1
|
Yao MC, Huang Q, Xie HX, Zhang X, Sheng GP. Unrecognized role of photosynthetic bacteria in aquaculture water purification: Producing singlet oxygen to degrade residual pharmaceuticals. WATER RESEARCH 2025; 276:123288. [PMID: 39955791 DOI: 10.1016/j.watres.2025.123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Photosynthetic bacteria (PSB) are widely used in the purification of aquaculture waters due to their ability to utilize ammonia, nitrite, hydrogen sulfide, etc. However, PSB are usually considered to be ineffective in removing biologically inert pharmaceutical residues in aquaculture waters. Herein, we found that PSB were capable of degrading pharmaceuticals in aquaculture waters, such as cimetidine and sulfamethazine, by generating extracellular singlet oxygen (1O2) under light irradiation. PSB were highly efficient to produce 1O2, and the quantum yield of 1O2 was four orders of magnitude higher than that of hydroxyl radicals. The efficient production of 1O2 by PSB arose from the photosensitization of extracellular metabolites, which produced 1O2 with an order of magnitude higher quantum yield (0.41) compared to the commonly reported dissolved organic matter (< 0.04) and could efficiently produce 1O2 even under visible light irradiation. The photosensitized extracellular metabolites were mainly hydrophobic metabolites with the molecular weight < 1 kDa, and a porphyrin (i.e., COPRO III) was identified as the dominant photosensitizer for 1O2 production. This work provides new insights into the role of PSB inoculants in aquaculture water purification, and offers new ideas for the removal of pharmaceutical residues from aquaculture waters.
Collapse
Affiliation(s)
- Mu-Cen Yao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qi Huang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hong-Xuan Xie
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230031, China
| | - Xin Zhang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Guo-Ping Sheng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
2
|
Li X, Hu Z, Guo M, Liu G, Gao J, Xing W. Insight into the characterization of dissolved organic matter in shallow lakes with different trophic states and their net photo-generation capacity of reactive oxygen species. WATER RESEARCH 2025; 276:123204. [PMID: 39933291 DOI: 10.1016/j.watres.2025.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Reactive oxygen species (ROS) are ubiquitous in the aquatic environment, and they are closely related to several biogeochemical processes. Dissolved organic matter (DOM) is one of the main photosensitizers involved in the formation of ROS and it also serves as a sink for ROS by involving in scavenging, quenching, and antioxidant reactions. The net effect of these processes depends on the concentration, source, and composition of the DOM. Current studies have mainly focused on the steady-state concentration of reactive oxygen species ([ROS]ss) produced by the total DOM in lakes with different trophic states and ignored the net photo-generation capacity of ROS ([ROS]DOM, the net steady concentration of ROS generated per unit mass of DOM), leading to a vague understanding of the photochemical properties of DOM in aquatic systems, especially in shallow lakes with different trophic states. In this study, the optical composition of DOM was determined with optical characterization, such as specific UV-Vis and excitation-emission matrices with fluorescence regional integration (FRI-EEMs), and its molecular characteristics were analyzed by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results revealed that DOM in lakes with different trophic states had mixed endogenous and exogenous characteristics, accompanied by an increasing trend in endogenous characteristics with the increasing trophic state of lakes. Spectroscopic probes were used to detect the steady-state concentration of ROS and further calculate the [ROS]DOM, such as [3DOM*]DOM, [•OH]DOM, [1O2]DOM and [O2.-]DOM. The results indicated that the [ROS]DOM in lakes with light-eutrophic states was significantly higher than that in lakes with moderate-eutrophic and hyper-eutrophic states, which indicated that the DOM in lower trophic state lakes has a higher net photo-generation capacity of ROS. Pearson analysis results showed that [3DOM*]DOM, [•OH]DOM, [1O2]DOM and [O2.-]DOM had a significant positive correlation with lignin/CRAMs-like, aromatic, and tannin compounds, as well as the fluorescence components, fulvic- and humic-like substances and the UV-Vis indicator: SUVA254 revealed that DOM with higher humification and aromaticity had a higher net photo-generation capacity of ROS in different trophic state lakes. In addition, the molecular uniqueness of the DOM was dominated by lignin/CRAMs-like and aromatic compounds, which were positively correlated with [ROS]DOM, in the following order: [3DOM*]DOM > [•OH]DOM > [1O2]DOM > [O2.-]DOM. This study emphasizes the importance of focusing on the source, composition, and net photo-generation capacity of ROS by DOM, which would help evaluate the photochemical potential and other behaviors of DOM in lakes with different trophic states and provide guidance for the risk assessment of DOM input from different sources.
Collapse
Affiliation(s)
- Xiaolu Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhen Hu
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430063, China
| | - Minli Guo
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanglong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiong Gao
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China.
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
3
|
Wan Y, Liu H, Li L. The oxidative effect of duckweed pond DOM and its mechanism in the photodegradation of neonicotinoid insecticides. Photochem Photobiol Sci 2025:10.1007/s43630-025-00734-7. [PMID: 40369348 DOI: 10.1007/s43630-025-00734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Neonicotinoid pesticides (NNIs) are widely used worldwide and commonly detected in natural aquatic systems and in engineered systems, including urban or agriculture ponds. We investigated the photoreactivity of DOM and the photodegradation of NNIs in duckweed ponds (DWP) water under simulated sunlight. The molecular composition of DOM in DWP water typically contained more than 65% bulk compositional measurements of lignin-like, terrestrially derived molecules, revealed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). These compounds serve as critical candidates for the oxidizing 3DOM* in the DWP water. The steady-state concentrations of triplet-excited state DOM (3DOM*), singlet oxygen (1O2) and hydroxyl radical (·OH) were measured 6.00 × 10-14 M, 5.42 × 10-13 M, and 8.33 × 10-15 M, respectively, under 5 mg/L [DOC]. Enhanced removal rates of thiamethoxam (TMX) and dinotefuran (DIN) in the irradiated DWP water relative to the purity water demonstrated the importance of indirect photolysis pathways involving photochemically produced 3DOM*and 1O2. The findings demonstrated that in DWP water, the photolysis rate constants (k) of TMX and DIN increased to 0.3573 h-1 and 0.3237 h-1, respectively. Degradation of imidacloprid was not significantly promoted through the photochemical production of 3DOM* and 1O2. Results from this study underscore the role of DOM as photosensitizer in limiting the persistence of NNIs in duckweed ponds through photochemical reactions.
Collapse
Affiliation(s)
- Yasi Wan
- School of Environmental Science, China University of Geosciences, Wuhan, 430074, China
| | - Hao Liu
- School of Environmental Science, China University of Geosciences, Wuhan, 430074, China
| | - Liqing Li
- School of Environmental Science, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
4
|
Zhao ML, Ji X, Zhang J, He Z, Chen J, Yang GP, Liu CY, Zhuang GC. Photodegradation Mechanism of UV-328 in Natural Organic Matter Contexts Under Simulated Solar Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9245-9254. [PMID: 40274543 DOI: 10.1021/acs.est.4c13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
2-(Benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol (UV-328), a widely utilized UV absorber in plastics and diverse products, has been frequently detected in the environment; yet, research on its photochemical degradation is scarce. Dissolved organic matter (DOM) and particulate organic matter (POM), as important components of natural organic matter, can produce photosensitization by absorbing photons. This study examined the influence of DOM from various sources on the photodegradation of UV-328 under simulated daylight conditions. Experiments revealed that excited triplet DOM (3DOM*) is the primary factor enhancing the photodegradation of UV-328. Utilizing excitation-emission matrix spectroscopy combined with parallel factor analysis (EEMs-PARAFAC) and seawater ultrafiltration experiments, it was demonstrated that high molecular weight DOM, particularly autochthonous DOM produced in seawater, could more rapidly photodegrade UV-328. Additionally, the photodegradation of UV-328 in suspended particulate matter (SPM) was influenced by DOM, inorganic ions, and organic acids, with DOM contributing to a positive feedback effect on the degradation process. The degradation pathways and products of UV-328 were first elucidated using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), supplemented by density functional theory (DFT) calculations. This study provides novel insights into the photodegradation mechanisms of UV-328 by combining DOM and POM for the first time.
Collapse
Affiliation(s)
- Ming-Liang Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xuan Ji
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jing Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Zhen He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Chun-Ying Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Guang-Chao Zhuang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Lee D, Alyami I, Zimila H, Arnold RG, Quanrud DM, Sáez AE. Photolytic transformation of trace organic compounds: Roles of direct photolysis and indirect photolysis by singlet oxygen. WATER RESEARCH 2025; 283:123799. [PMID: 40359892 DOI: 10.1016/j.watres.2025.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/22/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
Both direct and indirect solar photolysis contribute to the in-situ attenuation of trace organic compounds (TOrCs) in surface waters, including those that are impacted by treated wastewater. In particular, the formation of singlet oxygen (1O2) from photosensitizers may play a role in the degradation of specific TOrCs. Quantification of the kinetics of photolytic processes is essential for anticipation of TOrC attenuation in sunlit waters. In this work, quantum yields for direct photolysis in sunlight and ultraviolet A light (290-400 nm), and second-order rate constants for TOrC reactions with 1O2 were determined for sixteen TOrCs that are ubiquitous in effluent-receiving surface waters. Six of the sixteen TOrCs (prednisone, dexamethasone, benzophenone, hydrocortisone, hydrochlorothiazide, and furosemide) were transformed via direct photolysis. Compounds that reacted readily with 1O2 included furosemide, propylparaben, and diltiazem. Second-order rate constants for reactions with 1O2 were determined using a kinetic model applied to a batch reactor and confirmed by measurement of kinetic solvent isotope effects (KSIE) in deuterated water (D2O). A reactor model that combined direct and indirect photolysis was used to predict TOrC in chemically complex solutions containing natural organic matter (NOM) or effluent organic matter (EfOM), using the measured direct photolysis quantum yield and reaction rate constant with 1O2.
Collapse
Affiliation(s)
- Doorae Lee
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA.
| | - Ibrahim Alyami
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Hercilio Zimila
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Robert G Arnold
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - David M Quanrud
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona 85721, USA
| | - A Eduardo Sáez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
6
|
Wan D, Yu C, Zhao Y, Song G, Mi W, Zhu Y, Liu C, Bi Y. Photodegradation mechanism of organic contaminants mediated by chlorinated algal organic matter. WATER RESEARCH 2025; 281:123674. [PMID: 40280008 DOI: 10.1016/j.watres.2025.123674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/22/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Algal organic matter (AOM) significantly influences the photochemical behavior of dissolved organic matter in aquatic environments. This study investigated the effects of chlorination on the photophysical and photochemical properties of AOM derived from Microcystis aeruginosa, compared these alterations with those observed for natural organic matter (NOM), and examined their impact on the photodegradation of organic contaminants, with a particular focus on N,N‑diethyl-m-toluamide (DEET) as a model substrate. The results demonstrated that chlorination substantially altered the photochemical reactivity of AOM. AOM and NOM exhibit distinct reactivities, reflecting their varied molecular compositions and functional groups. Specifically, chlorination reduced the aromaticity (SUVA254 decreased by ∼42 %) and molecular weight (decreased by ∼30 %) of AOM, resulting in a shift of fluorescence peaks to lower wavelengths. It also enhanced the formation of singlet oxygen (1O2) and hydroxyl radical (•OH). Chlorinated extracellular organic matter (EOM) exhibited a remarkable increase in •OH quantum yield, with a 200-fold enhancement at a high free available chlorine (FAC) dose (FAC/TOC ratio of 2.0). The photodegradation of DEET, involved H-abstraction and hydroxylation by •OH, was significantly accelerated in chlorinated EOM, highlighting the critical role of chlorinated AOM in driving photosensitized degradation processes. The findings emphasized the role of chlorination in altering AOM's photochemical properties, with significant implications for the enhanced transformation of contaminants in natural and engineered aquatic systems.
Collapse
Affiliation(s)
- Dong Wan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Chengjie Yu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yafei Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Gaofei Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Wujuan Mi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yuxuan Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Changzi Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yonghong Bi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
7
|
Li Z, Zhao H, Lv J, Azam S. Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137124. [PMID: 39813924 DOI: 10.1016/j.jhazmat.2025.137124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu2 +) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu2+ is a typical redox transient cation and has strong affinity to DOM. The findings demonstrated that Cu2+, acting as cation bridge, caused DOM to aggregate, and had impacts on the optical properties and conformation of DOM. The electron shuttle and catalyst effect of Cu2+ could accelerate the charge transfer processes for the increasing of quantum yield and steady concentrations of hydroxyl radical (·OH) with the increase of concentrations of e-aq, O2.-, hydrogen peroxide (H2O2) and charge separated states of DOM (DOM·+ or DOM·-); On the other hand, Cu2+, as excited state quencher, decrease of apparent quantum yield of triplet state of DOM (3DOM*) and singlet oxygen (1O2) through static quenching of singlet excited of DOM (1DOM*) and dynamic quenching of 3DOM*, respectively. The results provide a deeper understanding of the effect mechanism of Cu2+ on the DOM photochemistry in real environment and will be useful for assessment the photodegradation of organic contaminants in the presence of both DOM and Cu2+.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shafiul Azam
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Gad M, Khomami NTS, Krieg R, Schor J, Philippe A, Lechtenfeld OJ. Environmental drivers of dissolved organic matter composition across central European aquatic systems: A novel correlation-based machine learning and FT-ICR MS approach. WATER RESEARCH 2025; 273:123018. [PMID: 39742633 DOI: 10.1016/j.watres.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
Dissolved organic matter (DOM) present in surface aquatic systems is a heterogeneous mixture of organic compounds reflecting its allochthonous and autochthonous organic matter (OM) sources. The composition of DOM is determined by environmental factors like land use, water chemistry, and climate, which influence its release, movement, and turnover in the ecosystem. However, studying the impact of these environmental factors on DOM composition is challenging due to the dynamic nature of the system and the complex interactions of multiple environmental factors involved. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables detailed molecular-level analysis of DOM, allowing the identification of thousands of individual molecular formulas potentially representing unique markers for its "molecular history". The combination of FT-ICR MS with machine-learning techniques is promising to unravel DOM-environment interactions owing to their capacity to capture complex non-linear relationships. We present a novel unsupervised multi-variant machine-learning approach, aiming to model correlation coefficients as robust indicators of how changes in environmental factors (e.g., the concentration of nutrients or the land use) result in changes in the molecular formula descriptors of DOM (i.e., aromaticity index or hydrogen to carbon ratio). We applied this approach to an environmental data set collected from 84 sites across central Europe exhibiting a broad range of water chemistry and land uses. Our model revealed an increase in molecular mass and aromaticity of DOM in densely forested regions as compared to open urban areas, where DOM was characterized by higher concentrations of dissolved ions and increased microbial degradation, leading to smaller and more aliphatic DOM. Our findings highlight the substantial human impact on climate change, as evidenced by the accelerated photochemical and microbial degradation of DOM, which consequently enhances greenhouse gas emissions and exacerbates global warming.
Collapse
Affiliation(s)
- Michel Gad
- Research group BioGeoOmics, Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany.
| | - Narjes Tayyebi Sabet Khomami
- iES Landau, Research Group of Environmental and Soil Chemistry, University of Kaiserslautern-Landau (RPTU), Landau 76829, Germany
| | - Ronald Krieg
- Department Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Jana Schor
- Department Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig 04318, Germany; Department of Computer Science, Faculty of Mathematics and Computer Science, University of Leipzig, Leipzig 04109, Germany
| | - Allan Philippe
- iES Landau, Research Group of Environmental and Soil Chemistry, University of Kaiserslautern-Landau (RPTU), Landau 76829, Germany
| | - Oliver J Lechtenfeld
- Research group BioGeoOmics, Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany
| |
Collapse
|
9
|
Pati SG, Brunner LM, Ley M, Hofstetter TB. Oxygen Isotope Fractionation of O 2 Consumption through Abiotic Photochemical Singlet Oxygen Formation Pathways. ACS ENVIRONMENTAL AU 2025; 5:220-229. [PMID: 40125286 PMCID: PMC11926750 DOI: 10.1021/acsenvironau.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 03/25/2025]
Abstract
Oxygen isotope ratios of O2 are important tracers for assessing biological activity in biogeochemical processes in aquatic environments. In fact, changes in the 18O/16O and 17O/16O ratios of O2 have been successfully implemented as measures for quantifying photosynthetic O2 production and biological O2 respiration. Despite evidence for light-dependent O2 consumption in sunlit surface waters, however, photochemical O2 loss processes have so far been neglected in the stable isotope-based evaluation of oxygen cycling. Here, we established the magnitude of the O isotope fractionation for abiotic photochemical O2 elimination through formation of singlet O2, 1O2, and the ensuing oxygenation and oxidation reactions with organic compounds through experiments with rose bengal as the 1O2 sensitizer and three different amino acids and furfuryl alcohol as chemical quenchers. Based on the kinetic analysis of light-dependent O2 removal in the presence of different quenchers, we rationalize the observable O isotope fractionation of O2 and the corresponding, apparent 18O kinetic isotope effects (18O-AKIE) with a pre-equilibrium model for the reversible formation of 1O2 and its irreversible oxygenation reactions with organic compounds. While 18O-AKIEs of oxygenation reactions amount to 1.03, the O isotope fractionation of O2 decreased to unity with increasing ratio of the rates of oxygenation reaction of 1O2 vs 1O2 decay to ground state oxygen, 3O2. Our findings imply that O isotope fractionation through photochemical O2 consumption with isotope enrichment factors, 18O-ϵ, of up to -30‰ can match contributions from biological respiration at typical dissolved organic matter concentrations of lakes, rivers, and oceans and should, therefore, be included in future evaluations of biogeochemical O2 cycling.
Collapse
Affiliation(s)
- Sarah G. Pati
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Vienna 1090, Austria
- Department
of Environmental Sciences, University of
Basel, Basel 4056, Switzerland
| | - Lara M. Brunner
- Department
of Environmental Sciences, University of
Basel, Basel 4056, Switzerland
| | - Martin Ley
- Department
of Environmental Sciences, University of
Basel, Basel 4056, Switzerland
| | - Thomas B. Hofstetter
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, Zürich 8092, Switzerland
| |
Collapse
|
10
|
Wang C, Guo R, Guo C, Yin H, Xu J. Photodegradation of typical psychotropic drugs in the aquatic environment: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:320-354. [PMID: 39886903 DOI: 10.1039/d4em00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Continuous consumption combined with incomplete removal during wastewater treatment means residues of psychotropic drugs (PDs), including antidepressants, antipsychotics, antiepileptics and illicit drugs, are continuously entering the aquatic environment, where they have the potential to affect non-target organisms. Photochemical transformation is an important aspect to consider when evaluating the environmental persistence of PDs, particularly for those present in sunlit surface waters. This review summarizes the latest research on the photodegradation of typical PDs under environmentally relevant conditions. According to the analysis results, four classes of PDs discussed in this paper are influenced by direct and indirect photolysis. Indirect photodegradation has been more extensively studied for antidepressants and antiepileptics compared to antipsychotics and illicit drugs. Particularly, the photosensitization process of dissolved organic materials (DOM) in natural waters has received significant research attention due to its ubiquity and specificity. The direct photolysis pathway plays a less significant role, but it is still relevant for most PDs discussed in this paper. The photodegradation rates and pathways of PDs are influenced by various water constituents and parameters such as DOM, nitrate and pH value. The contradictory results reported in some studies can be attributed to differences in experimental conditions. Based on this analysis of the existing literature, the review also identifies several key aspects that warrant further research on PD photodegradation. These results and recommendations contribute to a better understanding of the environmental role of water matrixes and provide important new insights into the photochemical fate of PDs in aquatic environments.
Collapse
Affiliation(s)
- Chuanguang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruonan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hailong Yin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Lai C, Zhan J, Chai Q, Wang C, Yang X, He H, Huang B, Pan X. Dissolved carbon in biochar: Exploring its chemistry, iron complexing capability, toxicity in natural redox environment. J Environ Sci (China) 2025; 147:217-229. [PMID: 39003041 DOI: 10.1016/j.jes.2023.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 07/15/2024]
Abstract
Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.
Collapse
Affiliation(s)
- Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Juhong Zhan
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Qiuyun Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Changlu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
12
|
Wang K, Xu S, Wang J, Gao B, Huang Y, Song J, Ma S, Jia H, Zhan S. Insights into the photosensitivity and photobleaching of dissolved organic matter from microplastics: Structure-activity relationship and transformation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135931. [PMID: 39307013 DOI: 10.1016/j.jhazmat.2024.135931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Revealing the structure-activity relationship between physicochemical properties and photoactivities of microplastic dissolved organic matter (MPDOM) is significant for understanding the environmental fate of MPs. Here, we systematically analyzed the physicochemical properties and molecular composition of DOM derived from MPs including polystyrene (PS), polyethylene glycol terephthalate (PET), polyadipate/butylene terephthalate (PBAT), polylactic acid (PLA), polypropylene (PP), and compared their photosensitivity and photobleaching behaviors. Results indicated that PSDOM and PETDOM had more similar properties and compositions, and showed stronger photosensitivity and photobleaching effects than PBATDOM, PLADOM and PPDOM. The [3DOM∗]SS and [1O2]SS varied in the range of 0.31-13.03 × 10-14 and 1.71-5.49 × 10-13 M, respectively, which were within the reported range of DOM from other sources. The SUVA254, HIX, AImodwa, Xcwa and lignin/CRAM-like component showed positive correlation with the [3DOM∗]SS, [1O2]SS and Φ3DOM*. The negative correlation between E2/E3 and [3DOM∗]SS was due to the higher proportion of low-molecular weight components in MPDOM. The lignin/CRAM-like component was identified to be the crucial photobleaching-component. The lignin/CRAM-like in PSDOM showed a deepened oxidation degree, while its change trend in PETDOM was from unsaturated to saturated. These findings provide new insights into the relevant photochemical fate of MPDOM.
Collapse
Affiliation(s)
- Kai Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Jingzhen Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Boqiang Gao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yan Huang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jia Song
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shuanglong Ma
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest, A&F University, Yangling 712100, PR China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
13
|
Guo S, Liu L, Wang L, Tang J. Phototransformation and photoreactivity of MPs-DOM in aqueous environment: Key role of MPs structure decoded by optical and molecular signatures. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136331. [PMID: 39486325 DOI: 10.1016/j.jhazmat.2024.136331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/10/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The dissolved organic matter (DOM) derived from microplastics (MPs-DOM) can be one of the photoactive components in DOM. However, information on the properties and photoreactivity of MPs-DOM during phototransformation is limited. Here, we investigated the properties and photoreactivity of MPs-DOM from polyolefins (MPs-DOM-POs), MPs-DOM derived from benzene-containing polymers (MPs-DOM-BCPs), and Suwannee River natural organic matter (SR-NOM), during a 168-hour phototransformation. After phototransformation, all examined types of DOM exhibit a decrease in concentration and molecular weight. Notably, MPs-DOM-POs display increased aromaticity and saturation, while MPs-DOM-BCPs and SR-NOM show reduced aromaticity and saturation. MPs-DOM-POs present higher steady-state concentrations of •OH but much lower steady-state concentrations of 1O2 than those of MPs-DOM-BCPs. In comparison, MPs-DOM produce more •OH but less 1O2 than SR-NOM. This study proposes that the diversification of aliphatic C─H bonds (arylation and carbonylation) by reactive intermediates (especially •OH) is the main pathway for MPs-DOM-POs phototransformation for the first time. On the other hand, the cleavage on the aromatic carboxylic acids by reactive intermediates (especially 1O2) is the main mechanism for MPs-DOM-BCPs and SR-NOM phototransformation. Our findings provide new insights into the phototransformation and photoreactivity of MPs-DOM and help to understand the potential risks of MPs in aqueous environment.
Collapse
Affiliation(s)
- Saisai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Kang Y, Chu Z, Xie X, Li L, Hu J, Li S, Wang Z. Variation in photoactivity of dissolved black carbon during the fractionation process and the role in the photodegradation of various antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136435. [PMID: 39547035 DOI: 10.1016/j.jhazmat.2024.136435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
The composition of dissolved black carbon (DBC) could be influenced by adsorption on minerals, subsequently affecting DBC's photoactivity and the photoconversion of contaminants. This study investigated the changes in photoactivity of DBC after absorption on ferrihydrite at Fe/C ratios of 0, 1.75, 7.50, and 11.25, compared the influences of DBC0 and DBC7.50 on the photodegradation of four typical antibiotics (AB) including sulfadiazine, tetracycline, ofloxacin, and chloramphenicol. The selective adsorption led to the compounds with high aromaticity, high oxidation states, and more oxygen-containing functional groups being more favorably adsorbed on ferrihydrite, further causing the steady-state concentrations of 3DBC*, 1O2, and •OH respectively to drop from 1.83 × 10-13 M, 7.45 × 10-13 M, and 3.32 × 10-16 M in DBC0 to 1.22 × 10-13 M, 0.93 × 10-13 M and 2.30 × 10-16 M in DBC11.25, while the light screening effect factor increased from 0.740-0.921 in DBC0 with above four antibiotics to 0.775-0.970 for that of DBC11.25. Unexpectedly, DBC after adsorption played a dual role in the photodegradation of various antibiotics. This difference might be caused by antibiotics' chemical composition, functional groups interacting with reactive intermediates, and the overlap in UV-vis spectra between antibiotics and DBC. Our data are valuable for understanding the dynamic roles of DBC in the photodegradation of antibiotics.
Collapse
Affiliation(s)
- Yaqi Kang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| | - Zhenkun Chu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China.
| | - Liangyu Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| | - Jiani Hu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| | - Siting Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| |
Collapse
|
15
|
Xu Y, Zhang Y, Qiu L, Zhang M, Yang J, Ji R, Vione D, Chen Z, Gu C. Photochemical behavior of dissolved organic matter in environmental surface waters: A review. ECO-ENVIRONMENT & HEALTH 2024; 3:529-542. [PMID: 39605966 PMCID: PMC11599994 DOI: 10.1016/j.eehl.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 11/29/2024]
Abstract
As an important group of widespread organic substances in aquatic ecosystems, dissolved organic matter (DOM) plays an essential role in carbon recycling and transformation processes. The photochemical behavior of DOM is one of the main ways it participates in these processes, and it attracts extensive attention. However, due to a variety of sources and water conditions, including both freshwater and seawater environments, the photochemical properties of DOM exhibit great differences. Nowadays, a large number of studies have focused on the generation process of reactive species (RS) from sunlit DOM, while little effort has been made so far to provide a comprehensive summary of the photochemical behavior of DOM, especially in fresh and saline aquatic ecosystems. In this review, we analyzed the research hotspot on DOM photochemistry over the last 30 years, summarizing the generation of photoreactive species in natural water environments containing DOM (both freshwater and seawater) and listing the main factors affecting the rate, yield, and species of RS photoproduction. Compared with freshwater, seawater has unique characteristics such as high pH value, high ionic strength, and halide ions, which affect the photogeneration of RS, the photoconversion process, as well as the reaction pathways of various environmental substances. In general, DOM-induced surface water photochemistry has important impacts on the environmental transformation and toxic effects of aquatic pollutants and can even contribute significantly to the Earth's carbon cycle, which would have potential implications for both human and ecological health.
Collapse
Affiliation(s)
- Yichen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yutong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Longlong Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaojiao Yang
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
16
|
Zhu S, Yang P, Yin Y, Zhang S, Lv J, Tian S, Jiang T, Wang D. Influences of wildfire on the soil dissolved organic matter characteristics and its electron-donating capacity. WATER RESEARCH 2024; 266:122382. [PMID: 39298894 DOI: 10.1016/j.watres.2024.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Global increases in the intensity and frequency of wildfires are driving major changes in soil organic matter (SOM) characteristics, including soil dissolved organic matter (DOM). As the most crucial component of SOM, soil DOM plays a pivotal role in the carbon cycle and regulates the environmental fate of contaminants through its versatile reactivities, including electron-donating capacity (EDC). However, it is still being determined how wildfire influences key characteristics of soil DOM and subsequent effects on EDC in forest soils. Thus, we conducted our study to fill this gap with the forest soils of Jinyun Mountain Nature Reserve of China, which experienced an unprecedented wildfire event in 2022. The results from optical characterization, high-performance size-exclusion chromatography (HPSEC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) showed decreasing molecular weight but elevating nitrogen-containing molecular formulas of soil DOM in the burned soils. This could be attributed to the Maillard reaction and microbial re-colonies. Additionally, wildfires increased the condensed aromatics and lignin components in soil DOM. In the burned soils, we observed increasing EDC of soil DOM, which accounts for an increase in lignin-derived phenolic components. Overall, the findings of this study demonstrate that eco-disturbances, such as wildfires, induce alterations in the properties of DOM, leading to variations in its reactivity and potentially influencing the fate of environmental pollutants beyond carbon dynamics alone. Thus, incorporating the dynamic properties of soil DOM, particularly in the context of climate change, can enhance the assessment of risks associated with contaminants in soil and water, providing valuable insights.
Collapse
Affiliation(s)
- Sihua Zhu
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Peijie Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Siqi Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanyi Tian
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
17
|
Ren D, Yang B, Wang Y, Wang J. Molecular-level insight into the role of soil-derived dissolved organic matter composition in regulating photochemical reactivity. WATER RESEARCH 2024; 268:122765. [PMID: 39541853 DOI: 10.1016/j.watres.2024.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Soil-derived dissolved organic matter (DOM) links soil and water carbon pools and is an important source of photochemically produced reactive intermediates (PPRIs) in aquatic environments. Despite its importance, the variations in photochemical reactivity of soil-derived DOM molecules in producing PPRIs across broad geographical regions, and the factors driving these variations, remain unclear. Herein, we resolved the apparent quantum yields (Φ(PPRIs)) of hydroxyl radicals (•OH), singlet oxygen (1O2), and excited triplet-state DOM (3DOM*) for irradiated DOM from 22 representative soil reference materials in China, and linked them to soil pH, mineral weathering degree, and DOM characteristics. Generally, the average Φ(PPRIs) values of the soil-derived DOM followed the order of Φ(3DOM*) (1.67× 10-2) > Φ(1O2) (1.47× 10-2) > Φ(•OH) (7.31× 10-5). The DOM from less weathered soils showed higher Φ(•OH) and Φ(3DOM*) and comparable Φ(1O2) than that from more weathered soils. The differences were mainly regulated by the abundance of humic-, lignin-, tannin-, and aromatic-like compounds, as indicated by the correlation and random forest model analyses. Partial least squares and multiple linear regression analyses identified DOM molecular weight, nominal oxidation state of carbon, and soil chemical index of alteration as effective predictors of •OH yields. Soil chemical index of alteration emerged as a prioritized predictor of 3DOM* yields, while the electron-donating capacity and humic-like compound content of the soil-derived DOM were effective predictors of 1O2 yields. This study advances our understanding of how mineral weathering processes regulate the photochemical reactivity of soil-derived DOM in the aquatic environment across wide geographical regions.
Collapse
Affiliation(s)
- Dong Ren
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinghui Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
18
|
Jia N, Shi Y, Qi J, Yang W, Bu Q, Zhao R, Yang L, Tang J. Effects of dissolved organic matter from different sources on ritonavir photolysis. CHEMOSPHERE 2024; 367:143685. [PMID: 39505073 DOI: 10.1016/j.chemosphere.2024.143685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
With the misuse of antiviral drugs, the residual levels of ritonavir (RTV) in aquatic environments continue to increase, potentially posing threats to ecosystems and human health. However, the current understanding of the photochemical behavior of RTV in water, especially the mechanism by which dissolved organic matter (DOM) from different sources affects the indirect photolysis of RTV, remains limited. This study systematically investigated the effects of DOM from different sources (including sludge, algae, dustfall, and soil, namely SL-DOM, AL-DOM, DF-DOM, and SO-DOM, respectively) on the photodegradation of RTV for the first time. DOM exhibited a dual role in RTV degradation, with SL-DOM and AL-DOM accelerating the degradation process, while DF-DOM and SO-DOM inhibited it. Direct photolysis accounted for 40-53% of the overall photodegradation, underscoring its significant contribution to the degradation process. Quenching and competitive kinetics experiments revealed that 3DOM⁎ is the dominant contributor to the indirect photolysis of RTV. Exogenous DOM (DF-DOM, SO-DOM) exhibited higher generation rate and steady-state concentraiton of 3DOM⁎, while endogenous DOM (SL-DOM, AL-DOM) exhibited higher quantum yields of 3DOM⁎ and reactivity, leading to distinct mechanisms for the indirect photodegradation of RTV. This study explored the effects of DOM from different sources on the photodegradation of RTV, providing important insights into how DOM affects the photochemical behavior and ecological risk of RTV. It also provides a reference for exploring the photochemical behavior of other drugs.
Collapse
Affiliation(s)
- Nan Jia
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Yue Shi
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Jinyuan Qi
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Weiwei Yang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Ruiqing Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China.
| |
Collapse
|
19
|
Ji G, Li K, Hou Y, Xue R, Huang K, Lv H, Huang T, Wen G. Response of dissolved organic matter and disinfection by-product precursors to algal blooms and thermal stratification in deep reservoirs. CHEMOSPHERE 2024; 368:143757. [PMID: 39549964 DOI: 10.1016/j.chemosphere.2024.143757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Algal bloom contribute substantially to dissolved organic matter (DOM) and disinfection by-product (DBP) precursors in deep reservoirs, threatening drinking water safety. However, the variations in DOM and DBP precursors in deep-water reservoirs during algal bloom remain unclear. UV and fluorescence spectroscopy and chlorination experiments were used to analyze the variations in DOM and DBP precursors during algal bloom in the Sanhekou Reservoir. Before algal bloom, the DOM and DBP precursors decreased due to biodegradation. After algal bloom, the DOM and DBP precursors increased by 48.3% and 86.9% due to algae producing protein-like compounds. Notably, the algal bloom produced a range of nitrogenous compounds that significantly promote the formation of trichloronitromethane, a major contributor to the mammalian cytotoxicity associated with DBPs. In addition, the heterogeneous matrix led to the stratification of DOM and DBP precursors. The surface water (0-5 m) was more vulnerable to algae, with protein-like components being much higher than in other layers, while humic and fulvic-like components were much lower. However, high temperatures and sufficient oxygen conditions accelerated the biodegradation of DOM and DBP precursors, resulting in significantly lower levels of DOM and DBP precursors in the surface water compared to other layers (p < 0.05). This study provides insights into the variations and the drivers in DOM and DBP precursors during algal bloom, essential for developing water intake strategies in similar water reservoirs.
Collapse
Affiliation(s)
- Gang Ji
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yi Hou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruikang Xue
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kangzhe Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - He Lv
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
20
|
Korak JA, McKay G. Critical review of fluorescence and absorbance measurements as surrogates for the molecular weight and aromaticity of dissolved organic matter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1663-1702. [PMID: 39058291 DOI: 10.1039/d4em00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Dissolved organic matter (DOM) is ubiquitous in aquatic environments and challenging to characterize due to its heterogeneity. Optical measurements (i.e., absorbance and fluorescence spectroscopy) are popular characterization tools, because they are non-destructive, require small sample volumes, and are relatively inexpensive and more accessible compared to other techniques (e.g., high resolution mass spectrometry). To make inferences about DOM chemistry, optical surrogates have been derived from absorbance and fluorescence spectra to describe differences in spectral shape (e.g., E2:E3 ratio, spectral slope, fluorescence indices) or quantify carbon-normalized optical responses (e.g., specific absorbance (SUVA) or specific fluorescence intensity (SFI)). The most common interpretations relate these optical surrogates to DOM molecular weight or aromaticity. This critical review traces the genesis of each of these interpretations and, to the extent possible, discusses additional lines of evidence that have been developed since their inception using datasets comparing diverse DOM sources or strategic endmembers. This review draws several conclusions. More caution is needed to avoid presenting surrogates as specific to either molecular weight or aromaticity, as these physicochemical characteristics are often correlated or interdependent. Many surrogates are proposed using narrow contexts, such as fractionation of a limited number of samples or dependence on isolates. Further study is needed to determine if interpretations are generalizable to whole-waters. Lastly, there is a broad opportunity to identify why endmembers with low abundance of aromatic carbon (e.g., effluent organic matter, Antarctic lakes) often do not follow systematic trends with molecular weight or aromaticity as observed in endmembers from terrestrial environments with higher plant inputs.
Collapse
Affiliation(s)
- Julie A Korak
- Department of Civil, Environmental, and Architectural Engineering, USA.
- Environmental Engineering Program, University of Colorado, Boulder, CO, USA
| | - Garrett McKay
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
21
|
Sun L, Wang T, Li B, Chen M, Wu J, Shang Z, Wu P, Dang Z, Zhu N. Sunlight-Driven Direct/Mediated Electron Transfer for Cr(VI) Reductive Sequestration on Dissolved Black Carbon-Ferrihydrite Coprecipitates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18379-18390. [PMID: 39363618 DOI: 10.1021/acs.est.4c08371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Surface runoff horizontally distributed chromium (Cr) pollution into various surface environments. Sunlight is a vital factor for the Cr cycle in the surface environment, which may be affected by photoactive substances such as ferrihydrite (Fh) and dissolved black carbon (DBC). Herein, sunlight-driven transformation dynamics of Cr species on DBC-Fh coprecipitates were studied. Under sunlight, the removal of aqueous Cr(VI) by DBC-Fh coprecipitates occurred through sunlight-driven reductive sequestration including adsorption, followed by surface reduction (pathway 1) and aqueous reduction, followed by precipitation (pathway 2). Additionally, coprecipitates with a higher DBC content exhibited a more effective reduction of both adsorbed (kapp,S_red) and aqueous Cr(VI) (kapp,A_red). Photoelectrons facilitated Cr(VI) reduction through direct electron transfer; notably, electron donating DBC promoted the production of photoelectrons by consuming photogenerated holes. Photogenerated Fe(II) species (mineral-phase and aqueous Fe(II)) mediated electron transfer for Cr(VI) reduction, which was reinforced via a ligand-to-metal charge transfer (LMCT) process between DBC-organic ligands and mineral Fe(III). Furthermore, ·O2- also mediated Cr(VI) reduction, although this impact was limited. Overall, this study demonstrates that photoelectrons and photogenerated electron mediators play a crucial role in Cr(VI) reductive sequestration on DBC-Fh coprecipitates, providing new insights into the geochemical cycle of Cr pollution in sunlight-influenced surface environments.
Collapse
Affiliation(s)
- Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bo Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
22
|
Li L, Wei B, Cheng W, Kang Y, Xie X, Wang Z. Dual role of dissolved black carbon in sensitized ofloxacin photooxidation: Mechanism and influential factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173969. [PMID: 38876336 DOI: 10.1016/j.scitotenv.2024.173969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Dissolved black carbon (DBC) is the more photoactive component of dissolved organic matter (DOM) pool, which plays a dual role in the photoconversion of aquatic contaminants, acting as both a photosensitizer and an inhibitor. However, little is known about the more systematic mechanism by which DBC exhibits a dual effect, which is closely related to the structure composition of DBC. In this study, the differences in characteristics of DBC obtained from 300 °C and 500 °C were compared via UV-vis absorption spectrum, Fluorescence excitation emission matrix spectra (3D-EEM), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS), and evaluated the promoting and inhibiting effects of DBC on ofloxacin (OFL) photodegradation. It was found that higher pyrolysis temperature reduced the UV absorbance, molecular weight, aromaticity, and phenolics of DBC while increasing the content of quinone/aromatic ketone and humic substances. Photochemical data showed that 3DBC*, 1O2 and ·OH were all participated in the DBC-mediated OFL photodegradation. Wherein, DBC300 (DBCT, where T = pyrolysis temperature) had strong light screening and dynamic quenching effect, but the formation ability of 3DBC*, 1O2 and ·OH was poor, which significantly retarded the photodegradation of OFL. While DBC500 exhibited a slight promotion effect due to its higher formation ability of reactive species and weak light screening effect. Moreover, DBC500 had higher steady-state concentration and (kOFL,3DBC⁎) than DBC300, which might be due to the higher contents of quinone/aromatic ketone and the lower contents of phenol in DBC500, thus enhancing the reactivity of 3DBC* and OFL. Our research systematically revealed the trade-off mechanism of DBC on the photodegradation of fluoroquinolones, and provided an important theoretical guidance for the photodegradation of fluoroquinolones under the evolution of DBC composition.
Collapse
Affiliation(s)
- Liangyu Li
- College of Earth and Environmental Sciences, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Bin Wei
- College of Earth and Environmental Sciences, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wan Cheng
- College of Earth and Environmental Sciences, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yaqi Kang
- College of Earth and Environmental Sciences, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
23
|
Liu H, Li Y, Huangfu Z, Lu Q, Yang B, Liu Y. Structure and molecular-level transformation for oxidation of effluent organic matters by manganese oxides. WATER RESEARCH 2024; 262:122082. [PMID: 39018581 DOI: 10.1016/j.watres.2024.122082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
As important organic components in water environments, effluent organic matters (EfOMs) from wastewater treatment plants are widely present in Mn-rich environments or engineered treatment systems. The redox interaction between manganese oxides (MnOx) and EfOMs can lead to their structural changes, which are crucial for ensuring the safety of water environments. Herein, the reactivities of MnOx with EfOMs were evaluated, and it was found that MnOx with high specific surface area, active high-valent manganese content and lattice oxygen content (i.e., amorphous MnO2) possessed stronger oxidizing ability towards EfOMs. Accompanying by EfOMs oxidation, Mn(IV) and Mn(III) were reduced into Mn(II), with Mn(III) as the significant active species. Through molecular-level transformation analysis by ultrahigh mass spectrometry (FT-ICR MS), the highly reactive compounds in EfOMs were clearly determined to be that with more aromatic and unsaturated structures, especially lignin-like compounds (the highest content in EfOMs (over 60 %)). EfOMs were oxidized by amorphous MnO2 into products with lower humification index (0.60 vs. 0.46), smaller apparent molecular weight (386.94 Da vs. 368.68 Da), and higher biodegradability (BOD5/COD: 0.12 vs. 0.78). This finding suggested that redox reactions between MnOx and EfOMs might alter their abiotic and biotic behaviors in receiving water environments.
Collapse
Affiliation(s)
- Hongnan Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yingying Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zizheng Huangfu
- Sinochem Environment Holdings Co., Ltd., Beijing 100071, China
| | - Qi Lu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Baolong Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Liu S, Liu S, Liu L, Li L, Yang Y, Xu Y, She X. Photodegradation of bisphenol A (BPA) in coastal aquaculture waters: Influencing factors, products, and pathways. CHEMOSPHERE 2024; 363:142708. [PMID: 38971446 DOI: 10.1016/j.chemosphere.2024.142708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Bisphenol A (BPA), an endocrine-disrupting contaminant, is ubiquitous in the environment due to its presence in plastics, wastewater, and agricultural runoff. This study investigated the photodegradation behavior of BPA in coastal aquaculture waters near Qingdao, China. Lower salinity promoted BPA photodegradation, while higher salinity has an inhibitory effect, suggesting slower degradation in seawater compared to ultrapure water. Triplet-excited dissolved organic matter (3DOM*) was identified as the primary mediator of BPA degradation, with additional contributions from hydroxyl radicals (•OH), singlet oxygen (1O2), and halogen radicals (HRS). Alepocephalidae aquaculture water exhibited the fastest degradation rate, likely due to its high DOM and nitrate/nitrite (NO3-/NO2-) content, which are sources of 3DOM* and •OH. A positive correlation existed between NO3-/NO2- concentration and the BPA degradation rate. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) analysis identified the primary BPA photodegradation products, formed mainly through oxidative degradation, hydroxyl substitution, nitration, and chlorination pathways. Elucidating these photodegradation mechanisms provides valuable insights into the environmental fate and potential ecological risks of BPA in aquaculture environments. This knowledge can inform strategies for marine environmental protection and the development of sustainable practices.
Collapse
Affiliation(s)
- Shaochong Liu
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Sizhi Liu
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Lu Liu
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Lianzhen Li
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, PR China
| | - Yan Xu
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xilin She
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
25
|
Huang Y, Zhou D, Pu J, Pan W, Liu H, Li Y. Photochemical activity of water-soluble organic compounds in motor vehicle exhaust particulate matter. CHEMOSPHERE 2024; 364:143270. [PMID: 39241836 DOI: 10.1016/j.chemosphere.2024.143270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/04/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Particulate matter from motor vehicle exhaust is a type of important atmospheric particulates, which can absorb sunlight affecting its photochemical behavior. However, the photochemical activity of water-soluble organic compounds (WSOC) in motor vehicle exhaust particulate matter has not been explored. Here, we applied WSOC in particulate matter from motor vehicle exhaust to investigate the photogenerating ability of its reactive oxygen species (ROS) and its effect based on model phenol photodegradation with the comparison between WSOC in diesel particulate matter and in gasoline particulate matter. The WSOC in diesel particulate matter indicates higher abililty to generate ROS. The main active substance produced by WSOC in the presence of light is 3WSOC*, the secondary substance is 1O2, and small amounts of ·OH and O2·- are also produced. Less active material was produced as WSOC photoaging time increases. Furthermore, the WSOC in diesel particulate matter is more sensitive to light exposure compared to WSOC in gasoline particulate matter. The effects of common atmospheric ionic components on model phenol photodegradation were also explored. Whether WSOC of diesel particulate matter or WSOC of gasoline particulate matter, ammonium nitrate, ammonium sulfate, and ferric chloride promote degradation of model phenol, and copper sulfate inhibited model phenol degradation. However, a different trend emerged with the addition of sodium chloride, which promoted the degradation of model phenol in WSOC of diesel particulate matter and inhibited the degradation in WSOC of gasoline particulate matter.
Collapse
Affiliation(s)
- Yixi Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Die Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Pu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenjiao Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Huaying Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
26
|
Li Y, Gao B, Xu D. Influence of anti-seasonal inundation on geochemical processes of arsenic speciation in the water-level-fluctuation zone soil of the Three Gorges Reservoir, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134895. [PMID: 38885587 DOI: 10.1016/j.jhazmat.2024.134895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Since the completion of Three Gorges Dam, the water-level-fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) experiences the periodic anti-seasonal inundation. However, knowledge for mechanisms of mobilization and transformation of arsenic (As) in WLFZ soils of the TGR remains scarce. To address this gap, a combination of field observation and simulated flooding experiments attempts to illustrate the As mobilization, the transformation between As(V) and As(III), and the factors driving these processes. The study revealed that anti-seasonal inundation (with a temperature at 13 ℃) mitigated As release from submerged soils. Interestingly, the total As and ratio of As(III) (the more toxic form of As) concentrations in porewater at 13 ℃ was lower, and the prevalence of As(III) occurred later than those at 32 °C (imitate the seasonal inundation condition). The results indicated that the As reduction and the corresponding toxic risks in submerged soils were alleviated under anti-seasonal inundation. The study proposes the reduction of As-bearing manganese (Mn) mineral assemblages and competitive adsorption of dissolved organic carbon (DOC) as primary mechanisms for As mobilization. Furthermore, microorganism-mediated detoxification/reduction processes involving DOC, nitrogen, and Mn (oxyhydr)oxides were identified as central pathways for As(III) enrichment under anti-seasonal inundation. This study enhances understandings of the biogeochemical processes and fate of As in WLFZ soils influenced by artificial regulation of the reservoir.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
27
|
Ou Q, Xu Y, Wang X, van der Hoek JP, Yu G, Liu G. Dissolved Black Carbon Facilitates the Photodegradation of Microplastics via Molecular Weight-Dependent Generation of Reactive Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39133902 PMCID: PMC11360373 DOI: 10.1021/acs.est.4c03831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Photodegradation of microplastics (MPs) induced by sunlight plays a crucial role in determining their transport, fate, and impacts in aquatic environments. Dissolved black carbon (DBC), originating from pyrolyzed carbon, can potentially mediate the photodegradation of MPs owing to its potent photosensitization capacity. This study examined the impact of pyrolyzed wood derived DBC (5 mg C/L) on the photodegradation of polystyrene (PS) MPs in aquatic solutions under UV radiation. It revealed that the photodegradation of PS MPs primarily occurred at the benzene ring rather than the aliphatic segments due to the fast attack of hydroxyl radical (•OH) and singlet oxygen (1O2) on the benzene ring. The photosensitivity of DBC accelerated the degradation of PS MPs, primarily attributed to the increased production of •OH, 1O2, and triplet-excited state DBC (3DBC*). Notably, DBC-mediated photodegradation was related to its molecular weight (MW) and chemical properties. Low MW DBC (<3 kDa) containing more carbonyl groups generated more •OH and 1O2, accelerating the photodegradation of MPs. Nevertheless, higher aromatic phenols in high MW DBC (>30 kDa) scavenged •OH and generated more O2•-, inhibiting the photodegradation of MPs. Overall, this study offered valuable insights into UV-induced photodegradation of MPs and highlighted potential impacts of DBC on the transformation of MPs.
Collapse
Affiliation(s)
- Qin Ou
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, PR China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Delft, CN 2628, The Netherlands
| | - Yanghui Xu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, PR China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Delft, CN 2628, The Netherlands
| | - Xintu Wang
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, PR China
- College
of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541004, China
| | - Jan Peter van der Hoek
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Delft, CN 2628, The Netherlands
- Department
Research & Innovation Waternet, P.O. Box 94370 GJ Amsterdam 1090, The
Netherlands
| | - Guo Yu
- College
of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541004, China
| | - Gang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, PR China
- University
of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
28
|
Pan J, Zhang S, Qiu X, Ding L, Liang X, Guo X. Molecular Weights of Dissolved Organic Matter Significantly Affect Photoaging of Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13973-13985. [PMID: 39046080 DOI: 10.1021/acs.est.4c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The fate of ubiquitous microplastics (MPs) is largely influenced by dissolved organic matter (DOM) in aquatic environments, which has garnered significant attention. The reactivity of DOM is reported to be greatly regulated by molecular weights (MWs), yet little is known about the effects of different MW DOM on MP aging. Here, the aging behavior of polystyrene MPs (PSMPs) in the presence of different MW fulvic acids (FAs) and humic acids (HAs) was systematically investigated. Under ultraviolet (UV) illumination, O/C of PSMPs aged for 96 h surged from 0.008 to 0.146 in the lower MW FA (FA<1kDa) treatment, suggesting significant PSMP aging. However, FA exhibited a stronger effect on facilitating PSMP photoaging than HA, which can be attributed to the fact that FA<1kDa contains more quinone and phenolic moieties, demonstrating a higher redox capacity. Meanwhile, compared to other fractions, FA<1kDa was more actively involved in the increase of different reactive species yields by 50-290%, including •OH, which plays a key role in PSMP photoaging, and contributed to a 25% increase in electron-donating capacity (EDC). This study lays a theoretical foundation for a better understanding of the environmental fate of MPs.
Collapse
Affiliation(s)
- Jianrui Pan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shilong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
29
|
Sherman-Bertinetti SL, Kostelnik EG, Gruber KJ, Balgooyen S, Remucal CK. Preferential Partitioning of Per- and Polyfluoroalkyl Substances (PFAS) and Dissolved Organic Matter in Freshwater Surface Microlayer and Natural Foam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13099-13109. [PMID: 38977377 DOI: 10.1021/acs.est.4c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are surfactants that can accumulate in the surface microlayer (SML) and in natural foams, with potential elevated exposure for organisms at the water surface. However, the impact of water chemistry on PFAS accumulation in these matrices in freshwater systems is unknown. We quantified 36 PFAS in water, the SML, and natural foams from 43 rivers and lakes in Wisconsin, USA, alongside measurements of pH, cations, and dissolved organic carbon (DOC). PFAS partition to foams with concentration ranging 2300-328,200 ng/L in waters with 6-139 ng/L PFAS (sum of 36 analytes), corresponding to sodium-normalized enrichment factors ranging <50 to >7000. Similar enrichment is observed for DOC (∼70). PFAS partitioning to foams increases with increasing chain length and is positively correlated with [DOC]. Modest SML enrichment is observed for PFOS (1.4) and FOSA (2.4), while negligible enrichment is observed for other PFAS and DOC due to low specific surface area and turbulent conditions that inhibit surfactant accumulation. However, DOC composition in the SML is distinct from bulk water, as assessed using high-resolution mass spectrometry. This study demonstrates that natural foams in unimpacted and impacted waters can have elevated PFAS concentrations, whereas SML accumulation in surface waters is limited.
Collapse
Affiliation(s)
- Summer L Sherman-Bertinetti
- Department of Civil and Environmental Engineering University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Edward G Kostelnik
- Environmental Chemistry and Technology Program University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kaitlyn J Gruber
- Department of Chemistry University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sarah Balgooyen
- Department of Civil and Environmental Engineering University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Department of Civil and Environmental Engineering University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Environmental Chemistry and Technology Program University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
Allam O, Maghsoodi M, Jang SS, Snow SD. Unveiling Competitive Adsorption in TiO 2 Photocatalysis through Machine-Learning-Accelerated Molecular Dynamics, DFT, and Experimental Methods. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36215-36223. [PMID: 38953235 PMCID: PMC11261558 DOI: 10.1021/acsami.4c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
The efficient harnessing of solar power for water treatment via photocatalytic processes has long been constrained by the challenge of understanding and optimizing the interactions at the photocatalyst surface, particularly in the presence of nontarget cosolutes. The adsorption of these cosolutes, such as natural organic matter, onto photocatalysts can inhibit the degradation of pollutants, drastically decreasing the photocatalytic efficiency. In the present work, computational methods are employed to predict the inhibitory action of a suite of small organic molecules during TiO2 photocatalytic degradation of para-chlorobenzoic acid (pCBA). Specifically, tryptophan, coniferyl alcohol, succinic acid, gallic acid, and trimesic acid were selected as interfering agents against pCBA to observe the resulting competitive reaction kinetics via bulk and surface phase reactions according to Langmuir-Hinshelwood adsorption dynamics. Experiments revealed that trimesic and gallic acids were most competitive with pCBA, followed by succinic acid. Density functional theory (DFT) and machine learning interatomic potentials (MLIPs) were used to investigate the molecular basis of these interactions. The computational findings showed that while the type of functional group did not directly predict adsorption affinity, the spatial arrangement and electronic interactions of these groups significantly influenced adsorption dynamics and corresponding inhibitory behavior. Notably, MLIPs, derived by fine-tuning models pretrained on a vastly larger dataset, enabled the exploration of adsorption behaviors over substantially longer periods than typically possible with conventional ab initio molecular dynamics, enhancing the depth of understanding of the dynamic interaction processes. Our study thus provides a pivotal foundation for advancing photocatalytic technology in environmental applications by demonstrating the critical role of molecular-level interactions in shaping photocatalytic outcomes.
Collapse
Affiliation(s)
- Omar Allam
- Woodruff
School of Mechanical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Computational
NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mostafa Maghsoodi
- Department
of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Seung Soon Jang
- Computational
NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samuel D. Snow
- Department
of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick Taylor Hall, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
31
|
Liu H, Tu YN, Lei Y, Zhou D, Zhao Q, Li Y, Pan W. Photochemistry of plateau lake-derived dissolved organic matter: Reactive species generation and effects on 17β-estradiol photodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134615. [PMID: 38761768 DOI: 10.1016/j.jhazmat.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Naturally strong ultraviolet irradiation at high altitudes causes photobleaching of plateau lake DOM (P-DOM) and affects its photochemical activity. However, the photoreactivity of P-DOM has remained unclear under natural photobleaching condition. Here, six P-DOM samples isolated from plateau lakes in Yunnan Province, China as well as two reference DOM as comparisons were used to explore the photogeneration of reactive species (RS) and their effects on 17β-estradiol photodegradation. Compared with SRHA/SRFA, P-DOM has lower aromaticity, average molecular weight, and electron-donating capacity. The quantum yields of triplet state P-DOM (3P-DOM*), 1O2, and ∙OH produced in P-DOM solutions were greatly higher than those of reference DOM. The RS quantum yields had positive linear correlations with E2/E3 and SR, whereas were negatively linear correlated with SUVA25. Radical quenching experiments showed that 3P-DOM* was the prominent RS for 17β-estradiol photodegradation, and its contribution exceeded 70% for each of P-DOM. 3P-DOM*-mediated photodegradation was mainly attributed to the electron-transfer reactions with an average second-order rate constant of 4.62 × 109 M-1s-1, indicating the strong photoreactivity towards 17β-estradiol. These findings demonstrate that P-DOM is an efficient photosensitizer for RS production, among which 3P-DOM* may play an important role in enhanced photodegradation for organic micropollutants in plateau lake enriched with DOM.
Collapse
Affiliation(s)
- Huaying Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yi-Na Tu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yajie Lei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Die Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qilin Zhao
- Yunnan Environmental Monitoring Center, Kunming, Yunnan 650034, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Wenjiao Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
32
|
Cai R, Yao P, Yi Y, Merder J, Li P, He D. The Hunt for Chemical Dark Matter across a River-to-Ocean Continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11988-11997. [PMID: 38875444 DOI: 10.1021/acs.est.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Thousands of mass peaks emerge during molecular characterization of natural dissolved organic matter (DOM) using ultrahigh-resolution mass spectrometry. While mass peaks assigned to certain molecular formulas have been extensively studied, the uncharacterized mass peaks that represent a significant fraction of organic matter and convey biogenic elements and energy have been previously ignored. In this study, we introduce the term dark DOM (DDOM) for unassigned mass peaks and have explored its characteristics and environmental behaviors using a data set of 38 DOM extracts covering the Yangtze River-to-ocean continuum. We identified a total of 9141 DDOM molecules, which exhibited higher molecular weight and greater diversity than the DOM subset with assigned DOM formulas. Although DDOM contributed a smaller fraction of relative abundance, it significantly impacted the molecular weight and molecular composition of bulk DOM. A portion of DDOM with higher molecular weight was found to increase molecular abundance across the river-to-ocean continuum. These compounds could contain halogenated organic molecules and might have a high potential to contribute to the refractory organic carbon pool. With this study, we underline the contribution of dark matter to the total DOM pool and emphasize that more DDOM research is needed to understand its contribution to global biogeochemical cycles and carbon sequestration.
Collapse
Affiliation(s)
- Ruanhong Cai
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Piao Yao
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Yuanbi Yi
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Julian Merder
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305, United States
| | - Penghui Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ding He
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
33
|
Zeng Y, Zhang M, Fu Q, Chen N, Wang Y, Zhou D, Fang G. Formation of reactive intermediates in paddy water from different temperature zones for the promotion of abiotic ammonification. WATER RESEARCH 2024; 255:121523. [PMID: 38554632 DOI: 10.1016/j.watres.2024.121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The paddy field is a hot area of biogeochemical process. The paddy water has a large capacity in photo-generation of reactive intermediates (RIs) due to abundant photosensitive dissolved organic matter (DOM), which is influenced by the spatial heterogeneity of paddy soils but rarely been explored. Our work presents the first investigation of the role of soil properties on photochemistry in paddy water. Soil organic matter (SOM), determined by the temperature, was the dominant factor for the photo-generation of RIs in paddy water of main rice producing areas. The RI concentrations generated with abundant SOM from cool regions are 0.05-8.71 times higher than those for the warm regions in China. The humic-like substance and aromatic-like compounds of DOM plays an essential role in RIs generation, which is abundant in paddy soils rich in SOM from Chinese cool regions. In addition, RIs can efficiently accelerate the photo-ammonification of urea and free amino acids by 15.2 %-164 %, leading to 0.13-0.17 mmol/L/d photo-produced ammonium after fertilization, which is preferentially absorbed by rice. The findings of this study will extend our knowledge of the geochemistry of global paddy field ecosystem. The potential role of RIs in nitrogen cycle should be highlighted in the agroecosystem.
Collapse
Affiliation(s)
- Yu Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingyang Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qinglong Fu
- School of Environmental Studies, China University of Geoscience, Wuhan 430074, PR China
| | - Ning Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
34
|
Xie H, Li Q, Wang M, Feng Y, Wang B. Unraveling the photochemical behavior of dissolved organic matter derived from hydrothermal carbonization process water: Insights from molecular transformation and photoactive species. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133946. [PMID: 38442603 DOI: 10.1016/j.jhazmat.2024.133946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Hydrothermal carbonization process water (HTPW) has been utilized as a substitute for chemical fertilizers in agricultural applications. However, the input of HTPW into paddy water, particularly the significant proportion of dissolved organic matter (DOM) in HTPW (DOM-HTPW), directly engages in photochemical transformations, a phenomenon often overlooked. This study observed a consistent decrease in humification (SUVA280, 7.7-53.9%) and aromaticity (SUVA254, 6.1-40.0%) of DOM-HTPW after irradiation. The primary active photobleaching components of DOM-HTPW varied depending on the feedstock, such as protein for chicken manure DOM-HTPW and lignin for rice straw DOM-HTPW. The photochemical activity of DOM-HTPW was augmented by its lower molecular weight and higher hydrophilic composition, particularly evident in chicken manure DOM-HTPW, which exhibited higher generation rates for 1O2 (35.1-37.1%), 3DOM* (32.8-43.9%), and O2•- (28.6-48.8%) as measured by molecular probes. DOM-HTPW effectively facilitated the phototransformation of tetracycline, with the contribution of O2•- being more significant than 3DOM* and 1O2. These findings shed new light on the understanding the photochemical processes of DOM-HTPW as exogenous DOM and the interconnected fate of contaminants in aquatic environments.
Collapse
Affiliation(s)
- Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiaoqiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minli Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
35
|
Li SA, Wang Q, Ma H, Cao X, Song Y, Cui F, Tanentzap AJ. Photochemical processes transform dissolved organic matter differently depending on its initial composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171465. [PMID: 38453086 DOI: 10.1016/j.scitotenv.2024.171465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
Dissolved organic matter (DOM) is one of the most important fluxes in the global carbon cycle but its response to light exposure remains unclear at a molecular-level. The chemical response of DOM to light should vary with its molecular composition and environmental conditions while some basic hypotheses are still unclear, such as the balance between photobleaching and photo-humification and the question of oxidative properties. Here we exposed aquatic DOM from diverse freshwaters impacted by different levels of anthropogenic activity and algal exudates to environmentally-realistic light conditions. We found that photobleaching occurred in DOM with relatively high initial humic content producing low H/C molecules, whereas DOM with low initial humic content was humified. DOM pools with relatively high initial saturation and low aromaticity were prone to transform towards more unsaturated molecular formulae and high H/C molecules with a distinct decrease of bioavailability. Photo-transformation was mainly influenced by reactive intermediates, with reactive oxygen species (ROS) playing a dominant role in humification when the initial humus content of DOM was high. In contrast, for algal DOM with high protein content, it was likely that the autoxidation of excited state DOM was more important than indirect oxidation involving ROS. Our results reveal how photo-transformation patterns depend on the initial composition of DOM and provide new insights into the role of photochemical processes in biogeochemical cycling of DOM.
Collapse
Affiliation(s)
- Sheng-Ao Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qianru Wang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hua Ma
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xinghong Cao
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yingyue Song
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fuyi Cui
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
36
|
Li Y, Zhang K, Apell J, Ruan Y, Huang X, Nah T. Photoproduction of reactive intermediates from dissolved organic matter in coastal seawater around an urban metropolis in South China: Characterization and predictive modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170998. [PMID: 38365044 DOI: 10.1016/j.scitotenv.2024.170998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Chromophoric dissolved organic matter (CDOM) is an important photochemical precursor to reactive intermediates (RIs) (e.g., excited triplet states of chromophoric dissolved organic matter (3CDOM⁎), hydroxyl radicals (·OH), and singlet oxygen (1O2)) in aquatic systems to drive the photodegradation of contaminants. There have been limited studies on the photoproduction of RIs in coastal seawater CDOM in Asia, which impedes our ability to model the lifetimes and fates of contaminants in these coastal seawater systems. Hong Kong is an urban metropolis in South China, whose coastal seawater is susceptible to anthropogenic activities from the surrounding areas and the nearby Pearl River. We investigated the photoproduction of RIs in seawater around Hong Kong during the wet vs. dry season. Higher intensities of fluorescent components, dissolved organic carbon concentration ([DOC]), apparent quantum yields of RIs (ΦRIs), and steady-state concentrations of photogenerated RIs ([RIs]ss) were observed for samples collected in the areas closest to the Pearl River during the wet season. Lower humification degrees and ΦRIs but higher intensities of fluorescent components and [RIs]ss were generally observed for the wet season samples compared to the dry season samples. Statistical analysis revealed strong significant correlations (Spearman |r| > 0.6, p < 0.05) between ΦRIs and the absorbance properties (including the absorbance ratio E2:E3, spectral slope coefficients S350-400, and spectral slope ratio SR) of CDOM, and between [RIs]ss and the quantity-reflected properties (including the fluorescence intensity of humic-like components) of CDOM. Our modeling analyses combining orthogonal partial least squares and stepwise multiple linear regression showed excellent prediction strengths for [1O2]ss and [3CDOM⁎]ss (R2adj > 0.7) when [DOC] and the chemical and optical properties of CDOM were used as predictor variables. These modeling results demonstrate the feasibility of predicting the concentrations and quantum yields of RIs in seawater around Hong Kong, and potentially other coastal cities in South China, from easily measurable chemical and optical properties.
Collapse
Affiliation(s)
- Yitao Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao.
| | - Jennifer Apell
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York, USA.
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xinming Huang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
37
|
Du P, Tang K, Yang B, Mo X, Wang J. Reassessing the Quantum Yield and Reactivity of Triplet-State Dissolved Organic Matter via Global Kinetic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5856-5865. [PMID: 38516968 DOI: 10.1021/acs.est.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Measuring the quantum yield and reactivity of triplet-state dissolved organic matter (3DOM*) is essential for assessing the impact of DOM on aquatic photochemical processes. However, current 3DOM* quantification methods require multiple fitting steps and rely on steady-state approximations under stringent application criteria, which may introduce certain inaccuracies in the estimation of DOM photoreactivity parameters. Here, we developed a global kinetic model to simulate the reaction kinetics of the hv/DOM system using four DOM types and 2,4,6-trimethylphenol as the probe for 3DOM*. Analyses of residuals and the root-mean-square error validated the exceptional precision of the new model compared to conventional methods. 3DOM* in the global kinetic model consistently displayed a lower quantum yield and higher reactivity than those in local regression models, indicating that the generation and reactivity of 3DOM* have often been overestimated and underestimated, respectively. The global kinetic model derives parameters by simultaneously fitting probe degradation kinetics under different conditions and considers the temporally increasing concentrations of the involved reactive species. It minimizes error propagation and offers insights into the interactions of different species, thereby providing advantages in accuracy, robustness, and interpretability. This study significantly advances the understanding of 3DOM* behavior and provides a valuable kinetic model for aquatic photochemistry research.
Collapse
Affiliation(s)
- Penghui Du
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kexin Tang
- Center of Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohan Mo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
38
|
Li L, Cheng W, Xie X, Zhao R, Wang Y, Wang Z. Photo-Reactivity of dissolved black carbon unveiled by combination of optical spectroscopy and FT-ICR MS analysis: Effects of pyrolysis temperature. WATER RESEARCH 2024; 251:121138. [PMID: 38244298 DOI: 10.1016/j.watres.2024.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Dissolved black carbon (DBC) has high photoactivity, which plays an important role in contaminants photodegradation. However, it is unclear how pyrolysis temperatures would affect the composition and photo-reactivity of DBC at the molecular level. Herein, we combined complementary techniques to study the characteristics of DBC pyrolyzed at 200 - 500 ℃, as well as the photoproduction of reactive species and the photodegradation of tetracycline (TC). Bulk composition characterization found that condensed aromatic carbonyl compounds (ConAC) with narrow molecular weights in DBC experienced an increase from 200 to 500 °C, which enhanced the photoproduction of 3DBC*,1O2, and ·OH. Molecular-level data suggested that 3DBC* and 1O2 were both related to the same DBC compounds. Comparatively, the patterns for ·OH were less pronounced, implying its precursor was not 3DBC* and had more complexity. Plentiful CHOx species of ConAC in DBC400 and DBC500 (DBCT, where T = pyrolysis temperature) accelerated the generation of 3DBC* and 1O2, enhancing the photodegradation of TC, and mainly triplet states of quinones reacted with TC. In contrast, DBC200 and DBC300 exhibited inhibition since massive CHOx species in lignin-like reduced 3TC* to TC. Our data revealed the diverse photochemical behavior mechanisms of DBC pyrolyzed at 200 - 500 ℃ at the molecular level and the implications for aquatic contaminants photochemistry.
Collapse
Affiliation(s)
- Liangyu Li
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wan Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xiaoyun Xie
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| | - Ranran Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yaodong Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhaowei Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
39
|
Van Frost SR, White AM, Jauquet JM, Magness AM, McMahon KD, Remucal CK. Laboratory measurements underestimate persistence of the aquatic herbicide fluridone in lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:368-379. [PMID: 38189445 DOI: 10.1039/d3em00537b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Fluridone is an aquatic herbicide commonly used to treat invasive freshwater plant species such as Eurasian watermilfoil, hydrilla, and curly-leaf pondweed. However, required exposures times are very long and often exceed 100 days. Thus, understanding the mechanisms that determine the fate of fluridone in lakes is critical for supporting effective herbicide treatments and minimizing impacts to non-target species. We use a combination of laboratory and field studies to quantify fluridone photodegradation, as well as sorption and microbial degradation in water and sediment microcosms. Laboratory irradiation studies demonstrate that fluridone is susceptible to direct photodegradation with negligible indirect photodegradation, with predicted half-lives in sunlight ranging from 2.3 days (1 cm path length) to 118 days (integrated over 1 meter). Biodegradation is attributable to microbes in sediment with an observed half-life of 57 days. Lastly, fluridone sorbs to sediments (Koc = 340 ± 28 L kg-1); sorption accounts for 16% of fluridone loss in the microcosm experiments. While the laboratory results indicate that all three loss pathways can influence fluridone fate, these controlled studies oversimplify herbicide behavior due to their inability to replicate field conditions. Fluridone concentration measurements in a lake following commercial application demonstrate a half-life of >150 days, indicating that the herbicide is very persistent in water. This study illustrates why caution should be used when relying on laboratory studies to predict the fate of pesticides and other polar organic compounds in the environment.
Collapse
Affiliation(s)
- Sydney R Van Frost
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park St, Madison, WI 53706, USA.
| | - Amber M White
- Environmental Chemistry and Technology Program, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Josie M Jauquet
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park St, Madison, WI 53706, USA.
| | - Angela M Magness
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park St, Madison, WI 53706, USA.
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| | - Christina K Remucal
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park St, Madison, WI 53706, USA.
- Environmental Chemistry and Technology Program, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
40
|
He H, Sun N, Li L, Zhou H, Hu A, Yang X, Ai J, Jiao R, Yang X, Wang D, Zhang W. Photochemical Transformation of Dissolved Organic Matter in Surface Water Augmented the Formation of Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38329881 DOI: 10.1021/acs.est.3c08155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Sunlight may lead to changes in disinfection byproducts (DBPs) formation potentials of source water via transforming dissolved organic matter (DOM); however, the underlying mechanisms behind these changes remain unclear. This work systematically investigated the effect of photochemical transformation of DOM from reservoir water (DOMRe) and micropolluted river water (DOMRi) after 36 h of simulated sunlight irradiation (equivalent to one month under natural sunlight) on DBPs formation. Upon irradiation, high molecular weight (MW) and aromatic molecules tended to be mineralized or converted into low-MW and highly oxidized (O/C > 0.5) ones which might react with chlorine to generate high levels of DBPs, resulting in an elevation in the yields (μg DBP/mg C) of almost all the measured DBPs and the quantities of unknown DBPs in both DOM samples after chlorination. Additionally, DOMRi contained more aromatic molecules susceptible to photooxidation than DOMRe. Consequently, irradiated DOMRi exhibited a greater increase in the formation potentials of haloacetonitriles, halonitromethanes, and specific regulated DBPs, with nitrogenous DBPs being responsible for the overall rise in the calculated cytotoxicity following chlorination. This work emphasized the importance of a comprehensive removal of phototransformation products that may serve as DBPs precursors from source waters, especially from micropolluted source waters.
Collapse
Affiliation(s)
- Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niannian Sun
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Aibin Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Xiaoyin Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruyuan Jiao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074 Hubei, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
41
|
Swenson JT, Ginder-Vogel M, Remucal CK. Influence of Divalent Cation Inhibition and Dissolved Organic Matter Enhancement on Phenol Oxidation Kinetics by Manganese Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2479-2489. [PMID: 38265036 DOI: 10.1021/acs.est.3c08273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Manganese oxides can oxidize organic compounds, such as phenols, and may potentially be used in passive water treatment applications. However, the impact of common water constituents, including cations and dissolved organic matter (DOM), on this reaction is poorly understood. For example, the presence of DOM can increase or decrease phenol oxidation rates with manganese oxides. Furthermore, the interactions of DOM and cations and their impact on the phenol oxidation rates have not been examined. Therefore, we investigated the oxidation kinetics of six phenolic contaminants with acid birnessite in ten whole water samples. The oxidation rate constants of 4-chlorophenol, 4-tert-octylphenol, 4-bromophenol, and phenol consistently decreased in all waters relative to buffered ultrapure water, whereas the oxidation rate of bisphenol A and triclosan increased by up to 260% in some waters. Linear regression analyses and targeted experiments demonstrated that the inhibition of phenol oxidation is largely determined by cations. Furthermore, quencher experiments indicated that radical-mediated interactions from oxidized DOM contributed to enhanced oxidation of bisphenol A. The variable changes between compounds and water samples demonstrate the challenge of accurately predicting contaminant transformation rates in environmentally relevant systems based on experiments conducted in the absence of natural water constituents.
Collapse
Affiliation(s)
- Jenna T Swenson
- Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Matthew Ginder-Vogel
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Praise S, Miyazawa M, Phung LD, Nishiyama M, Kumar A, Watanabe T. Impact of nCuO containing treated wastewater on soil microbes and dissolved organic matter in paddy field leachate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122923. [PMID: 37977365 DOI: 10.1016/j.envpol.2023.122923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Using treated wastewater (TWW) resources in agriculture is a major pathway for disseminating nanoparticles. Copper-oxide nanoparticles (nCuO) offer potential benefits, but their presence in the environment poses risks to agricultural and environmental sustainability. This study examined soil microbial transformations and the composition of leachate dissolved organic matter (DOM) of paddy soils irrigated with nCuO-contaminated TWW at different concentrations (T2: 0.02 mgL-1, T3: 0.2 mgL-1, T4: 2.0 mgL-1) and examined the differences in Cu source (T5: 0.2 mgL-1 CuSO4). Results showed negative impacts on the absolute microbial abundance with up to 46 % reduction relative to the control treatment (T1). Changes in relative abundance of specific microbes at the genus level deviated from the corresponding phyla. Acidobacteria, Actinobacteria, Chloroflexi, and Verrucomicrobia phyla increased in the surface (0-3 cm) and subsurface (3-15 cm) layers responding differently to nCuO. In the 0-3 cm layer, Nitrospirae, Euryarchaeota, and Crenarchaeota increased, but only Dechloromonas genus from Proteobacteria increased with increasing nCuO. No significant variations were observed in the DOM composition, except in T4, which had a significantly low content of dissolved organic carbon (DOC), total dissolved nitrogen, and terrestrial humic-like and protein-like components. Ninety-eight distinct genera were identified, of which 44%, including 15 bacteria and two archaea, varied between the surface and subsurface, among treatments, and significantly correlated with more DOM parameters in the subsurface. T4 had the highest microbial diversity in the 0-3 layer, and Cu treatments slightly increased the diversity index in the subsurface. Moreover, the effects differed by Cu source, with T3 showing 10 % more reduction in the subsurface and 17 % less reduction in the surface than T5. The variable microbial responses to nCuO and their strong correlations with DOM highlight the need to consider the potential consequences of low nCuO concentrations on biogeochemical cycles.
Collapse
Affiliation(s)
- Susan Praise
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Masaaki Miyazawa
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Luc Duc Phung
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Masateru Nishiyama
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| |
Collapse
|
43
|
Sun L, Wu P, Wang T, Wu J, Chen M, Shang Z, Dang Z, Zhu N. Photobleaching affects the carbon sequestration of dissolved black carbon on ferrihydrite: Perspective from molecular fractionation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168322. [PMID: 37939941 DOI: 10.1016/j.scitotenv.2023.168322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Photobleaching generally changes the structure and properties of dissolved black carbon (DBC), which further affects distribution of DBC at mineral-water interface. Here, we investigated the effect mechanism by which DBC photobleaching on its sequestration on ferrihydrite (Fh) from perspective of molecular fractionation. Results indicated that continuous sunlight irradiation led to the photolysis of aromatic humic- and fulvic-like components and the carboxylation of the functional structure. DBC could be considerably sequestered on the Fh surface, and photobleached DBC (pDBC) with longer sunlight irradiation durations had lower adsorption capacity on Fh. The photo-absorption and photo-activity ability of residual DBC/pDBCs after adsorption significantly weakened, indicating that the photo-liable components with great photochemical properties were preferentially sequestered on Fh during adsorption fractionation at Fh-water interface. Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) results showed high molecular weight, high O contents and high unsaturation compounds (such as polycyclic aromatics and polyphenols) were preferentially sequestered on Fh through ligand exchange between iron-coordinated hydroxyl and substituted carboxyl/hydroxyl in DBC. Among high unsaturation compounds, aromatic ring structures (C=C) were with greater affinity with Fh surface than CO in carboxyl/ester/quinone. Photobleaching caused the decrease in aromatic ring structures and the increase in CO in carboxyl, which was the key for weakening of sequestration of pDBC on Fh. Our findings prove that the photo-liable components of DBC are more tend to be sequestered on mineral, and promote the understanding of geochemical behavior of DBC in the solid earth interfaces.
Collapse
Affiliation(s)
- Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China.
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China
| |
Collapse
|
44
|
Wan D, Song G, Mi W, Tu X, Zhao Y, Bi Y. Insights into the Enhanced Photogeneration of Hydroxyl Radicals from Chlorinated Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:805-815. [PMID: 38156625 DOI: 10.1021/acs.est.3c08257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Free available chlorine has been and is being applied in global water treatment and readily reacts with dissolved organic matter (DOM) in aquatic environments, leading to the formation of chlorinated products. Chlorination enhances the photoreactivity of DOM, but the influence of chlorinated compounds on the photogeneration of hydroxyl radicals (•OH) has remained unexplored. In this study, a range of chlorinated carboxylate-substituted phenolic model compounds were employed to assess their •OH photogeneration capabilities. These compounds demonstrated a substantial capacity for •OH production, exhibiting quantum yields of 0.1-5.9 × 10-3 through direct photolysis under 305 nm and 0.2-9.5 × 10-3 through a triplet sensitizer (4-benzoylbenzoic acid)-inducing reaction under 365 nm LED irradiation. Moreover, the chlorinated compounds exhibited higher light absorption and •OH quantum yields compared to those of their unchlorinated counterparts. The •OH photogeneration capacity of these compounds exhibited a positive correlation with their triplet state one-electron oxidation potentials. Molecular-level compositional analysis revealed that aromatic structures rich in hydroxyl and carboxyl groups (e.g., O/C > 0.5 with H/C < 1.5) within DOM serve as crucial sources of •OH, and chlorination of these compounds significantly enhances their capacity to generate •OH upon irradiation. This study provides novel insights into the enhanced photogeneration of •OH from chlorinated DOM, which is helpful for understanding the fate of trace pollutants in chlorinated waters.
Collapse
Affiliation(s)
- Dong Wan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Gaofei Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Wujuan Mi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Xiaojie Tu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Yafei Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Yonghong Bi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| |
Collapse
|
45
|
Gu X, Chen B, Liu H, Feng Y, Wang B, He S, Feng M, Pan G, Han S. Photochemical behavior of dissolved organic matter derived from Alternanthera philoxeroides hydrochar: Insights from molecular transformation and photochemically reactive intermediates. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132591. [PMID: 37778307 DOI: 10.1016/j.jhazmat.2023.132591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Hydrochar-derived dissolved organic matter (HDOM) enters aquatic ecosystems through soil leaching and surface runoff following the application of hydrochar. However, the photochemical behavior of HDOM remains unclear. The photo-transformation of HDOM was analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), multiple spectroscopy methods, high-performance liquid chromatography, and combining synchronous fluorescence and Fourier-transform infrared spectroscopy with two-dimensional correlation spectroscopy. The results showed that with the increase of carbonization temperature, amide II in protein-like substances were observed to be preferentially photolyzed, and the protein-like substances were more sensitive to low irradiation time, while the duration time of the photochemical behavior of amide II and aliphatic C-H were more persistent. FT-ICR MS results showed that N and S-containing molecules, including lignins and lipids were more sensitive to ultraviolet irradiation. Furthermore, the photo-transformation of HDOMs was accompanied by the generation of triple excited state dissolved organic matter and singlet oxygen. Our findings will be beneficial for understanding the mechanisms of photo-transformation of HDOM and for predicting the possible behaviors of hydrochar produced at different temperatures before large-scale application.
Collapse
Affiliation(s)
- Xincai Gu
- Jiangsu Key Laboratory of Environmental Science and Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingfa Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Hong Liu
- Jiangsu Key Laboratory of Environmental Science and Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shiying He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Muhua Feng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guojun Pan
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shiqun Han
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
46
|
Zeeshan M, Ali O, Tabraiz S, Ruhl AS. Seasonal variations in dissolved organic matter concentration and composition in an outdoor system for bank filtration simulation. J Environ Sci (China) 2024; 135:252-261. [PMID: 37778800 DOI: 10.1016/j.jes.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 10/03/2023]
Abstract
Dissolved organic matter (DOM) in surface waters can vary markedly in character depending on seasonal variations such as rainfall intensity, UV radiations and temperature. Changes in DOM as well as temperature and rainfall intensity over the year can affect the biochemical processes occurring in bank filtration (BF). Identification and characterization of DOM in the surface water could help to optimize the water treatment and provide stable and safe drinking water. This study investigated year-long variations of DOM concentrations and compositions in a surface water of a circulated outdoor pond (research facility) connected to a BF passage. DOM was dominated by humic substances and a changing pattern of DOM in surface water was observed throughout the year. A significant increase of DOM (∼ 38%) in surface water was noted in August compared to November. The fluorescent DOM showed that DOM in summer was enriched with the degradable fraction whilst non-degradable fraction was dominated in winter. A constant (1.7 ± 0.1 mg/L) effluent DOM was recirculated in the system throughout the year. DOM removal through BF varied between 4% to 39% and was achieved within a few meters after infiltration and significantly correlated with influent DOM concentration (R2 = 0.82, p < 0.05). However, no significant (p > 0.05) change in the removal of DOM was observed in two subsurface layers (upper and lower). This study highlights the presence of a constant non-degradable DOM in the bank filtrate, which was not affected by temperature, redox conditions and UV radiations.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany; Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany.
| | - Omamah Ali
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany; Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| | - Shamas Tabraiz
- Natural and Applied Sciences Section, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Aki Sebastian Ruhl
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany; Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
47
|
Bulman DM, Milstead RP, Remucal CK. Formation of Targeted and Novel Disinfection Byproducts during Chlorine Photolysis in the Presence of Bromide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18877-18887. [PMID: 37363941 DOI: 10.1021/acs.est.3c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Chlorine photolysis is an advanced oxidation process that relies on the combination of direct chlorination by free available chlorine, direct photolysis, and reactive oxidants to transform contaminants. In waters that contain bromide, free available bromine and reactive bromine species can also form. However, little is known about the underlying mechanisms or formation potential of disinfection byproducts (DBPs) under these conditions. We investigated reactive oxidant generation and DBP formation under dark conditions, chlorine photolysis, and radical-quenched chorine photolysis with variable chlorine (0-10 mg-Cl2/L) and bromide (0-2,000 μg/L) concentrations, as well as with free available bromine. Probe loss rates and ozone concentrations increase with chlorine concentration and are minimally impacted by bromide. Radical-mediated processes partially contribute to the formation targeted DBPs (i.e., trihalomethanes, haloacetic acids, haloacetonitriles, chlorate, and bromate), which increase with increasing chlorine concentration. Chlorinated novel DBPs detected by high-resolution mass spectrometry are attributable to a combination of dark chlorination, direct halogenation by reactive chlorine species, and transformation of precursors, whereas novel brominated DBPs are primarily attributable to dark bromination of electron-rich formulas. The formation of targeted and novel DBPs during chlorine photolysis in waters with elevated bromide may limit treatment applications.
Collapse
Affiliation(s)
- Devon Manley Bulman
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Reid P Milstead
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
48
|
Liao Z, Lu J, Xie K, Wang Y, Yuan Y. Prediction of Photochemical Properties of Dissolved Organic Matter Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17971-17980. [PMID: 37029743 DOI: 10.1021/acs.est.2c07545] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Apparent quantum yields (Φ) of photochemically produced reactive intermediates (PPRIs) formed by dissolved organic matter (DOM) are vital to element cycles and contaminant fates in surface water. Simultaneous determination of ΦPPRI values from numerous water samples through existing experimental methods is time consuming and ineffective. Herein, machine learning models were developed with a systematic data set including 1329 data points to predict the values of three ΦPPRIs (Φ3DOM*, Φ1O2, and Φ·OH) based on DOM spectral parameters, experimental conditions, and calculation parameters. The best predictive performances for Φ3DOM*, Φ1O2, and Φ·OH were achieved using the CatBoost model, which outperformed the traditional linear regression models. The significances of the wavelength range and spectral parameters on the three ΦPPRI predictions were revealed, suggesting that DOM with lower molecular weight, lower aromatic content, and a more autochthonous portion possessed higher ΦPPRIs. Chain models were constructed by adding the predicted Φ3DOM* as a new feature into the Φ1O2 and Φ·OH models, which consequently improved the predictive performance of Φ1O2 but worsened the Φ·OH prediction likely due to the complex formation pathways of ·OH. Overall, this study offered robust ΦPPRI prediction across interlaboratory differences and provided new insights into the relationship between PPRIs formation and DOM properties.
Collapse
Affiliation(s)
- Zhiyang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinrong Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kunting Xie
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
49
|
Plamper P, Lechtenfeld OJ, Herzsprung P, Groß A. A Temporal Graph Model to Predict Chemical Transformations in Complex Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18116-18126. [PMID: 37159837 PMCID: PMC10666529 DOI: 10.1021/acs.est.3c00351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Dissolved organic matter (DOM) is a complex mixture of thousands of natural molecules that undergo constant transformation in the environment, such as sunlight induced photochemical reactions. Despite molecular level resolution from ultrahigh resolution mass spectrometry (UHRMS), trends of mass peak intensities are currently the only way to follow photochemically induced molecular changes in DOM. Many real-world relationships and temporal processes can be intuitively modeled using graph data structures (networks). Graphs enhance the potential and value of AI applications by adding context and interconnections allowing the uncovering of hidden or unknown relationships in data sets. We use a temporal graph model and link prediction to identify transformations of DOM molecules in a photo-oxidation experiment. Our link prediction algorithm simultaneously considers educt removal and product formation for molecules linked by predefined transformation units (oxidation, decarboxylation, etc.). The transformations are further weighted by the extent of intensity change and clustered on the graph structure to identify groups of similar reactivity. The temporal graph is capable of identifying relevant molecules subject to similar reactions and enabling to study their time course. Our approach overcomes previous data evaluation limitations for mechanistic studies of DOM and leverages the potential of temporal graphs to study DOM reactivity by UHRMS.
Collapse
Affiliation(s)
- Philipp Plamper
- Anhalt
University of Applied Sciences, Department Computer Science and Languages, Lohmannstraße 23, Köthen 06366, Germany
| | - Oliver J. Lechtenfeld
- Helmholtz
Centre for Environmental Research − UFZ, Department of Analytical Chemistry, Research Group
BioGeoOmics, Permoserstraße
15, Leipzig 04318, Germany
- ProVIS
- Centre for Chemical Microscopy, Helmholtz Centre for Environmental
Research - UFZ, Permoserstraße
15, Leipzig 04318, Germany
| | - Peter Herzsprung
- Helmholtz
Centre for Environmental Research − UFZ, Department of Lake Research, Brückstraße 3a, Magdeburg 39114, Germany
| | - Anika Groß
- Anhalt
University of Applied Sciences, Department Computer Science and Languages, Lohmannstraße 23, Köthen 06366, Germany
| |
Collapse
|
50
|
Liu Y, Xue J, Gui Z, Zhang L, Yao X. Short-term photodegradation of autochthonous and allochthonous dissolved organic matter in Lake Taihu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111982-111994. [PMID: 37821739 DOI: 10.1007/s11356-023-30107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
Photochemistry is one of the key processes that shape the quality of dissolved organic matter (DOM) in aquatic systems, yet the photoreactivity of DOM from different sources remains largely unclear. In this study, DOM from 10 typical autochthonous and allochthonous sources in Lake Taihu basin were exposed to simulated sunlight, and quantitative and compositional changes of the DOM were explored by measuring its UV-Visable absorption and fluorescence spectroscopy. Photochemical release of nutrients was also explored during the incubations. Results showed that, although DOM from most sources experienced photobleaching effects with decreased absorption coefficients at 254 nm (a(254)) and fluorescence component intensities after light exposure, photochemical alterations of DOM linked to their original composition. Macrophyte-derived (Potamogeton malaianus) DOM, with the largest molecular size, showed increased a(254), humic- and protein-like fluorescence component (C1 and C2) abundances, and inorganic nutrient concentrations relative to dark controls, indicating photo-release of labile components. However, DOM with relatively higher aromaticity, e.g., from agricultural water and the lake, showed photobleaching effects and increased humification degree, probably due to the loss of aromatic components. Allochthonous anthropogenic DOM, e.g., from sewage, showed stronger photo-ammonification, likely relating to the fresh labile N-containing compositions. The form of inorganic nutrient releases during the DOM photolysis also varied with the original DOM sources. Macrophyte-derived DOM incubations showed larger photo-releases of NO3- and PO43-, while NO2- dominated inorganic nutrient releases during groundwater DOM light incubations. Thus, this study concludes that the photoreactivity of DOM closely relates to its original composition and sources.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Jingya Xue
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhifan Gui
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|