1
|
Nguyen TV, Kumar A, Taraji M, Lloyd NDR. Assessment of PFDA toxicity on RTgill-W1 cell line via metabolomics and lipidomics approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107395. [PMID: 40344972 DOI: 10.1016/j.aquatox.2025.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/16/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Perfluorodecanoic acid (PFDA), a long-chain perfluoroalkyl substance (PFAS), is known for its environmental persistence and potential toxicity. This study evaluated PFDA toxicity in the RTgill-W1 cell line, a model for aquatic toxicology, using a combination of cell viability assays, reactive oxygen species (ROS) measurements, and high-throughput metabolomics and lipidomics. PFDA exposure resulted in significant, dose-dependent reductions in cell viability and increased ROS production, with an EC₅₀ value of 51.9 ± 1.7 mg/L, highlighting its cytotoxic potential. Metabolomic profiling revealed dose-dependent disruptions in 168 metabolites, impacting pathways related to amino acid metabolism, carbohydrate metabolism, lipid metabolism, vitamin and cofactor metabolism, and nucleotide metabolism. Furthermore, lipidomic analysis identified 102 significantly altered lipids, primary affecting glycerolipid metabolism, fatty acid biosynthesis, glycerophospholipid metabolism, sphingolipid metabolism - suggesting compromised membrane integrity, energy production, and signalling processes. These findings underscore PFDA's capacity to interfere with critical cellular processes and highlight the utility of integrated omics approaches in elucidating the molecular mechanisms of PFAS toxicity. Future studies should focus on validating fish cell assays through short-term in vivo tests to enhance their reliability and ecological relevance.
Collapse
Affiliation(s)
- Thao V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, Urrbrae, South Australia, 5064, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| | - Anu Kumar
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, Urrbrae, South Australia, 5064, Australia.
| | - Maryam Taraji
- The Australian Wine Research Institute, PO Box 46, Glenside, South Australia, 5065, Australia; Metabolomics Australia, PO Box 46, Glenside, South Australia, 5065, Australia
| | - Natoiya D R Lloyd
- The Australian Wine Research Institute, PO Box 46, Glenside, South Australia, 5065, Australia; Metabolomics Australia, PO Box 46, Glenside, South Australia, 5065, Australia
| |
Collapse
|
2
|
Huang Q, Hou R, Wang Y, Lin L, Li H, Liu S, Xu X, Yu K, Huang X. Emerging and legacy organophosphate flame retardants in the tropical estuarine food web: Do they exhibit similar bioaccumulation patterns, trophic partitioning and dietary exposure? WATER RESEARCH X 2025; 27:100294. [PMID: 39801790 PMCID: PMC11721218 DOI: 10.1016/j.wroa.2024.100294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the Σ10L-OPFRs concentration (16.1-1.18 × 105 lipid weight (lw)) was significantly greater than that of Σ8E-OPFRs (nondetectable (nd) - 2.82 × 103 ng/g lw) among the investigated organisms, and they both exhibited similar trends: fish
Collapse
Affiliation(s)
- Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuchen Wang
- College of Life Sciences and Engineering, Jinan University, Guangzhou 510632, China
| | - Lang Lin
- South China Sea Bureau of Ministry of Natural Resources, Guangzhou 510310, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
3
|
Gredelj A, Roberts J, Kearney EM, Barrett EL, Haywood N, Sheffield D, Hodges G, Miller MA. Predicting aquatic toxicity of anionic hydrocarbon and perfluorinated surfactants using membrane-water partition coefficients from coarse-grained simulations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1131-1144. [PMID: 40146042 DOI: 10.1039/d4em00649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Anionic surfactants are widely used in commercial and industrial applications. For assessment of their environmental fate and effects, it is highly desirable to quantify the membrane-water partition/distribution coefficient (Kmw/Dmw). Here, we further develop a computational route to Dmw for anionic surfactants based on coarse-grained molecular dynamics simulations, validating it against new and existing experimental measurements. Having parameterised molecular fragments for the coarse-grained models, the simulations are used to predict Dmw for molecules where no experimental values are available. This expanded set of simulated Dmw values is then used to derive QSARs for acute toxicity of mono-constituent anionic surfactants in daphnids and fish, allowing for extrapolation to similar compounds without experimental Dmw values. For this study, we have selected hydrocarbon-based (HC) surfactants because of their widespread use, and perfluorinated (FC) surfactants as a challenging case study. Separate daphnid and fish QSARs demonstrate good fits, robustness and predictivity, and highlight differing toxicity relationships for HC and FC surfactants in daphnids. Overall, the combined use of simulated Dmw and derived QSARs is a promising approach for ecotoxicity screening of surfactants.
Collapse
Affiliation(s)
- Andrea Gredelj
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box. 3930 Ullevål Stadion, N-0806 Oslo, Norway.
| | - Jayne Roberts
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Eoin M Kearney
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | - Elin L Barrett
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Nicola Haywood
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - David Sheffield
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Geoff Hodges
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Mark A Miller
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
4
|
Bae E, Beil S, König M, Stolte S, Escher BI, Markiewicz M. Assessing Modes of Toxic Action of Organic Cations in In Vitro Cell-Based Bioassays: the Critical Role of Partitioning to Cells and Medium Components. Chem Res Toxicol 2025; 38:488-502. [PMID: 40036051 PMCID: PMC11921022 DOI: 10.1021/acs.chemrestox.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
High-throughput cell-based bioassays can fulfill the growing need to assess the hazards and modes of toxic action (MOA) of ionic liquids (ILs). Although nominal concentrations (Cnom) are typically used in an in vitro bioassay, freely dissolved concentrations (Cfree) are considered a more accurate dose metric because they account for chemical partitioning processes and are informative about MOA. We determined the Cfree of IL cations in AREc32 and AhR-CALUX assays using both mass balance model (MBM) prediction and experimental quantification. Partition coefficients between membrane lipid-water (Kmw), serum albumin-water (Kalbumin/w), and cell-water (Kcell/w) as well as potential confounding factors (binding to a test plate and micelle formation) were determined to improve the MBM prediction. IL cations showed a higher affinity for both cell lines than that predicted by the MBM based on Kmw and Kalbumin/w. Their affinity for the AhR-CALUX cells was more than 1 order of magnitude higher than for the AREc32, signifying cell line-specific affinity. The MBM with an experimental Kcell/w accurately predicted Cfree. Evaluating cytotoxicity based on Cfree eliminated the leveling off of toxicity observed for hydrophobic IL cations (side chain cutoff), suggesting that Cnom underestimates the effects of compounds with high affinity for the assay medium. Cell membrane concentrations calculated from Cfree using Kmw were compared to the critical membrane burden to identify whether IL cations act as baseline toxicants. The IL cations carrying 16 carbons in the chain in the AREc32 assay and most of the IL cations in the AhR-CALUX assay were classified as excess toxicants. However, since the reasons for the deviation of experimental Kcell/w from MBM prediction remain unexplained, it is uncertain whether the cell membrane concentrations can be well predicted from Kmw used in this study. Therefore, future studies should aim to uncover the underlying causes of differing cell affinities observed across cell lines and model predictions.
Collapse
Affiliation(s)
- Eunhye Bae
- Institute
of Water Chemistry, Dresden University of
Technology, D-01062 Dresden, Germany
| | - Stephan Beil
- Institute
of Water Chemistry, Dresden University of
Technology, D-01062 Dresden, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research-UFZ, D-04318 Leipzig, Germany
| | - Stefan Stolte
- Institute
of Water Chemistry, Dresden University of
Technology, D-01062 Dresden, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research-UFZ, D-04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, D-72076 Tübingen, Germany
| | - Marta Markiewicz
- Institute
of Water Chemistry, Dresden University of
Technology, D-01062 Dresden, Germany
| |
Collapse
|
5
|
Chen R, Muensterman D, Field J, Ng C. Deriving Membrane-Water and Protein-Water Partition Coefficients from In Vitro Experiments for Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:82-91. [PMID: 39757451 PMCID: PMC11740993 DOI: 10.1021/acs.est.4c06734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
The phospholipid membrane-water partition coefficients (KMW) and equilibrium binding affinities for human serum albumin (HSA) of 60 structurally diverse perfluoroalkyl and polyfluoroalkyl substances (PFAS) were evaluated through laboratory measurements and modeling to enhance our understanding of PFAS distribution in organisms. Per- and polyfluoroalkyl carboxylic acids exhibited a 0.36 ± 0.01 log-unit increase in KMW as the fluorinated carbon chain length increased from C4 to C16, while per- and polyfluoroalkyl sulfonates showed a 0.37 ± 0.02 log-unit increase. The highest HSA affinity range was observed between C6 and C10, with the following structural subclass order: per- and polyfluoroalkyl sulfonates ≈ ether sulfonic acids > polyfluoroalkyl carboxylic acids > fluorotelomer unsaturated carboxylic acids > phosphate diesters ≈ per- and polyfluoroether carboxylic acids. A comparison between association rate constants (KA) and HSA-PFAS molecular docking predictions with AutoDock Vina indicated that modeling could effectively predict the affinity of PFAS to HSA, especially for PFAS carbon chain lengths from C4 to C10. Based on in vitro results, exposure-dependent PFAS partitioning in organisms was modeled by comparing distribution coefficients between PFAS in phospholipid membranes and HSA at different PFAS concentrations and demonstrated that at lower concentrations, PFAS had higher partitioning in HSA, while with increasing concentration, the proportion of binding relative to the aqueous phase shifted toward the phospholipid membrane. Few studies have compared the bioaccumulation of PFAS in phospholipid membranes and HSA. This research reports that protein-water distribution coefficients are higher than membrane-water partitioning coefficients at lower PFAS concentrations, which may have implications for interpreting exposure data and toxicity experiments.
Collapse
Affiliation(s)
- Ruiwen Chen
- Department
of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Derek Muensterman
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jennifer Field
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Carla Ng
- Department
of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Sobolewski TN, Trousdale RC, Gauvin CL, Lawrence CM, Walker RA. Nanomolar PFOA Concentrations Affect Lipid Membrane Structure: Consequences for Bioconcentration Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:709-718. [PMID: 39718541 DOI: 10.1021/acs.est.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Independent methods show that sub-microMolar concentrations of perfluorooctanoic acid (PFOA), a member of the PFAS family of "forever chemicals", change the properties of DPPC vesicle bilayers. Specifically, calorimetry measurements show that PFOA at concentrations as low as 0.1 nM lowers DPPC's gel-liquid crystalline transition enthalpy by several J/g without changing the transition temperature (Tgel-LC), and dynamic light scattering (DLS) data illustrate that PFOA markedly broadens the size distribution of DPPC vesicles. Furthermore, DLS results from PFOA-containing, DPPC vesicle solutions also contain smaller objects having diameters of 30-50 nm. Close inspection of cryo-EM images reveals that DPPC vesicles formed in the presence of PFOA are multilamellar and the smaller objects have a clear bilayer structure similar to niosomes. A consequence of these PFOA-induced changes to DPPC bilayer structure is that the bilayers themselves are more susceptible to secondary solute accumulation. Time resolved emission measurements of Coumarin 152 (C152) report that C152 is 3-fold more likely to partition into the bilayer's acyl chain, hydrophobic interior when PFOA is present, and fluorescence lifetimes from C152 partitioned into the polar region of the lipid bilayer show evidence of PFOA-induced membrane hydration below Tgel-LC.
Collapse
Affiliation(s)
- Tess N Sobolewski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Rhys C Trousdale
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Colin L Gauvin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Robert A Walker
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Montana Materials Science Program, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
7
|
Figueroa-Muñoz G, Murphy CA, Whittum K, Zydlewski J. Cleaner cuts: Farmed fish and skin-off fillets are lower in per- and polyfluoroalkyl substances (PFAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178266. [PMID: 39733574 DOI: 10.1016/j.scitotenv.2024.178266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
The ubiquitous occurrence and persistence of per- and polyfluoroalkyl substances (PFAS) in all environmental matrices and biota poses significant health risks to humans. Fish consumption is one of the main pathways humans are exposed to PFAS, yet general patterns in factors influencing PFAS content in fish fillets remain unknown. We assembled information on PFAS content (total quantified PFAS, PFOS, PFOA, and others) in fish fillets to assess the effect of fish origin (marine, freshwater, wild, or farmed), fillet type (skin-on or skin-off), and lipid content on PFAS variation across environments at a global scale. We found that these factors influenced PFAS contents in fish fillets, with concentrations reaching up to 2149 ng•g wet mass-1 (WM). Specifically, PFOS and PFOA in skin-off fillets were consistently lower in farmed than wild fish across freshwater and marine environments. In freshwater wild fish, PFOS was lower in skin-off fillets than skin-on fillets at group and species levels, and multiple PFAS showed an inverse relationship with the lipid content of skin-off fillets, though the slopes showed varying steepness depending on the carbon chain length and functional group of the PFAS. However, the high variability of PFAS content across sites in aquatic environments and the complexity of PFAS bioaccumulation mechanisms in fish tissues may lead to variable results at a fine scale (i.e., species level); this highlights general patterns of factors influencing PFAS bioaccumulation that may inform the management of human exposure to PFAS through dietary consumption.
Collapse
Affiliation(s)
- Guillermo Figueroa-Muñoz
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME, United States.
| | - Christina A Murphy
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME, United States; U.S. Geological Survey, Maine Cooperative Fish and Wildlife Research Unit, Orono, ME, United States
| | - Kory Whittum
- Maine Department of Inland Fisheries and Wildlife, Augusta, ME, United States
| | - Joseph Zydlewski
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME, United States; U.S. Geological Survey, Maine Cooperative Fish and Wildlife Research Unit, Orono, ME, United States
| |
Collapse
|
8
|
Maerten A, Callewaert E, Sanz-Serrano J, Devisscher L, Vinken M. Effects of per- and polyfluoroalkyl substances on the liver: Human-relevant mechanisms of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176717. [PMID: 39383969 DOI: 10.1016/j.scitotenv.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are abundantly used in a plethora of products with applications in daily life. As a result, PFAS are widely distributed in the environment, thus providing a source of exposure to humans. The majority of human exposure to PFAS is attributed to the human diet, which encompasses drinking water. Their chemical nature grants persistent, accumulative and toxic properties, which are currently raising concerns. Over the past few years, adverse effects of PFAS on different organs have been repeatedly documented. Numerous epidemiological studies established a clear link between PFAS exposure and liver toxicity. Likewise, effects of PFAS on liver homeostasis, lipid metabolism, bile acid metabolism and hepatocarcinogenesis have been reported in various in vitro and in vivo studies. This review discusses the role of PFAS in liver toxicity with special attention paid to human relevance as well as to the mechanisms underlying the hepatotoxic effects of PFAS. Future perspectives and remaining knowledge gaps were identified to enhance future PFAS risk assessment.
Collapse
Affiliation(s)
- Amy Maerten
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julen Sanz-Serrano
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Sciences, Universiteit Gent, Gent, Belgium; Liver Research Center Ghent, Universiteit Gent, University Hospital Ghent, Gent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
9
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
10
|
Kelly BC, Sun JM, McDougall MRR, Sunderland EM, Gobas FAPC. Development and Evaluation of Aquatic and Terrestrial Food Web Bioaccumulation Models for Per- and Polyfluoroalkyl Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17828-17837. [PMID: 39327829 PMCID: PMC11465642 DOI: 10.1021/acs.est.4c02134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024]
Abstract
There is a need for reliable models to predict the food web bioaccumulation and assess ecological and human health risks of per- and polyfluoroalkyl substances (PFAS). This present study presents (i) the development of novel mechanistic aquatic and terrestrial food web bioaccumulation models for PFAS and (ii) an evaluation of model performance using available laboratory and field data. Model predictions of laboratory-measured bioconcentration factors and field-based bioaccumulation factors of PFAS in fish were in good agreement with observed data as measured by the mean model bias (MB), representing systematic over- or under-estimation and the standard deviation of the MB, representing general uncertainty. The models provide a mechanistic framework for evaluating the combined effect of simultaneously occurring uptake and elimination processes and indicate food web-specific magnification of PFAS, with the highest degree of biomagnification occurring in food webs composed of air-breathing wildlife. Albumin-water, structural protein-water, membrane-water distribution coefficients, and renal clearance rate are among the most important model parameters. With further development and testing, these models may be useful for future PFAS screening and risk assessment initiatives and advance bioaccumulation studies of PFAS by providing a mechanistic framework for PFAS bioaccumulation.
Collapse
Affiliation(s)
- Barry C. Kelly
- Meta
Analytical Inc., Calgary, Alberta T3H 2Z5, Canada
- School
of Resource & Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Jennifer M. Sun
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Mandy R. R. McDougall
- School
of Resource & Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Frank A. P. C. Gobas
- School
of Resource & Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
11
|
Ríos-Bonilla K, Aga DS, Lee J, König M, Qin W, Cristobal JR, Atilla-Gokcumen GE, Escher BI. Neurotoxic Effects of Mixtures of Perfluoroalkyl Substances (PFAS) at Environmental and Human Blood Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39259824 PMCID: PMC11428134 DOI: 10.1021/acs.est.4c06017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) may cause various deleterious health effects. Epidemiological studies have demonstrated associations between PFAS exposure and adverse neurodevelopmental outcomes. The cytotoxicity, neurotoxicity, and mitochondrial toxicity of up to 12 PFAS including perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and hexafluoropropylene oxide-dimer acid (HPFO-DA) were tested at concentrations typically observed in the environment (e.g., wastewater, biosolids) and in human blood using high-throughput in vitro assays. The cytotoxicity of all individual PFAS was classified as baseline toxicity, for which prediction models based on partition constants of PFAS between biomembrane lipids and water exist. No inhibition of the mitochondrial membrane potential and activation of oxidative stress response were observed below the cytotoxic concentrations of any PFAS tested. All mixture components and the designed mixtures inhibited the neurite outgrowth in differentiated neuronal cells derived from the SH-SY5Y cell line at concentrations around or below cytotoxicity. All designed mixtures acted according to concentration addition at low effect and concentration levels for cytotoxicity and neurotoxicity. The mixture effects were predictable from the experimental single compounds' concentration-response curves. These findings have important implications for the mixture risk assessment of PFAS.
Collapse
Affiliation(s)
- Karla
M. Ríos-Bonilla
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Diana S. Aga
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Jungeun Lee
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Weiping Qin
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Judith R. Cristobal
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Gunes Ekin Atilla-Gokcumen
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| |
Collapse
|
12
|
Usuda H, Mishima Y, Noda K, Toyoshima T, Sakurai K, Takamura C, Takahashi A, Minami K, Kawamoto T. Vesicles exhibit high-performance removal of per-and polyfluoroalkyl substances (PFAS) depending on their hydrophobic groups. CHEMOSPHERE 2024; 363:142818. [PMID: 39002653 DOI: 10.1016/j.chemosphere.2024.142818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The removal of per- and polyfluoroalkyl substances (PFAS) from drinking water is urgently needed. Here, we demonstrated high performance of vesicles on PFAS adsorption. Vesicles used in this study were enclosed amphiphile bilayers keeping their hydrophobic groups inside and their hydrophilic groups outside in water. The distribution coefficient Kd of perfluorooctane sulfonic acid (PFOS) for vesicles was 5.3 × 105 L/kg, which is higher than that for granulated activated carbon (GAC), and Kd of perfluorooctanoic acid (PFOA) for vesicles was 103-104 L/kg. The removal efficiencies of PFOA and PFOS adsorption on DMPC vesicles were 97.1 ± 0.1% and 99.4 ± 0.2%, respectively. The adsorption behaviors of PFOA and PFOS on vesicles were investigated by changing the number of cis-double bonds in the hydrophobic chains of the vesicle constituents. Moreover, vesicles formed by membranes in the different phases were also tested. The results revealed that, when vesicles are formed of a membrane in the liquid-crystalline (liquid-like) phase, the adsorption amounts of both PFOA and PFOS increased as the cis-double bond in the hydrocarbon chains decreased, which is considered due to molecular shape similarity. When vesicles are formed of a membrane in the gel (solid-like) phase, they do not adsorb PFAS as much as in the liquid-crystalline phase, even though the hydrocarbon chains do not have any cis-double bond. Our findings demonstrate that vesicles can be utilized as PFAS adsorbents by optimizing the structure of vesicle constituents and their thermodynamical phase. Indeed, the vesicles (DMPC) were demonstrated that they can adsorb PFOA and PFOS, and be coagulated by a coagulant even in environmental water. The coagulation will enable the removal of PFOA and PFOS from the water after adsorption.
Collapse
Affiliation(s)
- Hatsuho Usuda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan.
| | - Yoshie Mishima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Keiko Noda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Takahiro Toyoshima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Koji Sakurai
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Chieko Takamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Akira Takahashi
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Kimitaka Minami
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Tohru Kawamoto
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan.
| |
Collapse
|
13
|
Ryu S, Burchett W, Zhang S, Jia X, Modaresi SMS, Agudelo J, Rodrigues D, Zhu H, Sunderland EM, Fischer FC, Slitt AL. Unbound Fractions of PFAS in Human and Rodent Tissues: Rat Liver a Suitable Proxy for Evaluating Emerging PFAS? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14641-14650. [PMID: 39161261 PMCID: PMC11825104 DOI: 10.1021/acs.est.4c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Adverse health effects associated with exposures to perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a concern for public health and are driven by their elimination half-lives and accumulation in specific tissues. However, data on PFAS binding in human tissues are limited. Accumulation of PFAS in human tissues has been linked to interactions with specific proteins and lipids in target organs. Additional data on PFAS binding and unbound fractions (funbound) in whole human tissues are urgently needed. Here, we address this gap by using rapid equilibrium dialysis to measure the binding and funbound of 16 PFAS with 3 to 13 perfluorinated carbon atoms (ηpfc = 3-13) and several functional headgroups in human liver, lung, kidney, heart, and brain tissue. We compare results to mouse (C57BL/6 and CD-1) and rat tissues. Results show that funbound decreases with increasing fluorinated carbon chain length and hydrophobicity. Among human tissues, PFAS binding was generally greatest in brain > liver ≈ kidneys ≈ heart > lungs. A correlation analysis among human and rodent tissues identified rat liver as a suitable surrogate for predicting funbound for PFAS in human tissues (R2 ≥ 0.98). The funbound data resulting from this work and the rat liver prediction method offer input parameters and tools for toxicokinetic models for legacy and emerging PFAS.
Collapse
Affiliation(s)
- Sangwoo Ryu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI United States
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT 06340 United States
| | - Woodrow Burchett
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT 06340 United States
| | - Sam Zhang
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT 06340 United States
| | - Xuelian Jia
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, United States
- Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, Louisiana, 70112, United States
| | | | - Juliana Agudelo
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI United States
| | - David Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT 06340 United States
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, United States
- Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, Louisiana, 70112, United States
| | - Elsie M. Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Fabian Christoph Fischer
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Angela L. Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI United States
| |
Collapse
|
14
|
Qin W, Escher BI, Huchthausen J, Fu Q, Henneberger L. Species Difference? Bovine, Trout, and Human Plasma Protein Binding of Per- and Polyfluoroalkyl Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9954-9966. [PMID: 38804966 PMCID: PMC11171458 DOI: 10.1021/acs.est.3c10824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) strongly bind to proteins and lipids in blood, which govern their accumulation and distribution in organisms. Understanding the plasma binding mechanism and species differences will facilitate the quantitative in vitro-to-in vivo extrapolation and improve risk assessment of PFAS. We studied the binding mechanism of 16 PFAS to bovine serum albumin (BSA), trout, and human plasma using solid-phase microextraction. Binding of anionic PFAS to BSA and human plasma was found to be highly concentration-dependent, while trout plasma binding was linear for the majority of the tested PFAS. At a molar ratio of PFAS to protein ν < 0.1 molPFAS/molprotein, the specific protein binding of anionic PFAS dominated their human plasma binding. This would be the scenario for physiological conditions (ν < 0.01), whereas in in vitro assays, PFAS are often dosed in excess (ν > 1) and nonspecific binding becomes dominant. BSA was shown to serve as a good surrogate for human plasma. As trout plasma contains more lipids, the nonspecific binding to lipids affected the affinities of PFAS for trout plasma. Mass balance models that are parameterized with the protein-water and lipid-water partitioning constants (chemical characteristics), as well as the protein and lipid contents of the plasma (species characteristics), were successfully used to predict the binding to human and trout plasma.
Collapse
Affiliation(s)
- Weiping Qin
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Julia Huchthausen
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Qiuguo Fu
- Department
of Environmental Analytical Chemistry, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| |
Collapse
|
15
|
Maculewicz J, Białk-Bielińska A, Kowalska D, Stepnowski P, Stolte S, Beil S, Gajewicz-Skretna A, Dołżonek J. Bioconcentration potential of ionic liquids: New data on membrane partitioning and its comparison with predictions obtained by COSMOmic. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184320. [PMID: 38583701 DOI: 10.1016/j.bbamem.2024.184320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Ionic liquids (ILs) have recently gained significant attention in both the scientific community and industry, but there is a limited understanding of the potential risks they might pose to the environment and human health, including their potential to accumulate in organisms. While membrane and storage lipids have been considered as primary sorption phases driving bioaccumulation, in this study we used an in vitro tool known as solid-supported lipid membranes (SSLMs) to investigate the affinity of ILs to membrane lipid - phosphatidylcholine and compare the results with an existing in silico model. Our findings indicate that ILs may have a strong affinity for the lipids that form cell membranes, with the key factor being the length of the cation's side chain. For quaternary ammonium cations, increase in membrane affinity (logMA) was observed from 3.45 ± 0.06 at 10 carbon atoms in chain to 4.79 ± 0.06 at 14 carbon atoms. We also found that the anion can significantly affect the membrane partitioning of the cation, even though the anions themselves tend to have weaker interactions with phospholipids than the cations of ILs. For 1-methyl-3-octylimidazolium cation the presence of tricyanomethanide anion caused increase in logMA to 4.23 ± 0.06. Although some of our data proved to be consistent with predictions made by the COSMOmic model, there are also significant discrepancies. These results suggest that further research is needed to improve our understanding of the mechanisms and structure-activity relationships involved in ILs bioconcentration and to develop more accurate predictive models.
Collapse
Affiliation(s)
- Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stefan Stolte
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Agnieszka Gajewicz-Skretna
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
16
|
Endo S, Matsuzawa S. Hydrophobic Sorption Properties of an Extended Series of Anionic Per- and Polyfluoroalkyl Substances Characterized by C 18 Chromatographic Retention Measurement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7628-7635. [PMID: 38646668 DOI: 10.1021/acs.est.4c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Partitioning from water to nonaqueous phases is an important process that controls the behavior of contaminants in the environment and biota. However, for ionic chemicals including many perfluoroalkyl and polyfluoroalkyl substances (PFAS), environmentally relevant partition coefficients cannot be predicted using the octanol/water partition coefficient, which is commonly used as a hydrophobicity indicator for neutral compounds. As an alternative, this study measured C18 liquid chromatography retention times of 39 anionic PFAS and 20 nonfluorinated surfactants using isocratic methanol/water eluent systems. By measuring a series of PFAS with different perfluoroalkyl chain lengths, retention factors at 100% water (k0) were successfully extrapolated even for long-chain PFAS. Molecular size was the most important factor determining the k0 of PFAS and non-PFAS, suggesting that the cavity formation process is the key driver for retention. Log k0 showed a high correlation with the log of partition coefficients from water to the phospholipid membrane, air/water interface, and soil organic carbon. The results indicate the potential of C18 retention factors as predictive descriptors for anionic PFAS partition coefficients and the possibility of developing a more comprehensive multiparameter model for the partitioning of anionic substances in general.
Collapse
Affiliation(s)
- Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Sadao Matsuzawa
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Qin W, Henneberger L, Glüge J, König M, Escher BI. Baseline Toxicity Model to Identify the Specific and Nonspecific Effects of Per- and Polyfluoroalkyl Substances in Cell-Based Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5727-5738. [PMID: 38394616 PMCID: PMC10993398 DOI: 10.1021/acs.est.3c09950] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
High-throughput screening is a strategy to identify potential adverse outcome pathways (AOP) for thousands of per- and polyfluoroalkyl substances (PFAS) if the specific effects can be distinguished from nonspecific effects. We hypothesize that baseline toxicity may serve as a reference to determine the specificity of the cell responses. Baseline toxicity is the minimum (cyto)toxicity caused by the accumulation of chemicals in cell membranes, which disturbs their structure and function. A mass balance model linking the critical membrane concentration for baseline toxicity to nominal (i.e., dosed) concentrations of PFAS in cell-based bioassays yielded separate baseline toxicity prediction models for anionic and neutral PFAS, which were based on liposome-water distribution ratios as the sole model descriptors. The specificity of cell responses to 30 PFAS on six target effects (activation of peroxisome proliferator-activated receptor (PPAR) gamma, aryl hydrocarbon receptor, oxidative stress response, and neurotoxicity in own experiments, and literature data for activation of several PPARs and the estrogen receptor) were assessed by comparing effective concentrations to predicted baseline toxic concentrations. HFPO-DA, HFPO-DA-AS, and PFMOAA showed high specificity on PPARs, which provides information on key events in AOPs relevant to PFAS. However, PFAS were of low specificity in the other experimentally evaluated assays and others from the literature. Even if PFAS are not highly specific for certain defined targets but disturb many toxicity pathways with low potency, such effects are toxicologically relevant, especially for hydrophobic PFAS and because PFAS are highly persistent and cause chronic effects. This implicates a heightened need for the risk assessment of PFAS mixtures because nonspecific effects behave concentration-additive in mixtures.
Collapse
Affiliation(s)
- Weiping Qin
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, Tübingen DE-72076, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
| | - Juliane Glüge
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich 8092, Switzerland
| | - Maria König
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, Tübingen DE-72076, Germany
| |
Collapse
|
18
|
Carter LJ, Armitage JM, Brooks BW, Nichols JW, Trapp S. Predicting the Accumulation of Ionizable Pharmaceuticals and Personal Care Products in Aquatic and Terrestrial Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:502-512. [PMID: 35920339 PMCID: PMC12022761 DOI: 10.1002/etc.5451] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The extent to which chemicals bioaccumulate in aquatic and terrestrial organisms represents a fundamental consideration for chemicals management efforts intended to protect public health and the environment from pollution and waste. Many chemicals, including most pharmaceuticals and personal care products (PPCPs), are ionizable across environmentally relevant pH gradients, which can affect their fate in aquatic and terrestrial systems. Existing mathematical models describe the accumulation of neutral organic chemicals and weak acids and bases in both fish and plants. Further model development is hampered, however, by a lack of mechanistic insights for PPCPs that are predominantly or permanently ionized. Targeted experiments across environmentally realistic conditions are needed to address the following questions: (1) What are the partitioning and sorption behaviors of strongly ionizing chemicals among species? (2) How does membrane permeability of ions influence bioaccumulation of PPCPs? (3) To what extent are salts and associated complexes with PPCPs influencing bioaccumulation? (4) How do biotransformation and other elimination processes vary within and among species? (5) Are bioaccumulation modeling efforts currently focused on chemicals and species with key data gaps and risk profiles? Answering these questions promises to address key sources of uncertainty for bioaccumulation modeling of ionizable PPCPs and related contaminants. Environ Toxicol Chem 2024;43:502-512. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Laura J. Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds, United Kingdom and Northern Ireland
| | | | - Bryan W. Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - John W. Nichols
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Office of Research and Development, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Stefan Trapp
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Ye B, Wang J, Zhou L, Yu X, Sui Q. Perfluoroalkyl acid precursors in agricultural soil-plant systems: Occurrence, uptake, and biotransformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168974. [PMID: 38036134 DOI: 10.1016/j.scitotenv.2023.168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Perfluoroalkyl acid (PFAA) precursors have been used in various consumer and industrial products due to their hydrophobic and oleophobic properties. In recent years, PFAA precursors in agricultural soil-plant systems have received increasing attention as they are susceptible to biotransformation into metabolites with high biotoxicity risks to human health. In this review, we systematically assessed the occurrence of PFAA precursors in agricultural soils, taking into account their sources and biodegradation pathways. In addition, we summarized the findings of the relevant literature on the uptake and biotransformation of PFAA precursors by agricultural plants. The applications of biosolids/composts and pesticides are the main sources of PFAA precursors in agricultural soils. The physicochemical properties of PFAA precursors, soil organic carbon (SOC) contents, and plant species are the key factors influencing plant root uptakes of PFAA precursors from soils. This review revealed, through toxicity assessment, the potential of PFAA precursors to generate metabolites with higher toxicity than the parent precursors. The results of this paper provide a reference for future research on PFAA precursors and their metabolites in soil-plant systems.
Collapse
Affiliation(s)
- Beibei Ye
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
20
|
Golosovskaia E, Örn S, Ahrens L, Chelcea I, Andersson PL. Studying mixture effects on uptake and tissue distribution of PFAS in zebrafish (Danio rerio) using physiologically based kinetic (PBK) modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168738. [PMID: 38030006 DOI: 10.1016/j.scitotenv.2023.168738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously distributed in the aquatic environment. They include persistent, mobile, bioaccumulative, and toxic chemicals and it is therefore critical to increase our understanding on their adsorption, distribution, metabolism, excretion (ADME). The current study focused on uptake of seven emerging PFAS in zebrafish (Danio rerio) and their potential maternal transfer. In addition, we aimed at increasing our understanding on mixture effects on ADME by developing a physiologically based kinetic (PBK) model capable of handling co-exposure scenarios of any number of chemicals. All studied chemicals were taken up in the fish to varying degrees, whereas only perfluorononanoate (PFNA) and perfluorooctanoate (PFOA) were quantified in all analysed tissues. Perfluorooctane sulfonamide (FOSA) was measured at concerningly high concentrations in the brain (Cmax over 15 μg/g) but also in the liver and ovaries. All studied PFAS were maternally transferred to the eggs, with FOSA and 6:2 perfluorooctane sulfonate (6,2 FTSA) showing significant (p < 0.02) signs of elimination from the embryos during the first 6 days of development, while perfluorobutane sulfonate (PFBS), PFNA, and perfluorohexane sulfonate (PFHxS) were not eliminated in embryos during this time-frame. The mixture PBK model resulted in >85 % of predictions within a 10-fold error and 60 % of predictions within a 3-fold error. At studied levels of PFAS exposure, competitive binding was not a critical factor for PFAS kinetics. Gill surface pH influenced uptake for some carboxylates but not the sulfonates. The developed PBK model provides an important tool in understanding kinetics under complex mixture scenarios and this use of New Approach Methodologies (NAMs) is critical in future risk assessment of chemicals and early warning systems.
Collapse
Affiliation(s)
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Ioana Chelcea
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
21
|
Nielsen F, Fischer FC, Leth PM, Grandjean P. Occurrence of Major Perfluorinated Alkylate Substances in Human Blood and Target Organs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:143-149. [PMID: 38154793 PMCID: PMC10785751 DOI: 10.1021/acs.est.3c06499] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Human exposure to perfluorinated alkylate substances (PFASs) is usually assessed from the concentrations in serum or plasma, assuming one-compartment toxicokinetics. To characterize body distributions of major PFASs, we obtained and extracted tissue samples from 19 forensic autopsies of healthy adult subjects who had died suddenly and were not known to have elevated levels of PFAS exposure. As target organs of toxicological importance, we selected the liver, kidneys, lungs, spleen, and brain, as well as whole blood. Samples weighing about 0.1 g were analyzed by liquid chromatography coupled to triple mass spectrometers. Minor variations in PFAS concentrations were found between the kidney cortex and medulla and between lung lobes. Organ concentrations of perfluorooctanoic sulfonate (PFOS) and perfluorononanoate (PFNA) correlated well with blood concentrations, while perfluorooctanoate (PFOA) and perfluorohexanoic sulfonate (PFHxS) showed more variable associations. Likewise, the liver concentrations correlated well with those of other organs. Calculations of relative distributions were carried out to assess the interdependence of organ retentions. Equilibrium model predictions largely explained the observed PFAS distributions, except for the brain. Although the samples were small and affected by a possible lack of homogeneity, these findings support the use of blood-PFAS concentrations as a measure of PFAS exposure, with the liver possibly acting as the main organ of retention.
Collapse
Affiliation(s)
- Flemming Nielsen
- Department
of Environmental Medicine, University of
Southern Denmark, Odense 5230, Denmark
| | - Fabian C. Fischer
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Peter M. Leth
- Department
of Forensic Medicine, University of Southern
Denmark, Odense 5230, Denmark
| | - Philippe Grandjean
- Department
of Environmental Medicine, University of
Southern Denmark, Odense 5230, Denmark
- Department
of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
22
|
Ruffle B, Archer C, Vosnakis K, Butler JD, Davis CW, Goldsworthy B, Parkman R, Key TA. US and international per- and polyfluoroalkyl substances surface water quality criteria: A review of the status, challenges, and implications for use in chemical management and risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:36-58. [PMID: 37069739 DOI: 10.1002/ieam.4776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Regulation of per- and polyfluorinated substances (PFAS) in surface water is a work-in-progress with relatively few criteria promulgated in the United States and internationally. Surface water quality criteria (SWQC) or screening values derived for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) by Australia, Canada, the European Union (EU), and four US states (Florida, Michigan, Minnesota, and Wisconsin), and the San Francisco Bay Regional Water Quality Control Board (SFB RWQCB; California) were compared. Across these eight jurisdictions, promulgated numeric criteria for the same compound and receptor span over five orders of magnitude as a result of different approaches and data interpretations. Human health criteria for PFOS range from 0.0047 to 600 ng/L depending on route of exposure (e.g., fish consumption or drinking water) and are lower than most ecological criteria for protection of aquatic and wildlife receptors. Data gaps and uncertainty in chronic toxicity and bioaccumulation of PFOS and PFOA, as well as the use of conservative assumptions regarding intake and exposure, have resulted in some criteria falling at or below ambient background concentrations and current analytical detection limits (around 1 ng/L for commercial laboratories). Some jurisdictions (e.g., Australia, Canada) have deemed uncertainty in quantifying water-fish bioaccumulation too great and set fish tissue action levels in lieu of water criteria. Current dynamics associated with the emerging and evolving science of PFAS toxicity, exposure, and environmental fate (i.e., data gaps and uncertainty), as well as the continuous release of scientific updates, pose a challenge to setting regulatory limits. Integr Environ Assess Manag 2024;20:36-58. © 2023 AECOM Technical Services, Inc and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | | | - Josh D Butler
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | - Craig W Davis
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | | | | | - Trent A Key
- ExxonMobil Environmental and Property Solutions Company, Spring, Texas, USA
| |
Collapse
|
23
|
Antle JP, LaRock MA, Falls Z, Ng C, Atilla-Gokcumen GE, Aga DS, Simpson SM. Building Chemical Intuition about Physicochemical Properties of C8-Per-/Polyfluoroalkyl Carboxylic Acids through Computational Means. ACS ES&T ENGINEERING 2023; 4:196-208. [PMID: 38860110 PMCID: PMC11164130 DOI: 10.1021/acsestengg.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We have predicted acid dissociation constants (pK a), octanol-water partition coefficients (K OW), and DMPC lipid membrane-water partition coefficients (K lipid-w) of 150 different eight-carbon-containing poly-/perfluoroalkyl carboxylic acids (C8-PFCAs) utilizing the COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) theory. Different trends associated with functionalization, degree of fluorination, degree of saturation, degree of chlorination, and branching are discussed on the basis of the predicted values for the partition coefficients. In general, functionalization closest to the carboxylic headgroup had the greatest impact on the value of the predicted physicochemical properties.
Collapse
Affiliation(s)
- Jonathan P Antle
- Department of Chemistry, University at Buffalo, the State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Michael A LaRock
- Department of Chemistry, St. Bonaventure University, St. Bonaventure, New York 14778, United States
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, the State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, the State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Scott M Simpson
- Department of Chemistry, St. Bonaventure University, St. Bonaventure, New York 14778, United States
| |
Collapse
|
24
|
Torralba-Sanchez TL, Di Toro DM, Dmitrenko O, Murillo-Gelvez J, Tratnyek PG. Modeling the Partitioning of Anionic Carboxylic and Perfluoroalkyl Carboxylic and Sulfonic Acids to Octanol and Membrane Lipid. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2317-2328. [PMID: 37439660 DOI: 10.1002/etc.5716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Perfluoroalkyl carboxylic and sulfonic acids (PFCAs and PFSAs, respectively) have low acid dissociation constant values and are, therefore, deprotonated under most experimental and environmental conditions. Hence, the anionic species dominate their partitioning between water and organic phases, including octanol and phospholipid bilayers which are often used as model systems for environmental and biological matrices. However, data for solvent-water (SW) and membrane-water partition coefficients of the anion species are only available for a few per- and polyfluoroalkyl substances (PFAS). In the present study, an equation is derived using a Born-Haber cycle that relates the partition coefficients of the anions to those of the corresponding neutral species. It is shown via a thermodynamic analysis that for carboxylic acids (CAs), PFCAs, and PFSAs, the log of the solvent-water partition coefficient of the anion, log KSW (A- ), is linearly related to the log of the solvent-water partition coefficient of the neutral acid, log KSW (HA), with a unity slope and a solvent-dependent but solute-independent intercept within a PFAS (or CA) family. This finding provides a method for estimating the partition coefficients of PFCAs and PFSAs anions using the partition coefficients of the neutral species, which can be reliably predicted using quantum chemical methods. In addition, we have found that the neutral octanol-water partition coefficient, log KOW , is linearly correlated to the neutral membrane-water partition coefficient, log KMW ; therefore, log KOW , being a much easier property to estimate and/or measure, can be used to predict the neutral log KMW . Application of this approach to KOW and KMW for PFCAs and PFSAs demonstrates the utility of this methodology for evaluating reported experimental data and extending anion property data for chain lengths that are unavailable. Environ Toxicol Chem 2023;42:2317-2328. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Olga Dmitrenko
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
25
|
Gkika IS, Xie G, van Gestel CAM, Ter Laak TL, Vonk JA, van Wezel AP, Kraak MHS. Research Priorities for the Environmental Risk Assessment of Per- and Polyfluorinated Substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2302-2316. [PMID: 37589402 DOI: 10.1002/etc.5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Per- and polyfluorinated substances (PFAS) are a group of thousands of ubiquitously applied persistent industrial chemicals. The field of PFAS environmental research is developing rapidly, but suffers from substantial biases toward specific compounds, environmental compartments, and organisms. The aim of our study was therefore to highlight current developments and to identify knowledge gaps and subsequent research needs that would contribute to a comprehensive environmental risk assessment for PFAS. To this end, we consulted the open literature and databases and found that knowledge of the environmental fate of PFAS is based on the analysis of <1% of the compounds categorized as PFAS. Moreover, soils and suspended particulate matter remain largely understudied. The bioavailability, bioaccumulation, and food web transfer studies of PFAS also focus on a very limited number of compounds and are biased toward aquatic biota, predominantly fish, and less frequently aquatic invertebrates and macrophytes. The available ecotoxicity data revealed that only a few PFAS have been well studied for their environmental hazards, and that PFAS ecotoxicity data are also strongly biased toward aquatic organisms. Ecotoxicity studies in the terrestrial environment are needed, as well as chronic, multigenerational, and community ecotoxicity research, in light of the persistency and bioaccumulation of PFAS. Finally, we identified an urgent need to unravel the relationships among sorption, bioaccumulation, and ecotoxicity on the one hand and molecular descriptors of PFAS chemical structures and physicochemical properties on the other, to allow predictions of exposure, bioaccumulation, and toxicity. Environ Toxicol Chem 2023;42:2302-2316. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ioanna S Gkika
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ge Xie
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas L Ter Laak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- KWR Water Research Institute, Nieuwegein, The Netherlands
| | - J Arie Vonk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie P van Wezel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Çelik G, Stolte S, Markiewicz M. NSO-heterocyclic PAHs - Controlled exposure study reveals high acute aquatic toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132428. [PMID: 37690200 DOI: 10.1016/j.jhazmat.2023.132428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
Environmental occurrence and hazardous nature of heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) has the potential to threaten the health of aquatic ecosystems. Here, we investigate the acute toxicity of heterocyclic PAHs (log KOW 3.7-6.9) to aquatic organisms: marine bacteria (Aliivibrio fischeri), freshwater green algae (Raphidocelis subcapitata), and water fleas (Daphnia magna) using passive dosing to maintain stable exposure. The membrane-water partition coefficient (KMW) of the heterocycles was measured to elucidate its relationship with toxicity. Our findings show that the tested heterocycles had little inhibitory effect on A. fischeri, while most compounds were highly toxic to R. subcapitata and D. magna. Toxicity generally increased with increasing KMW values, and nonpolar narcosis was identified as the most likely mode of toxic action of the heterocycles. Comparison of standard protocols with passive dosing emphasizes the importance of maintaining a constant concentration during toxicity testing, as very high losses occurred in standard tests and passive dosing experiments revealed higher toxicities. These results indicate a potentially high risk to aquatic life and call for more in-depth investigation of the (eco)toxic effects of NSO-PAHs.
Collapse
Affiliation(s)
- Göksu Çelik
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany.
| |
Collapse
|
27
|
Baumert BO, Fischer FC, Nielsen F, Grandjean P, Bartell S, Stratakis N, Walker DI, Valvi D, Kohli R, Inge T, Ryder J, Jenkins T, Sisley S, Xanthakos S, Rock S, La Merrill MA, Conti D, McConnell R, Chatzi L. Paired Liver:Plasma PFAS Concentration Ratios from Adolescents in the Teen-LABS Study and Derivation of Empirical and Mass Balance Models to Predict and Explain Liver PFAS Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14817-14826. [PMID: 37756184 PMCID: PMC10591710 DOI: 10.1021/acs.est.3c02765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Animal studies have pointed at the liver as a hotspot for per- and polyfluoroalkyl substances (PFAS) accumulation and toxicity; however, these findings have not been replicated in human populations. We measured concentrations of seven PFAS in matched liver and plasma samples collected at the time of bariatric surgery from 64 adolescents in the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study. Liver:plasma concentration ratios were perfectly explained (r2 > 0.99) in a multilinear regression (MLR) model based on toxicokinetic (TK) descriptors consisting of binding to tissue constituents and membrane permeabilities. Of the seven matched plasma and liver PFAS concentrations compared in this study, the liver:plasma concentration ratio of perfluoroheptanoic acid (PFHpA) was considerably higher than the liver:plasma concentration ratio of other PFAS congeners. Comparing the MLR model with an equilibrium mass balance model (MBM) suggested that complex kinetic transport processes are driving the unexpectedly high liver:plasma concentration ratio of PFHpA. Intratissue MBM modeling pointed to membrane lipids as the tissue constituents that drive the liver accumulation of long-chain, hydrophobic PFAS, whereas albumin binding of hydrophobic PFAS dominated PFAS distribution in plasma. The liver:plasma concentration data set, empirical MLR model, and mechanistic MBM modeling allow the prediction of liver from plasma concentrations measured in human cohort studies. Our study demonstrates that combining biomonitoring data with mechanistic modeling can identify underlying mechanisms of internal distribution and specific target organ toxicity of PFAS in humans.
Collapse
Affiliation(s)
- Brittney O. Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 90032
| | - Fabian C. Fischer
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA, 02134
| | - Flemming Nielsen
- Institute of Public Health, University of Southern Denmark, Odense, Denmark, 5230
| | - Philippe Grandjean
- Institute of Public Health, University of Southern Denmark, Odense, Denmark, 5230
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA, 02881
| | - Scott Bartell
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA, 92697
| | - Nikos Stratakis
- Barcelona Institute for Global Health, ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, NE, Atlanta, GA, 30322
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA, 90027
| | - Thomas Inge
- Department of Surgery, Northwestern University Feinberg School of Medicine, 60611
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA, 60611
| | - Justin Ryder
- Department of Surgery, Northwestern University Feinberg School of Medicine, 60611
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA, 60611
| | - Todd Jenkins
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA, 45229
| | - Stephanie Sisley
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Stavra Xanthakos
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA, 45229
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 90032
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA, 95616
| | - David Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 90032
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 90032
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 90032
| |
Collapse
|
28
|
Fremlin KM, Elliott JE, Letcher RJ, Harner T, Gobas FA. Developing Methods for Assessing Trophic Magnification of Perfluoroalkyl Substances within an Urban Terrestrial Avian Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12806-12818. [PMID: 37590934 PMCID: PMC10469464 DOI: 10.1021/acs.est.3c02361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
We investigated the trophic magnification potential of perfluoroalkyl substances (PFAS) in a terrestrial food web by using a chemical activity-based approach, which involved normalizing concentrations of PFAS in biota to their relative biochemical composition in order to provide a thermodynamically accurate basis for comparing concentrations of PFAS in biota. Samples of hawk eggs, songbird tissues, and invertebrates were collected and analyzed for concentrations of 18 perfluoroalkyl acids (PFAAs) and for polar lipid, neutral lipid, total protein, albumin, and water content. Estimated mass fractions of PFCA C8-C11 and PFSA C4-C8 predominantly occurred in albumin within biota samples from the food web with smaller estimated fractions in polar lipids > structural proteins > neutral lipids and insignificant amounts in water. Estimated mass fractions of longer-chained PFAS (i.e., C12-C16) mainly occurred in polar lipids with smaller estimated fractions in albumin > structural proteins > neutral lipids > and water. Chemical activity-based TMFs indicated that PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFOS, and PFDS biomagnified in the food web; PFOA, PFHxDA, and PFHxS did not appear to biomagnify; and PFBS biodiluted. Chemical activity-based TMFs for PFCA C8-C11 and PFSA C4-C8 were in good agreement with corresponding TMFs derived with concentrations normalized to only total protein in biota, suggesting that concentrations normalized to total protein may be appropriate proxies of chemical activity-based TMFs for PFAS, which predominantly partition to albumin. Similarly, TMFs derived with concentrations normalized to albumin may be suitable proxies of chemical activity-based TMFs for longer-chained PFAS, which predominantly partition to polar lipids.
Collapse
Affiliation(s)
- Katharine M. Fremlin
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - John E. Elliott
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - Robert J. Letcher
- Ecotoxicology
and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1A
0H3, Canada
| | - Tom Harner
- Air
Quality Research Division, Environment and
Climate Change Canada, 4905 Dufferin Street, Toronto, ON M3H 5T4, Canada
| | - Frank A.P.C. Gobas
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- School
of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, BC V5A
1S6, Canada
| |
Collapse
|
29
|
Gong Y, Yang D, Liu J, Barrett H, Sun J, Peng H. Disclosing Environmental Ligands of L-FABP and PPARγ: Should We Re-evaluate the Chemical Safety of Hydrocarbon Surfactants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11913-11925. [PMID: 37527448 DOI: 10.1021/acs.est.3c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Chemical contaminants can cause adverse effects by binding to the liver-fatty acid binding protein (L-FABP) and peroxisome proliferator-activated nuclear receptor γ (PPARγ), which are vital in lipid metabolism. However, the presence of numerous compounds in the environment has hindered the identification of their ligands, and thus only a small portion have been discovered to date. In this study, protein Affinity Purification with Nontargeted Analysis (APNA) was employed to identify the ligands of L-FABP and PPARγ in indoor dust and sewage sludge. A total of 83 nonredundant features were pulled-out by His-tagged L-FABP as putative ligands, among which 13 were assigned as fatty acids and hydrocarbon surfactants. In contrast, only six features were isolated when His-tagged PPARγ LBD was used as the protein bait. The binding of hydrocarbon surfactants to L-FABP and PPARγ was confirmed using both recombinant proteins and reporter cells. These hydrocarbon surfactants, along with >50 homologues and isomers, were detected in dust and sludge at high concentrations. Fatty acids and hydrocarbon surfactants explained the majority of L-FABP (57.7 ± 32.9%) and PPARγ (66.0 ± 27.1%) activities in the sludge. This study revealed hydrocarbon surfactants as the predominant synthetic ligands of L-FABP and PPARγ, highlighting the importance of re-evaluating their chemical safety.
Collapse
Affiliation(s)
- Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jiabao Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
30
|
Potter TD, Haywood N, Teixeira A, Hodges G, Barrett EL, Miller MA. Partitioning into phosphatidylcholine-cholesterol membranes: liposome measurements, coarse-grained simulations, and implications for bioaccumulation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37158124 DOI: 10.1039/d3em00081h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane-water partitioning is an important physical property for the assessment of bioaccumulation and environmental impact. Here, we advance simulation methodology for predicting the partitioning of small molecules into lipid membranes and compare the computational predictions to experimental measurements in liposomes. As a step towards high-throughput screening, we present an automated mapping and parametrization procedure to produce coarse-grained models compatible with the Martini 3 force field. The methodology is general and can also be used for other applications where coarse-grained simulations are appropriate. This article addresses the effect on membrane-water partitioning of adding cholesterol to POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Nine contrasting neutral, zwitterionic and charged solutes are tested. Agreement between experiment and simulation is generally good, with the most challenging cases being permanently charged solutes. For all solutes, partitioning is found to be insensitive to membrane cholesterol concentration up to 25% mole fraction. Hence, for assessment of bioaccumulation into a range of membranes (such as those found in fish), partitioning data measured in pure lipid membranes are still informative.
Collapse
Affiliation(s)
- Thomas D Potter
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | - Nicola Haywood
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Alexandre Teixeira
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Elin L Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark A Miller
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
31
|
Zhang K, Kujawski D, Spurrell C, Wang B, Crittenden JC. Screening ionic liquids for efficiently extracting perfluoroalkyl chemicals (PFACs) from wastewater. J Environ Sci (China) 2023; 127:866-874. [PMID: 36522114 DOI: 10.1016/j.jes.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/17/2023]
Abstract
Liquid-liquid extraction (LLE) using ionic liquids (ILs)-based methods to remove perfluoroalkyl chemicals (PFACs), such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), from wastewater, is an important strategy. However, the lack of physicochemical and LLE data limits the selection of the most suitable ILs for the extraction of PFACs. In this work, 1763 ILs for PFACs extraction from water were systematically screened using COSMOtherm to estimate the infinite dilution activity coefficient (lnγ∞)of PFOA and PFOS in water and ILs. To evaluate the accuracy of COSMOtherm, 8 ILs with various lnγ∞ values were selected, and their extraction efficiency (E) and distribution coefficient (Dexp) were measured experimentally. The results showed that the predicted lnγ∞ decreased as the increase of experimental extraction efficiency of PFOA or PFOS, while the tendency of predicted distribution coefficient (Dpre) was consistent with the experimental (Dexp) results. This work provides an efficient basis for selecting ILs for the extraction of PFACs from wastewater.
Collapse
Affiliation(s)
- Kaihang Zhang
- Brook Byers Institute of Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - David Kujawski
- Refinery Water Engineering and Associates, Hydrocarbon Processing Water and Waste Technology, Inc., Houston, TX 77042, USA
| | | | - Bing Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110000, China.
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
32
|
Trapp S, Shi J, Zeng L. Generic Model for Plant Uptake of Ionizable Pharmaceuticals and Personal Care Products. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:793-804. [PMID: 36785949 DOI: 10.1002/etc.5582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Plant uptake of pharmaceuticals and personal care products (PPCPs) has been recognized as a potential path to human exposure. Most existing regressions and uptake models are limited to neutral organic compounds, but 80% of pharmaceuticals and an unknown number of personal care products ionize under environmentally relevant conditions. A widely used generic plant uptake model was expanded step-by-step with processes relevant for weak and strong acids and bases, such as ionization, membrane permeability, ion trap, phloem transport, and sorption to proteins. The differential equation system was solved analytically, and the equations were implemented in a spreadsheet version. The changes in predicted plant uptake of neutral substances, acids, and bases were found for a range of key input data (log KOW , pKa , pH, sorption to proteins). For neutral compounds, sorption to proteins and phloem transport are of relevance only for the more polar compounds (low log KOW , ≤2). Weak acids (pKa ≤6) are trapped in phloem due to pH-related effects, and in roots when pH in soil is low (pH 4-5). Cations sorb stronger and hence show less bioavailability and less translocation than anions. Sorption to proteins reduces translocation to leaves and fruits for all substances, but this is more evident for polar and ionic compounds that have negligible sorption to lipids. The new generic model considers additional processes that are of relevance for polar and ionizable substances. It might be used instead of existing standard approaches for chemical risk assessment and assessment of the environmental fate of PPCPs. Environ Toxicol Chem 2023;42:793-804. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Stefan Trapp
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Junxuan Shi
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Landi Zeng
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Droge STJ, Hodges G, Bonnell M, Gutsell S, Roberts J, Teixeira A, Barrett EL. Using membrane-water partition coefficients in a critical membrane burden approach to aid the identification of neutral and ionizable chemicals that induce acute toxicity below narcosis levels. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:621-647. [PMID: 36779707 DOI: 10.1039/d2em00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The risk assessment of thousands of chemicals used in our society benefits from adequate grouping of chemicals based on the mode and mechanism of toxic action (MoA). We measure the phospholipid membrane-water distribution ratio (DMLW) using a chromatographic assay (IAM-HPLC) for 121 neutral and ionized organic chemicals and screen other methods to derive DMLW. We use IAM-HPLC based DMLW as a chemical property to distinguish between baseline narcosis and specific MoA, for reported acute toxicity endpoints on two separate sets of chemicals. The first set comprised 94 chemicals of US EPA's acute fish toxicity database: 47 categorized as narcosis MoA, 27 with specific MoA, and 20 predominantly ionic chemicals with mostly unknown MoA. The narcosis MoA chemicals clustered around the median narcosis critical membrane burden (CMBnarc) of 140 mmol kg-1 lipid, with a lower limit of 14 mmol kg-1 lipid, including all chemicals labelled Narcosis_I and Narcosis_II. This maximum 'toxic ratio' (TR) between CMBnarc and the lower limit narcosis endpoint is thus 10. For 23/28 specific MoA chemicals a TR >10 was derived, indicative of a specific adverse effect pathway related to acute toxicity. For 10/12 cations categorized as "unsure amines", the TR <10 suggests that these affect fish via narcosis MoA. The second set comprised 29 herbicides, including 17 dissociated acids, and evaluated the TR for acute toxic effect concentrations to likely sensitive aquatic plant species (green algae and macrophytes Lemna and Myriophyllum), and non-target animal species (invertebrates and fish). For 21/29 herbicides, a TR >10 indicated a specific toxic mode of action other than narcosis for at least one of these aquatic primary producers. Fish and invertebrate TRs were mostly <10, particularly for neutral herbicides, but for acidic herbicides a TR >10 indicated specific adverse effects in non-target animals. The established critical membrane approach to derive the TR provides for useful contribution to the weight of evidence to bin a chemical as having a narcosis MoA or less likely to have acute toxicity caused by a more specific adverse effect pathway. After proper calibration, the chromatographic assay provides consistent and efficient experimental input for both neutral and ionizable chemicals to this approach.
Collapse
Affiliation(s)
- Steven T J Droge
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam (UvA), Science Park 904, 1098XH Amsterdam, The Netherlands.
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Mark Bonnell
- Environment and Climate Change Canada, Ecological Assessment Division, Science and Risk Assessment Directorate, Gatineau, Quebec, Canada
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Jayne Roberts
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Alexandre Teixeira
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Elin L Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
34
|
Carstens KE, Freudenrich T, Wallace K, Choo S, Carpenter A, Smeltz M, Clifton MS, Henderson WM, Richard AM, Patlewicz G, Wetmore BA, Paul Friedman K, Shafer T. Evaluation of Per- and Polyfluoroalkyl Substances (PFAS) In Vitro Toxicity Testing for Developmental Neurotoxicity. Chem Res Toxicol 2023; 36:402-419. [PMID: 36821828 PMCID: PMC10249374 DOI: 10.1021/acs.chemrestox.2c00344] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse set of commercial chemicals widely detected in humans and the environment. However, only a limited number of PFAS are associated with epidemiological or experimental data for hazard identification. To provide developmental neurotoxicity (DNT) hazard information, the work herein employed DNT new approach methods (NAMs) to generate in vitro screening data for a set of 160 PFAS. The DNT NAMs battery was comprised of the microelectrode array neuronal network formation assay (NFA) and high-content imaging (HCI) assays to evaluate proliferation, apoptosis, and neurite outgrowth. The majority of PFAS (118/160) were inactive or equivocal in the DNT NAMs, leaving 42 active PFAS that decreased measures of neural network connectivity and neurite length. Analytical quality control indicated 43/118 inactive PFAS samples and 10/42 active PFAS samples were degraded; as such, careful interpretation is required as some negatives may have been due to loss of the parent PFAS, and some actives may have resulted from a mixture of parent and/or degradants of PFAS. PFAS containing a perfluorinated carbon (C) chain length ≥8, a high C:fluorine ratio, or a carboxylic acid moiety were more likely to be bioactive in the DNT NAMs. Of the PFAS positives in DNT NAMs, 85% were also active in other EPA ToxCast assays, whereas 79% of PFAS inactives in the DNT NAMs were active in other assays. These data demonstrate that a subset of PFAS perturb neurodevelopmental processes in vitro and suggest focusing future studies of DNT on PFAS with certain structural feature descriptors.
Collapse
Affiliation(s)
- Kelly E Carstens
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Theresa Freudenrich
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Kathleen Wallace
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Seline Choo
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, United States
| | - Amy Carpenter
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, United States
| | - Marci Smeltz
- Center for Environmental Measurement and Modeling, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Matthew S Clifton
- Center for Environmental Measurement and Modeling, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - W Matthew Henderson
- Center for Environmental Measurement and Modeling, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Ann M Richard
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Timothy Shafer
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
35
|
Li C, Jiang L, Zhang D, Qi Y, Wang X, Jin Y, Liu X, Lin Y, Luo J, Xu L, Zhao K, Yu D. Human health risk assessment of 6:2 Cl-PFESA through quantitative in vitro to in vivo extrapolation by integrating cell-based assays, an epigenetic key event, and physiologically based pharmacokinetic modeling. ENVIRONMENT INTERNATIONAL 2023; 173:107846. [PMID: 36842380 DOI: 10.1016/j.envint.2023.107846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Human health risk assessment of chemicals is essential but often relies on time-consuming and animal and labor-extensive procedures. Here, we develop a population-based, quantitative in vitro to in vivo extrapolation (QIVIVE) approach which depended on cellular effects monitored by in vitro assays, considered chemical internal concentration determined by LC-MS/MS, extrapolated into in vivo target tissue concentration through physiologically based pharmacokinetic (PBPK) modelling, and assessed populational health risk using in silico modelling. By applying this QIVIVE approach to 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), as a representative of the emerging pollutants, we find that 6:2 Cl-PFESA disturbed lipid homeostasis in HepG2 cells through enhancement of lipid accumulation and fatty acid β-oxidation, during which miR-93-5p served as a key event towards toxicity and thus, could serve as an efficient toxicity marker for risk assessment; further, the disruption potency of lipid homeostasis of 6:2 Cl-PFESA for the most of studied populations in China might be of moderate concern. Together, our approach improved the reliability of QIVIVE during human health risk assessment, which can readily be used for other chemicals.
Collapse
Affiliation(s)
- Chuanhai Li
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lidan Jiang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Donghui Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinyi Wang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Jin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinya Liu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiao Luo
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Xu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
36
|
Han F, Liu J, Wang Y, Li J, Lyu B, Zhao Y, Wu Y. Penetration of Perfluorooctanesulfonate Isomers and Their Alternatives from Maternal Blood to Milk and Its Associations with Chemical Properties and Milk Primary Components. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2457-2463. [PMID: 36734054 DOI: 10.1021/acs.est.2c07401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Perfluorooctanesulfonate (PFOS) and its alternatives, including chlorinated polyfluorinated ether sulfonates (Cl-PFESAs), are mainly detected per- and polyfluoroalkyl substances (PFAS) in human samples such as milk. However, the mechanism of their blood to milk transfer was not well studied. Here, 145 paired maternal serum and human milk samples were analyzed for six PFOS isomers and Cl-PFESAs to evaluate the transfer efficiency from maternal serum to human milk (TEHM/MS). Besides physicochemical properties, this study for the first time evaluated the influencing effects of the primary components in human milk (carbohydrate, lipid, and protein) on TEHM/MS of PFAS. No significant association was observed between TEHM/MS and the albumin binding affinity of the compounds (p = 0.601), but TEHM/MS was significantly negatively correlated with the logarithmic octanol-water partition coefficients (r2 = 0.853, p = 0.001), the logarithmic membrane-water partition coefficients (r2 = 0.679, p = 0.012), and the carbohydrate contents in human milk. The effect of carbohydrate was further confirmed using in vitro tests. The negative associations between TEHM/MS and hydrophobicity, membrane passive permeability, and the carbohydrate content in human milk consistently indicated that passive diffusion through the paracellular route might be the main transfer pathway for PFOS and Cl-PFESAs from blood to milk in humans.
Collapse
Affiliation(s)
- Feng Han
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jiaying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yuxin Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
37
|
Zhang M, Suuberg EM. Estimation of vapor pressures of perfluoroalkyl substances (PFAS) using COSMOtherm. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130185. [PMID: 36274547 DOI: 10.1016/j.jhazmat.2022.130185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The widespread presence of per- and polyfluoroalkyl substances (PFAS) in the environment and a recognition of their possible health effects has, over the past decade, raised public concerns and led to much new research on these materials. In this field, with so many compounds of potential interest or concern, measuring the physical properties of even a small fraction of these compounds is a formidable task. The research community has turned to use of computational methods to begin to predict many useful properties, based just upon the structure of the compound. In this work, a quantum chemistry computational method (COSMO-RS) has been applied for exploring the possibility and accuracy of PFAS compound property estimation. The vapor pressures and boiling points of eleven PFAS are calculated with COSMOtherm and compared with available experimental data and literature calculation data using other packages. In the meantime, these measured results have permitted evaluation of this popular property estimation technique, which has not yet been fully validated for this class of compounds.
Collapse
Affiliation(s)
- Mengke Zhang
- School of Engineering, Brown University, Providence, RI 02912, United States.
| | - Eric M Suuberg
- School of Engineering, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
38
|
Feng J, Soto‐Moreno EJ, Prakash A, Balboula AZ, Qiao H. Adverse PFAS effects on mouse oocyte in vitro maturation are associated with carbon-chain length and inclusion of a sulfonate group. Cell Prolif 2023; 56:e13353. [PMID: 36305033 PMCID: PMC9890540 DOI: 10.1111/cpr.13353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals that are widely used in various products. PFAS are characterized by their fluorinated carbon chains that make them hard to degrade and bioaccumulate in human and animals. Toxicological studies have shown PFAS toxic effects: cytotoxicity, immunotoxicity, neurotoxicity, and reproductive toxicity. However, it is still unclear how the structures of PFAS, such as carbon-chain length and functional groups, determine their reproductive toxicity. METHODS AND RESULTS By using a mouse-oocyte-in-vitro-maturation (IVM) system, we found the toxicity of two major categories of PFAS, perfluoroalkyl carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA), is elevated with increasing carbon-chain length and the inclusion of the sulfonate group. Specifically, at 600 μM, perfluorohexanesulfonic acid (PFHxS) and perfluorooctanesulfonic acid (PFOS) reduced the rates of both germinal-vesicle breakdown (GVBD) and polar-body extrusion (PBE) as well as enlarged polar bodies. However, the shorter PFSA, perfluorobutanesulfonic acid (PFBS), and all PFCA did not show similar adverse cytotoxicity. Further, we found that 600 μM PFHxS and PFOS exposure induced excess reactive oxygen species (ROS) and decreased mitochondrial membrane potential (MMP). Cytoskeleton analysis revealed that PFHxS and PFOS exposure induced chromosome misalignment, abnormal F-actin organization, elongated spindle formation, and symmetric division in the treated oocytes. These meiotic defects compromised oocyte developmental competence after parthenogenetic activation. CONCLUSIONS Our study provides new information on the structure-toxicity relationship of PFAS.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
| | | | - Aashna Prakash
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
| | - Ahmed Z. Balboula
- Division of Animal SciencesUniversity of MissouriMissouriColumbiaUSA
| | - Huanyu Qiao
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
| |
Collapse
|
39
|
Jia Y, Zhu Y, Wang R, Ye Q, Xu D, Zhang W, Zhang Y, Shan G, Zhu L. Novel insights into the mediating roles of cluster of differentiation 36 in transmembrane transport and tissue partition of per- and polyfluoroalkyl substances in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130129. [PMID: 36303356 DOI: 10.1016/j.jhazmat.2022.130129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Transmembrane transport is important for bioaccumulation of per- and polyfluoroalkyl substances (PFASs) in organisms, but has not yet been well understood. Here, the roles of cluster of differentiation 36 (CD36) in accumulation of PFASs were investigated. CD36 was overexpressed in Escherichia coli to get CD36-BL21 strain, and the binding affinities of 20 PFASs with CD36 were determined by microscale thermophoresis, which grew up to 17.5 μM with increasing carbon chain length. Consequently, the accumulation of most PFASs was remarkably promoted in CD36-BL21 in comparison to the wild strain, and the enhancement was proportional to their binding affinities with CD36 (r = -0.96). However, this effect was depressed greatly as CD36 was inhibited by sulfo-N-succinimidyl oleate (SSO). Additionally, as the mice received SSO pretreatment before they were exposed to perfluorododecanoic acid, its accumulation in the tissues rich in CD36, such as liver, was suppressed, but increased by 1.1 times in the serum. These indicated that CD36 played critical roles in the transmembrane transport and tissue partition of PFASs in organisms. The developed relationship between liver-blood partition of PFASs and their binding affinities with intracellular proteins was distinctly improved by incorporating that with CD36 (r = -0.97).
Collapse
Affiliation(s)
- Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Rouyi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qingqing Ye
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Dashan Xu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wei Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
40
|
Nguyen DHT, Utama RH, Tjandra KC, Suwannakot P, Du EY, Kavallaris M, Tilley RD, Gooding JJ. Tuning the Mechanical Properties of Multiarm RAFT-Based Block Copolyelectrolyte Hydrogels via Ionic Cross-Linking for 3D Cell Cultures. Biomacromolecules 2023; 24:57-68. [PMID: 36514252 DOI: 10.1021/acs.biomac.2c00632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels that serve as native extracellular matrix (ECM) mimics are typically naturally derived hydrogels that are physically cross-linked via ionic interactions. This means rapid gelation of synthetic polymers, which give control over the chemical and physical cues in hydrogel formation. Herein, we combine the best of both systems by developing a synthetic hydrogel with ionic cross-linking of block copolyelectrolytes to rapidly create hydrogels. Reversible addition-fragmentation chain-transfer (RAFT) polymerization was used to synthesize oppositely charged polyelectrolyte molecules and, in turn, modulate the mechanical property of stiffness. The mechanical stiffness of a range of 900-3500 Pa was tuned by varying the number of charged ionic groups, the length of the polymer arms, and the polymer concentration. We demonstrate the synthetic polyelectrolyte hydrogel as an ECM mimic for three-dimensional (3D) in vitro cell models using MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Duyen H T Nguyen
- School of Chemistry, The University of New South Wales, Sydney, NSW2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW2052, Australia
| | - Robert H Utama
- School of Chemistry, The University of New South Wales, Sydney, NSW2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW2052, Australia
| | - Kristel C Tjandra
- School of Chemistry, The University of New South Wales, Sydney, NSW2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW2052, Australia
| | - Panthipa Suwannakot
- School of Chemistry, The University of New South Wales, Sydney, NSW2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW2052, Australia
| | - Eric Y Du
- School of Chemistry, The University of New South Wales, Sydney, NSW2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW2052, Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW2052, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW2052, Australia.,Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, SydneyNSW2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW2052, Australia
| |
Collapse
|
41
|
Labine LM, Oliveira Pereira EA, Kleywegt S, Jobst KJ, Simpson AJ, Simpson MJ. Sublethal Exposure of Per- and Polyfluoroalkyl Substances of Varying Chain Length and Polar Functionality Results in Distinct Metabolic Responses in Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:242-256. [PMID: 36345965 DOI: 10.1002/etc.5517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants used in industrial applications because of their physicochemical properties, which results in their ubiquitous presence across environmental matrices. To date, legacy PFAS have been well studied; however, the concentration of alternative PFAS may exceed the concentration of legacy pollutants, and more information is needed regarding the sublethal toxicity at the molecular level of aquatic model organisms, such as Daphnia magna. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) are four widely detected PFAS alternatives of varying chain length and polar functionality that are quantified in aquatic environments. The present study examines the metabolic perturbations of PFAS with varying chemistries to D. magna using targeted mass spectrometry-based metabolomics. Daphnia were acutely exposed to sublethal concentrations of PFBA, PFHxA, PFHxS, and PFNA before the polar metabolite profile was extracted from single organisms. Multivariate analysis demonstrated significant separation between the sublethal concentrations of PFHxA, PFHxS, and PFNA relative to the controls; in sum, longer chain lengths demonstrated greater overall perturbations to the extracted metabolic profiles. Univariate statistics revealed significant perturbations in the concentrations of several amino acids, nucleotides/nucleosides, and neurotransmitters with exposure to PFAS. These metabolic perturbations are consistent with disruptions in energy metabolism (pantothenate and coenzyme A metabolism, histidine metabolism) and protein synthesis (aminoacyl-transfer RNA biosynthesis and amino acid metabolism), which were identified through biochemical pathway analysis. These results provide evidence that although PFAS chemistry (chain length and polar functional group) invokes unique metabolic responses, there is also an underlying toxic mode of action that is common with select PFAS exposure. Overall, the present study highlights the capabilities of environmental metabolomics to elucidate the molecular-level perturbations of pollutants within the same chemical class to model aquatic organisms, which can be used to prioritize risk assessment of substituted PFAS alternatives. Environ Toxicol Chem 2023;42:242-256. © 2022 SETAC.
Collapse
Affiliation(s)
- Lisa M Labine
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Erico A Oliveira Pereira
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Cheng H, Lv C, Li J, Wu D, Zhan X, Song Y, Zhao N, Jin H. Bioaccumulation and biomagnification of emerging poly- and perfluoroalkyl substances in marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158117. [PMID: 35985598 DOI: 10.1016/j.scitotenv.2022.158117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Accumulating evidence has demonstrated the wide environmental presence of 6:2 chlorinated polyfluoroalkyl ether sulfonates (6:2 Cl-PFAES) and p-perfluorous nonenoxybenzene sulfonate (PFNOBS). However, data on the bioaccumulation and trophic magnification of these emerging poly- and perfluoroalkyl substances (PFASs) in subtropical marine environment is still limited. In this study, seawater (n = 17), sediment (n = 14), and marine organism (27 species; n = 177) samples were collected from East China Sea, and analyzed them for legacy and emerging PFASs. Besides perfluoroalkyl carboxylates and perfluorooctane sulfonate (PFOS), 6:2 Cl-PFAES was always among the predominant PFASs detected in seawater, sediment, and marine organism. For emerging PFASs, 6:2 Cl-PFAES (mean ± SD, 3.1 ± 0.17), 8:2 Cl-PFAES (3.3 ± 0.35), and PFNOBS (3.3 ± 0.19) had lower bioaccumulation factors (BAF) than PFOS (3.4 ± 0.22) in marine fish. In crab, PFNOBS (3.7 ± 0.33) had a lower biota-sediment accumulation factor (BSAF) than PFOS (3.9 ± 0.45). In snail, among all detected PFASs, PFNOBS (4.0 ± 0.42) had the highest mean log BSAF value. 8:2 Cl-PFAES consistently had a higher log BSAF value than 6:2 Cl-PFAES in snail and crab. Notably, these differences in BAF and BSAF are not significant. Among PFASs, 6:2 Cl-PFAES (2.3; 95 % confidence interval, CI: 1.9-2.6) displayed the highest trophic magnification factor (TMF). PFNOBS had the lowest TMF value (1.8, 95 % CI: 1.4-2.1), but which still indicates its weak biomagnification through the current marine food web. This is the first study reporting the bioaccumulation and biomagnification of PFNOBS in marine organisms, which deepens the understanding of its environmental behavior in the marine ecosystem.
Collapse
Affiliation(s)
- Haixiang Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China
| | - Chenhan Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Jianhui Li
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China
| | - Dexin Wu
- Hangzhou Xinjing Environmental Protection Technology Co., Ltd., Hangzhou, Zhejiang 310012, PR China
| | - Xugang Zhan
- Quzhou Ecological Environment Bureau, Quzhou, Zhejiang 324000, PR China
| | - Ying Song
- Quzhou Ecological Environment Bureau, Quzhou, Zhejiang 324000, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
43
|
Hammer J, Endo S. Volatility and Nonspecific van der Waals Interaction Properties of Per- and Polyfluoroalkyl Substances (PFAS): Evaluation Using Hexadecane/Air Partition Coefficients. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15737-15745. [PMID: 36240042 PMCID: PMC9671037 DOI: 10.1021/acs.est.2c05804] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) form weak van der Waals (vdW) interactions, which render this class of chemicals more volatile than nonfluorinated analogues. Here, the hexadecane/air partition coefficient (KHxd/air) values at 25 °C, as an index of vdW interaction strength and volatility, were determined for 64 neutral PFAS using the variable phase ratio headspace and gas chromatographic retention methods. Log KHxd/air values increased linearly with increasing number of CF2 units, and the increase in log KHxd/air value per CF2 was smaller than that per CH2. Comparison of PFAS sharing the same perfluoroalkyl chain length but with different functional groups demonstrated that KHxd/air was highest for the N-alkyl perfluoroalkanesulfonamidethanols and lowest for the perfluoroalkanes and that the size of the nonfluorinated structure determines the difference in KHxd/air between PFAS groups. Two models, the quantum chemistry-based COSMOtherm model and an iterative fragment selection quantitative structure-property relationship (IFS-QSPR) model, accurately predicted the log KHxd/air values of the PFAS with root-mean-square errors of 0.55 and 0.35, respectively. COSMOtherm showed minor systematic errors for all PFAS, whereas IFS-QSPR exhibited large errors for a few PFAS groups that were outside the model applicability domain. The present data set will be useful as a benchmark of the volatilities of the various PFAS and for predicting other partition coefficient values of PFAS.
Collapse
Affiliation(s)
- Jort Hammer
- Health and Environmental
Risk Division, National Institute for Environmental
Studies (NIES), Onogawa 16-2, 305-8506Tsukuba, Ibaraki, Japan
| | - Satoshi Endo
- Health and Environmental
Risk Division, National Institute for Environmental
Studies (NIES), Onogawa 16-2, 305-8506Tsukuba, Ibaraki, Japan
| |
Collapse
|
44
|
Warner RM, Sweeney LM, Hayhurst BA, Mayo ML. Toxicokinetic Modeling of Per- and Polyfluoroalkyl Substance Concentrations within Developing Zebrafish ( Danio rerio) Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13189-13199. [PMID: 36055240 PMCID: PMC9494737 DOI: 10.1021/acs.est.2c02942] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 05/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are pervasive environmental contaminants, and their relative stability and high bioaccumulation potential create a challenging risk assessment problem. Zebrafish (Danio rerio) data, in principle, can be synthesized within a quantitative adverse outcome pathway (qAOP) framework to link molecular activity with individual or population level hazards. However, even as qAOP models are still in their infancy, there is a need to link internal dose and toxicity endpoints in a more rigorous way to further not only qAOP models but adverse outcome pathway frameworks in general. We address this problem by suggesting refinements to the current state of toxicokinetic modeling for the early development zebrafish exposed to PFAS up to 120 h post-fertilization. Our approach describes two key physiological transformation phenomena of the developing zebrafish: dynamic volume of an individual and dynamic hatching of a population. We then explore two different modeling strategies to describe the mass transfer, with one strategy relying on classical kinetic rates and the other incorporating mechanisms of membrane transport and adsorption/binding potential. Moving forward, we discuss the challenges of extending this model in both timeframe and chemical class, in conjunction with providing a conceptual framework for its integration with ongoing qAOP modeling efforts.
Collapse
Affiliation(s)
- Ross M. Warner
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, United States
- Environmental
Laboratory, US Army Engineer Research and
Development Center, Vicksburg, Mississippi 39180, United States
| | - Lisa M. Sweeney
- UES,
Inc., assigned to US Air Force Research Laboratory, Wright-Patterson
Air Force Base, Dayton, Ohio 45432, United
States
| | - Brett A. Hayhurst
- Environmental
Laboratory, US Army Engineer Research and
Development Center, Vicksburg, Mississippi 39180, United States
- Department
of Natural Resources and the Environment, Cornell University, Ithaca, New York 14853, United States
| | - Michael L. Mayo
- Environmental
Laboratory, US Army Engineer Research and
Development Center, Vicksburg, Mississippi 39180, United States
| |
Collapse
|
45
|
Sun JM, Kelly BC, Gobas FAPC, Sunderland EM. A food web bioaccumulation model for the accumulation of per- and polyfluoroalkyl substances (PFAS) in fish: how important is renal elimination? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1152-1164. [PMID: 35678632 PMCID: PMC9384792 DOI: 10.1039/d2em00047d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/18/2022] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large class of highly fluorinated anthropogenic chemicals. Some PFAS bioaccumulate in aquatic food webs, thereby posing risks for seafood consumers. Existing models for persistent organic pollutants (POPs) perform poorly for ionizable PFAS. Here we adapt a well-established food web bioaccumulation model for neutral POPs to predict the bioaccumulation behavior of six perfluoroalkyl acids (PFAAs) and two perfluoroalkyl ether acids (HFPO-DA, 9-Cl-PF3ONS) produced as PFAA replacements. The new model includes sorption to blood plasma proteins and phospholipids, empirically parameterized membrane transport, and renal elimination for PFAAs. Improved performance relative to prior models without these updates is shown by comparing simulations to field and lab measurements. PFAS with eight or more perfluorinated carbons (ηpfc ≥ 8, i.e., C8 perfluorosulfonic acid, C10-C11 perfluorocarboxylic acid, 9-Cl-PF3ONS) are often the most abundant in aquatic food webs. The new model reproduces their observed bioaccumulation potential within a factor of two for >80% of fish species, indicating its readiness to support development of fish consumption advisories for these compounds. Results suggest bioaccumulation of ηpfc ≥ 8 PFAS is primarily driven by phospholipid partitioning, and that renal elimination is negligible for these compounds. However, specific protein binding mechanisms are important for reproducing the observed tissue concentrations of many shorter-chain PFAAs, including protein transporter-mediated renal elimination. Additional data on protein-binding and membrane transport mechanisms for PFAS are needed to better understand the biological behavior of shorter-chain PFAAs and their alternatives.
Collapse
Affiliation(s)
- Jennifer M Sun
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA, 02138. jennifersun@.g.harvard.edu
| | - Barry C Kelly
- Meta Analytical Inc., Calgary, AB, T3H 2Z5, Canada
- School of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Frank A P C Gobas
- School of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA, 02138. jennifersun@.g.harvard.edu
| |
Collapse
|
46
|
Hou M, Jin Q, Na G, Cai Y, Shi Y. Emissions, Isomer-Specific Environmental Behavior, and Transformation of OBS from One Major Fluorochemical Manufacturing Facility in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8103-8113. [PMID: 35686732 DOI: 10.1021/acs.est.2c01287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS), a novel alternative to perfluorooctane sulfonic acid (PFOS), has been widely used in various fields in China and has certain toxic effects similar to PFOS. This study monitored OBS and 15 legacy PFASs in surface water, sediment, soil, and crucian carp near a fluorochemical manufacturing factory (FMF) in Suqian, China, focusing on the emission, isomer-specific environmental fate, and transformation of OBS. One to four orders of magnitude higher concentrations of OBS than other polyfluoroalkyl substances (PFASs) in all samples indicate that industrial emission is an important point source of OBS in the surrounding environment. The concentrations of OBS in surface water, sediment, and soil decreased exponentially as the distance from the FMF increases. The proportions of OBS-c, the dominant isomer, increased in the order: water (75.5 ± 6.4%), sediment (85.7 ± 10%), fish (muscle: 94.1 ± 0.99%; blood: 93.5 ± 1.4%), suggesting its preferential accumulation in sediment and fish than other isomers. Mono-hydroxylated transformation products of OBS were first identified in water, sediment, and fish, suggesting its hydroxylation may exist in the real environment. The transformation of OBS may explain its significantly lower bioaccumulation than PFOS in fish. However, considering the higher BAF of OBS than the regulatory bioaccumulation criterion and the possible stronger toxicity of its transformation products, further studies on its bioaccumulation and transformation are warranted.
Collapse
Affiliation(s)
- Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangshui Na
- Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
47
|
Ribbenstedt A, Armitage JM, Günther F, Arnot JA, Droge STJ, McLachlan MS. In Vivo Bioconcentration of 10 Anionic Surfactants in Rainbow Trout Explained by In Vitro Data on Partitioning and S9 Clearance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6305-6314. [PMID: 35467837 PMCID: PMC9118553 DOI: 10.1021/acs.est.1c05543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bioconcentration factors (BCFs) in rainbow trout were measured for 10 anionic surfactants with a range of alkyl chain lengths and different polar head groups. The BCFs ranged from 0.04 L kg-1 ww (for C10SO3) to 1370 L kg-1 ww (C16SO3). There was a strong correlation between the log BCF and log membrane lipid-water distribution ratio (DMLW, r2 = 0.96), and biotransformation was identified as the dominant elimination mechanism. The strong positive influence of DMLW on BCF was attributed to two phenomena: (i) increased partitioning from water into the epithelial membrane of the gill, leading to more rapid diffusion across this barrier and more rapid uptake, and (ii) increased sequestration of the surfactant body burden into membranes and other body tissues, resulting in lower freely dissolved concentrations available for biotransformation. Estimated whole-body in vivo biotransformation rate constants kB-BCF are within a factor three of rate constants estimated from S9 in vitro assays for six of the eight test chemicals for which kB-BCF could be determined. A model-based assessment indicated that the hepatic clearance rate of freely dissolved chemicals was similar for the studied surfactants. The dataset will be useful for evaluation of in silico and in vitro methods to assess bioaccumulation.
Collapse
Affiliation(s)
- Anton Ribbenstedt
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - James M. Armitage
- AES
Armitage Environmental Sciences, Inc., Ottawa, Ontario K1L 8C3, Canada
| | - Felix Günther
- Department
of Mathematics, Stockholm University, 106 91 Stockholm, Sweden
| | - Jon A. Arnot
- ARC
Arnot Research and Consulting Inc., Toronto, Ontario M4M 1W4, Canada
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Steven T. J. Droge
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Michael S. McLachlan
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
48
|
Lv M, Xie Y, Yu H, Sun T, Song L, Wang F. Effects of perfluoroalkyl substances on soil respiration and enzymatic activity: differences in carbon chain-length dependence. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:284-296. [PMID: 35262431 DOI: 10.1080/03601234.2022.2047563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perfluoroalkyl substances (PFASs) are anthropogenic compounds that exhibit ecotoxicity when discharged into the environment, causing increasing concern. An indoor experiment was conducted to investigate the effects of perfluoroalkyl carboxylic acids (PFCAs) and PFSAs on soil respiration, sucrase activity, and urease activity at 0, 7, 14, and 28 d for perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and perfluorobutyric acid (PFBA), and at 14 and 28 d for perfluorooctane sulfonic acid (PFOS), perfluorohexanoic sulfonic acid (PFHxS), and perfluorobutyric sulfonic acid (PFBS). PFCAs significantly inhibited soil respiration, with a significant negative correlation between respiration and PFBA (P < 0.05) at 28 d. Sucrase activities were initially inhibited by PFCAs, and then recovered. Urease activities were inhibited by PFOA at 14 d and by PFHxA at 14 and 28 d, but not by PFBA. PFOS and PFBS briefly enhanced soil respiration. PFOS inhibited sucrase activity. PFSAs significantly decreased urease activity in a concentration- and time-dependent manner. The chain-length dependence of the ecotoxicity of PFASs varied depending on concentration and time. Toxicity demonstrated a trend of initial decrease followed by increase with carbon chain length. Our results first revealed that the chain-length dependences of PFASs were also related to concentrations and exposure time.
Collapse
Affiliation(s)
- Ming Lv
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, China
| | - Yangyang Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, China
| | - Hui Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, China
| | - Tao Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, China
| | - Liping Song
- Taishan District Total Pollutant Emission Control Center, Taishan Branch of Tai'an Ecological Environment Bureau, Taian, Shandong, China
| | - Fenghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
49
|
Cao H, Zhou Z, Hu Z, Wei C, Li J, Wang L, Liu G, Zhang J, Wang Y, Wang T, Liang Y. Effect of Enterohepatic Circulation on the Accumulation of Per- and Polyfluoroalkyl Substances: Evidence from Experimental and Computational Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3214-3224. [PMID: 35138827 DOI: 10.1021/acs.est.1c07176] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The pharmacokinetic characteristics of per- and polyfluoroalkyl substances (PFAS) affect their distribution and bioaccumulation in biological systems. The enterohepatic circulation leads to reabsorption of certain chemicals from bile back into blood and the liver and thus influences their elimination, yet its influence on PFAS bioaccumulation remains unclear. We explored the role of enterohepatic circulation in PFAS bioaccumulation by examining tissue distribution of various PFAS in wild fish and a rat model. Computational models were used to determine the reabsorbed fractions of PFAS by calculating binding affinities of PFAS for key transporter proteins of enterohepatic circulation. The results indicated that higher concentrations were observed in blood, the liver, and bile compared to other tissues for some PFAS in fish. Furthermore, exposure to a PFAS mixture on the rat model showed that the reabsorption phenomenon appeared during 8-12 h for most long-chain PFAS. Molecular docking calculations suggest that PFAS can bind to key transporter proteins via electrostatic and hydrophobic interactions. Further regression analysis adds support to the hypothesis that binding affinity of the apical sodium-dependent bile acid transporter is the most important variable to predict the human half-lives of PFAS. This study demonstrated the critical role of enterohepatic circulation in reabsorption, distribution, and accumulation of PFAS.
Collapse
Affiliation(s)
- Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Zhe Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuiyun Wei
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangliang Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Thanh Wang
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
50
|
Hua ZL, Li XQ, Zhang JY, Gu L. Removal potential of multiple perfluoroalkyl acids (PFAAs) by submerged macrophytes in aquatic environments: Tolerance of Vallisneria natans and PFAA removal in submerged macrophyte-microbiota systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127695. [PMID: 34775308 DOI: 10.1016/j.jhazmat.2021.127695] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have emerged as a global concern in aquatic environment remediation due to their abundance, persistence, bioaccumulation, and toxicity. To comprehensively understand the removal potential of multiple PFAAs by submerged macrophytes in aquatic environments, systematic investigations into the tolerance of the typical submerged macrophyte Vallisneria natans to 12 typical PFAAs and the removal capacity to PFAAs in V. natans-microbiota systems were carried out. Results showed that although PFAAs could induce the accumulation of hydrogen peroxide and malondialdehyde, V. natans was overall resistant to multiple PFAAs with natural concentrations. Catalase is one of the main strategies of V. natans to alleviate PFAA stress. Microbiota can remove 18.10-30.84% of the PFAAs from the water column. 24.35-73.45% of PFAAs were removed from water in V. natans-microbiota systems. The uptake of plant tissues and the bioaccumulation of microbiota were proposed as the main removal processes. The removal rates were significantly correlated with the perfluorinated carbon atoms numbers (p < 0.05). PFAAs and V. natans increased the relative abundance of Betaproteobacteria, Nostocales, Microscillaceae, Sphingobacteriales, SBR1031, Chlamydiales, Phycisphaerae, Caldilineales, Rhodobacterales, and Verrucomicrobiales. The present study suggested that V. natans can be a potential species to remove multiple PFAAs in aquatic environments, and further providing insights into the PFAAs' remediation.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| |
Collapse
|