in nanocoating abrasion studies. A rapid, nondestructive laser scanning confocal microscopy method was developed and used to identify released particles on the abraded surfaces. NIST fabricated a high performing wheel: a noncorrosive, stainless-steel abrasion wheel containing a deep cross-patch. This wheel worked well under both wet and dry conditions, did not corrode in aqueous media, did not release particles from itself, and yielded higher numbers of released particles. These results can be used to help develop a standardized protocol for surface release of particles from nanoenabled products using a commercial rotary Taber abraser.
Collapse
Affiliation(s)
- Li-Piin Sung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
- Correspondence: (L.-P.S.); (E.J.P.); Tel.: +1-3019756737 (L.-P.S.); +1-3019758142 (E.J.P.)
| | - Yu-Fan Chung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - David G. Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Elijah J. Petersen
- Materials Measurement Laboratory, NIST, Gaithersburg, MD 20899, USA
- Correspondence: (L.-P.S.); (E.J.P.); Tel.: +1-3019756737 (L.-P.S.); +1-3019758142 (E.J.P.)
| | - Hsiang-Chun Hsueh
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Paul Stutzman
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Tinh Nguyen
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD 20814, USA;
| |
Collapse
|
29
|
Belhaj Abdallah B, Andreu I, Chatti A, Landoulsi A, Gates BD. Size Fractionation of Titania Nanoparticles in Wild Dittrichia viscosa Grown in a Native Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8649-8657. [PMID: 32539367 DOI: 10.1021/acs.est.9b07267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a size fractionation of titania (TiO2) nanoparticles absorbed from the environment and found within wild Dittrichia viscosa plants. The nanoparticles were isolated by extraction and isolation from distinct plant organs, as well as from the corresponding rhizosphere of wild, adult plants. The collected nanoparticles were characterized by scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (STEM-EDS). More than 1200 TiO2 nanoparticles were analyzed by these techniques. The results indicated the presence of TiO2 nanoparticles with a wide range of sizes within the inspected plant organs and rhizospheres. Interestingly, a size selective process occurs during the internalization and translocation of these nanoparticles (e.g., foliar and root uptake), which favors the accumulation of mainly TiO2 nanoparticles with diameters <50 nm in the leaves, stems, and roots. In fact, our findings indicate that among the total number of TiO2 nanoparticles analyzed, the fraction of the particles with dimensions <50 nm were 52% of those within the rhizospheres, 88.5% of those within the roots, 90% of those within the stems, and 53% of those within the leaves. This significant difference observed in the size distribution of the TiO2 nanoparticles among the rhizosphere and the plant organs could have impacts on the food chain and further biologicals effects that are dependent on the size of the TiO2.
Collapse
Affiliation(s)
- Bouchra Belhaj Abdallah
- Biochemistry and Molecular Biology Unit, Faculty of Science of Bizerte, Carthage University, Jarzouna 7021, Tunisia
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Irene Andreu
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Abdelwaheb Chatti
- Biochemistry and Molecular Biology Unit, Faculty of Science of Bizerte, Carthage University, Jarzouna 7021, Tunisia
| | - Ahmed Landoulsi
- Biochemistry and Molecular Biology Unit, Faculty of Science of Bizerte, Carthage University, Jarzouna 7021, Tunisia
| | - Byron D Gates
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
30
|
Zhou Q, Liu L, Liu N, He B, Hu L, Wang L. Determination and characterization of metal nanoparticles in clams and oysters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110670. [PMID: 32344268 DOI: 10.1016/j.ecoenv.2020.110670] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 05/21/2023]
Abstract
With the extensive application of nanotechnology, metal nanoparticles (MNPs) have been widely used, thus are universally detected in the environment. This has caused increasingly concerns due to their toxicity and the potential health risks they pose to humans. In this work, the concentrations and particle size distributions of MNPs and concentrations of associated metal ionic species in shellfish seafood (clams and oysters) were investigated using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) and inductively coupled plasma mass spectrometry (ICP-MS). The MNPs in the clam and oyster tissues were extracted via an alkaline digestion method with a recovery rate of 95.9% (for gold nanoparticles (AuNPs)). Then total concentrations of 41 metal elements were measured in the two types of seafood, of which 20 were selected for sp-ICP-MS analysis. The results showed that 5 types of MNPs were detectable in clams (Y, La, Ce, Pr, Gd) and 5 types of MNPs were detectable in oysters (Y, La, Ce, Pr, Nd). Size distributions of MNPs in clams and oysters were in the range of 35-55 nm and 30-65 nm, respectively. Nanoparticle concentrations in clams and oysters ranged from 0.6 to 37.7 ng/g and 4.2-19.7 ng/g, and accounted for 3.4%-50% and 5.5%-46% of the total metal content, respectively. Based on this analysis, the health risks of metals in the two kinds of seafood were evaluated by comparing the Provisional Tolerable Weekly Intake (PTWI) with limits recommended by the World Health Organization (WHO)/Food and Agriculture Organization (FAO). These results provide important information about the presence of metal nanoparticles in seafood and, to the best of our knowledge, this is the first time that the nanoparticles of rare earth elements have been detected and reported in bivalve mollusc tissues.
Collapse
Affiliation(s)
- Qinfei Zhou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China.
| |
Collapse
|
31
|
Xu L, Wang Z, Zhao J, Lin M, Xing B. Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114043. [PMID: 32041024 DOI: 10.1016/j.envpol.2020.114043] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 05/21/2023]
Abstract
The exposure risk of metal-based nanoparticles (NPs) to marine organisms and related food safety have attracted increasing attention, but the actual concentrations of these NPs in seawater and marine organisms are unknown. In this work, single particle inductively coupled plasma-mass spectrometry (spICP-MS) was used to quantify the concentrations and size distributions of NPs in different marine mollusks (oysters, mussels, scallops, clams, and ark shells) from an offshore aquaculture farm. Results showed that Ti, Cu, Zn, and Ag bearing NPs were detected in all the five mollusks with the mean sizes at 65.4-70.9, 72.2-89.6, 97.8-108.3, and 42.9-51.0 nm, respectively. The particle concentrations of Ti, Cu, Zn, and Ag bearing NPs in all mollusks (0.88-3.26 × 107 particles/g fresh weight) were much higher than that in the seawater (0.46-0.79 × 107 particles/mL), suggesting bio-accumulation of NPs. For all the five mollusks, Ag bearing NPs had the highest number-based bioconcentration factors (NBCFs) in all the tested NPs due to the smallest mean size of Ag bearing NPs in seawater (30.5 nm). In addition, the clams exhibited the lowest NBCFs of the four NPs than other mollusks. All four NPs were mainly accumulated in the gill and digestive gland, and could transfer to adductor muscle of all mollusks. Although all the four metals (Ti, Cu, Zn, Ag) in mollusks were safe for human consumption by the estimated daily intake (EDI) analysis, the risk of NPs remaining in the mollusks should be further considered when evaluating the toxicity of metals for human health. The findings could improve our understanding on the distribution and health risk of NPs in marine mollusks under offshore aquaculture.
Collapse
Affiliation(s)
- Lina Xu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jian Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China.
| | - Meiqi Lin
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
32
|
Giorgetti L, Spanò C, Muccifora S, Bottega S, Barbieri F, Bellani L, Ruffini Castiglione M. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:170-177. [PMID: 32070910 DOI: 10.1016/j.plaphy.2020.02.014] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 05/20/2023]
Abstract
With the aim to investigate the mechanisms of action of nano plastics (nano PS) on plants, seeds of Allium cepa were germinated for 72 h in the presence of polystyrene nano PS (50 nm size, at concentrations of 0.01, 0.1 and 1 g L-1) and, subsequently, roots were analysed by a multifaceted approach. No effect was induced by any concentration of nano PS on the percentage of seed germination while root growth was inhibited by 0.1 and 1 g L-1 nano PS. Cytological analysis of the root meristems indicated cytotoxicity (reduction of mitotic index) and genotoxicity (induction of cytogenetic anomalies and micronuclei) starting from the lowest dose. Moreover, the biochemical and histochemical analysis of oxidative stress markers gave evidence of stress induction, especially at the highest doses. Damages reported could be due to mechanical surface contact in root external layers, as evidenced by histological localization, and to the internalization of nano PS in different cellular compartments, observed under TEM. The present research underlines the hazardous nature of nano PS, that for their ability to be internalized into crop plants, can enter into different trophic levels of the food chain.
Collapse
Affiliation(s)
- Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology, (IBBA-CNR), Pisa, Italy.
| | - Carmelina Spanò
- Department of Biology, University of Pisa, Italy; Centre for Climate Change Impact, University of Pisa, Italy
| | | | | | | | - Lorenza Bellani
- Institute of Agricultural Biology and Biotechnology, (IBBA-CNR), Pisa, Italy; Department of Life Sciences, University of Siena, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, Italy; Centre for Climate Change Impact, University of Pisa, Italy
| |
Collapse
|
33
|
Plant Nanobionic Effect of Multi-walled Carbon Nanotubes on Growth, Anatomy, Yield and Grain Composition of Rice. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00725-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Wang Y, Chen B, Wang B, He M, Hu B. Phosphoric acid functionalized magnetic sorbents for selective enrichment of TiO 2 nanoparticles in surface water followed by inductively coupled plasma mass spectrometry detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135464. [PMID: 31753505 DOI: 10.1016/j.scitotenv.2019.135464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Phosphoric acid functionalized superparamagnetic iron oxide was synthesized, and different adsorption behavior of TiO2 NPs and titanium ions on it was found. By means of dispersion-corrected density functional theory (DFT-D), the adsorption mechanism of TiO2 NPs and titanium ions on the functionalized sorbents was explored, and the difference in the adsorption behavior was attributed to the different deprotonated forms of phosphates and the competitive adsorption of OH- anion with respect to either TiO2 NPs or aqueous titanium ions. Based on the different adsorption performance of phosphoric acid functionalized sorbents for TiO2 NPs and titanium ions under pH 3, a method by combining magnetic solid phase extraction (MSPE) with inductively coupled plasma mass spectrometry (ICP-MS) was established for the selective quantification of trace TiO2 NPs in environmental water. Under the optimal experimental conditions, the detection limit of TiO2 NPs was 17 ng/L with an enrichment factor of 400. The developed MSPE-ICPMS method was applied to the detection of trace TiO2 NPs in the Yangtze River and the East Lake water. Sub μg/L level of TiO2 NPs was found in the tested water samples, and recoveries of 91-110% and 90-110% were obtained for TiO2 NPs at three concentration levels in spiked water samples, respectively. The developed method exhibited high adsorption capacity and low detection limit for target TiO2 NPs, and was demonstrated with great potential for monitoring TiO2 NPs in the environment.
Collapse
Affiliation(s)
- Yin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Baoshan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
35
|
Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W. Foliar spray of TiO 2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). CHEMOSPHERE 2020; 239:124794. [PMID: 31521929 DOI: 10.1016/j.chemosphere.2019.124794] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) pollution is considered one of the global environmental issues due to its adverse effects on plant and human health. With the rapid development of nanotechnology and the practical application of engineered nanoparticles (ENPs) in agriculture, the mechanisms underlying the interactions between NPs and heavy metal on their uptake, accumulation, and phytotoxicity in crops are still not fully understood. Therefore, the impact of TiO2 NPs (0, 100, 250 mg/L) and Cd (0, 50 μM) co-exposure on hydroponic maize (Zea mays L.) was determined under two exposure modes. Results showed that root co-exposure to TiO2 NPs and 100 mg/L Cd significantly enhanced Cd uptake and produced greater phytotoxicity in maize than foliar exposure to TiO2 NPs. Meanwhile, plant dry weight and chlorophyll content showed a reduction of 45.3% and 50.5%, respectively, when compared with single Cd treatment. In addition, the accumulation of Ti in shoots and roots increased by 1.61 and 4.29 times, respectively when root exposure to 250 mg/L TiO2 NPs. By contrast, foliar exposure of TiO2 NPs could markedly decrease shoot Cd contents from 15.2% to 17.8% and had a stronger influence on alleviating Cd-induced toxicity via increasing superoxide dismutase (SOD) and glutathione S-transferase (GST) activities and upregulating several metabolic pathways, including galactose metabolism and citrate cycle, alanine, aspartate and glutamate metabolism, as well as glycine, serine and threonine metabolism. This study provides a new strategy for the application of TiO2 NPs in crop safety production in Cd contaminated soils.
Collapse
Affiliation(s)
- Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Longfei Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Jiani Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Hongxia Xiong
- Tianjin Research Institute for Water Transport Engineering, Laboratory of Environmental Protection in Water Transport Engineering, Tianjin, 300456, PR China
| | - Yanyu Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
36
|
Wojcieszek J, Jiménez-Lamana J, Bierła K, Ruzik L, Asztemborska M, Jarosz M, Szpunar J. Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish (Raphanus sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:284-292. [PMID: 31132708 DOI: 10.3389/fenvs.2020.00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 05/21/2023]
Abstract
Due to their unique physical and chemical properties, the production and use of cerium oxide nanoparticles (CeO2 NPs) in different areas, especially in automotive industry, is rapidly increasing, causing their presence in the environment. Released CeO2 NPs can undergo different transformations and interact with the soil and hence with plants, providing a potential pathway for human exposure and leading to serious concerns about their impact on the ecosystem and human organism. This study investigates the uptake, bioaccumulation, possible translocation and localization of CeO2 NPs in a model plant (Raphanus sativus L.), whose edible part is in direct contact with the soil where contamination is more likely to happen. The stability of CeO2 NPs in plant growth medium as well as after applying a standard enzymatic digestion procedure was tested by single particle ICP-MS (SP-ICP-MS) showing that CeO2 NPs can remain intact after enzymatic digestion; however, an agglomeration process was observed in the growth medium already after one day of cultivation. An enzymatic digestion method was next used in order to extract intact nanoparticles from the tissues of plants cultivated from the stage of seeds, followed by size characterization by SP-ICP-MS. The results obtained by SP-ICP-MS showed a narrower size distribution in the case of roots suggesting preferential uptake of smaller nanoparticles which led to the conclusion that plants do not take up the CeO2 NPs agglomerates present in the medium. However, nanoparticles at higher diameters were observed after analysis of leaves plus stems. Additionally, a small degree of dissolution was observed in the case of roots. Finally, after CeO2 NPs treatment of adult plants, the spatial distribution of intact CeO2 NPs in the radish roots was studied by laser ablation ICP-MS (LA-ICP-MS) and the ability of NPs to enter and be accumulated in root tissues was confirmed.
Collapse
Affiliation(s)
| | - Javier Jiménez-Lamana
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), CNRS-UPPA, UMR5254, Pau, France.
| | - Katarzyna Bierła
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), CNRS-UPPA, UMR5254, Pau, France
| | - Lena Ruzik
- Faculty of Chemistry, Warsaw University of Technology, Poland
| | - Monika Asztemborska
- Isotopic Laboratory, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maciej Jarosz
- Faculty of Chemistry, Warsaw University of Technology, Poland
| | - Joanna Szpunar
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), CNRS-UPPA, UMR5254, Pau, France
| |
Collapse
|
37
|
Coman V, Oprea I, Leopold LF, Vodnar DC, Coman C. Soybean Interaction with Engineered Nanomaterials: A Literature Review of Recent Data. NANOMATERIALS 2019; 9:nano9091248. [PMID: 31484310 PMCID: PMC6780927 DOI: 10.3390/nano9091248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023]
Abstract
With a continuous increase in the production and use in everyday life applications of engineered nanomaterials, concerns have appeared in the past decades related to their possible environmental toxicity and impact on edible plants (and therefore, upon human health). Soybean is one of the most commercially-important crop plants, and a perfect model for nanomaterials accumulation studies, due to its high biomass production and ease of cultivation. In this review, we aim to summarize the most recent research data concerning the impact of engineered nanomaterials on the soya bean, covering both inorganic (metal and metal-oxide nanoparticles) and organic (carbon-based) nanomaterials. The interactions between soybean plants and engineered nanomaterials are discussed in terms of positive and negative impacts on growth and production, metabolism and influences on the root-associated microbiota. Current data clearly suggests that under specific conditions, nanomaterials can negatively influence the development and metabolism of soybean plants. Moreover, in some cases, a possible risk of trophic transfer and transgenerational impact of engineered nanomaterials are suggested. Therefore, comprehensive risk-assessment studies should be carried out prior to any mass productions of potentially hazardous materials.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Ioana Oprea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Loredana Florina Leopold
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Cristina Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
38
|
Shull TE, Kurepa J, Smalle JA. Anatase TiO 2 Nanoparticles Induce Autophagy and Chloroplast Degradation in Thale Cress ( Arabidopsis thaliana). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9522-9532. [PMID: 31356742 DOI: 10.1021/acs.est.9b01648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The extensive use of TiO2 nanoparticles and their subsequent release into the environment have posed an important question about the effects of this nanomaterial on ecosystems. Here, we analyzed the link between the damaging effects of reactive oxygen species generated by TiO2 nanoparticles and autophagy, a housekeeping mechanism that removes damaged cellular constituents. We show that TiO2 nanoparticles induce autophagy in the plant model system Arabidopsis thaliana and that autophagy is an important mechanism for managing TiO2 nanoparticle-induced oxidative stress. Additionally, we find that TiO2 nanoparticles induce oxidative stress predominantly in chloroplasts and that this chloroplastic stress is mitigated by autophagy. Collectively, our results suggest that photosynthetic organisms are particularly susceptible to TiO2 nanoparticle toxicity.
Collapse
Affiliation(s)
- Timothy E Shull
- Department of Plant and Soil Sciences , University of Kentucky , Lexington , Kentucky 40546 United States
| | - Jasmina Kurepa
- Department of Plant and Soil Sciences , University of Kentucky , Lexington , Kentucky 40546 United States
| | - Jan A Smalle
- Department of Plant and Soil Sciences , University of Kentucky , Lexington , Kentucky 40546 United States
| |
Collapse
|
39
|
Sperdouli I, Moustaka J, Antonoglou O, Adamakis IDS, Dendrinou-Samara C, Moustakas M. Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2498. [PMID: 31390827 PMCID: PMC6695995 DOI: 10.3390/ma12152498] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Young and mature leaves of Arabidopsis thaliana were exposed by foliar spray to 30 mg L-1 of CuZn nanoparticles (NPs). The NPs were synthesized by a microwave-assisted polyol process and characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). CuZn NPs effects in Arabidopsis leaves were evaluated by chlorophyll fluorescence imaging analysis that revealed spatiotemporal heterogeneity of the quantum efficiency of PSII photochemistry (ΦPSΙΙ) and the redox state of the plastoquinone (PQ) pool (qp), measured 30 min, 90 min, 180 min, and 240 min after spraying. Photosystem II (PSII) function in young leaves was observed to be negatively influenced, especially 30 min after spraying, at which point increased H2O2 generation was correlated to the lower oxidized state of the PQ pool.. Recovery of young leaves photosynthetic efficiency appeared only after 240 min of NPs spray when also the level of ROS accumulation was similar to control leaves. On the contrary, a beneficial effect on PSII function in mature leaves after 30 min of the CuZn NPs spray was observed, with increased ΦPSΙΙ, an increased electron transport rate (ETR), decreased singlet oxygen (1O2) formation, and H2O2 production at the same level of control leaves.An explanation for this differential response is suggested.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, GR-57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis-Dimosthenis S Adamakis
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
40
|
Laughton S, Laycock A, von der Kammer F, Hofmann T, Casman EA, Rodrigues SM, Lowry GV. Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS. JOURNAL OF NANOPARTICLE RESEARCH 2019; 21:174. [PMID: 0 DOI: 10.1007/s11051-019-4620-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/25/2019] [Indexed: 05/21/2023]
|
41
|
Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW, Xing B. Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:319-327. [PMID: 31015082 DOI: 10.1016/j.jenvman.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/06/2019] [Accepted: 04/13/2019] [Indexed: 05/04/2023]
Abstract
Engineered nanoparticles (NPs) are now used as additives in pesticides and fungicides and as novel fertilizers in agriculture so there is an urgent need to explore their effects on crop yield and quality in a full life cycle study. In the present study, three widely used NPs (TiO2, Fe2O3 and CuO NPs applied at doses of 50 and 500 mg/kg) were selected to investigate their long-term impact on wheat growth. TiO2 NPs did not affect the growth and development of wheat, but Fe2O3 NPs promoted wheat precocity and CuO NPs inhibited the growth and development of the wheat grains. The Cu content in grains treated with CuO NP increased by 18.84%-30.45% compared with the control. However, the contents of Fe and Zn were both significantly lower in the CuO NP treatments. Univariate and multivariate analyses were used to analyze the effect of different NPs on the composition of amino acids in wheat grains. Exposure to TiO2 NPs at dose of 500 mg/kg increased the overall amino acid nutrition in the edible portion of wheat. Fe2O3 NPs at both doses increased the contents of cysteine (Cys) and tyrosine (Tyr). The addition of CuO NPs reduced the level of some essential amino acids in wheat grains, isoleucine (Ile), leucine (Leu), threonine (Thr) and histidine (His). Overall, evaluation of the potential impacts of metal-based NPs on the nutritional quality of wheat grains could provide important information for their safe use when incorporated into agrichemicals in sustainable agriculture.
Collapse
Affiliation(s)
- Yaoyao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fuping Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, United States; Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, United States.
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, United States
| |
Collapse
|
42
|
Li L, Wang Q, Yang Y, Luo L, Ding R, Yang ZG, Li HP. Extraction Method Development for Quantitative Detection of Silver Nanoparticles in Environmental Soils and Sediments by Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2019; 91:9442-9450. [DOI: 10.1021/acs.analchem.8b05575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lei Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Qiang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Hunan Agricultural University, Changsha 410128, PR China
| | - Li Luo
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Ru Ding
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Zhao-Guang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Hai-Pu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| |
Collapse
|
43
|
Challenges in isolating silica particles from organic food matrices with microwave-assisted acidic digestion. Anal Bioanal Chem 2019; 411:5817-5831. [PMID: 31227846 PMCID: PMC6704109 DOI: 10.1007/s00216-019-01964-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/16/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Synthetic amorphous silica is widely used in food processing as a food additive (E551) due to its properties as a flavour carrier and anti-caking agent. The direct measurement of E551 suspended or embedded in complex matrices is difficult without prior removal of the matrix components. The isolation of nanoparticles from the matrix is hence the first step towards their comprehensive characterization. Due to its complexity, matrix removal is frequently not trivial and may cause modification of the number-size distribution of the silica particles. The isolation of engineered silica nanoparticles by removal of the matrix with microwave-assisted acidic digestion is demonstrated methodologically using both monodisperse (size standards) and polydisperse (E551) particles spiked into ultrapure water and tomato sauce. For the characterization of the isolated nanoparticles, asymmetric field flow fractionation (AF4) coupled to multi-angle laser light scattering (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) were chosen. The combination of ICP-MS and ultracentrifugation allowed for the rapid and reliable measurement of the dissolved fraction of SiO2. The results show that microwave-assisted acidic digestion partially dissolves silica nanoparticles. Moreover, the digestion conditions, in particular the low pH value, lead to strong agglomeration of the particles. A complete deagglomeration is not achieved, even when exposing the suspension to elevated sonication doses. The consequence of these two findings is a size distribution of particles after acidic digestion that is different from the original distribution before digestion. This result may have an impact on the evaluation of whether the material is a nanomaterial according to the recommended definition of the European Commission. Graphical abstract.
Collapse
|
44
|
Ghosh M, Ghosh I, Godderis L, Hoet P, Mukherjee A. Genotoxicity of engineered nanoparticles in higher plants. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:132-145. [DOI: 10.1016/j.mrgentox.2019.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
|
45
|
Liu J, Williams PC, Goodson BM, Geisler-Lee J, Fakharifar M, Gemeinhardt ME. TiO 2 nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thaliana plants, and Eisenia fetida earthworms. ENVIRONMENTAL RESEARCH 2019; 172:202-215. [PMID: 30818230 DOI: 10.1016/j.envres.2019.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/11/2019] [Accepted: 02/07/2019] [Indexed: 05/25/2023]
Abstract
Treated wastewater is reclaimed to irrigate crops in a growing number of arid and semi-arid areas. In order to study the impacts of metallic nanoparticles (NPs) present in treated wastewater on soil ecosystems, a soil micro-ecosystem containing Arabidopsis thaliana plants, soil microorganisms, and Eisenia fetida earthworms was developed. The soil was irrigated with deionized water containing environmentally relevant concentrations of 70 µg/L of TiO2 NPs; or 20 µg/L of an Ag mixture, which included 90% (w/w) Ag2S NPs, 7.5% (w/w) Ag0 NPs, and 2.5% (w/w) Ag+ to represent speciation of aged Ag NPs in treated wastewater; or a combination of the TiO2 NPs and the Ag mixture to reflect the frequent presence of both types of materials in treated wastewater. It was found that TiO2 NPs alone were not toxic to the soil micro-ecosystem. Irrigation water containing 20 µg/L of the Ag mixture significantly reduced the soil microbial biomass, and inhibited the growth of plants and earthworms; however, a combination of 70 µg/L of TiO2 and 20 µg/L of Ag did not show toxic impact on organism growth compared to the Control of deionized water irrigation. Taken together, these results indicate the importance of investigating the effects of different nanomaterials in combination as they are introduced to the environment-with environmentally relevant concentrations and speciation-instead of only selecting a single NP type or residual ion. Moreover, the results of this study support the safe application of reclaimed water from wastewater treatment plants for use in agricultural lands in regard to limited concentrations of aged NPs (i.e., TiO2 and Ag) if present in combination.
Collapse
Affiliation(s)
- Jia Liu
- Department of Civil and Environmental Engineering, Southern Illinois University, 1230 Lincoln Dr., Carbondale, IL 62901, USA; Materials Technology Center, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA.
| | - Philip C Williams
- Department of Civil and Environmental Engineering, Southern Illinois University, 1230 Lincoln Dr., Carbondale, IL 62901, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA; Materials Technology Center, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA
| | - Jane Geisler-Lee
- Department of Plant Biology, Southern Illinois University, 1125 Lincoln Dr., Carbondale, IL 62901, USA
| | - Masoud Fakharifar
- Department of Civil and Environmental Engineering, Southern Illinois University, 1230 Lincoln Dr., Carbondale, IL 62901, USA
| | - Max E Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA
| |
Collapse
|
46
|
Lammel T, Mackevica A, Johansson BR, Sturve J. Endocytosis, intracellular fate, accumulation, and agglomeration of titanium dioxide (TiO 2) nanoparticles in the rainbow trout liver cell line RTL-W1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15354-15372. [PMID: 30929178 PMCID: PMC6529399 DOI: 10.1007/s11356-019-04856-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 06/01/2023]
Abstract
There is increasing evidence that titanium dioxide (TiO2) nanoparticles (NPs) present in water or diet can be taken up by fish and accumulate in internal organs including the liver. However, their further fate in the organ is unknown. This study provides new insights into the interaction, uptake mechanism, intracellular trafficking, and fate of TiO2 NPs (Aeroxide® P25) in fish liver parenchymal cells (RTL-W1) in vitro using high-resolution transmission electron microscopy (TEM) and single particle inductively coupled plasma mass spectrometry (spICP-MS) as complementary analytical techniques. The results demonstrate that following their uptake via caveolae-mediated endocytosis, TiO2 NPs were trafficked through different intracellular compartments including early endosomes, multivesicular bodies, and late endosomes/endo-lysosomes, and eventually concentrated inside multilamellar vesicles. TEM and spICP-MS results provide evidence that uptake was nano-specific. Only NPs/NP agglomerates of a specific size range (~ 30-100 nm) were endocytosed; larger agglomerates were excluded from uptake and remained located in the extracellular space/exposure medium. NP number and mass inside cells increased linearly with time and was associated with an increase in particle diameter suggesting intracellular agglomeration/aggregation. No alterations in the expression of genes regulated by the redox balance-sensitive transcription factor Nrf-2 including superoxide dismutase, glutamyl cysteine ligase, glutathione synthetase, glutathione peroxidase, and glutathione S-transferase were observed. This shows that, despite the high intracellular NP burden (~ 3.9 × 102 ng Ti/mg protein after 24 h) and NP-interaction with mitochondria, cellular redox homeostasis was not significantly affected. This study contributes to a better mechanistic understanding of in vitro particokinetics as well as the potential fate and effects of TiO2 NPs in fish liver cells.
Collapse
Affiliation(s)
- Tobias Lammel
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 413 90, Göteborg, Sweden.
| | - Aiga Mackevica
- DTU Environment, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Bengt R Johansson
- The Electron Microscopy Unit, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, 405 30, Göteborg, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 413 90, Göteborg, Sweden
| |
Collapse
|
47
|
Abdolahpur Monikh F, Chupani L, Zusková E, Peters R, Vancová M, Vijver MG, Porcal P, Peijnenburg WJGM. Method for Extraction and Quantification of Metal-Based Nanoparticles in Biological Media: Number-Based Biodistribution and Bioconcentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:946-953. [PMID: 30532971 DOI: 10.1021/acs.est.8b03715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A multistep sample preparation method was developed to separate metal-based engineered nanoparticles (ENPs) from biological samples. The method was developed using spiked zebrafish tissues and standard titanium dioxide (TiO2) and cerium dioxide (CeO2) ENPs. Single-particle inductively coupled plasma mass spectrometry was used to quantify the separated particles in terms of number concentration. This method demonstrated mass recoveries of more than 90% and did not strikingly alter the median particles size. High number recoveries were calculated for CeO2 ENPs (>84%). Particle number recoveries were poor for TiO2 ENPs (<25%), which could be due to the interference of 48Ca with the measured isotope 48Ti. The method was verified using zebrafish exposed to CeO2 ENPs to test its applicability for nanotoxicokinetic investigations. Total mass of Ce and particle number concentration of CeO2 ENPs were measured in different tissues. Notably, the mass-based biodistribution of Ce in the tissues did not follow the number-based biodistribution of CeO2. Moreover, the calculated mass-based bioconcentration factors showed a different pattern in comparison to the number-based bioconcentration factors. Our findings suggest that considering mass as the sole dose-metric may not provide sufficient information to investigate toxicity and toxicokinetics of ENPs.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , Netherlands
| | - Latifeh Chupani
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters , University of South Bohemia in České Budějovice , Vodňany , Czech Republic
| | - Eliska Zusková
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters , University of South Bohemia in České Budějovice , Vodňany , Czech Republic
| | - Ruud Peters
- RIKILT Wageningen UR , Akkermaalsbos 2 , 6708 WB Wageningen , Netherlands
| | - Marie Vancová
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Parasitology, Faculty of Science , University of South Bohemia , Branišovská 31 , 37005 České Budějovice , Czech Republic
| | - Martina G Vijver
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , Netherlands
| | - Petr Porcal
- Biology Centre CAS , Institute of Hydrobiology and Soil & Water Research Infrastructure, Faculty of Science , Na Sádkách 7 , České Budějovice , Czech Republic
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , Netherlands
- National Institute of Public Health and the Environment (RIVM) , Center for Safety of Substances and Products , Bilthoven , Netherlands
| |
Collapse
|
48
|
Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D, Unrine J, van den Brink N, Wang Y, White J, Holden P. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. ENVIRONMENTAL SCIENCE. NANO 2019; 6:10.1039/C8EN01378K. [PMID: 31579514 PMCID: PMC6774209 DOI: 10.1039/c8en01378k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Richard Handy
- Plymouth University, School of Biological Sciences, United Kingdom
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Monique Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Henriette Selck
- Roskilde University, Dept. of Science and Environment, Denmark
| | | | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Nico van den Brink
- Department of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ying Wang
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Jason White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Patricia Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
49
|
Chen Y, Wu N, Mao H, Zhou J, Su Y, Zhang Z, Zhang H, Yuan S. Different toxicities of nanoscale titanium dioxide particles in the roots and leaves of wheat seedlings. RSC Adv 2019; 9:19243-19252. [PMID: 35516862 PMCID: PMC9065167 DOI: 10.1039/c9ra02984b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/07/2019] [Indexed: 11/21/2022] Open
Abstract
Despite previous studies on exploring the environmental effects of titanium dioxide nanoparticles particle (nTiO2) on plants, the detailed impacts of nTiO2on the antioxidant system and photosynthesis of plants is still not well understood.
Collapse
Affiliation(s)
- Yanger Chen
- College of Life Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Nan Wu
- College of Life Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Haotian Mao
- College of Life Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Jun Zhou
- College of Life Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Yanqiu Su
- College of Life Science
- Sichuan University
- Chengdu 610064
- China
| | - Zhongwei Zhang
- College of Resources
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Huaiyu Zhang
- College of Life Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Shu Yuan
- College of Resources
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|
50
|
Xu F. Review of analytical studies on TiO 2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. CHEMOSPHERE 2018; 212:662-677. [PMID: 30173113 DOI: 10.1016/j.chemosphere.2018.08.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industrial and consumer products. Comprehensive and accurate detection, characterization, and quantification of TiO2 NPs are important for understanding the specific property, behavior, fate, and potential risk of TiO2 NPs in natural and engineered environments. This review provides a summary of recent analytical studies of TiO2 NPs and their aggregation, coagulation, flocculation, sedimentation, stabilization under a wide range of conditions and processes. Much attention is paid on sample preparation prior to an analytical procedure, analysis of particle size, morphology, structure, state, chemical composition, surface properties, etc., via measurements of light scattering and zeta potential, microscopy, spectroscopy, and related techniques. Recently, some advanced techniques have also been explored to characterize TiO2 NPs and their behaviors in the environment. Many issues must be considered including distinction between engineered TiO2 NPs and their naturally occurring counterparts, lack of reference materials, interlaboratory comparison, when analyzing low concentrations of TiO2 NPs and their behaviors in complex matrices. No "ideal" technique has emerged as each technique has its own merits, biases, and limitations. Multi-method approach is highlighted to provide in-depth information. Improvements of analytical method for determination of TiO2 NPs have been recommended to be together with exposure modelers and ecotoxicologists for maximum individual and mutual benefit. Future work should focus on developing analytical technology with the advantages of being reliable, sensitive, selective, reproducible, and capable of in situ detection in complicated sample system.
Collapse
Affiliation(s)
- Fang Xu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, 27599-7431, USA.
| |
Collapse
|