1
|
Huang Z, Liu G, Weber R, Falandysz J, Liang Y, Wang P, Yang L, Zheng M. Long term substantial impacts of historic Chlor-Alkali production as a newly recognized source of polyhalogenated carbazoles in aquatic environments. J Environ Sci (China) 2025; 153:191-201. [PMID: 39855791 DOI: 10.1016/j.jes.2024.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 01/27/2025]
Abstract
Bottom sediments of the North American Great Lakes are characterized by a high loading (over 3,000 tonnes) of polyhalogenated carbazoles (PHCZs). The origin of this environmental contaminant loading is unclear. Here, we first examined PHCZs levels and profiles in sediment, lotus, and fish from the Ya-Er Lake (China) that has been under the influence of an obsolete chlor-alkali facility for forty years and discovered substantial PHCZs contamination. Among the PHCZs determined, 3,6-dichlorocarbazole (36-CCZ) and 3-chlorocarbazole (3-CCZ) were the most frequently detected. Sediments from backfilled land exhibited Σ11PHCZs at median concentration of 973 ng/g (dry weight), suggesting the chlor-alkali industry as an important source. Even after 20 years of dredging treatment, the concentration of Σ11PHCZs in the sediment of the oxidation ponds (median = 41.1 ng/g) remained substantially higher than in other areas globally. Furthermore, the concentration of Σ11PHCZs was found to be higher in surface sediments (median) at 66.7 ng/g if compared to middle (14.1 ng/g) and lower layers (18.2 ng/g), indicating the potential availability of PHCZs from surface sediments to aquatic plants and animals. Notably, this study detected PHCZs in both fish (26.3 ng/g lipid weight) and lotus (14.5 ng/g dry weight), with significant enrichment of 3-monobromocarbazole (3-BCZ) observed in both lotus root systems (bio-soil accumulation factor, BSAFroot = 5.04) and fish muscle (BSAFfish = 3.04).
Collapse
Affiliation(s)
- Zichun Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Roland Weber
- POPs Environmental Consulting, Lindenfirststr. 23, 73527 Schwäbisch Gmünd, Germany
| | - Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Yong Liang
- Jianghan University, Hubei 430056, China
| | - Pu Wang
- Jianghan University, Hubei 430056, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Shen C, Ding X, Rao W, Hu J, Lin T, Zhou XZ, Zheng Y, Dong F, Fan G. Prediction of Potential Risk for Ten Azole and Benzimidazole Fungicides with the Aryl Hydrocarbon Receptor Agonistic Activity to Aquatic Ecosystems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1167-1181. [PMID: 39811929 DOI: 10.1021/acs.jafc.4c09545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Azole and benzimidazole fungicides are widely used agrochemicals to prevent and treat fungal growth and are frequently detected in aquatic environments. Here, we aimed to assess the aquatic ecological risks of ten currently used azole and benzimidazole fungicides, which with the aryl hydrocarbon receptor (AhR) agonistic activity, and their transformation products (TPs). We obtained over 400 types of aerobic TPs for ten fungicides. Some fungicides and their TPs (approximately 26.7%) exhibited the potential AhR agonistic activity and toxicity to different aquatic species. Meanwhile, some compounds with the chlorine element and benzene ring structure exhibited environmental persistence and mobile ability. Several of them were frequently detected in aquatic environments, posing potential risks to aquatic ecosystems. These harmful fungicides and their TPs should be given attention. This study provides important insight into the aquatic ecological risks caused by azole and benzimidazole fungicides, which can provide theoretical guidance for their pollution control.
Collapse
Affiliation(s)
- Chao Shen
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Wenhua Rao
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Tao Lin
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xian-Zhi Zhou
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
3
|
Shi L, Wang X, Dai Y, Zhou W, Wu S, Shao B, Nabanoga GN, Ji C, Zhao M. Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio. Sci Rep 2024; 14:31358. [PMID: 39733025 PMCID: PMC11682118 DOI: 10.1038/s41598-024-82905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms. In addition, DQ can degrade into its metabolites, diquat-monopyridone (DQ-M) and diquat-dipyridone (DQ-D) in the environment, while the ecological risks of the metabolites remain uncertain. Herein, the aquatic ecological risks of DQ and its metabolites were compared using zebrafish as model non-target organisms. Results indicated that DQ and its metabolites did not induce significant acute toxicity to zebrafish embryos at environmentally relevant levels. However, exposure to DQ and DQ-D resulted in oxidative stress in zebrafish larvae. DQ treatment led to increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) in the larvae, while DQ-D increased internal MDA and GSH levels. Moreover, the activities of the antioxidative enzymes, superoxide dismutase (SOD) and catalase (CAT) were significantly suppressed by DQ and DQ-D. Besides, the expression levels of oxidative stress-related genes (Mn-SOD, CAT, and GPX) were disturbed accordingly after DQ and DQ-D treatments. These findings highlighted the importance of a more comprehensive understanding of the ecological risks of agrochemical substitutions as well as agrochemical metabolites. Such knowledge is crucial for significant improvements in agrochemical regulation and policy-making in the future.
Collapse
Affiliation(s)
- Lanxin Shi
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, People's Republic of China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wendong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Bo Shao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
| | | | - Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
4
|
Deng J, Gao L, Liu W, Mao T, Yin F, Jia T, Wu W, Chen C. Environmental behavior and risk of the emerging organic contaminants halogenated carbazoles in chemical industrial park clusters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177253. [PMID: 39489451 DOI: 10.1016/j.scitotenv.2024.177253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging organic contaminants and have attracted extensive concern because of their widespread occurrence and dioxin-like toxicity. However, the distribution characteristics, environmental behavior, and fate of PHCZs are still poorly understood. In this study, 74 composite environmental samples from 21 Chinese cities were collected around industrial parks in the Yangtze River Delta. The PHCZ concentration ranges in sediment and soil samples were 12.7-5.21 × 103 and 34.6-1.81 × 103 ng/g, respectively, which is equivalent to or higher than those of well-known persistent organic pollutants in the similar areas. The dominant congeners of PHCZs in sediment and soil were 3-chlorocarbazole and 3,6-dichlorocarbazole. Industrial emissions, especially from printing and dyeing textiles, were the main contributors to the high PHCZ environmental concentrations. Potential toxic effects of the PHCZs were evaluated using the toxic equivalent (TEQ) method. The TEQs of PHCZs in sediment and soil were up to 550 and 554 pg TEQ/g dry weight, respectively. The estimated TEQ value of sediment and soil exceeded the corresponding safety guideline, which indicated that PHCZs in the Yangtze River Delta posed high health risks. This study provides an important theoretical basis for controlling and reducing the ecological risks of PHCZs in the chemical industry. At the same time, it also provides reference for the priority control and revision of discharge standards for PHCZs in sewage treatment plants in future.
Collapse
Affiliation(s)
- Jinglin Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenqi Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunci Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
5
|
de Schepper JKH, Slootweg T, Behnisch P, Felzel E, Houtman CJ. Beyond the Drinking Water Directive: The use of reporter gene assays as an added tool for effect-based monitoring of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in drinking water sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173366. [PMID: 38796005 DOI: 10.1016/j.scitotenv.2024.173366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are legacy organic micropollutants (OMPs) that are sporadically detected in drinking water (DW) sources. The European Drinking Water Directive requires EU member states to monitor 5 PAHs in DW and its sources. The Dutch national regulations require 6 additional PAHs to be monitored and 7 polychlorinated biphenyls (PCBs). These indicator compounds act as representatives for large compound classes. PCBs alone comprise 209 congeners, it is evident that conventional chemical target analysis (GC-tQ-MS) alone is not sufficient to monitor these entire compound classes. This study investigated the application of reporter gene assays as effect-based methods (EBMs) to monitor PAHs and PCBs in DW sources. Herein, it was assessed what added value the bioassays can bring compared to the current approach of chemical target analysis for PCBs and PAHs. Regulated and non-regulated PAHs and PCBs were tested in four bioassays to determine the relative potency factors (RPFs) for these compounds. Non-regulated congeners were found to be active in the PAH-CALUX and anti-AR CALUX. An assessment of surface water (SW) spiked with standard mixtures containing PAHs and PCBs confirmed the predictable behavior of the PAH-CALUX. Moreover, the bioassay was able to detect AhR-mediated activity caused by non-regulated PAHs and PCBs, whereas this would have been missed by conventional chemical target analysis. Last, a field study was conducted in Dutch DW sources at six sampling moments. The PAH-CALUX detected AhR-mediated activity at all sampling moments and an ecological effect-based trigger (EBT) value was exceeded on multiple accounts. Combined application of GC-tQ-MS and the PAH-CALUX ensures compliancy with monitoring legislation and provides additional insights into potential hazards to humans and the environment.
Collapse
Affiliation(s)
- J K H de Schepper
- Het Waterlaboratorium N.V. (HWL), 2031 BE Haarlem, the Netherlands; Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| | - T Slootweg
- Het Waterlaboratorium N.V. (HWL), 2031 BE Haarlem, the Netherlands
| | - P Behnisch
- BioDetection Systems B.V. (BDS), 1098 XH Amsterdam, the Netherlands
| | - E Felzel
- BioDetection Systems B.V. (BDS), 1098 XH Amsterdam, the Netherlands
| | - C J Houtman
- Het Waterlaboratorium N.V. (HWL), 2031 BE Haarlem, the Netherlands; Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
6
|
Mao W, Jin H, Yin S, Xu L, Guo R, Mao K. Presence of carbazole and polyhalogenated carbazoles in human urine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171609. [PMID: 38461994 DOI: 10.1016/j.scitotenv.2024.171609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Exposure to carbazole (CZ) and polyhalogenated carbazoles (PHCZs) may pose a threat to human health, owing to their potential dioxin-like toxicity. Until now, the presence of these chemicals in the human urine from the general population is still unclear. Human urine samples (n = 210) were taken from the general population in Quzhou, China in this study, and were analyzed for CZ and 14 PHCZs. CZ and nine PHCZs were detected in collected human urine. CZ (detection frequency 100 %), 3-chlorocarbazole (3-CCZ; 88 %), 3,6-dichlorocarbzole (36-CCZ; 84 %), and 3-bromocarbazole (3-BCZ; 80 %) were more frequently detected. Among detected PHCZs, 3-CCZ (mean 0.49 ng/mL, < LOD-4.3 ng/mL) had comparatively higher urinary levels, followed by 3-BCZ (0.30 ng/L, < LOD-1.9 ng/mL) and 36-CCZ (0.20 ng/L, < LOD-1.4 ng/mL). Urinary concentrations of CZ in male participants (1.3 ± 0.26 ng/mL) were significantly (p < 0.05) higher than that in female participants (0.92 ± 0.24 ng/mL). No obvious trend in urinary concentrations with the age of participants was found for CZ and detected PHCZs. The mean daily excretion was found highest for CZ (31 ng/kg bw/day), followed by 3-CCZ (19 ng/kg bw/day) and 3-BCZ (8.5 ng/kg bw/day). This study provides the first data, to our knowledge, on the presence and levels of CZ and PHCZs in human urine, which is necessary for conducting the human exposure risk assessment.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, PR China
| | - Sihui Yin
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Luyao Xu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Kaili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China.
| |
Collapse
|
7
|
Xiao M, Li P, Lu Y, Cao J, Yan H. Development of a three-dimensional porous ionic liquid-chitosan-graphene oxide aerogel for efficient extraction and detection of polyhalogenated carbazoles in sediment samples. Talanta 2024; 271:125711. [PMID: 38290266 DOI: 10.1016/j.talanta.2024.125711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
The three-dimensional porous ionic liquid-chitosan-graphene oxide aerogel (IL-CS-GOA) monolithic adsorbent with a through-hole structure was prepared using natural chitosan (CS) as the skeletal framework, graphene oxide (GO) as the support to provide mechanical strength, and ionic liquid (IL) as the porogen and modifier. The resulting IL-CS-GOA demonstrated a fluffy and porous structure with various pore sizes and excellent regeneration capability (over six cycles). Its specific surface area exceeded that of CS-GOA and IL-GOA by more than 7 times, enhancing its polyhalogenated carbazoles (PHCZs) adsorption capacity. Within 5 min, IL-CS-GOA (1.0 mg) exhibited adsorption amounts of 539 ng mg-1 for 3-bromocarbazole (3-BCZ), 716 ng mg-1 for 2,7-dibromocarbazole (2,7-BCZ), and 798 ng mg-1 for 1,3,6,8-tetrabromocarbazole (1,3,6,8-BCZ), showcasing its rapid mass transfer and high adsorption capabilities. IL-CS-GOA was utilized as the adsorbent for glass dropper extraction (GDE) in conjunction with gas chromatography-mass spectrometry (GC-MS/MS), to develop a highly efficient and accurate method for determining PHCZs in sediments. Under optimal conditions, the established method exhibited a wide linear range (0.4-250 ng g-1, r ≥ 0.9990), low detection limits (0.04-0.24 ng g-1), and satisfactory recoveries (80.5 %-93.8 %), enabling the accurate and rapid detection of PHCZs in sediment samples. This study presents a novel approach for creating three-dimensional porous aerogels, introduces a new form of sample pretreatment using GDE with a monolithic adsorbent, and offers a new method for the determination of PHCZs in environmental matrices.
Collapse
Affiliation(s)
- Meng Xiao
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Pengfei Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Yanke Lu
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China.
| |
Collapse
|
8
|
Hou C, Huang M, Wang P, Zhang Q, Wang G, Gao S. Chronic exposure to 3,6-dichlorocarbazole exacerbates non-alcoholic fatty liver disease in zebrafish by disrupting lipid metabolism and inducing special lipid biomarker accumulation. CHEMOSPHERE 2024; 352:141442. [PMID: 38346516 DOI: 10.1016/j.chemosphere.2024.141442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Most previous studies have focused primarily on the adverse effects of environmental chemicals on organisms of good healthy. Although global prevalence of non-alcoholic fatty liver disease (NAFLD) has reached approximately 25%, the impact of environmentally persistent organic chemicals on organisms with NAFLD is substantially unknown. Polyhalogenated carbazoles (PHCZs) as emerging contaminants have been frequently detected in the environment and organisms. In this study, we investigated the impact of the most frequently detected PHCZs, 3,6-dichlorocarbazole (36-CCZ), on zebrafish with high-fat diet (HFD)-induced NAFLD. After 4 weeks exposure to environmentally relevant concentrations of 36-CCZ (0.16-0.45 μg/L), the accumulation of lipid in zebrafish liver dramatically increased, and the transcription of genes involved in lipid synthesis, transport and oxidation was significantly upregulated, demonstrating that 36-CCZ had exacerbated the NAFLD in zebrafish. Lipidomic analysis indicated that 36-CCZ had significantly affected liver lipid metabolic pathways, mainly including glycerolipids and glycerophospholipids. Additionally, fifteen lipids were identified as potential lipid biomarkers for 36-CCZ exacerbation of NAFLD, including diacylglycerols (DGs), triglycerides (TGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidic acid (PA), and phosphatidylinositol (PI). These findings demonstrate that long-term exposure to 36-CCZ can promote the progression of NAFLD, which will contribute to raising awareness of the health risks of PHCZs.
Collapse
Affiliation(s)
- Cunchuang Hou
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Mengyao Huang
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Pingping Wang
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Qiaoyun Zhang
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guowei Wang
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
9
|
Bai Y, Zhang J, Meng H, Shi B, Wu J, Li B, Wang J, Wang J, Zhu L, Du Z. Enrichment and distribution of 3,6-dichlorocarbazole in red crucian carp (Carassius auratus) and its hepatotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168732. [PMID: 38007114 DOI: 10.1016/j.scitotenv.2023.168732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are a class of organohalogen compounds where the hydrogen atom on the carbazole ring is replaced by a halogen atom. In recent years, PHCZs have drawn increasing concern due to their persistence, dioxin-like toxicity, bioaccumulation, potential ecological hazards and widespread occurrence in the environment. Current research on the enrichment and depuration of PHCZs in biological tissues and organs is insufficient, and the liver toxicity is unclear. Herein, to understand the enrichment and elimination of 3,6-DCCZ in fish tissues and organs as well as the hepatotoxicity, we exposed the red crucian carp to 20 and 100 μg/L of 3,6-DCCZ for 20 days followed by a depuration period of 10 days. The 3,6-DCCZ enrichment in each organ tissue was classified from high to low: brain > liver, intestine, gill > muscle. For depuration, 3,6-DCCZ was quickly excreted in the various organs of the red crucian carp; however, the liver depuration was slow, with the concentration of 3,6-DCCZ was maintained at 0.25-0.35 μg/g. 3,6-DCCZ exposure at both tested concentrations induced oxidative stress in red crucian carp, causing lipid peroxidation and DNA damage, as well as some histopathological changes in the liver, such as cell vacuolization, nucleus pyknosis, nucleus pleomorphism, no nucleus areas. Additionally, the 3,6-DCCZ exposure at higher concentration (100 μg/L) caused more serious damage and abnormal lipid metabolism in the red crucian carp liver.
Collapse
Affiliation(s)
- Yao Bai
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jie Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Haoran Meng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Baihui Shi
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Ji Wu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
10
|
Xu T, Jiang Y, Fu H, Yang G, Hu X, Chen Y, Zhang Q, Wang Y, Wang Y, Xie HQ, Han F, Xu L, Zhao B. Exploring the adverse effects of 1,3,6,8-tetrabromo-9H-carbazole in atherosclerotic model mice by metabolomic profiling integrated with mechanism studies in vitro. CHEMOSPHERE 2024; 349:140767. [PMID: 37992903 DOI: 10.1016/j.chemosphere.2023.140767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Given its wide distribution in the environment and latent toxic effects, 1,3,6,8-tetrabromo-9H-carbazole (1368-BCZ) is an emerging concern that has gained increasing attention globally. 1368-BCZ exposure is reported to have potential cardiovascular toxicity. Although atherosclerosis is a cardiovascular disease and remains a primary cause of mortality worldwide, no evidence has been found regarding the impact of 1368-BCZ on atherosclerosis. Therefore, we aimed to explore the deleterious effects of 1368-BCZ on atherosclerosis and the underlying mechanisms. Serum samples from 1368-BCZ-treated atherosclerotic model mice were subjected to metabolomic profiling to investigate the adverse influence of the pollutant. Subsequently, the molecular mechanism associated with the metabolic pathway of atherosclerotic mice that was identified following 1368-BCZ exposure was validated in vitro. Serum metabolomics analysis revealed that 1368-BCZ significantly altered the tricarboxylic acid cycle, causing a disturbance in energy metabolism. In vitro, we further validated general markers of energy metabolism based on metabolome data: 1368-BCZ dampened adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS) production. Furthermore, blocking the aryl hydrocarbon receptor (AhR) reversed the high production of ROS induced by 1368-BCZ. It is concluded that 1368-BCZ decreased the ATP synthesis by disturbing the energy metabolism, thereby stimulating the AhR-mediated ROS production and presumably causing aggravated atherosclerosis. This is the first comprehensive study on the cardiovascular toxicity and mechanism of 1368-BCZ based on rodent models of atherosclerosis and integrated with in vitro models.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Yu Jiang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanglei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Yuxi Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Yilan Wang
- PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Han
- PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Wang X, Hu M, Li M, Huan F, Gao R, Wang J. Effects of exposure to 3,6-DBCZ on neurotoxicity and AhR pathway during early life stages of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115892. [PMID: 38157798 DOI: 10.1016/j.ecoenv.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging environmental pollutants, yet limited information is available on their embryotoxicity and neurotoxicity. Therefore, the current work was performed to investigate the adverse effects of 3,6-dibromocarbazole (3,6-DBCZ), a typical PHCZs homolog, on the early life stages of zebrafish larvae. It revealed that the 96-hour post-fertilization (hpf) median lethal concentration (LC50) value of 3,6-DBCZ in zebrafish larvae was determined to be 0.7988 mg/L. Besides, 3,6-DBCZ reduced survival rates at concentrations ≥ 1 mg/L and decreased hatching rates at ≥ 0.25 mg/L at 48 hpf. In behavior tests, it inhibited locomotor activities and reduced the frequency of recorded acceleration states in response to optesthesia (a sudden bright light stimulus) at concentrations ≥ 160 μg/L. Meanwhile, 3,6-DBCZ exposure decreased the frequency of recorded acceleration states in the startle response (tapping mode) at concentrations ≥ 6.4 μg/L. Pathologically, with the transgenic zebrafish model (hb9-eGFP), we observed a strikingly decreased axon length and number in motor neurons after 3,6-DBCZ treatment, which may be ascribed to the activation of the AhR signaling pathway, as evidenced by the molecular docking analysis and Microscale thermophoresis (MST) assay suggested that 3,6-DBCZ binding to AhR-ARNT2 compound proteins. Through interaction with AhR-ARNT, a striking reduction of the anti-oxidative stress (sod1/2, nqo1, nrf2) and neurodevelopment-related genes (elavl3, gfap, mbp, syn2a) were observed after 3,6-DBCZ challenge, accompanied by a marked increased inflammatory genes (TNFβ, IL1β, IL6). Collectively, our findings reveal a previously unrecognized adverse effect of 3,6-DBCZ on zebrafish neurodevelopment and locomotor behaviors, potentially mediated through the activation of the AhR pathway. Furthermore, it provides direct evidence for the toxic concentrations of 3,6-DBCZ and the potential target signaling in zebrafish larvae, which may be beneficial for the risk assessment of the aquatic ecosystems.
Collapse
Affiliation(s)
- Xi Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Miaoyang Hu
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Muhan Li
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Fei Huan
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jun Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
12
|
Huang M, Hou C, Zhang Q, Yao D, Hu S, Wang G, Gao S. Tissue-specific accumulation, depuration and histopathological effects of 3,6-dichlorocarbazole and 2,7-dibromocarbazole in adult zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106803. [PMID: 38103395 DOI: 10.1016/j.aquatox.2023.106803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Although polyhalogenated carbazoles have been detected with increasing frequency in aquatic ecosystems, their bioaccumulation in fish and corresponding pathological effects related to bioaccumulation are still unclear. Here, we investigated the tissue-specific accumulation, depuration, and histopathological effects of two typical PHCZs, 3,6-dichlorocarbazole (36-CCZ) and 2,7-dibromocarbazole (27-BCZ), in adult zebrafish at three levels (0, 0.15 μg/L (5 × environmentally relevant level), and 50 μg/L (1/10 LC50). The lowest concentrations of 36-CCZ (1.2 μg/g ww) and 27-BCZ (1.4 μg/g ww) were observed in muscle, and the greatest concentrations of 36-CCZ (3.6 μg/g ww) and 27-BCZ (4 μg/g ww) were detected in intestine among the tested tissues. BCFww of 36-CCZ and 27-BCZ in zebrafish ranged from 172.9 (muscle) to 606.6 (intestine) and 285.2 (muscle) to 987.5 (intestine), respectively, indicating that both 36-CCZ and 27-BCZ have high potential of bioaccumulation in aquatic system. The 0.15 μg/L level of 36-CCZ or 27-BCZ caused lipid accumulation in liver, while 50 μg/L of 36-CCZ or 27-BCZ induced liver lesions such as fibrous septa, cytolysis, and nuclear dissolution. Brain damage such as multinucleated cells and nuclear solidification were only observed at 50 μg/L of 27-BCZ. This study provided valuable information in assessing the health and ecological risks of 36-CCZ and 27-BCZ.
Collapse
Affiliation(s)
- Mengyao Huang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cunchuang Hou
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qiaoyun Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Dunfan Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shengchao Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guowei Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
13
|
Shi B, Hou K, Cheng C, Bai Y, Liu C, Du Z, Wang J, Wang J, Li B, Zhu L. Effects of the polyhalogenated carbazoles 3-bromocarbazole and 1,3,6,8-tetrabromocarbazole on soil microbial communities. ENVIRONMENTAL RESEARCH 2023; 239:117379. [PMID: 37832772 DOI: 10.1016/j.envres.2023.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Soil ecosystems are being more contaminated with polyhalogenated carbazoles (PHCZs), which raising much attention about their impact on soil microorganisms. 3-Bromocarbazole (3-BCZ) and 1,3,6,8-tetrabromocarbazole (1,3,6,8-TBCZ) are two typical PHCZs with high detection rates in the soil environment. However, ecological risk research on these two PHCZs in soil is still lacking. In the present study, after 80 days of exposure, the ecological influence of 3-BCZ and 1,3,6,8-TBCZ was investigated based on 16S rDNA sequencing, ITS sequencing, gene (16S rDNA, ITS, amoA, nifH, narG and cbbL) abundance and soil enzyme activity. The results showed that the bacterial 16S rDNA gene abundance significantly decreased under 3-BCZ and 1,3,6,8-TBCZ exposure after 80 days of incubation. The fungal ITS gene abundance significantly decreased under 1,3,6,8-TBCZ (10 mg/kg) exposure. PHCZs contributed to the alteration of bacteria and fungi community abundance. Bacteria Sphingomonas, RB41 and fungus Mortierella, Cercophora were identified as the most dominant genera. The two PHCZs consistently decreased the relative abundance of Sphingomonas, Lysobacter, Dokdonella, Mortierella and Cercophora etc at 80th day. These keystone taxa are related to the degradation of organic compounds, carbon metabolism, and nitrogen metabolism and may thus have influence on soil ecological functions. Bacterial and fungal functions were estimated using functional annotation of prokaryotic taxa (FAPROTAX) and fungi functional guild (FUNGuild), respectively. The nitrogen and carbon metabolism pathway were affected by 3-BCZ and 1,3,6,8-TBCZ. The soil nitrogen-related functions of aerobic ammonia oxidation were decreased but the soil carbon-related functions of methanol oxidation, fermentation, and hydrocarbon degradation were increased at 80th day. The effects of 3-BCZ and 1,3,6,8-TBCZ on the abundances of the amoA, nifH, narG, and cbbL genes showed a negative trend. These results elucidate the ecological effects of PHCZs and extend our knowledge on the structure and function of soil microorganisms in PHCZ-contaminated ecosystems.
Collapse
Affiliation(s)
- Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China; College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256603, PR China.
| | - Chao Cheng
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, PR China.
| | - Yao Bai
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Changrui Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China.
| |
Collapse
|
14
|
Zou H, Yu J, Li Z, Liu Y, Wang T, Li T, Lv C, Zhang J. In vitro, in vivo, and in silico evaluation of the glucocorticoid receptor antagonist activity of 3,6-dibromocarbazole. Food Chem Toxicol 2023; 180:114048. [PMID: 37734465 DOI: 10.1016/j.fct.2023.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
3,6-Dibromocarbazole is a novel environmental contaminant which is currently detected in several environmental media worldwide. This work aims to investigate the anti-glucocorticoid potency and endocrine disrupting effects of 3,6-dibromocarbazole. In vitro experiments indicated that 3,6-dibromocarbazole possessed glucocorticoid receptor (GR) antagonistic activity and inhibited dexamethasone-induced GR nuclear translocation. 3,6-Dibromocarbazole reduced the expression levels of glucocorticoid responsive genes including glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), fatty acid synthase (FAS), and tyrosine aminotransferase (TAT), and further disrupted the protein expression of two key enzymes PEPCK and FAS in gluconeogenesis. In vivo experiments showed that 3,6-dibromocarbazole induced abnormal development of zebrafish embryos and disrupted the major neurohormones involved in activation of hypothalamic-pituitary-adrenocortical (HPA) axis in zebrafish larvae. The results of molecular docking and molecular dynamics simulation contributed to explain the antagonistic effect of 3,6-dibromocarbazole. Taken together, this work identified 3,6-dibromocarbazole as a GR antagonist, which might exert endocrine disrupting effects by interfering the pathway of gluconeogenesis.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhuolin Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Liu
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, China
| | - Tuoyi Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chengyu Lv
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
15
|
Ji C, Luo Y, Yang J, Dai Y, Miao J, Yue S, Zhao M. Polyhalogenated carbazoles induce hepatic metabolic disorders in mice via alteration in gut microbiota. J Environ Sci (China) 2023; 127:603-614. [PMID: 36522090 DOI: 10.1016/j.jes.2022.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 06/17/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) have been widely accepted as emerging pollutants, whereas their ecological and health risks remain uncertain. Herein, female and male Sprague-Dawley (SD) mice were treated with four typical PHCZs to investigate their negative consequences, along with alternations in gut microbiota to indicate underlying mechanisms. In female mice, the relative liver weight ratio increased after four PHCZs exposure; 2-bromocarbazole (2-BCZ) increased urine glucose level; 3-bromocarbazole (3-BCZ) decreased the glucose and total cholesterol levels; 3,6-dichlorocarbazole (3,6-DCCZ) decreased glucose level. The only disturbed biochemical index in male mice was the promoted alkaline phosphatase (ALP) level by 3,6-DCCZ. We also found that the differential blood biochemical indices were correlated with gut microbiota. 3-BCZ and 3,6-DCCZ altered Bacteroidetes and Proteobacteria phyla in female and male mice, which were correlated with metabolic disorders. Our findings demonstrated the correlation between PHCZs induced potential hepatotoxicity and metabolic disorders may be due to their dioxin-like potentials and endocrine disrupting activities, and the gender differences might result from their estrogenic activities. Overall, data presented here can help to evaluate the ecological and health risks of PHCZs and reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yunkai Luo
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medical, Yiwu 322000, China
| | - Jiawen Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiahui Miao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Siqing Yue
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
16
|
Jia Y, Cheng J, Sun H, Wang M, Zhang R, Xue Y, He S, Liu K, Shi L, Lou Y. Sediment-water distribution and potential sources of polyhalogenated carbazoles in a coastal river locating at a north metropolis, China. MARINE POLLUTION BULLETIN 2023; 189:114790. [PMID: 36905865 DOI: 10.1016/j.marpolbul.2023.114790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The fate and transformation of PHCZs in the coastal river environment are not yet comprehensively understood. Paired river water and surface sediment were collected, and 12 PHCZs were analyzed to find out their potential sources and investigate the distribution of PHCZs between river water and sediment. The concentration of ∑PHCZs varied from 8.66 to 42.97 ng/g (mean 22.46 ng/g) in sediment and 17.91 to 81.82 ng/L (mean 39.07 ng/L) in river water. 18-B-36-CCZ was the dominant PHCZ congener in sediment, while 36-CCZ was in water. Meanwhile, the logKoc values for CZ and PHCZs were among the first calculated in the estuary and the mean logKoc varied from 4.12 for 1-B-36-CCZ to 5.63 for 3-CCZ. The logKoc values of CCZs were higher than those of BCZs, this may suggest that sediments have a higher capacity for accumulation and storage of CCZs than highly mobile environmental media.
Collapse
Affiliation(s)
- Yuxi Jia
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Cheng
- China National Research Institute of Food & Fermentation Industries Co., Ltd, Beijing 100015, China
| | - Hongfei Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Min Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ruxue Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yunfeng Xue
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shuyue He
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Kezhong Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Shi
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yinghua Lou
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
17
|
Peng L, Liu L, Li P, Lin K. Spatial and temporal distribution of polyhalogenated carbazoles in sediments from the Yangtze River estuary and adjacent East China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120957. [PMID: 36596377 DOI: 10.1016/j.envpol.2022.120957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) have been increasingly detected in marine sediment, raising concerns in recent years. In this study, sediment samples (42 surface and one core) were collected from the Yangtze River estuary and the adjacent East China Sea, and eleven PHCZs and unsubstituted carbazole were measured. The total concentration of PHCZs in surface sediments ranged from 0.19 to 2.49 ng/g dry weight (d.w.) (median 1.03 ng/g d. w.). The congener compositions of PHCZs in the surface sediment were dominated by 3,6-dichlorocarbazole (36-CCZ, 53.2%), followed by 3-chlorocarbazole (14.9%) and 3,6-dibromocarbazole (36-BCZ, 11.8%). Carbazole in the surface sediment ranged from not detected to 9.89 ng/g (median 1.25 ng/g), with a detection frequency of 81.0%. The spatial distribution of 36-CCZ in surface sediments exhibited a clear decline from the coast to offshore, while 36-BCZ showed the opposite trend. The depth profile of 36-CCZ was maintained at a relatively low and stable concentration (about 0.36 ng/g) in core segments from 1903 to 1951, followed by a steady increase to 1.5 ng/g in 2006. This increase coincides with the industrial and agricultural development in China that began in the 1950s. In contrast, the other detected PHCZs and carbazole maintained stable, low concentrations over time. These spatial and temporal patterns suggest that 36-CCZ in this area is predominantly from anthropogenic sources, while 36-BCZ has a natural origin. Toxic equivalent estimations indicated that dioxin-like effects for the observed PHCZs were low. These results provide useful information for understanding the origin of PHCZs and carbazole in this area.
Collapse
Affiliation(s)
- Lu Peng
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Li
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
18
|
Deng Z, Hu S, Tang L, Jiang L, He J, Shen K, Xu Y, Jiang R, Li T, Chen C, Chen B, Zhou H, Zhang D, Chen J, Zhang C. Carbazole and polyhalogenated carbazoles in the marine environment around the Zhoushan Archipelago: Distribution characteristics, environmental behavior, and sources. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129999. [PMID: 36152549 DOI: 10.1016/j.jhazmat.2022.129999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The distribution characteristics and drivers of carbazole (CZ) and polyhalogenated carbazoles are still poorly understood. In this study, 96 samples were collected around the Zhoushan Archipelago, and their distribution characteristics were assessed. The results showed that CZ, 36-CCZ, and 36-BCZ were the top three abundant congeners in most collected samples. The bioaccumulation analysis revealed that marine plants prefer to accumulate CZ and bromocarbazoles rather than chlorocarbazoles. Both the mean concentrations of total carbazole and its derivants (ΣCZDs), as well as individual congeners, are the highest in sediments around the berthing areas of cargo ships and oil tankers. Meanwhile, ΣCZDs of these sediments are significantly influenced by the geo-weighted displacement of ships (r = 0.61; p < 0.05), indicating the ballast water from these ships as potential contributor for marine CZDs. Moreover, the accumulation of CZ in plankton, planktonic origin of sedimentary organic matter, and relationship between CZ and C/N ratio (p < 0.05) in sediments support the scenario that plankton absorbs and takes CZ into the sediments. These findings will promote the understanding of the sources, environmental behaviors, and fates of marine CZDs.
Collapse
Affiliation(s)
- Zhaochao Deng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Songtao Hu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Leiming Tang
- Zhoushan Institute for Food and Drug Control, Zhoushan 316021, Zhejiang, China
| | - Lingbo Jiang
- Zhoushan Institute for Food and Drug Control, Zhoushan 316021, Zhejiang, China
| | - Junyu He
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Keyu Shen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Yongjiu Xu
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
| | - Rijin Jiang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, Zhejiang, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, Zhejiang, China
| | - Chunlei Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Bairu Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Jiawang Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
19
|
Eze CT, Otitoloju AA, Eze OO, Ugochukwu TE, Onodugo C, Ali AM, Lyche JL, Karlsen OA, Goksøyr A. West African e-waste-soil assessed with a battery of cell-based bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159068. [PMID: 36179844 DOI: 10.1016/j.scitotenv.2022.159068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Soil samples randomly taken from major e-waste sites in West Africa (Nigeria, Benin and Ghana) were examined for an extensive range of organic contaminants. Cytotoxicity measurements and assessment of activation of xeno-sensing receptors from fish (Atlantic cod) were employed as a battery of in vitro biological assays to explore the quality and toxicity profile of West African e-waste soil. The concentrations of the measured contaminants of emerging concerns (CECs) and persistent organic pollutants (POPs) in the e-waste soil differs significantly from the reference soil with chemical profiles typically dominated by legacy polybrominated diphenyl ethers (PBDEs) (405.8 μgkg-1) and emerging organophosphate ester flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) (404 μgkg-1), in addition to the short chain perfluorobutane sulfonate (PFBS) (275.3 μgkg-1) and perfluorobutanoate (PFBA) (16 μgkg-1). The study revealed that perfluorooctanoic acid (PFOA) occurred only in e-waste soil from Ghana and ranged from 2.6 to 5.0 μgkg-1. Overall, non-polar e-waste soil-derived extracts had a stronger effect on COS-7 cell viability than the polar extracts and elutriates. The highest receptor activation was observed with single polar and non-polar extracts from the Nigeria and Benin sites, indicating hotspots with Er-, PPARa- and Ahr-agonist activities. Thus, the results obtained with our battery of in vitro biological assays underscored these e-waste sites as remarkably polluted spots with complex toxicity profiles of great concern for human and environmental health.
Collapse
Affiliation(s)
- Chukwuebuka ThankGod Eze
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria; Department of Zoology, University of Lagos, Akoka-Yaba, Lagos State, Nigeria; Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | | | | | | | - Chinemelum Onodugo
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Aasim Musa Ali
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), P.O 1870 Nordnes, NO-5817 Bergen, Norway
| | - Jan Ludvig Lyche
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Tian S, Yan S, Meng Z, Sun W, Yan J, Huang S, Wang Y, Zhou Z, Diao J, Li L, Zhu W. Widening the Lens on Prothioconazole and Its Metabolite Prothioconazole-Desthio: Aryl Hydrocarbon Receptor-Mediated Reproductive Disorders through in Vivo, in Vitro, and in Silico Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17890-17901. [PMID: 36332113 DOI: 10.1021/acs.est.2c06236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reproductive disorders are a serious public health problem worldwide. Epidemiological data suggest that exposure to environmental pollutants is associated with the onset of reproductive disorders. However, the effects in reproductive health and exact mechanism of action of representative agricultural compounds prothioconazole (PTC) and its metabolite prothioconazole-desthio (dPTC) on mammals remain unclear. Here, we studied the physiological effects of the exposure to environmentally relevant doses of PTC and dPTC in mice reproductive systems. Combining in vivo, in vitro, and in silico studies, we observed that PTC and dPTC disrupt reproductive health by inducing metabolic perturbation, induction of apoptosis, and inflammation in gonadal tissue, which are achieved via activation of the aryl hydrocarbon receptor (AhR). Convincingly, the addition of alternate-day injections of CH223191 (an AhR inhibitor) to the 30-day exposure regimen ameliorated ovarian tissue damage, as evidenced by decreased TUNEL-positive cells and partially restored the inflammation and apoptotic factor levels. This study comprehensively reports the toxic effects of low-dose PTC and dPTC in the reproductive system in vivo and identifies AhR as a potential therapeutic target for the amelioration of reproductive disorders caused by similar endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Sun Y, Zheng M, Yang L, Jin R, Lin B, Li C, Liu G. Progress of congener specific analysis of polyhalogenated carbazoles in the environment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Du Z, Hou K, Zhou T, Shi B, Zhang C, Zhu L, Li B, Wang J, Wang J. Polyhalogenated carbazoles (PHCZs) induce cardiotoxicity and behavioral changes in zebrafish at early developmental stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156738. [PMID: 35716752 DOI: 10.1016/j.scitotenv.2022.156738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are widely present in the environment, and their health risks are of increasing concern. Available studies primarily confirm their dioxin-like toxicity mechanism based on biomarkers, such as aryl hydrocarbon receptor (AHR) and CYP1A1, while few studies have investigated their actual toxic effects at the level of individual organisms. In the present study, the developmental toxicity of two typical PHCZs with a high detection rate and high concentration in the environment (3,6-dichlorocarbazol (3,6-DCCZ) and 3,6-dibromocarbazole (3,6-DBCZ)) was investigated based on a fish embryo acute toxicity test (FET, zebrafish) and transcriptomics analysis. The 96 h LC50 values of 3,6-DCCZ and 3,6-DBCZ were 0.636 mg/L and 1.167 mg/L, respectively. Both tested PHCZs reduced the zebrafish heart rate and blocked heart looping at concentrations of 0.5 mg/L or higher. The swimming/escaping behavior of zebrafish larvae was more vulnerable to 3,6-DBCZ than 3,6-DCCZ. Transcriptomics assays showed that multiple pathways linked to organ development, immunization, metabolism and protein synthesis were disturbed in PHCZ-exposed fish, which might be the internal mechanism of the adverse effects. The present study provides evidence that PHCZs cause cardiac developmental toxicity and behavioral changes and improves our understanding of their health risks.
Collapse
Affiliation(s)
- Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Tongtong Zhou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China
| | - Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Cheng Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| |
Collapse
|
23
|
Pan Z, Liu Q, Xu J, Li W, Lin H. Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119163. [PMID: 35305345 DOI: 10.1016/j.envpol.2022.119163] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) pollution has been a considerable concern due to its ubiquity in the environment and its potential to harm human health. Unfortunately, the exact levels of MP in various species of seafood species have not been established. It is also unclear whether or not consuming seafood contaminated with MPs directly jeopardizes human health. Here, eight popular species of seafood in Dongshan Bay, China were investigated to determine the presence of MP pollution and its implications on human health. The abundance, color, size, shape, type, surface morphology, danger of the MPs extracted from the seafood were analyzed. Results showed that the average MP abundance in the shellfish and fish was 1.88 ± 1.44 and 1.98 ± 1.98 items individual-1, respectively. The heavy presence of fibers may be attributed to the shellfish and fish's feeding behaviors as well as their habitat and environment. The sizes of MPs found were below 1.0 mm. The main types of MP found in the shellfish were PES and PET, whereas the main types found in the fish were PS and PES. Risk assessment suggested that MPs in the shellfish (risk Level V) posed a greater and more direct threat to human health if the shellfish is eaten whole. The MPs in the gastrointestinal tracts (GITs) of fish (risk Level IV) have a relatively limited effect on human health since GITs are seldom consumed by humans unless the fish is heavily processed (canned or dried). MPs-induced health risk is predicted using a technique called molecular docking. The results of this study not only establish levels of MP pollution in popular seafood species but also help understand the implications of consuming MP-contaminated seafood on human health.
Collapse
Affiliation(s)
- Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Costal Zone in Zhangzhou, Zhangzhou, 363216, China; Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Qianlong Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Jing Xu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| |
Collapse
|
24
|
Zhang W, Xie HQ, Li Y, Zhou M, Zhou Z, Wang R, Hahn ME, Zhao B. The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128084. [PMID: 34952507 PMCID: PMC9039345 DOI: 10.1016/j.jhazmat.2021.128084] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 06/01/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has broad biological functions. Early after the identification of the AHR, most studies focused on its roles in regulating the expression of drug-metabolizing enzymes and mediating the toxicity of dioxins and dioxin-like compounds (DLCs). Currently, more diverse functions of AHR have been identified, indicating that AHR is not just a dioxin receptor. Dioxins and DLCs occur ubiquitously and have diverse health/ecological risks. Additional research is required to identify both shared and compound-specific mechanisms, especially for emerging DLCs such as polyhalogenated carbazoles (PHCZs), polychlorinated diphenyl sulfides (PCDPSs), and others, of which only a few investigations have been performed at present. Many of the toxic effects of emerging DLCs were observed to be predominantly mediated by the AHR because of their structural similarity as dioxins, and the in vitro TCDD-relative potencies of certain emerging DLC congeners are comparable to or even greater than the WHO-TEFs of OctaCDD, OctaCDF, and most coplanar PCBs. Due to the close relationship between AHR biology and environmental science, this review begins by providing novel insights into AHR signaling (canonical and non-canonical), AHR's biochemical properties (AHR structure, AHR-ligand interaction, AHR-DNA binding), and the variations during AHR transactivation. Then, AHR ligand classification and the corresponding mechanisms are discussed, especially the shared and compound-specific, AHR-mediated effects and mechanisms of emerging DLCs. Accordingly, a series of in vivo and in vitro toxicity evaluation methods based on the AHR signaling pathway are reviewed. In light of current advances, future research on traditional and emerging DLCs will enhance our understanding of their mechanisms, toxicity, potency, and ecological impacts.
Collapse
Affiliation(s)
- Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxi Zhou
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA; Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Li J, Zhang H, Wang J, Yu Z, Li H, Yang M. Identification of unknown disinfection byproducts in drinking water produced from Taihu Lake source water. J Environ Sci (China) 2022; 113:1-11. [PMID: 34963519 DOI: 10.1016/j.jes.2021.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 06/14/2023]
Abstract
Although disinfection byproducts (DBPs) in drinking water have been suggested as a cancer causing factor, the causative compounds have not yet been clarified. In this study, we used liquid chromatography quadrupole-time-of-flight spectrometry (LC-QTOF MS) to identify the unknown disinfection byproducts (DBPs) in drinking water produced from Taihu Lake source water, which is known as a convergence point for the anthropogenic pollutants discharged from intensive industrial activities in the surrounding regions. In total, 91 formulas of DBPs were discovered through LC-QTOF MS nontarget screen, 81 of which have not yet been reported. Among the 91 molecules, 56 only contain bromine, 15 only contain chlorine and 20 DBPs have both bromine and chlorine atoms. Finally, five DBPs including 2,4,6-tribromophenol, 2,6-dibromo-4-chlorophenol, 2,6-dichloro-4-bromophenol, 4-bromo-2,6-di-tert-butylphenol and 3,6-dibromocarbazole were confirmed using standards. The former three compounds mainly formed in the predisinfection step (maximum concentration, 0.2-2.6 µg/L), while the latter two formed in the disinfection step (maximum concentration, 18.2-33.6 ng/L). In addition, 19 possible precursors of the discovered DBPs were detected, with the aromatic compounds being a major group. 2,6-di-tert-butylphenol as the precursor of 4-bromo-2,6-di-tert-butylphenol was confirmed with standard, with a concentration of 20.3 µg/L in raw water. The results of this study show that brominated DBPs which are possibly formed from industrial pollutants are relevant DBP species in drinking water produced form Taihu source water, suggesting protection of Taihu Lake source water is important to control the DBP risks.
Collapse
Affiliation(s)
- Jiabao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Shi B, Cheng C, Zhang Y, Du Z, Zhu L, Wang J, Wang J, Li B. Effects of 3,6-dichlorocarbazole on microbial ecology and its degradation in soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127315. [PMID: 34601412 DOI: 10.1016/j.jhazmat.2021.127315] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The emerging contaminants polyhalogenated carbazoles (PHCZs) have been verified to be present in soils and sediments globally, and they show dioxin-like toxicity. However, there is a lack of soil ecological risk assessments on PHCZs despite their high detection rate and concentration in soils. The present study investigated the degradation and soil microbial influence of 3,6-dichlorocarbazole (3,6-DCCZ, a frequently detected PHCZ) in soil. The results showed that the half-lives of 3,6-DCCZ at concentrations of 0.100 mg/kg and 1.00 mg/kg were 7.75 d and 16.73 d, respectively. We found that 3,6-DCCZ was transformed into 3-chlorocarbazole (3-CCZ) by dehalogenation in soil. Additionally, intermediate products with higher molecular weights were detected, presumably because the -H on the carbazole ring was replaced by -CH3, -CH2-O-CH3, or -CH2-O-CH2CH3. 3,6-DCCZ exposure slightly increased the soil bacterial abundance and diversity and clearly changed the soil bacterial community structure. Through a comprehensive analysis of FAPROTAX, functional gene qPCR and soil enzyme tests, we concluded that 3,6-DCCZ exposure inhibited nitrification and nitrogen fixation but promoted denitrification, carbon dioxide fixation and hydrocarbon degradation processes in soil. This study provides valuable data for clarifying the PHCZ ecological risk in soil.
Collapse
Affiliation(s)
- Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Chao Cheng
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Yuanqing Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| |
Collapse
|
27
|
Hu H, Zhao M, Guo Y, Zhou Y, Li T, Zhu W, Jin H. Occurrence, bioaccumulation and potential risk of polyhalogenated carbazoles in marine organisms from the East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150643. [PMID: 34597545 DOI: 10.1016/j.scitotenv.2021.150643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
As well-known emergent environmental contaminants, polyhalogenated carbazoles (PHCZs) have recently received increasing attention. In this study, we investigated the concentrations of carbazole (CZ) and PHCZs in 70 marine organisms from the East China Sea (ECS). CZ and 9-11 PHCZs were detected in organisms from the ECS, with concentrations in the range of 0.75-33 ng/g lipid weight, lw and 4.3-113 ng/g lw, respectively. Among the PHCZs, there were 3-4 major components in zooplankton, fish, shrimp, crabs, snails and shellfish, and the sum of these major components accounted for 59% to 67% of ∑PHCZs. The bioaccumulation potentials of 1,3,6,8-tetrachlorocarbazole (1368-CCZ) and 3-chlorocarbazole (3-CCZ) from water were observed. The logarithmic bioaccumulation factor (logBAF) values of the CZ and PHCZs increased significantly with increasing logKOW values (R = 0.449-0.784, p < 0.01). The trophic magnification factor (TMF) values of the CZ, 9 PHCZs and ∑PHCZs were calculated to be 3.32, 1.87-4.06 and 2.36, respectively, indicating the potential biomagnification of the CZ and PHCZs in the zooplankton-shrimp-fish food web. The toxic equivalents (TEQs) of PHCZs in organisms from the ECS were in the range of 0.78-36 pg TEQ/g lw. Overall, for the first time, this study systematically examined the occurrence, bioaccumulation and potential risk of PHCZs in the marine food web of the East China Sea.
Collapse
Affiliation(s)
- Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuanming Guo
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Yongdong Zhou
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Wenbin Zhu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
28
|
Liu M, Jia Y, Cui Z, Lu Z, Zhang W, Liu K, Shuai L, Shi L, Ke R, Lou Y. Occurrence and potential sources of polyhalogenated carbazoles in farmland soils from the Three Northeast Provinces, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149459. [PMID: 34371402 DOI: 10.1016/j.scitotenv.2021.149459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) have been detected in various environments frequently and have attracted increasing attention for their multiple toxicities. However, only a few reports record the occurrence of PHCZs in farmland soils, and the sources of which were not yet been implemented. In this study, 12 PHCZs and carbazole (CZ) were screened in farmland soil samples from the Three Northeast Provinces, and the ∑PHCZs were in the range of 18.16-219.67 ng/g dw. 36-CCZ was the dominant congener (40.67%) in farmland soils, followed by 3-CCZ (14.51%), and average percentages of other congeners were lower than 10%. A concrete analysis of the sources of PHCZs in the soil was conducted, revealing the diversity of PHCZs sources. Potential toxic effects associated with the levels of PHCZs were evaluated via the toxic equivalency (TEQ) approach, and the TEQs of PHCZs (TEQPHCZs) were in the range of 2.24-14.06 pg TEQ/g dw. Notwithstanding the 1368-CCZ with a low concentration level, the mean contribution to TEQPHCZs was up to 24.24%, preceded only by 36-CCZ (39.69%), showing the congeners with low concentration also may pose potential risks to the environment. Partial PHCZs congeners (2-BCZ, 3-BCZ, 36-CCZ, 136-BCZ, and 2367-BCZ) showed significant correlations (r = 0.45-0.63, p < 0.05) with the total organic carbon (TOC). Significant correlations were shown between PHCZ congeners replaced by halogens of the same species and quantity (r = 0.40-0.99, p < 0.01). In view of the fact that the high concentration level of PHCZs in the soil and their source diversity, more environmental monitoring and risk assessments of PHCZs should be of particular concern.
Collapse
Affiliation(s)
- Mingkai Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuxi Jia
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zilong Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhichao Lu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Weikun Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Kezhong Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Li Shuai
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Shi
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Runhui Ke
- China National Research Institute of Food&Fermentation Industries, Beijing 100015, China
| | - Yinghua Lou
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
29
|
Kong Y, Ji C, Qu J, Chen Y, Wu S, Zhu X, Niu L, Zhao M. Old pesticide, new use: Smart and safe enantiomer of isocarbophos in locust control. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112710. [PMID: 34481357 DOI: 10.1016/j.ecoenv.2021.112710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Locust plagues are still worldwide problems. Selecting active enantiomers from current chiral insecticides is necessary for controlling locusts and mitigating the pesticide pollution in agricultural lands. Herein, two enantiomers of isocarbophos (ICP) were separated and the enantioselectivity in insecticidal activity against the pest Locusta migratoria manilensis (L. migratoria) and mechanisms were investigated. The significant difference of LD50 between (+)-ICP (0.609 mg/kg bw) and (-)-ICP (79.412 mg/kg bw) demonstrated that (+)-ICP was a more effective enantiomer. The enantioselectivity in insecticidal activity of ICP enantiomers could be attributed to the selective affinity to acetylcholinesterase (AChE). Results of in vivo and in vitro assays suggested that AChE was more sensitive to (+)-ICP. In addition, molecular docking showed that the -CDOKER energies of (+)-ICP and (-)-ICP were 25.6652 and 24.4169, respectively, which suggested a stronger affinity between (+)-ICP and AChE. Significant selectivity also occurred in detoxifying enzymes activities (carboxylesterases (CarEs) and glutathione S-transferases (GSTs)) and related gene expressions. Suppression of detoxifying enzymes activities with (+)-ICP treatment suggested that (-)-ICP may induce the detoxifying enzyme-mediated ICP resistance. A more comprehensive understanding of the enantioselectivity of ICP is necessary for improving regulation and risk assessment of ICP.
Collapse
Affiliation(s)
- Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyang Ji
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shenggan Wu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinkai Zhu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering under the National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Lixi Niu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering under the National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
30
|
Mollaeva MR, Yabbarov N, Sokol M, Chirkina M, Mollaev MD, Zabolotskii A, Seregina I, Bolshov M, Kaplun A, Nikolskaya E. Optimization, Characterization and Pharmacokinetic Study of Meso-Tetraphenylporphyrin Metal Complex-Loaded PLGA Nanoparticles. Int J Mol Sci 2021; 22:12261. [PMID: 34830136 PMCID: PMC8618356 DOI: 10.3390/ijms222212261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
The selection of technological parameters for nanoparticle formulation represents a complicated development phase. Therefore, the statistical analysis based on Box-Behnken methodology is widely used to optimize technological processes, including poly(lactic-co-glycolic acid) nanoparticle formulation. In this study, we applied a two-level three-factor design to optimize the preparation of nanoparticles loaded with cobalt (CoTPP), manganese (MnClTPP), and nickel (NiTPP) metalloporphyrins (MeP). The resulting nanoparticles were examined by dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, MTT test, and hemolytic activity assay. The optimized model of nanoparticle formulation was validated, and the obtained nanoparticles possessed a spherical shape and physicochemical characteristics enabling them to deliver MeP in cancer cells. In vitro hemolysis assay revealed high safety of the formulated MeP-loaded nanoparticles. The MeP release demonstrated a biphasic profile and release mechanism via Fick diffusion, according to release exponent values. Formulated MeP-loaded nanoparticles revealed significant antitumor activity and ability to generate reactive oxygen species. MnClTPP- and CoTPP-nanoparticles specifically accumulated in tissues, preventing wide tissue distribution caused by long-term circulation of the hydrophobic drug. Our results suggest that MnClTPP- and CoTPP-nanoparticles represent the greatest potential for utilization in in anticancer therapy due to their effectiveness and safety.
Collapse
Affiliation(s)
- Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Murad D. Mollaev
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Artur Zabolotskii
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Irina Seregina
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Mikhail Bolshov
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Alexander Kaplun
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia;
| | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| |
Collapse
|
31
|
Ji C, Tanabe P, Shi Q, Qian L, McGruer V, Magnuson JT, Wang X, Gan J, Gadepalli RS, Rimoldi J, Schlenk D. Stage Dependent Enantioselective Metabolism of Bifenthrin in Embryos of Zebrafish ( Danio rerio) and Japanese Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9087-9096. [PMID: 34106693 DOI: 10.1021/acs.est.1c01663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bifenthrin (BF) is a widely used pyrethroid that has been frequently detected in surface waters. Previous studies indicated that BF had antiestrogenic activity in zebrafish embryos but estrogenic activity in posthatch fish. To determine whether age-related differences in metabolism contribute to the endocrine effects in developing fish, embryos from zebrafish and Japanese medaka were exposed to BF before and after liver development. Since the commercial mixture of BF is an isomer-enriched product containing two enantiomers (1R-cis-BF and 1S-cis-BF), enantioselective metabolism was also evaluated. The estrogenic metabolite, 4-hydroxybifenthrin (4-OH-BF) was identified in zebrafish embryos, and formation was higher in animals after liver development (>48 hpf). Treatments with β-glucuronidase indicated that 4-OH-BF underwent conjugation in embryos. Formation was reduced by cotreatment of the cytochrome P450 (CYP450) inhibitor, ketoconazole. Formation of 4-OH-BF was greater when treated with 1R-cis-BF compared to the S-enantiomer. However, metabolites were not observed in medaka embryos. These data indicate enantioselective oxidation of BF to an estrogenic metabolite occurs in zebrafish embryos and, since it is increased after liver development, may partially explain estrogenic activity observed in older animals. The lack of activity in medaka suggests species-specific effects with BF metabolism and may influence risk assessment strategies in wildlife.
Collapse
Affiliation(s)
- Chenyang Ji
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, P. R. China
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Philip Tanabe
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Le Qian
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- College of Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Xinru Wang
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, P. R. China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Rama S Gadepalli
- Department of Biomolecular Sciences, College of Pharmacy, University of Mississipi, University, Mississippi 38677, United States
| | - John Rimoldi
- Department of Biomolecular Sciences, College of Pharmacy, University of Mississipi, University, Mississippi 38677, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
32
|
Jin H, Zhao N, Hu H, Liu W, Zhao M. Occurrence and partitioning of polyhalogenated carbazoles in seawater and sediment from East China Sea. WATER RESEARCH 2021; 190:116717. [PMID: 33333435 DOI: 10.1016/j.watres.2020.116717] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) have received great concern due to their environmental persistence and potential dioxin-like toxicities. Their presence in the marine sediment had been well characterized, but limited studies had investigated their environmental behaviors in the marine environment. In this study, we collected paired seawater (n = 48) and surface sediment samples (n = 48) from East China Sea and analyzed for carbazole (CZ) and 11 PHCZs to investigate the occurrence and spatial distribution of CZ and PHCZs in seawater and sediment, as well as to explore the partitioning behaviors of CZ and PHCZs between seawater and sediment. In seawater samples, CZ and nine PHCZs were detected, with the concentrations of ∑PHCZs ranging from 0.21 to 11 ng/L (mean 2.7 ng/L). CZ (94%), 3-CCZ (89%), 1368-CCZ (65%), and 36-CCZ (57%) had relatively higher detection frequencies. Among PHCZs, 36-CCZ (mean 1.1 ng/L) had the highest mean seawater concentration, followed by 3-CCZ (0.51 ng/L) and 1368-CCZ (0.19 ng/L). In sediment, CZ and 11 PHCZs were detected, with the concentrations of ∑PHCZs ranged from 0.34 to 2.0 ng/g (mean 1.0 ng/g). CZ, 3-CCZ, 3-BCZ, 36-CCZ, 27-BCZ, and 36-BCZ were measurable in all sediment samples, and 36-CCZ was the predominant PHCZ (0.47 ng/g, 0.025-1.1 ng/g), followed by 1368-BCZ (0.16 ng/g, <LOD-0.29 ng/g) and 3-BCZ (0.11 ng/g, 0.016-0.33 ng/g). This study first calculated the field-based log Koc values for CZ and PHCZs in marine environment. CZ (mean 2.8, range 1.4-3.6) had the highest log Koc value, followed by 36-CCZ (2.7, 1.7-3.8), 1-B-36-CCZ (2.7, 2.3-3.1), and 36-BCZ (2.5, 2.2-2.9). The results of study may contribute to the better understanding of the environmental occurrence and behaviors of these chemicals in the marine environment.
Collapse
Affiliation(s)
- Hangbiao Jin
- College of Environment, Research Centre of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Nan Zhao
- College of Environment, Research Centre of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Hongmei Hu
- College of Environment, Research Centre of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, PR China; Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316021, PR China
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Meirong Zhao
- College of Environment, Research Centre of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
33
|
Zhu K, Shen C, Tang C, Zhou Y, He C, Zuo Z. Improvement in the screening performance of potential aryl hydrocarbon receptor ligands by using supervised machine learning. CHEMOSPHERE 2021; 265:129099. [PMID: 33272675 DOI: 10.1016/j.chemosphere.2020.129099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The aryl hydrocarbon receptor (AhR), which is a ligand-dependent transcription factor, plays a crucial role in the regulation of xenobiotic metabolism. There are a large number of artificial or natural molecules in the environment that can activate AhR. In this study, we developed a virtual screening procedure to identify potential ligands of AhR. One structure-based method and two ligand-based methods were used for the virtual screening procedure. The results showed that the precision rate (0.96) and recall rate (0.64) of our procedure were significantly higher than those of a procedure used in a previous study, which suggests that supervised machine learning techniques can greatly improve the performance of virtual screening. Moreover, a pesticide dataset including 777 frequently used pesticides was screened. Seventy-seven pesticides were identified as potential AhR ligands by all three screening methods, among which 12 have never been previously reported as AhR agonists. Two non-agonist AhR ligands and 14 of the 77 pesticides were randomly selected for testing by in vitro and in vivo assays. All 14 pesticides showed different degrees of AhR agonistic activity, and none of the two non-agonist AhR ligand pesticides showed AhR agonistic activity, which suggests that our procedure had good robustness. Four of the pesticides were reported as AhR agonists for the first time, suggesting that these pesticides may need further toxicity assessment. In general, our procedure is a rapid, powerful and computationally inexpensive tool for predicting chemicals with AhR agonistic activity, which could be useful for environmental risk prediction and management.
Collapse
Affiliation(s)
- Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
34
|
Zhou W, Chen W, Li P, Gu Z, Peng J, Lin K. Occurrence and distribution of polyhalogenated carbazoles (PHCs) in sediments from the northern South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142072. [PMID: 32891987 DOI: 10.1016/j.scitotenv.2020.142072] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Polyhalogenated carbazoles (PHCs) have been frequently detected in various environments and have gained increasing attention due to their dioxin-like toxicity. In this study, 28 surface sediments and three sediment cores were collected from the northern South China Sea (SCS) to investigate the spatial and temporal distribution trends of PHCs. The total concentrations of PHCs in the surface sediments ranged from 0.25 ng/g to 3.10 ng/g, with a median concentration of 1.50 ng/g. The composition profiles of PHCs in the surface sediments were dominated by 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), and 1,3,6,8-tetrabromocarbazole (1368-BCZ). The total organic carbon (TOC) based concentrations of 36-CCZ, 1-bromo-3,6-dichlorocarbazole, 1,3,6,8-tetrachlorocarbazole, and 1368-BCZ showed significant positive correlation with water depth (r = 0.58-0.88, p values < 0.01). On the contrary, the TOC based concentration of 2,3,6,7-tetrachlorocarbazole displayed a significant negative correlation with the water depth (r = -0.52, p < 0.01). However, no significant correlation was observed for 3-chlorocarbazole, 36-BCZ, and 1,3,6-tribromocarbazole (p values > 0.05). PHCs in sediment cores showed that congener profiles and concentrations of PHCs remained largely stable throughout the 1890s and 2010s. In addition, all the detected PHCs displayed a significant positive correlation with TOC content of the sediments. These unique spatial and temporal distribution patterns suggest that both terrigenous and natural marine sources contributed the observed PHCs in sediments of the northern SCS.
Collapse
Affiliation(s)
- Wenxiu Zhou
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Weifang Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Peng Li
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhaoyang Gu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jinghe Peng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
35
|
Ji C, Chen D, Zhao M. Environmental behavior and safety of polyhalogenated carbazoles (PHCZs): A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115717. [PMID: 33120342 DOI: 10.1016/j.envpol.2020.115717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are well-known as emergent environmental contaminants. Given their wide distribution in the environment and structural similarity with dioxins and dioxin-like chemicals (DLCs), the environmental behavior and ecological risks of these chemicals have become the major issue concerned by the governments and scientists. Since the initial report of PHCZ residues in the environment in the 1980s, over 20 PHCZ congeners with different residual levels had been identified in various environmental media all over the world. Nevertheless, researches concerning the toxicological effects of PHCZs are of an urgent need for the relatively lagging study of their ecological risks. Currently, only limited evidence has indicated that PHCZs would pose dioxin-like toxicity, including developmental toxicity, cardiotoxicity, etc; and their toxicological effects were partially consistent with AhR activation. And yet, much remains to be done to fill in the knowledge gaps of their toxicological effects. In this review, the research progresses in environmental behavior and toxicology study of PHCZs were remarked; and the lack of current research, as well as future research prospects, were discussed.
Collapse
Affiliation(s)
- Chenyang Ji
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Da Chen
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
36
|
Renaguli A, Fernando S, Hopke PK, Holsen TM, Crimmins BS. Nontargeted Screening of Halogenated Organic Compounds in Fish Fillet Tissues from the Great Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15035-15045. [PMID: 33167618 DOI: 10.1021/acs.est.0c05078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fish have been used for decades as bioindicators for assessing toxic contaminants in the Great Lakes ecosystem. Routine environmental monitoring programs target predetermined compounds that do not reflect the complete exposure of chemicals to biota and do not provide the complete halogenated fingerprint of the biota. In the current work, a nontargeted screening method was developed using a two-dimensional gas chromatograph coupled to a high-resolution time-of-flight mass spectrometer and was applied to 149 edible fish fillets from different species in the Great Lakes to characterize a more robust set of halogenated organic compounds across species and among lakes. Lake Ontario had the largest number of novel halogenated organic compounds (NHOCs). Seven NHOCs were observed in species from all lakes, indicating that this regional signature was not species-dependent. Hierarchical cluster analysis showed identical NHOC profiles between bottom dwelling and pelagic species. The NHOCs were grouped into seven clusters with similar structures and potentially similar environmental behaviors. Seven of the 29 NHOCs likely containing methoxy or ethoxy groups on a benzene or benzene-methanol backbone were clustered into one group with similar retention times. Five NHOCs were clustered with legacy contaminants that likely have similar structures or are their degradation products.
Collapse
Affiliation(s)
- Aikebaier Renaguli
- Institute for a Sustainable Environment, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Philip K Hopke
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Thomas M Holsen
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Bernard S Crimmins
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- AEACS, LLC, New Kensington, Pennsylvania 15068, United States
| |
Collapse
|
37
|
Jung JH, Yim B, Jeong S, Yoon MS, Kim BM, Ha SY, Kim M, Rhee JS, Lee YM. Development and Evaluation of Olive Flounder cyp1a1-Luciferase Assay for Effective Detection of CYP1A-Inducing Contaminants in Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15170-15179. [PMID: 33197181 DOI: 10.1021/acs.est.0c06921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flounders have been widely used as indicator species for monitoring the benthic environment of marine coastal regions owing to their habitat and feeding preferences in or on sandy sediments. Here, a single-step, sensitive, specific, and simple luciferase assay was developed, using the olive flounder cyp1a1 gene, for effective detection of CYP1A-inducing contaminants in coastal sediments. The developed cyp1a1-luciferase assay was highly sensitive to the widely used CYP1A inducers 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo[a]pyrene (B[a]P), and 3,3',4,4',5-pentachlorobiphenyl (PCB 126). In the case of TCDD, significant dose-dependent increases in luciferase activity (0.3-300 ng/L) were detected. The assay was more sensitive to PCB 126 than to B[a]P. The assay also involved the highly sensitive expression of luciferase to extracted mixtures of PCBs and polycyclic aromatic hydrocarbons (PAHs) collected from coastal sediments. PCBs were more capable of cyp1a1 induction in the assay system at small doses than PAHs in environmental samples. Using the cyp1a1-luciferase assay along with water or sediment chemistry will certainly aid in diagnosing CYP1A-inducing contaminants in coastal environments.
Collapse
Affiliation(s)
- Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Bora Yim
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sol Jeong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Bo-Mi Kim
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sung Yong Ha
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
38
|
Zhang J, Zhang C, Du Z, Zhu L, Wang J, Wang J, Li B. Emerging contaminant 1,3,6,8-tetrabromocarbazole induces oxidative damage and apoptosis during the embryonic development of zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140753. [PMID: 32758839 DOI: 10.1016/j.scitotenv.2020.140753] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Since polyhalogenated carbazoles (PHCs) have been widely detected at high concentrations in multiple environmental media in recent years, the health risk of exposure to these compounds has drawn increasing attention. Most studies have mainly focused on their dioxin-like toxicity, which is induced through the AhR pathway, because PHCs have structures similar to those of polychlorinated dibenzofurans (PCDFs). In addition, most xenobiotic compounds induce oxidative stress in organisms, which is a more common mechanism of toxicity induction. However, there is limited information regarding the oxidative stress and damage induced by PHCs in vivo. The PHC 1,3,6,8-tetrabromocarbazole (1368-TBCZ) is detected at high concentration and frequency. In the present study, the toxic effects (acute toxicity, developmental toxicity, oxidative stress, and apoptosis) induced by 1368-TBCZ at three different concentrations were investigated using zebrafish embryos. It was concluded that the 96 h median lethal concentration (LC50) of 1368-TBCZ for zebrafish embryos was greater than 2.0 mg L-1. The results showed that 1368-TBCZ had little effect on the hatching rate of zebrafish embryos. However, 1368-TBCZ at 0.5 and 2.0 mg L-1 inhibited skeletal and cardiac development. It promoted ROS production, CAT enzyme activity, lipid peroxidation, DNA damage, and apoptosis, even at the lowest dose (0.1 mg L-1). In addition, 1368-TBCZ influenced oxidative stress-related gene expression, upregulating the expression of caspase 3 and p53 at 2.0 mg L-1 and inhibiting the expression of caspase 9, FoxO3b, and Bcl-2/Bax. The present study comprehensively evaluated 1368-TBCZ-induced toxicity in zebrafish, providing valuable data for better evaluation of the potential risks posed by this PHC.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
39
|
Tang C, Shen C, Zhu K, Zhou Y, Chuang YJ, He C, Zuo Z. Exposure to the AhR agonist cyprodinil impacts the cardiac development and function of zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110808. [PMID: 32516676 DOI: 10.1016/j.ecoenv.2020.110808] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Cyprodinil is a broad-spectrum pyrimidine amine fungicide that has been reportedly used worldwide. However, toxicity studies of cyprodinil on aquatic organisms, specifically zebrafish (Danio rerio), are lacking. In our present study, we predicted cyprodinil binding to the aryl hydrocarbon receptor (AhR) by using molecular docking simulation. Then, we used recombinant HepG2 cells and Tg(cyp1a1-12DRE:egfp) transgenic zebrafish to further assess the AhR agonistic activity of cyprodinil. Besides, the significant upregulation of cyp1a1 further verified that statement. Moreover, we found that zebrafish exposure to cyprodinil induced developmental toxicity in the larvae, particularly during cardiac development. The expression levels of cardiac development-related genes, namely tbx5, nkx2.5, gata4, and tnnt2, were markedly altered, which might cause the adverse effects of cyprodinil on cardiac function and development. In summary, we found that cyprodinil, as an AhR agonist, induced development toxicity in zebrafish larvae, especially on cardiac. Data here can assess the potential effects on organisms in the aquatic environment and promote the regulation and safe use of cyprodinil.
Collapse
Affiliation(s)
- Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yung-Jen Chuang
- Department of Medical Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
40
|
Yue S, Zhang T, Shen Q, Song Q, Ji C, Chen Y, Mao M, Kong Y, Chen D, Liu J, Sun Z, Zhao M. Assessment of endocrine-disrupting effects of emerging polyhalogenated carbazoles (PHCZs): In vitro, in silico, and in vivo evidence. ENVIRONMENT INTERNATIONAL 2020; 140:105729. [PMID: 32344252 DOI: 10.1016/j.envint.2020.105729] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are an emerging class of persistent, bioaccumulative compounds that are structurally and chemically related to dioxins. They have been detected widely in sediment, river, and soil samples, but their environmental risks are largely unknown. Therefore, seven common PHCZs were tested for their endocrine disrupting potential in silico, in vitro, and in vivo. A dual-luciferase reporter gene assay was used to detect receptor-mediated (agonist or antagonistic) activity (concentration range: 10-9-10-5 M) against the estrogen receptor α (ERα), glucocorticoid receptor α (GRα), and mineralocorticoid receptor (MR). The alterations in the steroidogenesis pathway were investigated in H295R cells. Antagonistic effects against GRα were observed with five PHCZs, along with an increase in the cortisol levels of H295R cells. The most common effect observed was that of the agonistic activity of ERα, with the molecular docking analysis further indicating that hydrogen bonding and hydrophobic interactions may stabilize the interaction between PHCZs and the estrogen receptor binding pocket. In addition, a seven-day exposure of young female rats to three PHCZs (27-BCZ, 3-BCZ, and 36-BCZ) resulted in changes in serum E2 levels, uterine epithelium cell heights, and relative uterus weights. In conclusion, endocrine-disrupting effects, especially the estrogenic effects, were observed for the tested PHCZs. Such adverse effects of PHCZs on humans and wildlife warrant further thorough investigation.
Collapse
Affiliation(s)
- Siqing Yue
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Zhang
- Department of Blood, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qiqi Shen
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qin Song
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenyang Ji
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanchen Chen
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Manfei Mao
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuan Kong
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jing Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Sun
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Meirong Zhao
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
41
|
Hu H, Mao L, Fang S, Xie J, Zhao M, Jin H. Occurrence of phthalic acid esters in marine organisms from Hangzhou Bay, China: Implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137605. [PMID: 32163735 DOI: 10.1016/j.scitotenv.2020.137605] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Owing to the wide application of phthalic acid esters (PAEs) in the manufacturing of plastic products, they are ubiquitous in the marine environment. However, the occurrence of various PAEs in marine organisms from China has not been well characterized. In this study, 341 marine organism samples (including fish, shrimp, crab, and shellfish) were collected from Hangzhou Bay, China and analyzed for 16 PAEs. Further, the human PAE exposure risks raised from the consumption of marine organisms were evaluated for adults and children. In total, eight PAEs were detected in collected organism samples, with the concentration of total PAEs (∑PAEs) ranging from 64 to 2840 ng/g (mean 238 ng/g). Crab (mean 811 ng/g) samples had the highest mean concentration of ∑PAEs, followed by fish (465 ng/g), shrimp (293 ng/g), and shellfish (261 ng/g) samples. Among detected PAEs, di-isobutyl phthalate (DiBP), di-n-butyl phthalate (DBP), and di-ethylhexyl phthalate (DEHP) were the predominant PAEs, and they collectively accounted for 84-97% of the ∑PAEs concentrations in all samples. The estimated daily intakes of DiBP, DBP, and DEHP were more than one order of magnitude higher than remaining PAEs. Calculated hazard quotient values of PAEs were all <0.1, suggesting non-cancer risks for the general population through the consumption of marine organisms. Overall, for the first time, this study systematically examined the occurrence of multiple PAEs in four types of marine organisms from Hangzhou Bay, China.
Collapse
Affiliation(s)
- Hongmei Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan, Zhejiang 316021, PR China
| | - Lingling Mao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Shuhong Fang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, PR China
| | - Jiahui Xie
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
42
|
Ji C, Song Q, Chen Y, Zhou Z, Wang P, Liu J, Sun Z, Zhao M. The potential endocrine disruption of pesticide transformation products (TPs): The blind spot of pesticide risk assessment. ENVIRONMENT INTERNATIONAL 2020; 137:105490. [PMID: 32007685 DOI: 10.1016/j.envint.2020.105490] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The ecological and health risk assessment of environmental pesticide residues have attracted ever-growing attention; however, their transformation products (TPs) have seldom been considered. Herein, we examined the endocrine-disrupting effects of 4 widely used pesticides as pyriproxyfen (Pyr), malathion (ML), benalaxyl (BX), and fenoxaprop-ethyl (FE), together with their 21 TPs through in vitro and in silico approaches, and found approximately 50% of the TPs exhibited stronger endocrine-disrupting effects than their corresponding parent compounds. Specifically, Pyr and 9 TPs (five TPs of Pyr, one of ML, one of BX, and two of FE) exhibited estrogen-disrupting effects, which were also confirmed by results of E-screen and pS2 expression assays, and molecular docking showed that certain hydroxylated TPs could well mimic the binding mode of estrogen with ERα. Meanwhile, two TPs of Pyr, ML and its TP demonstrated weak glucocorticoid antagonistic activities partially contributed by hydrogen bonds. We also discovered that in H295R cells, all the endocrine disruptors increased hormone secretion and the related gene expression levels. Conclusively, since an increasing number of pesticide TPs have been being detected in various environmental media, a more comprehensive understanding of the ecological risk of pesticide TPs is imperative for risk assessments more extensively and regulatory policy-making on pesticide restriction in the future.
Collapse
Affiliation(s)
- Chenyang Ji
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qin Song
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuanchen Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Sun
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
43
|
Gu J, Cheng Y, Ji C, Tao Y, Zhao M. Analysis of the Different Metabolic Phenotypes of Metalaxyl Enantiomers in Adolescent Rat by Using 1H NMR Based Urinary Metabolomics. Chem Res Toxicol 2020; 33:1449-1457. [DOI: 10.1021/acs.chemrestox.0c00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jinping Gu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yafei Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenyang Ji
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ying Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|