1
|
Mohamed N, Jing M, Plaksii M, Zhao S, Nyachoti CM, Yang C, House JD. Standardized ileal amino acid digestibility and performance indices in pullets and laying hens fed expeller-pressed Canadian prairie soybean meal. Poult Sci 2024; 103:104081. [PMID: 39067119 PMCID: PMC11337718 DOI: 10.1016/j.psj.2024.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
Soybean meals (SBM) from different locations differ in their protein content, subsequently influencing their amino acid (AA) profile. In this study, standardized ileal digestibility (SID) of AA and growth or production performance were evaluated in pullets and hens fed SBM derived from soybean grown in Western Canada, primarily Manitoba (MB) labelled as A-, B- and C-SBM compared with that from Eastern Canada (Ontario, ON-SBM) and contained 38.3 ± 0.44, 38.6 ± 0.61, 39.4 ± 0.49, or 44.0 ± 0.87% CP, respectively. A N-free diet was used to determine basal ileal endogenous losses of AA. The study included the grower, developer, and layer phases (9-12, 13-16, and 44/59-64-wk old birds, respectively). Although a lower (P = 0.029) SID for cysteine was noted in the grower phase for the C-SBM compared with other SBM, the developer phase had higher (P < 0.05) SID for methionine, phenylalanine, cysteine (more by 4.4, 2.4 and 7.2% units, respectively) on average for SBM samples from MB compared with the ON-SBM. Regardless the source of the SBM, no difference in SID of AA was noted in the layer phase. Overall, in all phases the SID values of most AA in the SBM from MB were comparable with the ON-SBM, which may be linked to higher values of these AA per unit of protein content in the former source. In addition, the growth performance including feed intake, BW gain and feed conversion ratio in pullets, and egg production/quality in layers were similar between treatments. These findings show that the MB-SBM have a comparable feeding value with the ON-SBM, hence represent a suitable alternative protein source for poultry.
Collapse
Affiliation(s)
- Neijat Mohamed
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mingyan Jing
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Maryna Plaksii
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shusheng Zhao
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Charles M Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - James D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
2
|
Yu Z, Gao Y, Duan H, Zheng D, Shang Z, Zhang L, Chen Y. Ultrasound-assisted germination of red kidney beans: Enhancements in physicochemical and nutritional profiles. Food Chem 2024; 454:139829. [PMID: 38810443 DOI: 10.1016/j.foodchem.2024.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
To improve the conventional germination process and improve the nutritional quality of red kidney beans, this study employed high-intensity ultrasound (HIU) supplemented with hydrogen peroxide as a pre-germination treatment. The results showed that the 350 W-10 min treatment yielded the highest germination rate (77.09%), with its sprout length 81.13% greater than that of the control group. The 350 W-10 min treatment increased total protein, soluble protein, and ash content, while simultaneously reducing the fat, starch, and soluble sugar content. The HIU treatment accelerated the accumulation of phenolic and flavonoid compounds, ascorbic acid, and γ-aminobutyric acid. The 350 W-10 min treatment also decreased the levels of phytic acid, trypsin inhibitor activity, and tannin by 42.71%, 65.58%, and 53.18%, respectively. Furthermore, ultrasonic cavitation enhanced antioxidative capacity and improved amino acid composition and protein digestibility. Consequently, HIU serves as a cost-efficient method to accelerate the germination process and enhance their nutritional composition.
Collapse
Affiliation(s)
- Zhihui Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yating Gao
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Huiling Duan
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Dan Zheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Ziqi Shang
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Azizi R, Baggio A, Capuano E, Pellegrini N. Protein transition: focus on protein quality in sustainable alternative sources. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38907600 DOI: 10.1080/10408398.2024.2365339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The current consumption trends, combined with the expected demographic growth in the coming years, call for a protein transition, i.e., the partial substitution of animal protein-rich foods with foods rich in proteins produced in a more sustainable way. Here, we have discussed some of the most common and promising protein sources alternative to animal proteins, namely: legumes, insects, and microorganisms (including microalgae and fungi). The primary objective was to assess their nutritional quality through the collection of digestible indispensable amino acid score (DIAAS) values available in the scientific literature. Protein digestibility corrected amino acid score (PDCAAS) values have been used where DIAAS values were not available. The ecological impact of each protein source, its nutritional quality and the potential applications in traditional foods or novel food concepts like meat analogues are also discussed. The data collected show that DIAAS values for animal proteins are higher than all the other protein sources. Soybean proteins, mycoproteins and proteins of some insects present relatively high DIAAS (or PDCAAS) values and must be considered proteins of good quality. This review also highlights the lack of DIAAS values for many potentially promising protein sources and the variability induced by the way the proteins are processed.
Collapse
Affiliation(s)
- Rezvan Azizi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Anna Baggio
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Krul ES, Sá AGA, Goldberg EM, House JD. In vitro protein digestibility to replace in vivo digestibility for purposes of nutrient content claim substantiation in North America's context. Front Nutr 2024; 11:1390146. [PMID: 38854163 PMCID: PMC11157434 DOI: 10.3389/fnut.2024.1390146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The reliance by North American regulatory authorities on in vivo rodent bioassays-Protein Correct-Amino Acid Score (PDCAAS) in the U.S. and Protein Efficiency Ratio (PER) in Canada-to measure the protein quality for protein content claim substantiation represents a major barrier for innovation in the development and marketing of protein foods. Although FAO in 2013 proposed a new method (Digestible Indispensable Amino Acid Score, DIAAS), it is still not used for protein content claim substantiation in any jurisdiction. Together with public health efforts to increase the consumption of plant-based foods, removing hurdles is key to incentivizing the food industry to measure protein digestibility in making food formulation decisions as well as in claiming protein content on product labels. To address this issue, a pathway has been proposed to position alternative methods for in vitro protein digestibility in collaborative studies to generate the data necessary for method approval by a certifying body. The latter is critical to the potential recognition of these methods by both Health Canada and the US FDA. The purpose of this article is to briefly summarize the state-of-the-art in the field, to inform the research community of next steps, and to describe the path engaging collaborative laboratories in a proficiency test as the first step in moving forward toward acceptance of in vitro digestibility methods. Throughout, a consultative and iterative process will be utilized to ensure the program goals are met. Success will be achieved when the proposed path results in the acceptance of an in vitro methods for protein digestibility used for PDCAAS determinations, which will enable increased protein analyses and improved nutrition labeling of protein foods.
Collapse
Affiliation(s)
| | - Amanda G. A. Sá
- Richardson Centre for Food Technology and Research, Winnipeg, MB, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Erin M. Goldberg
- Richardson Centre for Food Technology and Research, Winnipeg, MB, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James D. House
- Richardson Centre for Food Technology and Research, Winnipeg, MB, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Eckhardt L, Bu F, Franczyk A, Michaels T, Ismail BP. Hemp ( Cannabis sativa L.) protein: Impact of extraction method and cultivar on structure, function, and nutritional quality. Curr Res Food Sci 2024; 8:100746. [PMID: 38681526 PMCID: PMC11046069 DOI: 10.1016/j.crfs.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Hemp (Cannabis sativa L.) is increasingly gaining traction as a novel and sustainable source of plant protein. Accordingly, the aim of this study was to investigate the effectiveness of two protein extraction methods, alkaline extraction coupled with isoelectric precipitation (AE-IEP) and salt extraction coupled with ultrafiltration (SE-UF) in producing hemp protein isolates (pH-HPI and salt-HPI) with high purity and yield. Structural characterization as impacted by extraction method and cultivar was performed and related to functional performance and nutritional quality. Both extraction methods, with carefully selected parameters, resulted in HPI with high purity (86.6-88.1% protein) and protein extraction yields (81.6-87.3%). All HPI samples had poor solubility (∼9-20%) at neutral pH compared to commercial soy protein and pea protein isolates (cSPI, cPPI). A relatively high surface hydrophobicity and low surface charge contributed to such poor solubility of HPI. However, HPI demonstrated similar solubility at acidic pH (50-67%) and comparable gel strength (up to 24 N) to cSPI. Comparing experimental amino acid composition to the theoretical amino acid distribution in hemp protein provided insights to the functional performance of the protein isolates. While pH-HPI demonstrated better functionality than salt-HPI, minimal structural, functional, and nutritional differences were noted among the pH-HPI samples extracted from four different cultivars. Overall, results from this work could be used to guide future attempts to further develop successful protein extraction processes, and to provide valuable insights to propel breeding efforts that target enhanced hemp protein characteristics for food applications.
Collapse
Affiliation(s)
- Laura Eckhardt
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Fan Bu
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Adam Franczyk
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Tom Michaels
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Baraem P. Ismail
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
6
|
Fulgoni VL, Agarwal S, Marinangeli CPF, Miller K. Impact of Plant Protein Intakes on Nutrient Adequacy in the US. Nutrients 2024; 16:1158. [PMID: 38674848 PMCID: PMC11054554 DOI: 10.3390/nu16081158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
There is an increasing interest in plant-based diets and higher levels of plant proteins due to rising concerns around health and environmental sustainability issues. We determined the effects of increasing quartiles of plant protein in the diet on nutrient adequacy using a large nationally representative observational dataset. Twenty-four-hour dietary-recall data from NHANES 2013-2018 from 19,493 participants aged 9+ years were used to assess nutrient intakes. Nutritional adequacy was assessed by estimating the percentage of the population with intakes below the EAR or above the AI. A quartile trend was assessed using regression and the significance was set at Pquartile trend < 0.05. With increasing quartiles of plant protein, the adequacy decreased for calcium, potassium, and vitamin D and increased for copper and magnesium for adolescents. Among the adults aged 19-50 years, the adequacy decreased for protein, choline, selenium, vitamin B12, and zinc and increased for copper, folate, iron, magnesium, thiamin, and vitamin C with increasing quartiles of plant protein. The adequacy for calcium, vitamin A, and zinc decreased and it increased for copper, folate, magnesium, thiamin, and vitamin C with increasing quartiles of plant protein among adults aged 51+ years. The results indicate that diets of mixed protein sources (from both animals and plants) are the most nutritionally adequate.
Collapse
Affiliation(s)
| | | | | | - Kevin Miller
- Bill and Melinda Gates Foundation, Seattle, WA 98109, USA;
| |
Collapse
|
7
|
Zhang Z, Bai Y, Qiao J, Liang Y, Zhou J, Guo S, Zhao C, Xing B, Qin P, Zhang L, Ren G. Effect of high moisture extrusion on the structure and physicochemical properties of Tartary buckwheat protein and its in vitro digestion. Food Res Int 2024; 180:114065. [PMID: 38395582 DOI: 10.1016/j.foodres.2024.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Tartary buckwheat is rich in nutrients and its protein supports numerous biological functions. However, the digestibility of Tartary buckwheat protein (TBP) poses a significant limitation owing to its inherent structure. This study aimed to assess the impact of high moisture extrusion (HME, 60 % moisture content) on the structural and physicochemical attributes, as well as the in vitro digestibility of TBP. Our results indicated that TBP exhibited unfolded and amorphous microstructures after HME. The protein molecular weight of TBP decreased after HME, and a greater degradation was observed at 70 °C than 100 °C. In particular, HME at 70 °C caused an almost complete disappearance of bands near 35 kDa compared with HME at 100 °C. In addition, compared with native TBP (NTBP, 44.53 µmol/g protein), TBP subjected to HME at 70 °C showed a lower disulfide bond (SS) content (42.67 µmol/g protein), whereas TBP subjected to HME at 100 °C demonstrated a higher SS content (45.70 µmol/g protein). These changes endowed TBP with good solubility (from 55.96 % to 83.31 % at pH 7), foaming ability (20.00 %-28.57 %), and surface hydrophobicity (8.34-23.07). Furthermore, the emulsifying activity (EA) and in vitro digestibility are closely related to SS content. Notably, extruded TBP (ETBP) obtained at 70 °C exhibited higher EA and digestibility than NTBP, whereas ETBP obtained at 100 °C showed the opposite trend. Consequently, HME (especially at 70 °C) demonstrated significant potential as a processing technique for improving the functional and digestive properties of TBP.
Collapse
Affiliation(s)
- Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiankang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shengyuan Guo
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chaofan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
8
|
House JD, Brodkorb A, Messina M, Braun M, Krul ES. Options for substantiating protein content claims for conventional foods. Appl Physiol Nutr Metab 2024; 49:395-404. [PMID: 38088347 DOI: 10.1139/apnm-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In Canada and the United States, front-of-package protein content claims require data to support the quality of the protein. In general, protein quality reflects the product of the amino acid composition of the food protein relative to human amino acid requirements and a measure of digestibility. The currently accepted method in both jurisdictions is the protein digestibility-corrected amino acid score (PDCAAS) that requires the measurement of true fecal protein (nitrogen) digestibility. The latter must be measured in vivo using a rat model. This requirement for animal testing is inconsistent with international efforts to reduce the usage of animals in testing for regulatory purposes. The current commentary positions four options to remove the need to use animal testing for determining protein quality, when considering protein content claim substantiation. These options include (i) a focus on protein quantity alone; (ii) the use of the amino acid score alone, with no correction for digestibility; (iii) the use of a fixed digestibility coefficient to estimate protein quality; and (iv) the use of in vitro methods to measure protein and/or amino acid digestibility. The relative merits and deficiencies of the options are positioned with the goal of encouraging dialogue within the regulatory agencies to move towards alternative approaches for substantiating protein content claims on foods, including those derived from plant-based sources.
Collapse
Affiliation(s)
- James D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB, Canada
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
| | - Mark Messina
- Soy Nutrition Institute Global, 1747 Pennsylvania Ave., NW, Suite 1000, Washington, DC 20006, USA
| | | | - Elaine S Krul
- EKSci LLC, 594 Gederson Lane, St. Louis, MO 63122, USA
| |
Collapse
|
9
|
Guillermic RM, Franczyk AJ, Kerhervé SO, House JD, Page JH, Koksel F. Characterization of the mechanical properties of high-moisture meat analogues using low-intensity ultrasound: Linking mechanical properties to textural and nutritional quality attributes. Food Res Int 2023; 173:113193. [PMID: 37803530 DOI: 10.1016/j.foodres.2023.113193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
Plant-based meat analogues offer possible alternatives to meat consumption. However, many challenges remain to produce a palatable meat analogue as well as to understand the roles of different processing steps and ingredients on both the texture and nutritional properties of the final product. The goal of this paper is to help with addressing these challenges by using a low-intensity ultrasonic transmission technique, both online and 24 h after production, to investigate high-moisture meat analogues made from a blend of soy and wheat proteins. To understand the ultrasonic data in the context of traditional characterization methods, physical properties (meat analogue thickness, density, peak cutting force) and protein nutritional quality attributes of the meat analogues were also characterized separately. The ultrasonic velocity was found to decrease with the feed moisture content and to be strongly correlated (r = 0.97) with peak cutting force. This strong correlation extends over a wide range of moisture contents from 58% to 70%, with the velocity decreasing from about 1730 m/s to 1660 m/s over this range. The protein quality was high for all moistures, with the highest amino acid score and in vitro protein digestibility being observed for the highest moisture content treatment. The accuracy of the ultrasonic measurements was enhanced by the development of an innovative non-contact method, suitable for materials exhibiting low ultrasonic attenuation, to measure the meat analogue thickness ultrasonically and in a sanitary fashion - an advance that is potentially useful for online monitoring of production problems (e.g., extruder barrel-fill and cooling-die temperature issues). This study demonstrates, for the first time, the feasibility of using ultrasonic transmission techniques to measure both velocity and sample thickness simultaneously and provide information in real time during production that is well correlated with some textural and nutritional attributes of meat analogues.
Collapse
Affiliation(s)
- R-M Guillermic
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; Département de Sciences Mathématiques et Physique, Université de Saint-Boniface, Winnipeg, Manitoba R2H 0H7, Canada
| | - A J Franczyk
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - S O Kerhervé
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - J D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - J H Page
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - F Koksel
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
10
|
Nosworthy MG, Franczyk A, Neufeld J, House JD. The in vivo and in vitro protein quality of three hemp protein sources. Food Sci Nutr 2023; 11:7264-7270. [PMID: 37970413 PMCID: PMC10630821 DOI: 10.1002/fsn3.3652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 11/17/2023] Open
Abstract
In this work, the protein quality of defatted hemp hearts and protein-enriched hemp fractions was determined. Protein quality was assessed using a rodent bioassay to evaluate growth and protein digestibility, while amino acid composition was determined via HPLC. A method for determining in vitro protein digestibility was compared to in vivo methodology and used to generate an in vitro protein quality score. The true protein digestibility of hemp protein 2, a hemp protein concentrate, was significantly lower than that of either defatted hemp hearts or hemp protein 1, a hemp protein concentrate (p < .05). While there was no relationship between the in vivo and in vitro measurements of protein digestibility (R 2 = .293, p = .459), there was a significant correlation between the protein digestibility-corrected amino acid score (PDCAAS) determined in vivo and in vitro PDCAAS (R 2 = .989, p = .005). The protein efficiency ratio of hemp protein 1 was significantly lower than that of either defatted hemp hearts or hemp protein 2 (p < .05). These data highlight the nutritional capacity of hemp protein sources while also demonstrating the relationship between in vivo and in vitro methods for determining protein quality.
Collapse
Affiliation(s)
- Matthew G. Nosworthy
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
- Present address:
Agriculture and Agri‐Food CanadaGuelph Research & Development CentreGuelphOntarioCanada
| | - Adam Franczyk
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Jason Neufeld
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - James D. House
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
- Richardson Centre for Food Technology and ResearchWinnipegManitobaCanada
- Canadian Centre for Agri‐Food Research in Health and MedicineWinnipegManitobaCanada
- Department of Animal ScienceUniversity of ManitobaWinnipegManitobaCanada
- Present address:
Agriculture and Agri‐Food CanadaGuelph Research & Development CentreGuelphOntarioCanada
| |
Collapse
|
11
|
Singh R, Sá AGA, Sharma S, Nadimi M, Paliwal J, House JD, Koksel F. Effects of Feed Moisture Content on the Physical and Nutritional Quality Attributes of Sunflower Meal-based High-Moisture Meat Analogues. FOOD BIOPROCESS TECH 2023; 17:1897-1913. [PMID: 38939448 PMCID: PMC11199254 DOI: 10.1007/s11947-023-03225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/06/2023] [Indexed: 06/29/2024]
Abstract
Adding value to food industry by-products, like sunflower meal (SFM), through their utilization as ingredients in new food products can improve sustainability of food systems. This research investigated extrusion cooking to produce high-moisture meat analogues (HMMAs) made from blends of soy protein isolate and expeller-pressed SFM. The effects of feed moisture content [FMC] (60, 65, and 70%, wet basis) and SFM concentration (37.5, 50, and 62.5%, total blend weight basis) on physical and protein nutritional quality attributes of HMMAs were investigated. The processing temperatures (including cooling die), screw speed and feed rate were kept constant at 60-80-115-125-50-25 °C (from feeder to the die end), 200 rpm and 0.5 kg/h (dry basis), respectively. An increase in SFM concentration and FMC significantly (p < 0.05) reduced the mechanical energy requirements for extrusion. Cutting strength and texture profile analysis of HMMAs indicated softer texture with increases in SFM and FMC. X-ray microcomputed tomography analysis revealed that the microstructure of the HMMAs at the centre and towards the surface was different and affected by SFM concentration and FMC. The in vitro-protein digestibility corrected amino acid score of the HMMAs ranged between 85 and 91% and did not show significant (p < 0.05) changes as a function of FMC or SFM concentration. HMMAs produced from 37.5% SFM at 70% FMC showed no deficiency in essential amino acids for all age categories except for infants, suggesting the high potential of SFM and soy protein blends for creating nutritious meat alternative products. Overall, this work provided valuable insights regarding the effects of soy protein replacement by SFM on the textural, microstructural and nutritional quality of HMMA applications, paving the way for value-addition to this underutilized food industry by-product.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Amanda Gomes Almeida Sá
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Shubham Sharma
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - Mohammad Nadimi
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - James D. House
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Filiz Koksel
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
12
|
Song H, Wang Q, Shao Z, Wang X, Cao H, Huang K, Sun Q, Sun Z, Guan X. In vitro gastrointestinal digestion of buckwheat ( Fagopyrum esculentum Moench) protein: release and structural characteristics of novel bioactive peptides stimulating gut cholecystokinin secretion. Food Funct 2023; 14:7469-7477. [PMID: 37489980 DOI: 10.1039/d3fo01951a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Satiety hormone cholecystokinin (CCK) plays a vital role in appetite inhibition. Its secretion is regulated by dietary components. The search for bioactive compounds that stimulate CCK secretion is currently an active area of research. The objective of this study was to evaluate the ability of buckwheat (Fagopyrum esculentum Moench) protein digest (BPD) to stimulate CCK secretion in vitro and in vivo and clarify the structural characteristics of peptides stimulating CCK secretion. BPD was prepared by an in vitro gastrointestinal digestion model. The relative molecular weight of BPD was <10 000 Da, and peptides with <3000 Da accounted for 70%. BPD was rich in essential amino acids Lys, Leu, and Val but lacked sulfur amino acids Met and Cys. It had a stimulatory effect on CCK secretion in vitro and in vivo. Chromatographic separation was performed to isolate peptide fractions involved in CCK secretion, and five novel CCK-releasing peptides including QFDLDD, PAFKEEHL, SFHFPI, IPPLFP, and RVTVQPDS were successfully identified. A sequence length range of 6-8 and marked hydrophobicity (18-28) were observed among the most CCK-releasing peptides. The present study demonstrated for the first time that BPD could stimulate CCK secretion and clarify the structural characteristics of bioactive peptides having CCK secretagogue activity in BPD.
Collapse
Affiliation(s)
- Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qingyu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuwei Shao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qiqi Sun
- Fengxian Central Hospital, Shanghai 201499, China.
| | | | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
13
|
Alfheeaid HA, Barakat H, Althwab SA, Musa KH, Malkova D. Nutritional and Physicochemical Characteristics of Innovative High Energy and Protein Fruit- and Date-Based Bars. Foods 2023; 12:2777. [PMID: 37509869 PMCID: PMC10379009 DOI: 10.3390/foods12142777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
With the increasing global nutritional bar market, developing and formulating innovative high-energy and protein bars to compensate for nutrients using date fruits is beneficial for health-conscious individuals. The current research was undertaken to study the composition and physicochemical characteristics of innovative high-energy and high-protein bars using two combinations of Sukkari dates or fruit mixtures as a base. Fifty percent of either Sukkari date paste or dried fruit mixture (25% raisin, 12.5% fig, and 12.5% apricot) combined with other different ingredients was used to produce a date-based bar (DBB) or fruit-based bar (FBB). Proximate composition, sugar content, amino and fatty acid profiles, minerals and vitamins, phytochemicals, antioxidant activity, and visual color parameters of the DBB and the FBB were determined and statistically compared. Proximate analysis revealed higher moisture and fat content in the FBB than the DBB, while ash and crude fiber were higher in the DBB than the FBB. The protein content in the DBB and the FBB was not statistically different. Both prepared bars exuded around 376-378 kcal 100 g-1 fresh weight. Sugar profile analysis of the DBB and the FBB showed dependable changes based on date or fruit content. Fructose, glucose, and maltose contents were higher in the FBB than in the DBB, while sucrose content was higher in the DBB than in the FBB. The DBB showed significantly higher content in Ca, Cu, Fe, Zn, Mn, and Se and significantly lower content in Mg, K, and Na than the FBB, with no variation in phosphorus content. The DBB and the FBB contained both essential (EAA) and non-essential (NEAA) amino acids. The DBB scored higher Lysine, Methionine, Histidine, Threonine, Phenylalanine, Isoleucine, and Cystine contents than the FBB, while the FBB scored only higher Leucine and Valine contents than the DBB. Seventeen saturated fatty acids were identified in the DBB and the FBB, with Palmitic acid (C16:0) as the predominant fatty acid. Oleic acid (C18:1n9c) was predominant among seven determined monounsaturated fatty acids. Linoleic fatty acid (C18:2n6c) was predominant among eight identified polyunsaturated fatty acids. In addition, α-Linolenic (C18:3n3) was detected in a considerable amount. However, in both the DBB and the FBB, the content and distribution of fatty acids were not remarkably changed. Regarding phytochemicals and bioactive compounds, the FBB was significantly higher in total phenolic content (TPC), total flavonoids (TF), and total flavonols (TFL) contents and scavenging activity against DPPH and ABTS free radicals than the DBB. The DBB and the FBB showed positive a* values, indicating a reddish color. The b* values were 27.81 and 28.54 for the DBB and the FBB, respectively. The DBB is affected by the lower L* value and higher browning index (BI) to make its color brownish. Sensory evaluation data showed that panelists significantly preferred the DBB over the FBB. In conclusion, processing and comparing these bars indicated that using Sukkari dates is a nutrient-dense, convenient, economical, and better sugar alternative that helps combat the calorie content. Thus, scaling up the use of dates instead of fruits in producing high-energy and protein bars commercially is highly recommended.
Collapse
Affiliation(s)
- Hani A. Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (H.A.A.); (S.A.A.); (K.H.M.)
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (H.A.A.); (S.A.A.); (K.H.M.)
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Sami A. Althwab
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (H.A.A.); (S.A.A.); (K.H.M.)
| | - Khalid Hamid Musa
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (H.A.A.); (S.A.A.); (K.H.M.)
| | - Dalia Malkova
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| |
Collapse
|
14
|
Alfaro-Diaz A, Escobedo A, Luna-Vital DA, Castillo-Herrera G, Mojica L. Common beans as a source of food ingredients: Techno-functional and biological potential. Compr Rev Food Sci Food Saf 2023; 22:2910-2944. [PMID: 37182216 DOI: 10.1111/1541-4337.13166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Common beans are an inexpensive source of high-quality food ingredients. They are rich in proteins, slowly digestible starch, fiber, phenolic compounds, and other bioactive molecules that could be separated and processed to obtain value-added ingredients with techno-functional and biological potential. The use of common beans in the food industry is a promising alternative to add nutritional and functional ingredients with a low impact on overall consumer acceptance. Researchers are evaluating traditional and novel technologies to develop functionally enhanced common bean ingredients, such as flours, proteins, starch powders, and phenolic extracts that could be introduced as functional ingredient alternatives in the food industry. This review compiles recent information on processing, techno-functional properties, food applications, and the biological potential of common bean ingredients. The evidence shows that incorporating an adequate proportion of common bean ingredients into regular foods such as pasta, bread, or nutritional bars improves their fiber, protein, phenolic compounds, and glycemic index profile without considerably affecting their organoleptic properties. Additionally, common bean consumption has shown health benefits in the gut microbiome, weight control, and the reduction of the risk of developing noncommunicable diseases. However, food matrix interaction studies and comprehensive clinical trials are needed to develop common bean ingredient applications and validate the health benefits over time.
Collapse
Affiliation(s)
- Arturo Alfaro-Diaz
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Alejandro Escobedo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | - Gustavo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
15
|
Assessment of Protein Nutritional Quality of Novel Hairless Canary Seed in Comparison to Wheat and Oat Using In Vitro Static Digestion Models. Nutrients 2023; 15:nu15061347. [PMID: 36986077 PMCID: PMC10056580 DOI: 10.3390/nu15061347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Hairless canary seed (Phalaris canariensis L.) is a novel true cereal that is now approved for human consumption in Canada and the United States. This true cereal grain has higher protein content (22%) than oat (13%) and wheat (16%) and represents a valuable source of plant proteins. Assessment of canary seed protein quality is therefore essential to evaluate its digestibility and ability to provide sufficient amounts of essential amino acids for human requirements. In this study, the protein nutritional quality of four hairless canary seed varieties (two brown and two yellow) were evaluated in comparison to oat and wheat. The assessment of anti-nutrients contents (phytate, trypsin inhibitor activity, and polyphenols) showed that brown canary seed varieties had the highest content in phytate and oat the highest in polyphenols. Trypsin inhibitor level was comparable among studied cereals, but slightly higher in the brown canary seed Calvi variety. In regard to protein quality, canary seed had a well-balanced amino acid profile and was particularly high in tryptophan, an essential amino acid normally lacking in cereals. The in vitro protein digestibility of canary seeds as determined by both the pH-drop and INFOGEST (international network of excellence on the fate of food in the gastrointestinal tract) protocols appears slightly lower than wheat and higher than oat. The yellow canary seed varieties showed better overall digestibility than the brown ones. For all studied cereal flours, the limiting amino acid was lysine. The calculated in vitro PDCAAS (protein digestibility corrected amino acid score) and DIAAS (digestible indispensable amino acid score) were higher for the yellow C05041 cultivar than the brown Bastia, similar to those of wheat, but lower than those of oat proteins. This study demonstrates the feasibility and utility of in vitro human digestion models for the assessment of protein quality for comparison purpose.
Collapse
|
16
|
Zhou J, Wan Z, Gali KK, Jha AB, Nickerson MT, House JD, Tar’an B, Warkentin TD. Quantitative trait loci associated with amino acid concentration and in vitro protein digestibility in pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1083086. [PMID: 36968409 PMCID: PMC10038330 DOI: 10.3389/fpls.2023.1083086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
With the expanding interest in plant-based proteins in the food industry, increasing emphasis is being placed on breeding for protein concentration and quality. Two protein quality traits i.e., amino acid profile and protein digestibility, were assessed in replicated, multi-location field trials from 2019 to 2021 in pea recombinant inbred line population PR-25. This RIL population was targeted specifically for the research of protein related traits and its parents, CDC Amarillo and CDC Limerick, had distinct variations in the concentration of several amino acids. Amino acid profile was determined using near infrared reflectance analysis, and protein digestibility was through an in vitro method. Several essential amino acids were selected for QTL analysis, including lysine, one of the most abundant essential amino acids in pea, and methionine, cysteine, and tryptophan, the limiting amino acids in pea. Based on phenotypic data of amino acid profiles and in vitro protein digestibility of PR-25 harvested in seven location-years, three QTLs were associated with methionine + cysteine concentration, among which, one was located on chromosome 2 (R2 = 17%, indicates this QTL explained 17% phenotypic variation of methionine + cysteine concentration within PR-25), and two were located on chromosome 5 (R2 = 11% and 16%). Four QTLs were associated with tryptophan concentration and are located on chromosome 1 (R2 = 9%), chromosome 3 (R2 = 9%), and chromosome 5 (R2 = 8% and 13%). Three QTLs were associated with lysine concentration, among which, one was located on chromosome 3 (R2 = 10%), the other two were located on chromosome 4 (R2 = 15% and 21%). Two QTLs were associated with in vitro protein digestibility, one each located on chromosomes 1 (R2 = 11%) and 2 (R2 = 10%). QTLs associated with in vitro protein digestibility, and methionine + cysteine concentration on chromosome 2 were identified to be co-localized with known QTL for total seed protein concentration in PR-25. QTLs associated with tryptophan and methionine + cysteine concentration co-localized on chromosome 5. The identification of QTLs associated with pea seed quality is an important step towards marker-assisted selection of breeding lines with improved nutritional quality, which will further boost the competitiveness of pea in plant-based protein markets.
Collapse
Affiliation(s)
- Junsheng Zhou
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zhongyang Wan
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Krishna Kishore Gali
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ambuj Bhushan Jha
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael T. Nickerson
- Department of Food and Bioproduct Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - James D. House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB, Canada
| | - Bunyamin Tar’an
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thomas D. Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
17
|
Marinangeli CPF, Miller K, Fulgoni VL. Effect of increasing plant protein intake on protein quality and nutrient intake of US adults. Appl Physiol Nutr Metab 2023; 48:49-61. [PMID: 36228324 DOI: 10.1139/apnm-2022-0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three cycles of NHANES (2013-2018) were used to assess protein intake, protein quality (protein digestibility-corrected amino acid score; PDCAAS), protein cost, and nutrient intakes across quartiles of plant protein intake (Q1: <28.2%; Q2: 28.2% to <32.1%; Q3: 32.1 to <36.2%; Q4: ≥36.2%) over a 24 h period (≥19 years, n = 14 888). Grains represented the primary source of plant protein across quartiles and increased from 5.01% (Q1) to 13.5% (Q4). Across all the USDA's Food and Nutrient Database for Dietary Studies (FNDDS) food groups, grains were the most economical source of protein (24.3-26 g protein/$1). Legumes were the most economical plant-based protein (28-37.7 g protein/$1) within the "Protein Foods" FNDDS group. Absolute protein intake (96.6 g/day) and PDCAAS (0.91) of diets were progressively lower from Q1 to 72.0 g/day and 0.8 in Q4, respectively. Modelling the replacement of 50% of amino acids from grains in the diet with amino acids from legumes increased the PDCAAS by 10% in Q4. Intake levels of fibre, folate, iron, and zinc, were higher in Q2-Q4 compared to Q1 but had lower intakes of vitamins B12 and D. Amino acid complementation is required to effectively integrate higher levels plant protein into US diets.
Collapse
Affiliation(s)
| | - Kevin Miller
- General Mills, Bell Institute of Health and Nutrition, Global Scientific & Regulatory Affairs, Minneapolis, MN 55427, USA
| | | |
Collapse
|
18
|
Lappi J, Silventoinen-Veijalainen P, Vanhatalo S, Rosa-Sibakov N, Sozer N. The nutritional quality of animal-alternative processed foods based on plant or microbial proteins and the role of the food matrix. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Zeng Y, Chen E, Zhang X, Li D, Wang Q, Sun Y. Nutritional Value and Physicochemical Characteristics of Alternative Protein for Meat and Dairy-A Review. Foods 2022; 11:3326. [PMID: 36359938 PMCID: PMC9654170 DOI: 10.3390/foods11213326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 09/12/2023] Open
Abstract
In order to alleviate the pressure on environmental resources faced by meat and dairy production and to satisfy the increasing demands of consumers for food safety and health, alternative proteins have drawn considerable attention in the food industry. However, despite the successive reports of alternative protein food, the processing and application foundation of alternative proteins for meat and dairy is still weak. This paper summarizes the nutritional composition and physicochemical characteristics of meat and dairy alternative proteins from four sources: plant proteins, fungal proteins, algal proteins and insect proteins. The difference between these alternative proteins to animal proteins, the effects of their structural features and environmental conditions on their properties, as well as the corresponding mechanism are compared and discussed. Though fungal proteins, algal proteins and insect proteins have shown some advantages over traditional plant proteins, such as the comparable protein content of insect proteins to meat, the better digestibility of fungal proteins and the better foaming properties of algal proteins, there is still a big gap between alternative proteins and meat and dairy proteins. In addition to needing to provide amino acid composition and digestibility similar to animal proteins, alternative proteins also face challenges such as maintaining good solubility and emulsion properties. Their nutritional and physicochemical properties still need thorough investigation, and for commercial application, it is important to develop and optimize industrial technology in alternative protein separation and modification.
Collapse
Affiliation(s)
- Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Enhui Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xuewen Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Demao Li
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
20
|
Liu S, Ren Y, Yin H, Nickerson M, Pickard M, Ai Y. Improvement of the nutritional quality of lentil flours by infrared heating of seeds varying in size. Food Chem 2022; 396:133649. [PMID: 35842998 DOI: 10.1016/j.foodchem.2022.133649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/18/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
The present study aimed to tackle research gaps regarding how infrared heating affected macro- and micronutrients of lentil flours from seeds varying in size. Infrared treatments reduced resistant starch contents of lentil flours from 26.1-33.6% to 6.0-17.8%, increased protein digestibility from 73.6-75.0% to 78.2-82.2%, and enhanced soluble dietary fiber contents from 6.1-7.8% to 7.4-10.3%. Infrared treatments did not alter the primary limiting amino acid of Greenstar and Imvincible lentil flours (tryptophan) but changed that of Maxim to methionine + cysteine at 150 °C heating. Regarding micronutrients, the thermal modifications decreased the levels of heat-labile B vitamins, including B1 (thiamine), B3 (niacin), and B9 (mainly 5-methylterahydrofolate), consistent with reducing α-amylase activity to an undetectable level in all the three lentil flours. The novel findings from this research will be meaningful for the agri-food industry to utilize infrared processing as an effective and clean-label approach to improving the nutritional profiles of lentil and other flours.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada; Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yikai Ren
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Hanyue Yin
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Mark Pickard
- InfraReady Products (1998) Limited, Saskatoon, Canada
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
21
|
Effects of ultra-high-pressure treatment on the structural and functional properties of buckwheat 13S globulin. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Comparative evaluation of the nutritional value of faba bean flours and protein isolates with major legumes in the market. Cereal Chem 2022. [DOI: 10.1002/cche.10575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Physicochemical, nutritional and functional properties of chickpea (Cicer arietinum) and navy bean (Phaseolus vulgaris) flours from different mills. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Looking inside Mexican Traditional Food as Sources of Synbiotics for Developing Novel Functional Products. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently, emerging alimentary alternatives are growing, leading to the consumption of natural products including bio, fermented, and traditional foods. The studies over functional properties of food matrices and their derived compounds have resulted in the development of new functional alimentary items. However, most of the population still has limited access to, and information about, suitable foods. Analyzing traditional fermented products, we found fermented food matrices containing beneficial bacteria, with the possibility of exerting effects on different substrates enhancing the bioavailability of short-chain fatty acids (SFCAs), antioxidants, among other food-derived products. Maize (Zea mays L.), agave varieties, nopal (Opuntia ficus-indica), and beans (Phaseolus vulgaris L.) were key foods for the agricultural and nutritional development of Mesoamerica. We believe that the traditional Mexican diet has relevant ingredients with these functionalities and their association will allow us to develop functional food suitable for each population and their current needs. In this review, the functional properties of maize, agave, nopal, and frijol are detailed, and the functional food innovation and development opportunities for these food matrices are analyzed, which may be an important precedent for future basic and applied research.
Collapse
|
25
|
Adhikari S, Schop M, de Boer IJM, Huppertz T. Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Applications. Nutrients 2022; 14:947. [PMID: 35267922 PMCID: PMC8912699 DOI: 10.3390/nu14050947] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
For design of healthy and sustainable diets and food systems, it is important to consider not only the quantity but also the quality of nutrients. This is particularly important for proteins, given the large variability in amino acid composition and digestibility between dietary proteins. This article reviews measurements and metrics in relation to protein quality, but also their application. Protein quality methods based on concentrations and digestibility of individual amino acids are preferred, because they do not only allow ranking of proteins, but also assessment of complementarity of protein sources, although this should be considered only at a meal level and not a diet level. Measurements based on ileal digestibility are preferred over those on faecal digestibility to overcome the risk of overestimation of protein quality. Integration of protein quality on a dietary level should also be done based on measurements on an individual amino acid basis. Effects of processing, which is applied to all foods, should be considered as it can also affect protein quality through effects on digestibility and amino acid modification. Overall, protein quality data are crucial for integration into healthy and sustainable diets, but care is needed in data selection, interpretation and integration.
Collapse
Affiliation(s)
- Shiksha Adhikari
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
| | - Marijke Schop
- Animal Production Systems Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (M.S.); (I.J.M.d.B.)
| | - Imke J. M. de Boer
- Animal Production Systems Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (M.S.); (I.J.M.d.B.)
| | - Thom Huppertz
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
- Friesland Campina, Research and Development, 3818 LE Amersfoort, The Netherlands
| |
Collapse
|
26
|
Wang Q, Li L, Wang T, Zheng X. A review of extrusion-modified underutilized cereal flour: chemical composition, functionality, and its modulation on starchy food quality. Food Chem 2022; 370:131361. [PMID: 34788965 DOI: 10.1016/j.foodchem.2021.131361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Compared with three major cereals, underutilized cereals (UCs) are those with less use but having abundant bioactive components and better functionalities after proper processing. As a productive and energy-efficient technology, extrusion has been used for UC modification to improve its technological and nutritional quality. Extrusion could induce structural and quantitative changes in chemical components of UC flour, the degree of which is affected by extrusion intensity. Based on the predominant component (starch), functionalities of extruded underutilized cereal flour (EUCF) and potential mechanisms are reviewed. Considering bioactive compounds, it also summarizes the physiological functions of EUCF. EUCF incorporation could modulate the dough rheological behavior and starchy foods quality. Controlling extrusion intensity or incorporation level of EUCF is vital to achieve sensory-appealing and nutritious products. This paper gives comprehensive information of EUCF to promote its utilization in novel staple foods.
Collapse
Affiliation(s)
- Qingfa Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Ting Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Xueling Zheng
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| |
Collapse
|
27
|
Jin J, Okagu OD, Udenigwe CC. Differential Influence of Microwave and Conventional Thermal Treatments on Digestibility and Molecular Structure of Buckwheat Protein Isolates. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Calderón de la Barca AM, Martínez-Díaz G, Ibarra-Pastrana ÉN, Devi S, Kurpad AV, Valencia ME. Pinto Bean Amino Acid Digestibility and Score in a Mexican Dish with Corn Tortilla and Guacamole, Evaluated in Adults Using a Dual-Tracer Isotopic Method. J Nutr 2021; 151:3151-3157. [PMID: 34255067 DOI: 10.1093/jn/nxab216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/19/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Ultra-processed foodstuffs have been replacing traditional beans with tortillas in the Mexican diet in the last decades. Therefore, scientific support is needed to promote a return to good-quality traditional dishes. OBJECTIVES This study aims to evaluate the amino acid digestibility and score of pinto beans (Phaseolus vulgaris) consumed with corn tortillas and guacamole in adults using the dual-tracer method. METHODS The pinto beans were intrinsically labeled using 250 mL of 2H2O (99.8%) per 19 L pot with 3 plants. A paste of cooked beans on toasted corn tortillas and guacamole topping were administered to 3 male and 3 female adults (21-25 years old; BMI, 19-23.5 kg/m2). The protocol was plateau feeding given along with U-[13C]-spirulina protein to evaluate indispensable amino acid (IAA) digestibility using the dual-tracer method. Blood samples were taken in the plateau state. The digestibility of each IAA of the bean protein was calculated by the ratio of its enrichment in the beans to the spirulina in the meal and its appearance in plasma collected in the plateau state, as a percentage corrected by spirulina digestibility. Additionally, the digestible IAA score (DIAAS) was calculated. RESULTS The 2H enrichment of IAA in the pinto beans was 471 parts per million excess. The isotopic enrichment of 2H and 13C in IAA at 5-8 hours presented plateau states with mean CVs of 12.2% and 13.3%, respectively. The mean digestibility of IAA from pinto beans was 77% ± 1.6%, with the lowest value for threonine. The DIAAS calculated with respect to the pattern requirement for children older than 3 years, adolescents, and adults was 83%, with methionine and cysteine being the limiting amino acids. CONCLUSIONS A Mexican dish of pinto beans, tortillas, and guacamole is a good source of protein as evaluated in adults and could be promoted as a nutritious snack. The assay is registered with the Ethical Committee of the Centro de Investigación en Alimentación y Desarrollo, A.C. as CE/015/2019.
Collapse
Affiliation(s)
- Ana M Calderón de la Barca
- Department of Nutrition, Centro de Investigación en Alimentación y Desarrollo, A.C. Carr. Enrique Astiazarán Rosas, Sonora, México
| | - Gerardo Martínez-Díaz
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, P. Encinas Félix, Sonora, México
| | - Érika N Ibarra-Pastrana
- Department of Nutrition, Centro de Investigación en Alimentación y Desarrollo, A.C. Carr. Enrique Astiazarán Rosas, Sonora, México.,Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, LD Colosio, Sonora, México
| | - Sarita Devi
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Anura V Kurpad
- Department of Physiology, St. John's Medical College, St. John's National Academy of Health Sciences, Bangalore, India
| | - Mauro E Valencia
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, LD Colosio, Sonora, México
| |
Collapse
|
29
|
Han F, Moughan PJ, Li J, Stroebinger N, Pang S. The Complementarity of Amino Acids in Cooked Pulse/Cereal Blends and Effects on DIAAS. PLANTS (BASEL, SWITZERLAND) 2021; 10:1999. [PMID: 34685808 PMCID: PMC8541063 DOI: 10.3390/plants10101999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
The aim was to study the complementary effect between cereals and pulses on protein quality. The values for the digestible indispensable amino acid score (DIAAS) in cooked cereals and pulses, given alone, and blends of cooked cereals and pulses, were determined. True ileal digestibility (TID) values of amino acids for adult humans were obtained. It is difficult to determine ileal amino acid digestibility in humans directly, and for this reason, the growing pig is often used to obtain such values, as a preferred animal model. Seven growing pigs fitted with a T-cannula at the terminal ileum were allotted to a 7 × 6 incomplete Latin square with seven semi-synthetic diets (cooked mung bean, adzuki bean, millet, adlay, mung bean + millet, adzuki bean + adlay, and an N-free diet) and six 7-day periods. The mean TID values for crude protein differed significantly (p < 0.05), with millet having the highest digestibility (89.4%) and the adzuki bean/adlay mixture having the lowest (79.5%). For lysine, adzuki bean had the highest TID (90%) and millet had the lowest (70%). For the mean of all the amino acids, there was a significant (p < 0.05) effect of diet, with the TID ranging from 72.4% for the adzuki bean/adlay mixture to 89.9% for the adzuki beans. For the older child, adolescent, and adult, the DIAAS (%) was 93 for mung beans, 78 for adzuki beans, 22 for millet, 16 for adlay, and 66 for mung beans + millet, and 51 for adzuki beans + adlay. For mung beans, valine was first-limiting, and the SAA for adzuki beans, while lysine was first-limiting for the other foods. Chinese traditional diets, containing both cereals and pulses, are complementary for most, but not all of the indispensable amino acids.
Collapse
Affiliation(s)
- Fei Han
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| | - Paul James Moughan
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (P.J.M.); (N.S.)
| | - Juntao Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Natascha Stroebinger
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (P.J.M.); (N.S.)
| | - Shaojie Pang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| |
Collapse
|
30
|
Jiménez-Munoz LM, Tavares GM, Corredig M. Design future foods using plant protein blends for best nutritional and technological functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Byars JA, Singh M, Kenar JA, Felker FC, Winkler‐Moser JK. Effect of particle size and processing method on starch and protein digestibility of navy bean flour. Cereal Chem 2021. [DOI: 10.1002/cche.10422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jeffrey A. Byars
- Functional Foods Research Unit USDAAgricultural Research ServiceNational Center for Agricultural Utilization Research Peoria IL USA
| | - Mukti Singh
- Functional Foods Research Unit USDAAgricultural Research ServiceNational Center for Agricultural Utilization Research Peoria IL USA
| | - James A. Kenar
- Functional Foods Research Unit USDAAgricultural Research ServiceNational Center for Agricultural Utilization Research Peoria IL USA
| | - Frederick C. Felker
- Functional Foods Research Unit USDAAgricultural Research ServiceNational Center for Agricultural Utilization Research Peoria IL USA
| | - Jill K. Winkler‐Moser
- Functional Foods Research Unit USDAAgricultural Research ServiceNational Center for Agricultural Utilization Research Peoria IL USA
| |
Collapse
|
32
|
Zhu F. Buckwheat proteins and peptides: Biological functions and food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Nutritional and Rheological Characteristics of Composite Flour Substituted with Baobab ( Adansonia digitata L.) Pulp Flour for Cake Manufacturing and Organoleptic Properties of Their Prepared Cakes. Foods 2021; 10:foods10040716. [PMID: 33801774 PMCID: PMC8065946 DOI: 10.3390/foods10040716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Revalorization of Adansonia digitata L. "Baobab" pulp flour (BPF) to produce a notorious and functional cake in the current study was assessed. Wheat flour (WF 72%) was partially substituted by BPF at 5, 10, and 15% to prepare composite flour (WF + BPF) for potential cake manufacturing. Approximate chemical composition, macro- and microelements content, amino acids (AAs), total phenolic content (TPC), and antioxidant activity (AOA) of partially substituted composite flour (WF + BPF) were determined. The rheological properties of the composite flours were assessed using MIXOLAB. Moreover, an organoleptic evaluation of the baked cakes was performed with 20 trained panelists. The substitution with BPF significantly increased the total ash and crude fiber content in composite flour in a level-dependent manner, while moisture, crude fat, crude protein, available carbohydrates contents, and energy values were not significantly changed. Interestingly, macroelements such as Ca, K, and P were significantly increased, while Na was significantly decreased, whereas Mg content was not significantly changed. Similarly, microelements such as Zn, Fe, and Cu increased with the increase of BPF substitution. Significant increases in TPC and AOA were found by increasing the substitution with BPF. The biological value (BV), essential amino acid index (EAAI), protein efficiency ratio (PER), as well as essential amino acids (EAAs) requirement index (RI) were positively improved in WF + BPF. Adding BPF up to 10% not only improved the water absorption, α-amylase activity, and viscosity, but also caused a slight weakness in the gluten network, to produce a composite flour suitable for cake making. Conclusively, this study revealed that fortification with BPF up to 5-10% improved the nutritional quality without adverse effects on technological, and organoleptic characteristics and providing economic, commercial, and health benefits.
Collapse
|
34
|
Luthar Z, Zhou M, Golob A, Germ M. Breeding Buckwheat for Increased Levels and Improved Quality of Protein. PLANTS (BASEL, SWITZERLAND) 2020; 10:E14. [PMID: 33374117 PMCID: PMC7824328 DOI: 10.3390/plants10010014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) and common buckwheat (Fagopyrum esculentum Moench) are important sources of proteins with balanced amino-acid compositions, and thus of high nutritional value. The polyphenols naturally present in Tartary buckwheat and common buckwheat lower the true digestibility of the proteins. Digestion-resistant peptides are a vehicle for fecal excretion of steroids, and in this way, for bile acid elimination and reduction of cholesterol concentrations in serum. Buckwheat proteins are more effective compared to soy proteins for the prevention of gallstone formation. Tartary and common buckwheat grain that contains appropriate amounts of selenium-containing amino acids can be produced as functional food products. The protein-rich by-products of buckwheat are a good source of bioactive substances that can suppress colon carcinogenesis by reducing cell proliferation. The grain embryo is a rich source of proteins, so breeding buckwheat with larger embryos is a possible strategy to increase protein levels in Tartary and common buckwheat grain. However, chemical analysis of the grain is the most relevant criterion for assessing grain protein levels and quality.
Collapse
Affiliation(s)
- Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.)
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.)
| |
Collapse
|
35
|
Han F, Moughan PJ, Li J, Pang S. Digestible Indispensable Amino Acid Scores (DIAAS) of Six Cooked Chinese Pulses. Nutrients 2020; 12:nu12123831. [PMID: 33333894 PMCID: PMC7765318 DOI: 10.3390/nu12123831] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Values for the digestible indispensable amino acid score (DIAAS) of a protein are based on true ileal amino acid (AA) digestibility values obtained in adult humans or in the growing pig as an animal model. An experiment was conducted using growing pigs to determine the true ileal digestibility (TID) values of AA in six cooked Chinese pulses (kidney bean, mung bean, adzuki bean, broad beans, peas and chickpeas). Each pulse was included in a diet as the only source of crude protein (CP). An N-free diet was given to allow determination of gut endogenous AA losses. Seven growing pigs each fitted with a T-cannula at the terminal ileum were allotted to a 7 by 6 incomplete Latin square with seven diets and six 7-d periods. The true digestibility values % for the total indispensable AA were higher (p < 0.001) for broad beans (87.3 ± 2.98) and lower (p < 0.001) for kidney bean (73.3 ± 4.84) than for the other pulses. For the older child (over 3 years), adolescent and adult, the DIAAS (%) was 88 for kidney bean, 86 for mung bean, 76 for chickpeas, 68 for peas, 64 for adzuki bean and 60 for broad beans.
Collapse
Affiliation(s)
- Fei Han
- Academy of National Food and Strategic Reserves Administration (Former Name: Academy of State Administration of Grain), Beijing 100037, China;
- Correspondence: ; Tel.: +86-10-56452607
| | - Paul J. Moughan
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand;
| | - Juntao Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shaojie Pang
- Academy of National Food and Strategic Reserves Administration (Former Name: Academy of State Administration of Grain), Beijing 100037, China;
| |
Collapse
|
36
|
Jin J, Ohanenye IC, Udenigwe CC. Buckwheat proteins: functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. Crit Rev Food Sci Nutr 2020; 62:1752-1764. [PMID: 33191773 DOI: 10.1080/10408398.2020.1847027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The need for protein in human nutrition is rapidly increasing because of the increasing world population and consumer preference for high-protein foods. Plant proteins are gaining attention as sustainable means of meeting the global protein need due to their lower carbon footprint. Nonetheless, the food industry has neglected or underutilized many plant proteins, including buckwheat protein. Buckwheat is a pseudocereal and its groats contain beneficial components such as proteins, dietary fiber, vitamins, and bioactive polyphenols. The protein quality of buckwheat seeds varies between the tartary and common buckwheat types; both are gluten-free and contain considerable amount of indispensable amino acids. This review provides a detailed discussion on the profile, amino acid composition, digestibility, allergenicity, functional properties, and bioactivity of buckwheat proteins. Prospects of processing buckwheat for improving protein digestibility and deactivating allergenic epitopes were also discussed. Based on the literature, buckwheat protein has a tremendous potential for utilization in structuring food products and developing peptide-based functional foods for disease prevention. Future research should develop new processing technologies for further improvement of the quality and functional properties of buckwheat protein in order to facilitate its utilization as an alternative plant-based protein toward meeting the global protein supply.
Collapse
Affiliation(s)
- Jian Jin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.,School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Ikenna C Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
37
|
Nosworthy MG, Medina G, Franczyk AJ, Neufeld J, Appah P, Utioh A, Frohlich P, Tar'an B, House JD. Thermal processing methods differentially affect the protein quality of Chickpea ( Cicer arietinum). Food Sci Nutr 2020; 8:2950-2958. [PMID: 32566213 PMCID: PMC7300037 DOI: 10.1002/fsn3.1597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/04/2022] Open
Abstract
Chickpea is a widely produced pulse crop, but requires processing prior to human consumption. Protein bioavailability and amino acid quantity of chickpea flour can be altered by multiple factors including processing method. For this reason, the protein quality of processed chickpea flour was determined using in vivo and in vitro analyses for processed chickpeas. Processing differentially affected the protein digestibility-corrected amino acid score (PDCAAS) of chickpeas with extruded chickpea (83.8) having a higher PDCAAS score than both cooked (75.2) and baked (80.03). Interestingly, the digestible indispensable amino acid score (DIAAS) value of baked chickpea (0.84) was higher compared to both extruded (0.82) and cooked (0.78). The protein efficiency ratio, another measure of protein quality, was significantly higher for extruded chickpea than baked chickpea (p < .01). In vivo and in vitro analysis of protein quality were well correlated (R 2 = .9339). These results demonstrated that under certain circumstances in vitro methods could replace the use of animals to determine protein quality.
Collapse
Affiliation(s)
- Matthew G. Nosworthy
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegMBCanada
| | - Gerardo Medina
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegMBCanada
| | - Adam J. Franczyk
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegMBCanada
| | - Jason Neufeld
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegMBCanada
| | - Paulyn Appah
- Food Development CentrePortage la PrairieMBCanada
| | | | | | - Bunyamin Tar'an
- College of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonSKCanada
| | - James D. House
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegMBCanada
- Richardson Centre for Functional Foods and NutraceuticalsUniversity of ManitobaWinnipegMBCanada
- Canadian Centre for Agri‐Food Research in Health and MedicineUniversity of ManitobaWinnipegMBCanada
- Department of Animal ScienceUniversity of ManitobaWinnipegMBCanada
| |
Collapse
|
38
|
Mahmud A, Girmatsion M, Abraha B, Mohammed JK, Yang F, Xia W. Fatty acid and amino acid profiles and digestible indispensable amino acid score of grass carp (Ctenopharyngodon idella) protein concentrate supplemented noodles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00484-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Brishti FH, Chay SY, Muhammad K, Rashedi Ismail-Fitry M, Zarei M, Saari N. Texturized mung bean protein as a sustainable food source: techno-functionality, anti-nutrient properties, in vivo protein quality and toxicity. Food Funct 2020; 11:8918-8930. [DOI: 10.1039/d0fo01463j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mung bean is an underutilized yet sustainable protein source. The current work elucidates the pilot-scale production of mung bean protein isolate and reveals good in vivo protein quality which secures TMBP's potential as a protein meal replacement and dietary supplement.
Collapse
Affiliation(s)
- Fatema Hossain Brishti
- Department of Food Science
- Faculty of Food Science and Technology
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Shyan Yea Chay
- Department of Food Science
- Faculty of Food Science and Technology
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Kharidah Muhammad
- Department of Food Science
- Faculty of Food Science and Technology
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | | | - Mohammad Zarei
- Department of Food Science and Technology
- School of Industrial Technology
- Faculty of Applied Sciences
- Universiti Teknologi MARA
- 40450 Shah Alam
| | - Nazamid Saari
- Department of Food Science
- Faculty of Food Science and Technology
- Universiti Putra Malaysia
- Serdang
- Malaysia
| |
Collapse
|
40
|
Gu BJ, Masli MDP, Ganjyal GM. Whole faba bean flour exhibits unique expansion characteristics relative to the whole flours of lima, pinto, and red kidney beans during extrusion. J Food Sci 2019; 85:404-413. [PMID: 31887250 DOI: 10.1111/1750-3841.14951] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/18/2019] [Accepted: 10/19/2019] [Indexed: 01/22/2023]
Abstract
Determining the impacts of extrusion conditions on extrudate characteristics of whole beans flours is critical to find the suitable types of beans to use for making direct expanded products. Whole bean flours of four different bean types, faba, lima, pinto, and red kidney, were extruded. The influence of barrel temperature (120, 140, and 160 °C), moisture content (17%, 21%, and 25%), and screw speed (150, 200, and 250 rpm) on process and product responses was studied with a corotating twin screw extruder. The barrel temperature, moisture content, screw speed, and variety of bean had significant influence on process and product responses, back pressure (MPa), torque (N·m), specific mechanical energy (kJ/kg), expansion ratio, water absorption index (g/g), and water solubility index (%) (P < 0.05). Faba bean extrudates had a significantly higher expansion ratio compared to other beans (lima, pinto, and red kidney beans) even though faba bean contained significantly higher protein and higher crude fiber contents (P < 0.05). PRACTICAL APPLICATION: The outputs of this research will be helpful to the food industry in the production of high nutrient-dense food products from whole beans by maintaining the expansion and texture of the products. The data should assist to choose the suitable types of whole bean flours and the optimum processing conditions for making direct expanded extruded products.
Collapse
Affiliation(s)
- Bon-Jae Gu
- School of Food Science, Washington State Univ, 1945 NE Ferdinand's Lane, Pullman, WA, 99164-6376, U.S.A
| | - Maria Dian Pratiwi Masli
- School of Food Science, Washington State Univ, 1945 NE Ferdinand's Lane, Pullman, WA, 99164-6376, U.S.A
| | - Girish M Ganjyal
- School of Food Science, Washington State Univ, 1945 NE Ferdinand's Lane, Pullman, WA, 99164-6376, U.S.A
| |
Collapse
|
41
|
Sá AGA, Moreno YMF, Carciofi BAM. Food processing for the improvement of plant proteins digestibility. Crit Rev Food Sci Nutr 2019; 60:3367-3386. [PMID: 31760758 DOI: 10.1080/10408398.2019.1688249] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proteins are essential macronutrients for the human diet. They are the primary source of nitrogen and are fundamental for body structure and functions. The plant protein quality (PPQ) refers to the bioavailability, digestibility, and amino acid composition. The digestibility specifies the protein quantity absorbed by an organism relative to the consumed amount and depends on the protein structure, previous processing, and the presence of compounds limiting the digestion. The latter are so-called antinutritional factors (ANF), exemplified by phytates, tannins, trypsin inhibitors, and lectins. Animal proteins are known to have better digestibility than plant proteins due to the presence of ANF in plants. Thus, the inactivation of ANF throughout food processing may increase the PPQ. New food processing, aiming to increase the digestibility of plant proteins, and new sources of proteins are being studied for the animal protein substitution. Here, it is presented the impact of processing on the protein digestibility and reduction of ANF. Several techniques, such as cooking, autoclaving, germination, microwave, irradiation, spray- and freeze-drying, fermentation, and extrusion enhanced the PPQ. The emerging non-thermal technologies impact on protein functionalities but require studies on the protein digestibility. How to accurately determine and how to improve the protein digestibility of a plant source remains a scientific and technological challenge that may be addressed by novel or combining existing processing techniques, as well as by exploring protein-enriched by-products of the food industry.
Collapse
Affiliation(s)
- Amanda Gomes Almeida Sá
- Department of Chemical Engineering and Food Engineering, Graduate Program in Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara Maria Franco Moreno
- Department of Nutrition, Graduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bruno Augusto Mattar Carciofi
- Department of Chemical Engineering and Food Engineering, Graduate Program in Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
42
|
Wang S, Nosworthy MG, House JD, Niefer SH, Nickerson MT. Effect of barrel temperature and feed moisture on protein quality in pre-cooked Kabuli chickpea, sorghum, and maize flours. FOOD SCI TECHNOL INT 2019; 26:265-274. [PMID: 31726873 DOI: 10.1177/1082013219887635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of barrel temperature (120 and 150 ℃, held constant in zones 4-6) and feed moisture (20 and 24%) on the protein quality of Kabuli chickpea, sorghum, and maize flours were examined, which included amino acid profile, in vitro protein digestibility and in vitro protein digestibility-corrected amino acid score (IV-PDCAAS). It was found that the limiting amino acid of chickpea changed from threonine to valine after extrusion, whereas both sorghum and maize were limiting in lysine before and after extrusion. The in vitro protein digestibility increased from 77 to 81% for chickpea and 73 to 76% for maize; values for sorghum remained at 74% after extrusion. However, the IV-PDCAAS for the extruded flours generally remained at the same level, 69% for chickpea, 22% for sorghum, and ∼35% for maize. The effect of extrusion temperature, moisture and their interaction was significant on protein quality of sorghum and maize, but in the case of chickpea, only the extrusion temperature was significant. Only chickpea extruded at 150 ℃ (regardless of the moisture) met the protein quality (PDCAAS > 70%) requirement to be used in food assistance products.
Collapse
Affiliation(s)
- Shuyang Wang
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatchewan, Canada
| | - Matthew G Nosworthy
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - James D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
43
|
López-Martínez A, Azuara-Pugliese V, Sánchez-Macias A, Sosa-Mendoza G, Dibildox-Alvarado E, Grajales-Lagunes A. High protein and low-fat chips (snack) made out of a legume mixture. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1617353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Araceli López-Martínez
- Coordinación Académica Región Altiplano Oeste de la Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, S.L.P, México
| | - Virginia Azuara-Pugliese
- Coordinación Académica Región Altiplano Oeste de la Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, S.L.P, México
| | - Armando Sánchez-Macias
- Coordinación Académica Región Altiplano Oeste de la Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, S.L.P, México
| | - Gloria Sosa-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Elena Dibildox-Alvarado
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Alicia Grajales-Lagunes
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
44
|
Liu Y, Cai C, Yao Y, Xu B. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5565-5576. [PMID: 31152448 DOI: 10.1002/jsfa.9825] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Buckwheat products are receiving increasing attention because of their high nutritive values and significant health-promoting properties. In the present study, 15 buckwheat products grown in different parts of China were investigated. Representative common or tartary buckwheat samples were further subjected to soaking, roasting, microwave cooking, boiling and steaming treatments. Colorimetric analyses and high-performance liquid chromatography (HPLC) analyses were performed to determine the phenolic profiles and antioxidant capacities of the raw and thermally processed buckwheat samples, respectively. RESULTS Tartary buckwheat exhibited a remarkably higher total phenolic content (TPC), total flavonoid content (TFC), 2-diphenyl-1-picryhydrazyl (DPPH) free radical scavenging activity and ferric reducing antioxidant power (FRAP) compared to common buckwheat, although there were no significant differences between their 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) free radical scavenging capacity. All thermal treatments, particularly microwave cooking, contributed to the greatest losses of phenolics and antioxidant capacities in the common buckwheat samples, whereas boiling and steaming usually resulted in the lowest losses. For the tartary buckwheat samples, all thermal treatments (except roasting), especially boiling and steaming, led to significant increases in TPC, TFC, DPPH free radical scavenging activity, FRAP and ABTS free radical scavenging capacity. However, HPLC analyses indicated that all thermal treatments, especially microwave cooking, gave rise to the greatest losses of the total content of 14 phenolic acids and three flavonoids, whereas boiling led to the lowest losses. CONCLUSION Both steaming and boiling treatments are recommended when preparing common or tartary buckwheat food products because they can minimize thermal degradation or promote their phenolic compounds and antioxidant capacities to the greatest extent. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongxiang Liu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Chunzhi Cai
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Yiliang Yao
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
45
|
House JD, Hill K, Neufeld J, Franczyk A, Nosworthy MG. Determination of the protein quality of almonds ( Prunus dulcis L.) as assessed by in vitro and in vivo methodologies. Food Sci Nutr 2019; 7:2932-2938. [PMID: 31572586 PMCID: PMC6766546 DOI: 10.1002/fsn3.1146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/28/2019] [Indexed: 11/09/2022] Open
Abstract
Almonds (Prunus dulcis), such as all nuts, are positioned within the protein foods grouping within the current U.S. Dietary Guidelines. The ability to make claims related to the protein content of almonds, within the United States, requires substantiation via the use of the Protein Digestibility-Corrected Amino Acid Score (PDCAAS). The present study was designed to provide current estimates of PDCAAS, using both in vivo and in vitro assays, of key almond varietals from the 2017 California harvest. Additionally, historical protein and amino acid composition data on 73 separate analyses, performed from 2000 to 2014, were analyzed. Amino acid analysis confirmed lysine as the first-limiting amino acid, generating amino acid scores of 0.53, 0.52, 0.49, and 0.56 for Butte, Independence, Monterey, and Nonpareil varietals, respectively. True fecal protein digestibility coefficients ranged from 85.7% to 89.9% yielding PDCAAS values of 44.3-47.8, being highest for Nonpareil. Similar, albeit lower, results were obtained from the in vitro assessment protocol. Analysis of the historical data again positioned lysine as the limiting amino acid and yielded information on the natural variability present within the protein and amino acid profiles of almonds. Comparison of the 2017 AA profile, averaged across almond varietals, to the historical data provided strong evidence of persistence of amino acid composition and indices of protein quality over time.
Collapse
Affiliation(s)
- James D. House
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
- Department of Animal ScienceUniversity of ManitobaWinnipegManitobaCanada
- Richardson Centre for Functional Food and NutraceuticalsUniversity of ManitobaWinnipegManitobaCanada
- Canadian Centre for Agri‐Food Research in Health and Medicine, Albrechsten Research CentreSt. Boniface General HospitalWinnipegManitobaCanada
| | - Kristen Hill
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Jason Neufeld
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Adam Franczyk
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Matthew G. Nosworthy
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
46
|
Setia R, Dai Z, Nickerson MT, Sopiwnyk E, Malcolmson L, Ai Y. Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Res Int 2019; 122:263-272. [PMID: 31229080 DOI: 10.1016/j.foodres.2019.04.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
In the present study, yellow pea (CDC Amarillo) and faba bean (CDC Snowdrop) seeds were soaked overnight and then germinated in the dark at ambient temperature for 24, 48 and 72 h. During the short-term germination, germination percentages higher than 96.6% were achieved and progressive growth of radicles was observed for both varieties. The soaked and germinated seeds were dried at 55 °C and milled into flours, and their chemical compositions, physicochemical properties and in vitro starch and protein digestibility were systematically examined. Overall, soaking and germination did not noticeably alter the chemical compositions of each flour. The most obvious changes in the physicochemical properties were found in the pasting, emulsifying and foaming properties of the pulse flours. Soaking and 24-h germination greatly enhanced the pasting viscosities of the flours; as the germination proceeded, their viscosities gradually decreased, resulting from the degradation of starch by endogenous amylase(s) during pasting. Germination progressively improved the emulsion activity and stability, foaming capacity and foam stability of both pulse flours. In addition, germination enhanced the in vitro digestibility of starch and protein of the flours; however, the treatment did not improve their in vitro protein digestibility corrected amino acid scores (IV-PDCAAS). Short-term germination of 24-72 h has been demonstrated to be an effective approach to generating pulse flours possessing diverse functional properties and enhanced digestibility of macronutrients.
Collapse
Affiliation(s)
- Rashim Setia
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Zhixin Dai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Elaine Sopiwnyk
- Canadian International Grains Institute (Cigi), Winnipeg, Canada
| | | | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
47
|
Wang S, Nosworthy MG, House JD, Ai Y, Hood‐Niefer S, Nickerson MT. Effect of barrel temperature and feed moisture on the physical properties of chickpea–sorghum and chickpea–maize extrudates, and the functionality and nutritional value of their resultant flours—Part II. Cereal Chem 2019. [DOI: 10.1002/cche.10162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuyang Wang
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Matthew G. Nosworthy
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - James D. House
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
- Richardson Centre for Functional Foods and Nutraceuticals Winnipeg Manitoba Canada
- Canadian Centre for Agri‐Food Research in Health and Medicine Winnipeg Manitoba Canada
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Shannon Hood‐Niefer
- Saskatchewan Food Industry Development Centre Inc Saskatoon Saskatchewan Canada
| | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
48
|
|
49
|
Nosworthy MG, Medina G, Franczyk AJ, Neufeld J, Appah P, Utioh A, Frohlich P, House JD. Effect of Processing on the In Vitro and In Vivo Protein Quality of Beans ( Phaseolus vulgaris and Vicia Faba). Nutrients 2018; 10:E671. [PMID: 29799474 PMCID: PMC6024599 DOI: 10.3390/nu10060671] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 11/24/2022] Open
Abstract
In this work, the protein quality of different bean types after undergoing the preparatory methods of baking, cooking and extrusion was assayed. Protein quality was assessed using a rodent bioassay to evaluate growth and protein digestibility while amino acid composition was determined via HPLC. In vivo protein digestibility was compared to an in vitro assessment method. The average protein digestibility corrected amino acid score (PDCAAS) for processed beans was higher than the digestible indispensable amino acid score (DIAAS) (61% vs. 45%). Extrusion/cooking of Phaseolus varieties resulted in higher PDCAAS (66% on average) and DIAAS values (61% on average) than baked (52% and 48%) while baked faba beans had higher PDCAAS (66%) and DIAAS (61%) values. A significant correlation was found between PDCAAS and in vitro PDCAAS (R² = 0.7497). This demonstrates which bean processing method will generate the optimal protein quality, which has benefits for both industrial production and individual domestic preparation.
Collapse
Affiliation(s)
- Matthew G Nosworthy
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Gerardo Medina
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Adam J Franczyk
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Jason Neufeld
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Paulyn Appah
- Food Development Centre, Portage la Prairie, MB R1N 3J9, Canada.
| | - Alphonsus Utioh
- Food Development Centre, Portage la Prairie, MB R1N 3J9, Canada.
| | - Peter Frohlich
- Canadian International Grains Institute, Winnipeg, MB R3C 3G7, Canada.
| | - James D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
50
|
Desai AS, Brennan MA, Brennan CS. Amino acid and fatty acid profile and digestible indispensable amino acid score of pasta fortified with salmon (Oncorhynchus tshawytscha) powder. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3085-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|